Coal and Coal Seam Gas Resource Assessment for the Sydney Basin Bioregion Product 1.2 from the Sydney Basin Bioregional Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Coal and Coal Seam Gas Resource Assessment for the Sydney Basin Bioregion Product 1.2 from the Sydney Basin Bioregional Assessment 1 Coal and coal seam gas resource assessment for the Sydney Basin bioregion Product 1.2 from the Sydney Basin Bioregional Assessment 2018 A scientific collaboration between the Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia The Bioregional Assessment Programme The Bioregional Assessment Programme is a transparent and accessible programme of baseline assessments that increase the available science for decision making associated with coal seam gas and large coal mines. A bioregional assessment is a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential impacts of coal seam gas and large coal mining development on water resources. This Programme draws on the best available scientific information and knowledge from many sources, including government, industry and regional communities, to produce bioregional assessments that are independent, scientifically robust, and relevant and meaningful at a regional scale. The Programme is funded by the Australian Government Department of the Environment and Energy. The Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia are collaborating to undertake bioregional assessments. For more information, visit http://www.bioregionalassessments.gov.au. Department of the Environment and Energy The Office of Water Science, within the Australian Government Department of the Environment and Energy, is strengthening the regulation of coal seam gas and large coal mining development by ensuring that future decisions are informed by substantially improved science and independent expert advice about the potential water related impacts of those developments. For more information, visit http://www.environment.gov.au/coal-seam-gas-mining/. Bureau of Meteorology The Bureau of Meteorology is Australia’s national weather, climate and water agency. Under the Water Act 2007, the Bureau is responsible for compiling and disseminating Australia's water information. The Bureau is committed to increasing access to water information to support informed decision making about the management of water resources. For more information, visit http://www.bom.gov.au/water/. CSIRO Australia is founding its future on science and innovation. Its national science agency, CSIRO, is a powerhouse of ideas, technologies and skills for building prosperity, growth, health and sustainability. It serves governments, industries, business and communities across the nation. For more information, visit http://www.csiro.au. Geoscience Australia Geoscience Australia is Australia’s national geoscience agency and exists to apply geoscience to Australia’s most important challenges. Geoscience Australia provides geoscientific advice and information to the Australian Government to support current priorities. These include contributing to responsible resource development; cleaner and low emission energy technologies; community safety; and improving marine planning and protection. The outcome of Geoscience Australia’s work is an enhanced potential for the Australian community to obtain economic, social and environmental benefits through the application of first class research and information. For more information, visit http://www.ga.gov.au. ISBN-PDF 978-1-925315-48-6 Citation Hodgkinson JH, Rohead-O'Brien H, Wilkes PG and Marvanek SP (2018) Coal and coal seam gas resource assessment for the Sydney Basin bioregion. Product 1.2 from the Sydney Basin Bioregional Assessment. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/SSB/SSB/1.2. Authorship is listed in relative order of contribution. Copyright © Commonwealth of Australia 2018 With the exception of the Commonwealth Coat of Arms and where otherwise noted, all material in this publication is provided under a Creative Commons Attribution 3.0 Australia Licence http://www.creativecommons.org/licenses/by/3.0/au/deed.en. The Bioregional Assessment Programme requests attribution as ‘© Commonwealth of Australia (Bioregional Assessment Programme http://www.bioregionalassessments.gov.au)’. Disclaimer The information contained in this report is based on the best available information at the time of publication. The reader is advised that such information may be incomplete or unable to be used in any specific situation. Therefore decisions should not be made based solely on this information or without seeking prior expert professional, scientific and technical advice. The Bioregional Assessment Programme is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document please contact [email protected]. Cover photograph Surface infrastructure of the Clarence underground coal mine located approximately 15 km east of Lithgow, adjacent to the Greater Blue Mountains World Heritage Area, showing vegetation recovering from bushfire in October 2013. The hillslope drains into the Wollangambe River © Martin Krogh, 2016 v20180308 Contents Contributors to the Technical Programme ................................................................................. vi Acknowledgements ................................................................................................................. viii Introduction ............................................................................................................................... 