Recent Evolution of Equine Influenza and the Origin of Canine Influenza

Total Page:16

File Type:pdf, Size:1020Kb

Recent Evolution of Equine Influenza and the Origin of Canine Influenza Recent evolution of equine influenza and the origin of canine influenza Patrick J. Collinsa,b,1, Sebastien G. Vachieria,b,1, Lesley F. Haireb, Roksana W. Ogrodowiczb, Stephen R. Martinc, Philip A. Walkerb, Xiaoli Xionga,b, Steven J. Gamblinb, and John J. Skehela,2 Divisions of aVirology, bMolecular Structure, and cPhysical Biochemistry, Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom Edited by Robert A. Lamb, Northwestern University, Evanston, IL, and approved June 24, 2014 (received for review April 10, 2014) In 2004 an hemagglutinin 3 neuraminidase 8 (H3N8) equine human and avian viruses indicates that in general they are closely influenza virus was transmitted from horses to dogs in Florida similar. However, the structures of α-helix A, in the fusion sub- and subsequently spread throughout the United States and to domain (13), of the HAs of Ef and C are distinctly different from Europe. To understand the molecular basis of changes in the those of the HAs of all other known equine, avian, or human antigenicity of H3 hemagglutinins (HAs) that have occurred during influenza viruses. We have defined the genetic and structural virus evolution in horses, and to investigate the role of HA in the basis of the novel fusion subdomain structure by X-ray crystal- equine to canine cross-species transfer, we used X-ray crystallog- lography of site-specific mutant HAs and consider its possible raphy to determine the structures of the HAs from two antigen- consequences for HA stability and function in membrane fusion. ically distinct equine viruses and from a canine virus. Structurally Because of the importance of receptor binding by HA in virus all three are very similar with the majority of amino acid sequence transmission and cross-species transfer, we have used biolayer differences between the two equine HAs located on the virus interferometry to compare the avidity and specificity of equine membrane-distal molecular surface. HAs of canine viruses are and canine virus binding to a range of sialoside receptor analogs. distinct in containing a Trp-222→Leu substitution in the receptor binding site that influences specificity for receptor analogs. In the We have also used X-ray crystallography to determine the struc- fusion subdomain of canine and recent equine virus HAs a unique tures of equine and canine virus HAs in complex with some of difference is observed by comparison with all other HAs exam- these receptor analogs. From these studies we deduce the mo- MICROBIOLOGY ined to date. Analyses of site-specific mutant HAs indicate that a sin- lecular basis of the observed differences in specificity and avidity gle amino acid substitution, Thr-30→Ser, influences interactions and we consider their possible role in virus transmission. between N-terminal and C-terminal regions of the subdomain that are important in the structural changes required for membrane fu- Results and Discussion sion activity. Both structural modifications may have facilitated the Equine and Canine HA Structures. All three structures can be seen transmission of H3N8 influenza from horses to dogs. in Fig. 1 to be very similar to each other and to other HAs of the H3 subtype described before (14). This similarity was expected quine influenza viruses of the hemagglutinin 3 neuraminidase from their sequence identities: Ee vs. Ef, 95%; Ef vs. C, 96%; E8 (H3N8) subtype were first isolated in 1963 from race horses in Miami (1). Since then they have caused numerous outbreaks Significance of infection in horses around the world with serious disease and economic consequences (2). In 2004, again in Florida, an H3N8 Equine influenza viruses of the H3N8 subtype have caused virus was isolated from an outbreak of canine influenza (3) and outbreaks of respiratory disease in horses throughout the similar viruses have since been isolated from dogs in the United world since their discovery in 1963 in Florida. In 2004 an equine States and in Europe (4, 5). Genetic comparisons indicate that virus in circulation was transmitted to dogs and subsequently the canine viruses are closely related to equine viruses that were spread throughout the United States and to Europe. Compar- in circulation in horses around 2000 (3, 5). In studies of differ- ative analyses of the structures of hemagglutinin glycoproteins ences in equine viruses isolated since 1963 (6–8) and between of equine and canine viruses by X-ray crystallography locate equine and canine viruses (3, 5), the sequences of genes