Quantitative Evaluation of Drug Resistance Profile of Cells Expressing Wild-Type Or Genetic Polymorphic Variants of the Human ABC Transporter ABCC4

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Evaluation of Drug Resistance Profile of Cells Expressing Wild-Type Or Genetic Polymorphic Variants of the Human ABC Transporter ABCC4 Article Quantitative Evaluation of Drug Resistance Profile of Cells Expressing Wild-Type or Genetic Polymorphic Variants of the Human ABC Transporter ABCC4 Megumi Tsukamoto 1, Shiori Sato 2, Kazuhiro Satake 1, Mizuki Miyake 1 and Hiroshi Nakagawa 2,* 1 Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan; [email protected] (M.T.); [email protected] (K.S.); [email protected] (M.M.) 2 Department of Applied Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-568-51-9606; Fax: +81-568-52-6594 Received: 14 April 2017; Accepted: 26 June 2017; Published: 4 July 2017 Abstract: Broad-spectrum resistance in cancer cells is often caused by the overexpression of ABC transporters; which varies across individuals because of genetic single-nucleotide polymorphisms (SNPs). In the present study; we focused on human ABCC4 and established cells expressing the wild-type (WT) or SNP variants of human ABCC4 using the Flp-In™ system (Invitrogen, Life Technologies Corp, Carlsbad, CA, USA) based on Flp recombinase-mediated transfection to quantitatively evaluate the effects of nonsynonymous SNPs on the drug resistance profiles of cells. The mRNA levels of the cells expressing each ABCC4 variant were comparable. 3-(4,5-Dimethyl-2- thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay clearly indicated that the EC50 values of azathioprine against cells expressing ABCC4 (WT) were 1.4–1.7-fold higher than those against cells expressing SNP variants of ABCC4 (M184K; N297S; K304N or E757K). EC50 values of 6- mercaptopurine or 7-Ethyl-10-hydroxy-camptothecin (SN-38) against cells expressing ABCC4 (WT) were also 1.4–2.0- or 1.9-fold higher than those against cells expressing the SNP variants of ABCC4 (K304N or E757K) or (K304N; P403L or E757K); respectively. These results indicate that the effects of nonsynonymous SNPs on the drug resistance profiles of cells expressing ABCC4 can be quantitatively evaluated using the Flp-In™ system. Keywords: ATP-binding cassette (ABC) transporter; ATP-binding cassette subfamily C member 4 (ABCC4); drug resistance; single-nucleotide polymorphism (SNP); multi drug resistance protein 4 (MRP4) 1. Introduction Cancer is one of the chief causes of mortality in many developed countries. The broad-spectrum drug resistance of cancer cells varies across individuals and poses a major challenge to cancer research and treatment [1,2]. Drug resistance of cancer cells and differences in their individual levels are usually caused by the overexpression of ABC transporters and single-nucleotide polymorphisms (SNPs) in their genes, respectively. Thus, SNPs in ABC transporter genes determine the response rate to cancer chemotherapy, and development of easy-to-use and quantitative approaches for the identification of these individual-specific SNPs would help combat cancer cell drug resistance through personalized chemotherapy. The human body expresses 48 ABC transporters, which are further divided into seven sub- families (ABCA–ABCG) based on sequence homology and protein organization [3]. The transporters play critical roles in physiological transport and export of drugs and toxic substances, wherein many endogenous and exogenous substrates are transported across membranes in an ATP-dependent Int. J. Mol. Sci. 2017, 18, 1435; doi:10.3390/ijms18071435 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2017, 18, 1435 2 of 15 manner [4–10]. ABCC4, located on chromosome 13q32.1 encodes for the 1325-amino acid-long human ABCC4 (MRP4), and is widely expressed in various tissues, including the liver, kidney, ovary and blood cells [11–13]. Since the first report in 1999 about the direct link between ABCC4 overexpression and impaired efficacy of nucleoside-based antiviral drugs in a human T-lymphoid cell line [14], ABCC4 has been reported to transport a broad spectrum of xenobiotics, including antiviral, antibiotic, antihypertensive and anticancer drugs such as azathioprine, 6-mercaptopurine, and SN-38 [12–25]. The affinity of ABCC4 for its substrate drugs is altered by some of the ≥140 non-synonymous SNPs in ABCC4 [13,24,25]. The SNP variants of ABCC4 (rs11568658, 559 G > T; rs753414892, 1167 A > G; rs11568668, 1460 A > G; rs3765534, 2269 G > A; rs146708960, 2326 G > A; and rs11568644, 3425 C > T) have been suggested to be associated with reduced function of ABCC4, wherein the cellular disposition of substrates for ABCC4 was altered [13,24–26]. Various quantitative functional analyses of ABCC4 [wild-type (WT) or single-nucleotide polymorphisms (SNPs)] have been performed [13,24,25]. However, thus far, the drug sensitivities of cells expressing WT or SNP variants of ABCC4 have never been quantitatively evaluated, since it is difficult