1 The Bioregional Assessment Programme ................................................................................... 1 Methodologies ............................................................................................................................ 3 Technical products ...................................................................................................................... 5 About this technical product ...................................................................................................... 8 References .................................................................................................................................. 8 1.2.1 Available coal and coal seam gas resources ...................................................................... 10 1.2.1.1 Coal ............................................................................................................................ 10 1.2.1.1.1 Southern Coalfield .............................................................................................. 13 1.2.1.1.2 Western Coalfield ............................................................................................... 17 1.2.1.2 Coal seam gas ............................................................................................................ 22 1.2.1.2.1 Coal seam gas in the Sydney Basin ..................................................................... 22 1.2.1.2.2 Permian coal measures ....................................................................................... 23 1.2.1.2.3 Southern Coalfield .............................................................................................. 24 1.2.1.2.4 Western Coalfield ............................................................................................... 25 References ................................................................................................................................ 25 Datasets ................................................................................................................................... 29 1.2.2 Current activity and tenements ....................................................................................... 31 1.2.2.1 Coal ............................................................................................................................ 31 1.2.2.1.1 Airly Coal Mine (Western Coalfield) ................................................................... 33 1.2.2.1.2 Appin–West Cliff Mining Complex (Southern Coalfield) .................................... 34 1.2.2.1.3 Charbon Coal Mine (Western Coalfield) ............................................................. 35 1.2.2.1.4 Clarence Colliery (Western Coalfield) ................................................................. 36 1.2.2.1.5 Dendrobium Coal Mine (Southern Coalfield) ..................................................... 37 1.2.2.1.6 Metropolitan Coal Mine (Southern Coalfield) .................................................... 38 1.2.2.1.7 Springvale Coal Mine (Western Coalfield) .......................................................... 39 1.2.2.1.8 Tahmoor Coal Mine (Southern Coalfield) ........................................................... 39 1.2.2.1.9 Angus Place Colliery (Western Coalfield)............................................................ 40 1.2.2.1.10 Baal Bone Colliery (Western Coalfield) ............................................................... 41 1.2.2.1.11 Berrima (Medway) (Southern Coalfield) ............................................................. 42 1.2.2.1.12 Cullen Valley Coal Mine (Western Coalfield) ...................................................... 42 1.2.2.1.13 Invincible Colliery (Western Coalfield) ............................................................... 43 Coal and coal seam gas resource assessment for the Sydney Basin bioregion | i 1.2.2.1.14 Ivanhoe Colliery (Western Coalfield) .................................................................
Recommended publications
  • The University of Sydney
    THE UNIVERSITY OF SYDNEY Copyright and use of this thesis This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author -subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Copyright Service. sydney.edu.au/copyright A STRUCTURAL ANALYSIS OF THE SOUTHERN HORNSBY PLATEAU, SYDNEY BASIN, NEW SOUTH WALES by Anthony Richard Norman, B.Sc. (Hons) A thesis submitted in fulfilment of the requirements for the degree of Master of Science DEPARTMENT OF GEOLOGY AND GEOPHYSICS UNIVERSITY OF SYDNEY September, 1986 ABSTRACT The Hornsby Plateau rises north of Sydney. Aerial photo interpretation of an area north of Hornsby and south of the Hawkesbury River revealed two well defined extensive traces.