for the the sites of variation on the molecules, indicate a role in de- hemagglutinin membrane glycoprotein (HA) have been com- termining binding specificity for an amino acid sequence dif- pared. Sequence data for equine virus HAs indicate the evolu- ference in the receptor binding site, and describe a unique tion of four distinct lineages. The first was associated with structural difference in the membrane fusion region in recent antigenic drift, between 1963 and 1980 (6, 7, 9), and following equine and canine virus HAs by comparison with all other this three separate branches formed a “Eurasian” lineage, an known HAs. These differences are proposed to have facilitated “American” lineage, and a divided lineage containing two clades, cross-species transfer. “Florida” clade 1 and Florida clade 2 (10, 11). The HAs of the canine viruses are most similar to those of Florida clade 1 Author contributions: P.J.C., S.G.V., L.F.H., R.W.O., S.R.M., S.J.G., and J.J.S. designed research; P.J.C., S.G.V., L.F.H., R.W.O., S.R.M., P.A.W., X.X., S.J.G., and J.J.S. performed equines. The majority of amino acid sequence changes revealed research; P.J.C., S.G.V., L.F.H., R.W.O., S.R.M., P.A.W., X.X., S.J.G., and J.J.S. contributed from the analyses are in the HA1 component of HA, some in new reagents/analytic tools; P.J.C., S.G.V., S.R.M., S.J.G., and J.J.S. analyzed data; and regions known to be antigenically important in H3 HAs, and P.J.C., S.G.V., S.J.G., and J.J.S. wrote the paper. several near the receptor binding site (12) (Fig. 1). The authors declare no conflict of interest. To understand the structural consequences of these changes, This article is a PNAS Direct Submission. in particular those that distinguish equine from canine virus Freely available online through the PNAS open access option. HAs, we have used X-ray crystallography to determine their Data deposition: The atomic coordinates and structure factors have been deposited in the structures. We have examined the HAs from two equine viruses Protein Data Bank, www.pdb.org (PDB ID codes 4UNW–4UNZ, 4UO0–4UO9, and 4UOA). and one canine virus: A/Equine/Newmarket/2/93, from the Eurasian 1P.J.C. and S.G.V. contributed equally to this work. lineage, “Ee”; A/Equine/Richmond/07, from Florida clade 2, 2To whom correspondence should be addressed. Email: [email protected]. “ ” “ ” Ef ; and A/Canine/Colorado/06, C . Comparison of the overall This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. structures of the three HAs with those of other H3 HAs from 1073/pnas.1406606111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1406606111 PNAS | July 29, 2014 | vol. 111 | no. 30 | 11175–11180 Downloaded by guest on October 6, 2021 Fig. 1. The structure of monomers of Ee, Ef, and C HAs compared with A/Duck/Ukraine/63 avian H3 HA. (A) Superposition of the A/Duck/Ukraine/63 avian H3 HA (14) (colored in green) with the Ee structure (colored in blue for the HA1 chain and in red for the HA2 chain). The position of Thr-30 of chain HA1 is also indicated. (B) Structure of the Ef HA (light shades of blue and red for the HA1 and HA2 chains, respectively). The side-chain atoms of amino acids differing from those of the Ee HA are shown as spheres. The position of Ser-30 of chain HA1 and the location of the modified HA2 α-helix are indicated. (C) Structure of the C HA (darker shades of blue and red for the HA1 and HA2 chains, respectively). The positions of the five amino acids specific to canine HAs are indicated and colored as corresponding to the chain they belong to. Also indicated is the position of HA1 Ser-30 and the location of the modified HA2 α-helix. and Ef vs. the HAs of the H3 avian and H3 human viruses, Ef and C HAs, Asn-54→Lys, Asn-83→Ser, and Ile-328→Thr (3), A/duck/Ukraine/63, 86%, and A/Aichi/2/68, 85%. It is also is not clarified by comparison of the HA structures. Residues 83 reflected in the rmsd of the α-carbon atoms shown in Table S1. and 54 are on the surface of HA, about 20 Å and 35 Å from the Of the 20-aa sequence differences noted between Ee and Ef receptor binding site, respectively, toward the virus membrane. (Fig. 1B and Fig. S1) 19 are accessible on the surface of HA. Of Amino acid substitutions at either position might influence HA these, 15 by comparison with the locations of amino acid changes antigenicity (Fig. 1). Residue 328 is the C terminus of HA1 (Fig. 1). in antigenic variants of human H3 HAs might result in antigenic The substitution Ile-328→Thr, which is conserved in canine differences (12). viruses, could have been selected to ensure the required cleavage In HA1, in the receptor binding site just one change, the of precursor HA0 into HA1 and HA2.