to control the integration number and integration site of the cDNA in the genome using traditional transfection methods for establishing cell lines expressing the exogenous gene. Unlike the traditional system, the Flp-In™ system, which is based on the Flp recombinase-mediated transfection can integrate a single copy of the cDNA into the FRT site generated in the telomeric region of the short arm of one copy of chromosome 12 in Flp-In-293 cells [27]. We have reported that the Flp-In™ system can be used to generate cell lines for quantitatively evaluating the effects of the nonsynonymous SNPs on drug resistance profiles [27–30]. Therefore, in this study, we performed a quantitative evaluation of the drug resistance profiles of the cells expressing the WT or SNP variants (M184K, N297S, K304N, P403L or E757K) of human ABCC4 using the Flp-In™ system. 2. Results 2.1. Levels of ABCC4 mRNA and Protein in Cells Established Using the Flp-In™ System In the present study, we employed Flp-In-293 cells with the Flp-In™ system to establish cells expressing WT or non-synonymous SNP variants of human ABCC4 (Figure 1 and Table 1). Flp-In-293 cells were transfected with the ABCC4 cDNA, which integrated into the FRT-tagged genomic DNA, and were then selected using hygromycin B. The resulting hygromycin B-resistant cells were analyzed using qPCR, where the mRNA levels of ABCC4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were measured. In the present study, the mRNA levels of ABCC4 were corrected according to those of GAPDH, and the resulting ABCC4 mRNA levels were compared among the established cells to evaluate the success of the Flp-In™ system. Figure 1. Schematic illustration of human ABCC4 and the location of its single-nucleotide polymorphisms (SNPs). Arrows, location of SNPs; ABC, ATP binding cassette (nucleotide binding domain). Int. J. Mol. Sci. 2017, 18, 1435 3 of 15 Table 1. Summary of the non-synonymous SNPs in ABCC4 selected in the present study. Nucleotide Nucleotide Amino Acid Amino Acid Variant rsNumber Position Change Position Change M184K rs45454092 551 t > a 184 Met > Lys N297S rs200387797 890 a > g 297 Asn > Ser K304N rs2274407 912 g > t 304 Lys > Asn P403L rs11568705 1208 c > t 403 Pro > Leu E757K rs3765534 2269 g > a 757 Glu > Lys Data on genetic polymorphic variants of ABCC4 were obtained from the the National Center for Biotechnology Information (NCBI) dbSNP database. As shown in Figure 2, ABCC4 mRNA levels in the cells transfected with ABCC4 cDNA were >42- fold higher than those in Flp-In-293/Mock cells. In contrast, the levels of ABCC4 mRNA were comparable among the cells transfected with ABCC4 cDNA, indicating that the Flp-In™ system functioned in the cells established in the present study. Figure 2. Levels of ABCC4 mRNA in cells established using the Flp-In™ system. The levels of ABCC4 and GAPDH mRNA were measured using qPCR with specific primer sets for ABCC4 and GAPDH, as described in Materials and Methods. Data are calculated as ratios by referring to the GAPDH mRNA levels in the cells and normalized to the ratio of ABCC4/GAPDH. Data are expressed as mean values ± S.D. (n = 5). Statistical analyses for significance were performed using one-way ANOVA and Tukey HSD test (* p < 0.01 compared to the Mock group). Since qPCR clearly showed that the Flp-In™ system functioned in these cells, western blot analysis was performed to evaluate the expression of ABCC4 and GAPDH in these cells, wherein all samples were treated with PNGase F to remove the glycomoieties on ABCC4. As shown in Figure 3, the level of ABCC4 was found to correspond to that of the ABCC4 mRNA, and the level of ABCC4 in the ABCC4 cDNA-transfected cells was much higher than that in Flp-In-293/Mock cells. On the Int. J. Mol. Sci. 2017, 18, 1435 4 of 15 contrary, the levels of ABCC4 in cells expressing ABCC4 (M184K or P403L), ABCC4 (N297S or E757K) and ABCC4 (K304N) were comparable, lower and higher compared to that in cells expressing ABCC4 (WT), respectively. Figure 3. Levels of ABCC4 in cells established using the Flp-In™ system. ABCC4 and GAPDH levels were detected using western blot analysis with specific antibodies for ABCC4 and GAPDH, and their levels were measured using ImageJ (Wayne Rasband, Bethesda, MD, USA) as described in Materials and Methods. ABCC4-specific monoclonal antibody (M4I-10) or GAPDH-specific antibody was used for protein detection in PNGase F-treated cell lysate. The experiments were performed independently more than two times. Data are expressed as mean values ± S.D. (n = 3 or 4). Statistical analyses for significance were performed using one-way ANOVA and Tukey HSD test (* p < 0.05 compared to the Mock group; ** p < 0.05 compared to the WT). Int. J. Mol. Sci. 2017, 18, 1435 5 of 15 2.2. Anticancer Drug Resistance Properties of Cells Established Using the Flp-In™ System We performed the 3-(4,5-Dimethyl-2-thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay to determine and compare the anticancer drug resistance properties of the cells.