    [Show full text]
  • Background Paper on New South Wales Geology with a Focus on Basins Containing Coal Seam Gas Resources
    Background Paper on New South Wales Geology With a Focus on Basins Containing Coal Seam Gas Resources for Office of the NSW Chief Scientist and Engineer by Colin R. Ward and Bryce F.J. Kelly School of Biological, Earth and Environmental Sciences University of New South Wales Date of Issue: 28 August 2013 Our Reference: J083550 CONTENTS Page 1. AIMS OF THE BACKGROUND PAPER .............................................................. 1 1.1. SIGNIFICANCE OF AUSTRALIAN CSG RESOURCES AND PRODUCTION ................... 1 1.2. DISCLOSURE .................................................................................................... 2 2. GEOLOGY AND EVALUATION OF COAL AND COAL SEAM GAS RESOURCES ............................................................................................................. 3 2.1. NATURE AND ORIGIN OF COAL ........................................................................... 3 2.2. CHEMICAL AND PHYSICAL PROPERTIES OF COAL ................................................ 4 2.3. PETROGRAPHIC PROPERTIES OF COAL ............................................................... 4 2.4. GEOLOGICAL FEATURES OF COAL SEAMS .......................................................... 6 2.5. NATURE AND ORIGIN OF GAS IN COAL SEAMS .................................................... 8 2.6. GAS CONTENT DETERMINATION ........................................................................10 2.7. SORPTION ISOTHERMS AND GAS HOLDING CAPACITY .........................................11 2.8. METHANE SATURATION ....................................................................................12
    [Show full text]
  • Coal Resource Recovery Plan
    Tahmoor Coal Pty Ltd COAL RESOURCE RECOVERY PLAN Tahmoor North Western Domain Longwalls West 1 and West 2 July 2019 simecgfg.com This page has been left blank intentionally. 2 | Tahmoor North Western Domain LW W1-W2 – Coal Resource Recovery Plan TAH-HSEC-243 (July 2019 Ver1) This page has been left blank intentionally. 4 | Tahmoor North Western Domain LW W1-W2 – Coal Resource Recovery Plan TAH-HSEC-243 (July 2019 Ver1) Table of Contents Table of Contents ....................................................................................................................... 5 List of Figures ............................................................................................................................. 7 List of Tables .............................................................................................................................. 7 1 Introduction ........................................................................................................................ 9 Background ............................................................................................................................... 9 Purpose ..................................................................................................................................... 9 Scope ......................................................................................................................................... 9 2 Regulatory Requirements .................................................................................................
    [Show full text]
  • Modelling and Design of Station Cavern Roof Support System for the Epping to Chatswood Rail Line Project
    GEOTECHNICAL MODELLING OF STATION CAVERNS FOR THE EPPING TO CHATSWOOD RAIL LINE PROJECT Kim F. Chan, Greg P. Kotze and Peter C. Stone GHD LongMac, Sydney, NSW ABSTRACT The Epping to Chatswood Rail Line project comprises a twin rail tunnel, three new underground stations and the upgrading of one existing station. The station caverns intersect a sequence of horizontally bedded shale and sandstone. The major rock defects consist of bedding planes, bedding plane seams, low angled cross bed partings and sub-vertical joint sets. Local experiences in the Sydney Basin have indicated that the behaviour of the defects and their interaction with the roof support system are critical to the performance of underground excavations. Another key geological feature that can have significant performance impact is the relatively high locked-in in-situ lateral stresses. Each of the new stations comprises a large span platform cavern, an adjoining concourse cavern, associated escalator shafts and service buildings. The design roof support system is cable bolts with cement grouted end anchorage. The interaction between the bolts and the jointed rock mass within the influences of the various facilities is complex and thus rigorous modelling was employed. This modelling included 3D distinct element and boundary element analyses and 2D finite element approach. The complexity of the numerical models varied from homogeneous rock to layered rock with various discontinuities. Furthermore, both end-anchored and fully grouted bolts have been incorporated. Various parametric studies were undertaken to assess the effects of various model components (rock mass, defects, in- situ stresses, sequencing and roof support installations) on cavern performance.
    [Show full text]
  • Tectonic Control of Cenozoic Deposition in the Cumberland Basin, Penrith/ Hawkesbury Region, New South Wales
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Online University of Wollongong Research Online Faculty of Science, Medicine & Health - Honours Theses University of Wollongong Thesis Collections 2011 Tectonic Control of Cenozoic Deposition in the Cumberland Basin, Penrith/ Hawkesbury Region, New South Wales Lewis Carter University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/thsci University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Carter, Lewis, Tectonic Control of Cenozoic Deposition in the Cumberland Basin, Penrith/Hawkesbury Region, New South Wales, Bachelor of Science (Honours), School of Earth & Environmental Sciences, University of Wollongong, 2011.