Recommended publications
  • Influenza Virus Infections in Humans October 2018
    Influenza virus infections in humans October 2018 This note is provided in order to clarify the differences among seasonal influenza, pandemic influenza, and zoonotic or variant influenza. Seasonal influenza Seasonal influenza viruses circulate and cause disease in humans every year. In temperate climates, disease tends to occur seasonally in the winter months, spreading from person-to- person through sneezing, coughing, or touching contaminated surfaces. Seasonal influenza viruses can cause mild to severe illness and even death, particularly in some high-risk individuals. Persons at increased risk for severe disease include pregnant women, the very young and very old, immune-compromised people, and people with chronic underlying medical conditions. Seasonal influenza viruses evolve continuously, which means that people can get infected multiple times throughout their lives. Therefore the components of seasonal influenza vaccines are reviewed frequently (currently biannually) and updated periodically to ensure continued effectiveness of the vaccines. There are three large groupings or types of seasonal influenza viruses, labeled A, B, and C. Type A influenza viruses are further divided into subtypes according to the specific variety and combinations of two proteins that occur on the surface of the virus, the hemagglutinin or “H” protein and the neuraminidase or “N” protein. Currently, influenza A(H1N1) and A(H3N2) are the circulating seasonal influenza A virus subtypes. This seasonal A(H1N1) virus is the same virus that caused the 2009 influenza pandemic, as it is now circulating seasonally. In addition, there are two type B viruses that are also circulating as seasonal influenza viruses, which are named after the areas where they were first identified, Victoria lineage and Yamagata lineage.
    [Show full text]
  • Assessment of Antigenic Difference of Equine Influenza Virus Strains by Challenge Study in Horses
    Accepted: 18 July 2016 DOI: 10.1111/irv.12418 SHORT ARTICLE Assessment of antigenic difference of equine influenza virus strains by challenge study in horses Takashi Yamanakaa | Manabu Nemotoa,b | Hiroshi Bannaia | Koji Tsujimuraa | Takashi Kondoa | Tomio Matsumuraa | Sarah Gildeab | Ann Cullinaneb aEquine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan We previously reported that horse antiserum against the Japanese equine influenza bVirology Unit, Irish Equine Centre, vaccine virus, A/equine/La Plata/1993 (LP93) exhibited reduced cross- neutralization Johnstown, Naas, Co. Kildare, Ireland against some Florida sublineage Clade (Fc) 2 viruses, for example, A/equine/Car- low/2011 (CL11). As a result, Japanese vaccine manufacturers will replace LP93 with Correspondence Takashi Yamanaka, Equine Research A/equine/Yokohama/aq13/2010 (Y10, Fc2). To assess the benefit of updating the Institute, Japan Racing Association, vaccine, five horses vaccinated with inactivated Y10 vaccine and five vaccinated with Shimotsuke, Tochigi, Japan. Email: [email protected] inactivated LP93 were challenged by exposure to a nebulized aerosol of CL11. The durations of pyrexia (≥38.5°C) and other adverse clinical symptoms experienced by the Y10 group were significantly shorter than those of the LP93 group. KEYWORDS challenge study, equine influenza, H3N8, inactivated whole vaccine 1 | INTRODUCTION showed limited cross- neutralization against some Fc2 viruses, for example, A/equine/Carlow/2011 (CL11) carrying the substitution Equine influenza
    [Show full text]
  • Dissertation Epidemiology, Ecology, and Evolution Of
    DISSERTATION EPIDEMIOLOGY, ECOLOGY, AND EVOLUTION OF CANINE INFLUENZA VIRUS H3N8 IN UNITED STATES DOGS Submitted by Heidi Lee Pecoraro Department of Microbiology, Immunology, and Pathology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Fall 2012 Doctoral Committee: Advisor: Gabriele Landolt Carol Blair Richard Bowen Kathryn Huyvaert Copyright by Heidi Lee Pecoraro 2012 All Rights Reserved ABSTRACT EPIDEMIOLOGY, ECOLOGY, AND EVOLUTION OF CANINE INFLUENZA VIRUS H3N8 IN UNITED STATES DOGS Canine influenza virus (CIV) first emerged in dogs at a Florida racing track in 2004, although serological evidence suggests the virus has been circulating in the Unites States since as early as 1999. Phylogenetic analysis shows that CIV isolates are related to equine influenza virus of the Florida Clade 1 sublineage. However, sustained transmission of CIV among dogs and further genetic evolution of the virus has established CIV as a canine-specific influenza A virus (IAV). During the early years after emergence, studies determining the impact of CIV on dog populations were scarce. The few published findings were also alarming, with case fatality rates as high as 36% and seropositivity as high as 97% in certain dog populations. Despite these reports, the prevalence of CIV infection in dogs, the transmission dynamics among dog populations, risk factors for CIV infection, and how the virus was evolving within the canine host had yet to be examined. The research described here