Recommended publications
  • Multidrug Transporter MRP4/ABCC4 As a Key Determinant of Pancreatic
    www.nature.com/scientificreports OPEN Multidrug transporter MRP4/ ABCC4 as a key determinant of pancreatic cancer aggressiveness A. Sahores1, A. Carozzo1, M. May1, N. Gómez1, N. Di Siervi1, M. De Sousa Serro1, A. Yanef1, A. Rodríguez‑González2, M. Abba3, C. Shayo2 & C. Davio1* Recent fndings show that MRP4 is critical for pancreatic ductal adenocarcinoma (PDAC) cell proliferation. Nevertheless, the signifcance of MRP4 protein levels and function in PDAC progression is still unclear. The aim of this study was to determine the role of MRP4 in PDAC tumor aggressiveness. Bioinformatic studies revealed that PDAC samples show higher MRP4 transcript levels compared to normal adjacent pancreatic tissue and circulating tumor cells express higher levels of MRP4 than primary tumors. Also, high levels of MRP4 are typical of high-grade PDAC cell lines and associate with an epithelial-mesenchymal phenotype. Moreover, PDAC patients with high levels of MRP4 depict dysregulation of pathways associated with migration, chemotaxis and cell adhesion. Silencing MRP4 in PANC1 cells reduced tumorigenicity and tumor growth and impaired cell migration. Transcriptomic analysis revealed that MRP4 silencing alters PANC1 gene expression, mainly dysregulating pathways related to cell-to-cell interactions and focal adhesion. Contrarily, MRP4 overexpression signifcantly increased BxPC-3 growth rate, produced a switch in the expression of EMT markers, and enhanced experimental metastatic incidence. Altogether, our results indicate that MRP4 is associated with a more aggressive phenotype in PDAC, boosting pancreatic tumorigenesis and metastatic capacity, which could fnally determine a fast tumor progression in PDAC patients. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies, due to its late diag- nosis, inherent resistance to treatment and early dissemination 1.
    [Show full text]
  • Interindividual Differences in the Expression of ATP-Binding
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/02/02/dmd.117.079061.DC1 1521-009X/46/5/628–635$35.00 https://doi.org/10.1124/dmd.117.079061 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:628–635, May 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Special Section on Transporters in Drug Disposition and Pharmacokinetic Prediction Interindividual Differences in the Expression of ATP-Binding Cassette and Solute Carrier Family Transporters in Human Skin: DNA Methylation Regulates Transcriptional Activity of the Human ABCC3 Gene s Tomoki Takechi, Takeshi Hirota, Tatsuya Sakai, Natsumi Maeda, Daisuke Kobayashi, and Ichiro Ieiri Downloaded from Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (T.T., T.H., T.S., N.M., I.I.); Drug Development Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan (T.T.); and Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (D.K.) Received October 19, 2017; accepted January 30, 2018 dmd.aspetjournals.org ABSTRACT The identification of drug transporters expressed in human skin and levels. ABCC3 expression levels negatively correlated with the methylation interindividual differences in gene expression is important for understanding status of the CpG island (CGI) located approximately 10 kilobase pairs the role of drug transporters in human skin. In the present study, we upstream of ABCC3 (Rs: 20.323, P < 0.05). The reporter gene assay revealed evaluated the expression of ATP-binding cassette (ABC) and solute carrier a significant increase in transcriptional activity in the presence of CGI.
    [Show full text]
  • Regulation of MRP4 Expression by Circhipk3 Via Sponging Mir-124-3P/Mir-4524-5P in Hepatocellular Carcinoma
    biomedicines Article Regulation of MRP4 Expression by circHIPK3 via Sponging miR-124-3p/miR-4524-5p in Hepatocellular Carcinoma Haihong Hu †, Yu Wang †, Zhiyuan Qin, Wen Sun, Yanhong Chen, Jiaqi Wang, Yingying Wang, Jing Nie, Lu Chen, Sheng Cai, Lushan Yu * and Su Zeng * Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] (H.H.); [email protected] (Y.W.); [email protected] (Z.Q.); [email protected] (W.S.); [email protected] (Y.C.); [email protected] (J.W.); [email protected] (Y.W.); [email protected] (J.N.); [email protected] (L.C.); [email protected] (S.C.) * Correspondence: [email protected] (L.Y.); [email protected] (S.Z.); Tel.: +86-571-8820-8407 (L.Y.); +86-571-8820-8405 (S.Z.) † These authors contributed equally to this work. Abstract: Multidrug resistance-associated protein 4 (MRP4), a member of the adenosine triphosphate (ATP) binding cassette transporter family, pumps various molecules out of the cell and is involved in cell communication and drug distribution. Several studies have reported the role of miRNAs in downregulating the expression of MRP4. However, regulation of MRP4 by circular RNA (circRNA) Citation: Hu, H.; Wang, Y.; Qin, Z.; is yet to be elucidated. In this study, MRP4 was significantly upregulated in hepatocellular carcinoma Sun, W.; Chen, Y.; Wang, J.; Wang, Y.; (HCC) tissues compared to the adjacent noncancerous tissues.