    [Show full text]
  • Lamination in the Rouse Hill Siltstone Member of the Ashfield Shale, Sydney Basin, Australia and Its Implications
    ITA-AITES World Tunnel Congress, WTC2020 and 46th General Assembly Kuala Lumpur Convention Centre, Malaysia 15-21 May 2020 Identification of a fine ‘tuff’ lamination in the Rouse Hill Siltstone Member of the Ashfield Shale, Sydney Basin, Australia and its implications David J. Och1,3, Sven Thorin2, Ian T. Graham3, Robert S. Nicoll4, and Geoff Bateman2 1WSP Australia Pty Ltd, Sydney, Australia 2Transport for New South Wales - Sydney Metro, Sydney, Australia 3PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of NSW, Kensington, Australia 472 Ellendon Street, Bungendore, NSW, E-mail: [email protected] ABSTRACT: Sydney Metro is Australia’s largest public transport project, and historical and recent ground data is being collected and used at an unprecedented scale to create robust rock models for the proposed tunnel alignments. Geotechnical investigations target the Triassic Wianamatta Group, Mittagong Formation and Hawkesbury Sandstone of the Sydney Basin. Despite these geological units being well documented, new knowledge gained during the Sydney Metro projects is enabling a better understanding of the Wianamatta Group. In particularly, the Rouse Hill Siltstone Member is typically described as a homogenous siltstone unit at the base of the Wianamatta Group. However, this unit often includes a distinctive white “tuff layer” lamination, which is typically ignored in geological models. Data from 100+ historical and recent boreholes across Sydney indicates that, where present, this lamination is remarkably uniform across the central Sydney region and sits horizontally at approximately 3 m above the base of the Rouse Hill Siltstone Member. This marker horizon assisted in identifying vertical offsets in the strata caused by faulting.
    [Show full text]
  • A Preliminary Study on the Thermal Properties of the Ground Under Sydney Harbour and the Sensitivity of Tunnel Air Temperatures
    16TH Australasian Tunnelling Conference 2017 30 October – 1 November 2017 A Preliminary Study on the Thermal Properties of the Ground under Sydney Harbour and the Sensitivity of Tunnel Air Temperatures D. Saunsbury1, D. Fernandes1 and D. Och1 1WSP Australia Pty Limited Level 27, Ernst & Young Centre, 680 George Street Sydney NSW 2000 AUSTRALIA E-mail: [email protected] Abstract: The thermal properties of the ground around tunnels is an important parameter in the design of tunnel ventilation systems, particularly for metro systems. The heat generated in metro tunnels is transferred through the tunnel lining and into the ground. The magnitude of this heat transfer is influenced by the composition of the ground surrounding the tunnel. Geological investigations into thermal properties of the ground in Sydney were conducted for the Sydney Metro City & Southwest Project. As part of the Reference Design process for the City Section of Sydney Metro, testing of borehole samples along the alignment was undertaken to determine the thermal conductivity and diffusivity of the ground around the tunnels. This paper presents the results and analysis of that testing. The sensitivity of tunnel air temperatures to the thermal properties of the ground is also presented from the Reference Design analysis using WSP’s Subway Ventilation Simulation (SVS) software. Keywords: Tunnel Ventilation, Ground thermal properties, Hawkesbury Sandstone, Ashfield Shale, Mittagong Formation, Harbour sediment, geology, Sydney Metro 1. INTRODUCTION Tunnel ventilation systems are incorporated into all underground rapid transit systems, such as the Sydney Metro, to not only control smoke in the event of a fire, but also control tunnel air temperatures during normal and degraded train operations.