    [Show full text]
  • Evolution and Divergence of H3N8 Equine Influenza Viruses
    pathogens Article Evolution and Divergence of H3N8 Equine Influenza Viruses Circulating in the United Kingdom from 2013 to 2015 Adam Rash 1,*, Rachel Morton 1, Alana Woodward 1, Olivia Maes 1, John McCauley 2, Neil Bryant 1 and Debra Elton 1 1 Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU, UK; [email protected] (R.M.); [email protected] (A.W.); [email protected] (O.M.); [email protected] (N.B.); [email protected] (D.E.) 2 Crick Worldwide Influenza Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-01638-751000 (ext. 1228) Academic Editor: Janet M. Daly Received: 22 December 2016; Accepted: 22 January 2017; Published: 8 February 2017 Abstract: Equine influenza viruses (EIV) are a major cause of acute respiratory disease in horses worldwide and occasionally also affect vaccinated animals. Like other influenza A viruses, they undergo antigenic drift, highlighting the importance of both surveillance and virus characterisation in order for vaccine strains to be kept up to date. The aim of the work reported here was to monitor the genetic and antigenic changes occurring in EIV circulating in the UK from 2013 to 2015 and to identify any evidence of vaccine breakdown in the field. Virus isolation, reverse transcription polymerase chain reaction (RT-PCR) and sequencing were performed on EIV-positive nasopharyngeal swab samples submitted to the Diagnostic Laboratory Services at the Animal Health Trust (AHT). Phylogenetic analyses were completed for the haemagglutinin-1 (HA1) and neuraminidase (NA) genes using PhyML and amino acid sequences compared against the current World Organisation for Animal Health (OIE)-recommended Florida clade 2 vaccine strain.
    [Show full text]
  • Functional Immune Response to Influenza H1N1 in Children and Adults After Live Attenuated Influenza Virus Vaccination
    Received: 22 March 2019 | Revised: 20 June 2019 | Accepted: 28 June 2019 DOI: 10.1111/sji.12801 HUMAN IMMUNOLOGY Functional immune response to influenza H1N1 in children and adults after live attenuated influenza virus vaccination Shahinul Islam1,2 | Fan Zhou1,2 | Sarah Lartey1,2 | Kristin G. I. Mohn1,3 | Florian Krammer4 | Rebecca Jane Cox1,2,5 | Karl Albert Brokstad6 1Department of Clinical Science, Influenza Centre, University of Bergen, Bergen, Abstract Norway Influenza virus is a major respiratory pathogen, and vaccination is the main method 2Department of Clinical Science, K.G. of prophylaxis. In 2012, the trivalent live attenuated influenza vaccine (LAIV) was Jebsen Centre for Influenza Vaccine licensed in Europe for use in children. Vaccine‐induced antibodies directed against Research, University of Bergen, Bergen, Norway the main viral surface glycoproteins, haemagglutinin (HA) and neuraminidase (NA) 3Emergency Care Clinic, Haukeland play important roles in limiting virus infection. The objective of this study was to University Hospital, Bergen, Norway dissect the influenza‐specific antibody responses in children and adults, and T cell 4 Department of Microbiology, Icahn School responses in children induced after LAIV immunization to the A/H1N1 virus. Blood of Medicine at Mount Sinai, New York, NY, USA samples were collected pre‐ and at 28 and 56 days post‐vaccination from 20 children 5Department of Research & and 20 adults. No increase in micro‐neutralization (MN) antibodies against A/H1N1 Development, Haukeland University was observed after vaccination. A/H1N1 stalk‐specific neutralizing and NA‐inhib- Hospital, Bergen, Norway iting (NI) antibodies were boosted in children after LAIV. Interferon γ‐producing 6Department of Clinical Science, Broegelmann Research Laboratory, T cells increased significantly in children, and antibody‐dependent cellular‐medi- University of Bergen, Bergen, Norway ated cytotoxic (ADCC) cell activity increased slightly in children after vaccination, although this change was not significant.