    [Show full text]
  • Sydney Metro Northwest Secondary Education Book
    LANDSCAPES, ROCKS AND TUNNELS: PRACTICAL CONSIDERATIONS IN TRANSPORT GEOGRAPHY FAST FACTS Key Learning Unit or lesson title and main focus questions Most appropriate level and ON THE WEB Area suggested number of lessons Web links Geography Landscapes, rocks and tunnels: Practical considerations in Stage 5 SubmissionsDOWNLOAD Report Stage 1, Chapter 2 transport geography http://www.sydneymetro.info/documents What landscapes and rock types does the railway cross, both INFO underground and over ground? i Sydney Metro Northwest Environmental Impact Statement 2, Appendix C – Geological 1–3 lessons long section (This version only includes the cross-sections, with different page orientation) http://www.sydneymetro.info/sites/default/files/29_Appendix_C_-_Geological_Long_ Section.pdf%3Fext%3D.pdf Teacher briefing Sydney Metro Northwest Environmental Impact Statement 1, Appendix A – Geological Sydney Metro Northwest Environmental Impact Statement 2, provides easily accessed long section geological data on the construction of the Sydney Metro Northwest tunnels. This activity http://www.sydneymetro.info/sites/default/files/26_Appendix_A_-_DGRs__CoA___SoC. provides Stage 5 students with the opportunity to explore the basic ideas of geotechnics and pdf%3Fext%3D.pdf some of the geological issues that need to be solved when building a tunnel. Focus questions: Sydney Metro Northwest Environmental Impact Statement 2, Project Description – Which part of Sydney Metro Northwest is underground? Operations Part 1, Chapter 6 http://www.sydneymetro.info/sites/default/files/07_Ch_6_Project_Description_-_
    [Show full text]
  • Context Statement for the Sydney Basin Bioregion, PDF, 16.06 MB
    1 Context statement for the Sydney Basin bioregion Product 1.1 from the Sydney Basin Bioregional Assessment 2018 A scientific collaboration between the Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia The Bioregional Assessment Programme The Bioregional Assessment Programme is a transparent and accessible programme of baseline assessments that increase the available science for decision making associated with coal seam gas and large coal mines. A bioregional assessment is a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential impacts of coal seam gas and large coal mining development on water resources. This Programme draws on the best available scientific information and knowledge from many sources, including government, industry and regional communities, to produce bioregional assessments that are independent, scientifically robust, and relevant and meaningful at a regional scale. The Programme is funded by the Australian Government Department of the Environment and Energy. The Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia are collaborating to undertake bioregional assessments. For more information, visit http://www.bioregionalassessments.gov.au. Department of the Environment and Energy The Office of Water Science, within the Australian Government Department of the Environment and Energy, is strengthening the regulation of coal seam gas and large coal mining development by ensuring that future decisions are informed by substantially improved science and independent expert advice about the potential water related impacts of those developments. For more information, visit https://www.environment.gov.au/water/coal-and-coal-seam-gas/office-of-water-science.
    [Show full text]
  • The Native Vegetation of the Cumberland Plain, Western Sydney: Systematic Classification and Field Identification of Communities
    Tozer, Native vegetation of the Cumberland Plain 1 The native vegetation of the Cumberland Plain, western Sydney: systematic classification and field identification of communities Mark Tozer NSW National Parks and Wildlife Service, PO Box 1967 Hurstville 2220, AUSTRALIA phone: (02) 9585 6496, fax.: (02) 9585 6606, e-mail: [email protected] Abstract: Twenty-two vascular plant communities occurring on, and adjacent to the Cumberland Plain and Hornsby Plateau, are defined using a multi-variate analysis of quantitative field survey data. Communities are described using structural features, habitat characteristics and diagnostic species. Diagnostic species are identified using a statistical fidelity measure. The pre–European spatial distribution of communities is estimated using a decision tree approach to derive relationships between community distribution and geological, climatic and topographical variables. Contemporary vegetation cover is estimated from 1:16 000 scale aerial photography (1997/98) and sorted into six categories based on cover of Eucalyptus species. These categories are only approximately related to vegetation condition: high Eucalyptus cover classes are most likely to contain high levels of floristic diversity, but areas with scattered cover or no cover at all may have either high or low diversity. Map accuracy is assessed using independent field samples and is primarily limited by the accuracy of 1:100 000 geological maps. Patterns in overstorey composition were mapped at 1:16 000 scale but were less useful in delineating community boundaries than was hoped because few species are confined to a single community. The extent to which observer bias may influence estimates of the present extent of remnant vegetation is investigated by comparing the interpretations of two observers for a subset of the study area.