    [Show full text]
  • In Vitro Efficacies of Oseltamivir Carboxylate and Zanamivir Against Equine Influenza a Viruses
    NOTE Virology In Vitro Efficacies of Oseltamivir Carboxylate and Zanamivir against Equine Influenza A Viruses Takashi YAMANAKA1), Koji TSUJIMURA1), Takashi KONDO1) and Tomio MATSUMURA1) 1)Epizootic Research Center, Equine Research Institute, Japan Racing Association, 1400–4 Shiba, Shimotsuke, Tochigi 329–0412, Japan (Received 29 September 2005/Accepted 20 December 2005) ABSTRACT. To investigate the possibilities of two NA inhibitors [oseltamivir carboxylate (OC) and zanamivir (ZA)] as the clinical agents for equine nifluenza A virus (EIV) infection, we examined the efficacies of these inhibitors against twelve EIVs in vitro. OC and ZA inhibited NA activities of all EIVs with 50% inhibitory concentrations with ranging from 0.017 to 0.130 and from 0.010 to 0.074 μM, respectively. OC and ZA inhibited plaque-forming of all EIVs in MDCK cells with 50% effective concentrations with ranging from 0.015 to 0.097 and from 0.016 to 0.089 μM, respectively, except for one strain (13.328 μM and 6.729 μM). These results suggest that these inhibitors are effective against most EIVs and might be useful for treatment of EI in horses. KEY WORDS: equine, equine influenza A virus, neuraminidase inhibitor. J. Vet. Med. Sci. 68(4): 405–408, 2006 Equine influenza A virus (EIV), a member of Orthomyx- is necessary to observe the inhibitory efficacies of these oviridae, is considered to be one of the most important compounds in vivo using horses. But, since the horse exper- pathogens of horses. EIV causes a severe respiratory infec- iments need enough fund and labor, it is difficult to test tion characterized by a harsh cough, nasal discharge and many strains in vivo.
    [Show full text]
  • Highly Pathogenic Avian Influenza
    Importance Avian Influenza Avian influenza viruses are highly contagious, extremely variable viruses that are widespread in birds. Wild birds in aquatic habitats are thought to be their natural Fowl Plague, Grippe Aviaire reservoir hosts, but domesticated poultry are readily infected. Most viruses cause only mild disease in poultry, and are called low pathogenic avian influenza (LPAI) viruses. Highly pathogenic avian influenza (HPAI) viruses can develop from certain LPAI Last Updated: September 2014 viruses, usually while they are circulating in poultry flocks. HPAI viruses can kill up to 90-100% of the flock, and cause epidemics that may spread rapidly, devastate the poultry industry and result in severe trade restrictions. Infection of poultry with LPAI viruses capable of evolving into HPAI viruses also affects international trade. Avian influenza viruses occasionally affect mammals, including humans, usually after close contact with infected poultry. While many human cases are limited to conjunctivitis An enhanced version of or mild respiratory disease, some viruses tend to cause severe illness. In rare cases, this factsheet, with citations avian influenza viruses can become adapted to circulate in a mammalian species, and is available at these viruses have caused or contributed to at least three pandemics in humans. http://www.cfsph.iastate.edu/ Factsheets/pdfs/highly_patho Etiology genic_avian_influenza- Avian influenza results from infection by viruses belonging to the species citations.pdf influenza A virus, genus influenzavirus A and family Orthomyxoviridae. Influenza A viruses are classified into subtypes based on two surface proteins, the hemagglutinin (HA) and neuraminidase (NA). At least 16 hemagglutinins (H1 to H16), and 9 neuraminidases (N1 to N9) have been found in viruses from birds, while two additional HA and NA types have been identified, to date, only in bats.
    [Show full text]
  • The Compelling Need for Game-Changing Influenza Vaccines
    THE COMPELLING NEED FOR GAME-CHANGING INFLUENZA VACCINES AN ANALYSIS OF THE INFLUENZA VACCINE ENTERPRISE AND RECOMMENDATIONS FOR THE FUTURE OCTOBER 2012 The Compelling Need for Game-Changing Influenza Vaccines An Analysis of the Influenza Vaccine Enterprise and Recommendations for the Future Michael T. Osterholm, PhD, MPH Nicholas S. Kelley, PhD Jill M. Manske, PhD, MPH Katie S. Ballering, PhD Tabitha R. Leighton, MPH Kristine A. Moore, MD, MPH The Center for Infectious Disease Research and Policy (CIDRAP), founded in 2001, is a global leader in addressing public health preparedness and emerging infectious disease response. Part of the Academic Health Center at the University of Minnesota, CIDRAP works to prevent illness and death from targeted infectious disease threats through research and the translation of scientific information into real-world, practical applications, policies, and solutions. For more information, visit: www.cidrap.umn.edu. This report was made possible in part by a grant from the Alfred P. Sloan Foundation. This report is available at: www.cidrap.umn.edu This report was produced and designed by Betsy Seeler Design. © 2012 Regents of the University of Minnesota. All rights reserved. Contents Preface...............................................................................................................................................................2 Executive Summary..........................................................................................................................................5 Chapter.1.
    [Show full text]
  • A Comprehensive Review on Equine Influenza Virus
    REVIEW published: 06 September 2018 doi: 10.3389/fmicb.2018.01941 A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies Raj K. Singh 1, Kuldeep Dhama 2*, Kumaragurubaran Karthik 3, Rekha Khandia 4, Ashok Munjal 4, Sandip K. Khurana 5, Sandip Chakraborty 6, Yashpal S. Malik 7, Nitin Virmani 5, Rajendra Singh 2, Bhupendra N. Tripathi 5, Muhammad Munir 8 and Johannes H. van der Kolk 9* 1 ICAR-Indian Veterinary Research Institute, Bareilly, India, 2 Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India, 3 Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India, 4 Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India, 5 National Research Centre on Equines, Edited by: Hisar, India, 6 Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, Akio Adachi, India, 7 Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India, 8 Division of Biomedical Kansai Medical University, Japan and Life Sciences, Lancaster University, Lancaster, United Kingdom, 9 Division of Clinical Veterinary Medicine, Swiss Institute Reviewed by: for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland Luis Carlos Villamil-Jiménez, Independent Researcher, Columbia Eric Claassen, Among all the emerging and re-emerging animal diseases, influenza group is the VU University Amsterdam, prototype member associated with severe respiratory infections in wide host species. Netherlands Kevin L. Legge, Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across University of Iowa, United States globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine *Correspondence: industry internationally due to high morbidity and marginal morality.
    [Show full text]
  • Influenza a Pandemic (H1N1) 2009 Virus Infection in Domestic
    DISPATCHES (H1N1) 2009 virus infection in a domestic cat that had been Infl uenza A in contact with persons who had recently experienced infl u- Pandemic (H1N1) enza-like illness. The Case 2009 Virus Infection A 13-year-old, castrated male, domestic cat that lived indoors in a single-cat household was brought to the Iowa in Domestic Cat State University Lloyd Veterinary Medical Center be- Brett A. Sponseller, Erin Strait, Albert Jergens, cause of depression, inappetance, and respiratory signs of Jessie Trujillo, Karen Harmon, Leo Koster, 4 days’ duration. The cat was gregarious and interacted Melinda Jenkins-Moore, Mary Killian, closely with family members in the household. The fam- Sabrina Swenson, Holly Bender, Ken Waller, ily members noted that the cat was reluctant to lie in lat- Kristina Miles, Tracy Pearce, Kyoung-Jin Yoon, eral recumbency and instead rested in sternal recumbency and Peter Nara with neck extended, which was indicative of dyspnea. The cat’s vaccination status was up to date. Before the onset of Infl uenza A pandemic (H1N1) 2009 virus continues to clinical signs in the cat, 2 of the 3 family members had ex- rapidly spread worldwide. In 2009, pandemic (H1N1) 2009 perienced an undiagnosed infl uenza-like illness—an upper infection in a domestic cat from Iowa was diagnosed by a respiratory tract infection characterized by fever, coughing, novel PCR assay that distinguishes between Eurasian and North American pandemic (H1N1) 2009 virus matrix genes. and myalgia—that lasted 3 days. Onset of the cat’s clinical Human-to-cat transmission is presumed. signs was noted 6 and 4 days after onset of illness for the fi rst and second family members, respectively.