    [Show full text]
  • (Middle Triassic), Southern Sydney Basin, Australia
    Turkish Journal of Earth Sciences Turkish J Earth Sci (2015) 24: 72-98 http://journals.tubitak.gov.tr/earth/ © TÜBİTAK Research Article doi:10.3906/yer-1407-5 Provenance, diagenesis, tectonic setting, and geochemistry of Hawkesbury Sandstone (Middle Triassic), southern Sydney Basin, Australia 1, 2 Samir Mahmoud ZAID *, Fahad AL GAHTANI 1 Department of Geology, Faculty of Sciences, Zagazig University, Zagazig, Egypt 2 Ministry of Petroleum and Mineral Resources, Riyadh, Saudi Arabia Received: 07.07.2014 Accepted: 23.10.2014 Published Online: 02.01.2015 Printed: 30.01.2015 Abstract: The Hawkesbury Sandstone is an important groundwater reservoir in the southern part of the Sydney Basin, Australia. However, its diagenesis and provenance and its impact in reservoir quality are virtually unknown. The present study aims to reconstruct the parent rock assemblages of the Hawkesbury Sandstone, their tectonic provenance, and the physiographic conditions under which these sediments were deposited. Samples from the EAW 18a and EDEN 115 field representing the Middle Triassic Hawkesbury Sandstone were studied using a combination of petrographic, mineralogical, and geochemical techniques. The Hawkesbury Sandstone is yellowish brown in color, siliceous, and partly calcareous; it originated as sands were deposited in fluvial channels. Texturally, Hawkesbury Sandstone is medium- to coarse-grained, mature, and moderately well sorted. Scarcity of feldspars indicates that the rock is extensively recycled from a distant source. Hawkesbury Sandstone has an average framework composition of Q92.07F0.31R7.62, and 95.9% of the quartz grains are monocrystalline. The Hawkesbury Sandstone is mostly quartz arenites with subordinate sublithic arenites, and bulk-rock geochemistry supports the petrographic results.
    [Show full text]
  • Rock Art in the Upper Nepean, Sydney Basin, New South Wales
    terra australis 49 Terra Australis reports the results of archaeological and related research within the south and east of Asia, though mainly Australia, New Guinea and Island Melanesia — lands that remained terra australis incognita to generations of prehistorians. Its subject is the settlement of the diverse environments in this isolated quarter of the globe by peoples who have maintained their discrete and traditional ways of life into the recent recorded or remembered past and at times into the observable present. List of volumes in Terra Australis 1. Burrill Lake and Currarong: Coastal Sites in Southern 30. Archaeological Science Under a Microscope: Studies in Residue New South Wales. R.J. Lampert (1971) and Ancient DNA Analysis in Honour of Thomas H. Loy. 2. Ol Tumbuna: Archaeological Excavations in the Eastern M. Haslam, G. Robertson, A. Crowther, S. Nugent and Central Highlands, Papua New Guinea. J.P. White (1972) L. Kirkwood (2009) 3. New Guinea Stone Age Trade: The Geography and Ecology 31. The Early Prehistory of Fiji. G. Clark and A. Anderson of Traffic in the Interior. I. Hughes (1977) (2009) 4. Recent Prehistory in Southeast Papua. B. Egloff (1979) 32. Altered Ecologies: Fire, Climate and Human Influence on Terrestrial Landscapes. S. Haberle, J. Stevenson and 5. The Great Kartan Mystery. R. Lampert (1981) M. Prebble (2010) 6. Early Man in North Queensland: Art and Archaeology in the 33. Man Bac: The Excavation of a Neolithic Site in Northern Laura Area. A. Rosenfeld, D. Horton and J. Winter (1981) Vietnam: The Biology. M. Oxenham, H. Matsumura and 7. The Alligator Rivers: Prehistory and Ecology in Western N.
    [Show full text]