    [Show full text]
  • Influenza Importance Influenza Viruses Are Highly Variable RNA Viruses That Can Affect Birds and Mammals Including Humans
    Influenza Importance Influenza viruses are highly variable RNA viruses that can affect birds and mammals including humans. There are currently three species of these viruses, Flu, Grippe, Avian Influenza, designated influenza A, B and C. A new influenza C-related virus recently detected in Grippe Aviaire, Fowl Plague, livestock has been proposed as “influenza D.”1-6 Swine Influenza, Hog Flu, Influenza A viruses are widespread and diverse in wild aquatic birds, which are Pig Flu, Equine Influenza, thought to be their natural hosts. Poultry are readily infected, and a limited number of Canine Influenza viruses have adapted to circulate in people, pigs, horses and dogs. In the mammals to which they are adapted, influenza A viruses usually cause respiratory illnesses with Last Full Review: February 2016 high morbidity but low mortality rates.7-29 More severe or fatal cases tend to occur mainly in conjunction with other diseases, debilitation or immunosuppression, as well as during infancy, pregnancy or old age; however, the risk of severe illness in healthy Author: humans can increase significantly during pandemics.7,9,11,12,14,20,30-47 Two types of Anna Rovid Spickler, DVM, PhD influenza viruses are maintained in birds. The majority of these viruses are known as low pathogenic avian influenza (LPAI) viruses. They usually infect birds asymptomatically or cause relatively mild clinical signs, unless the disease is 7,46,48-56 exacerbated by factors such as co-infections with other pathogens. However, some LPAI viruses can mutate to become highly pathogenic avian influenza (HPAI) viruses, which cause devastating outbreaks of systemic disease in chickens and turkeys, with morbidity and mortality rates as high as 90-100%.50-52 Although influenza A viruses are host-adapted, they may occasionally infect other species, and on rare occasions, a virus will change enough to circulate in a new host.
    [Show full text]
  • A Global Perspective on H9N2 Avian Influenza Virus
    viruses Review A Global Perspective on H9N2 Avian Influenza Virus 1,2 1,2, 1,3 1, T(homas). P. Peacock , Joe James y, Joshua E. Sealy and Munir Iqbal * 1 Avian Influenza Group, The Pirbright Institute, Woking GU24 0NF, UK 2 Section of Virology, Faculty of Medicine, Imperial College London, London W2 1PG, UK 3 Royal Veterinary College, London NW1 0TU, UK * Correspondence: [email protected]; Tel.: +44-1483-231441 Current address: Animal & Plant Health Agency, Weybridge KT15 3NB, UK. y Received: 6 June 2019; Accepted: 1 July 2019; Published: 5 July 2019 Abstract: H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in affected countries and have been found in poultry in many new regions in recent years. In this review, we examine the current global spread of H9N2 avian influenza viruses as well as their host range, tropism, transmission routes and the risk posed by these viruses to human health. Keywords: H9N2; avian influenza viruses; zoonotic; pandemic potential; poultry 1. Introduction Influenza A viruses are members of the Orthomyxoviridae family and contain a segmented, negative-sense RNA genome encoding 10 core proteins and a variable number of accessory proteins. Influenza A viruses are commonly characterised by their combinations of surface proteins, haemagglutinin (HA) and neuraminidase (NA), giving rise to a multitude of different subtypes designated, for example, as H1N1, H5N6, or H9N2.
    [Show full text]