    [Show full text]
  • Contribution of Abcc4-Mediated Gastric Transport to the Absorption and Efficacy of Dasatinib
    Published OnlineFirst June 21, 2013; DOI: 10.1158/1078-0432.CCR-13-0980 Clinical Cancer Cancer Therapy: Preclinical Research Contribution of Abcc4-Mediated Gastric Transport to the Absorption and Efficacy of Dasatinib Brian D. Furmanski1, Shuiying Hu1, Ken-ichi Fujita1, Lie Li1, Alice A. Gibson1, Laura J. Janke2, Richard T. Williams3, John D. Schuetz1, Alex Sparreboom1, and Sharyn D. Baker1 Abstract Purpose: Several oral multikinase inhibitors are known to interact in vitro with the human ATP-binding cassette transporter ABCC4 (MRP4), but the in vivo relevance of this interaction remains poorly understood. We hypothesized that host ABCC4 activity may influence the pharmacokinetic profile of dasatinib and subsequently affect its antitumor properties. Experimental Design: Transport of dasatinib was studied in cells transfected with human ABCC4 or the ortholog mouse transporter, Abcc4. Pharmacokinetic studies were done in wild-type and Abcc4-null mice. þ The influence of Abcc4 deficiency on dasatinib efficacy was evaluated in a model of Ph acute lymphoblastic leukemia by injection of luciferase-positive, p185(BCR-ABL)-expressing Arf(À/À) pre-B cells. Results: Dasatinib accumulation was significantly changed in cells overexpressing ABCC4 or Abcc4 compared with control cells (P < 0.001). Deficiency of Abcc4 in vivo was associated with a 1.75-fold decrease in systemic exposure to oral dasatinib, but had no influence on the pharmacokinetics of intravenous dasatinib. Abcc4 was found to be highly expressed in the stomach, and dasatinib efflux from isolated mouse stomachs ex vivo was impaired by Abcc4 deficiency (P < 0.01), without any detectable changes in gastric pH. Abcc4-null mice receiving dasatinib had an increase in leukemic burden, based on bioluminescence imaging, and decreased overall survival compared with wild-type mice (P ¼ 0.048).
    [Show full text]
  • Pleiotropic Roles of ABC Transporters in Breast Cancer
    International Journal of Molecular Sciences Review Pleiotropic Roles of ABC Transporters in Breast Cancer Ji He 1 , Erika Fortunati 1, Dong-Xu Liu 2 and Yan Li 1,2,3,* 1 School of Science, Auckland University of Technology, Auckland 1010, New Zealand; [email protected] (J.H.); [email protected] (E.F.) 2 The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; [email protected] 3 School of Public Health and Interprofessional Studies, Auckland University of Technology, Auckland 0627, New Zealand * Correspondence: [email protected]; Tel.: +64-9921-9999 (ext. 7109) Abstract: Chemotherapeutics are the mainstay treatment for metastatic breast cancers. However, the chemotherapeutic failure caused by multidrug resistance (MDR) remains a pivotal obstacle to effective chemotherapies of breast cancer. Although in vitro evidence suggests that the overexpression of ATP-Binding Cassette (ABC) transporters confers resistance to cytotoxic and molecularly targeted chemotherapies by reducing the intracellular accumulation of active moieties, the clinical trials that target ABCB1 to reverse drug resistance have been disappointing. Nevertheless, studies indicate that ABC transporters may contribute to breast cancer development and metastasis independent of their efflux function. A broader and more clarified understanding of the functions and roles of ABC transporters in breast cancer biology will potentially contribute to stratifying patients for precision regimens and promote the development of novel therapies. Herein, we summarise the current knowledge relating to the mechanisms, functions and regulations of ABC transporters, with a focus on the roles of ABC transporters in breast cancer chemoresistance, progression and metastasis.
    [Show full text]
  • Role of Genetic Variation in ABC Transporters in Breast Cancer Prognosis and Therapy Response
    International Journal of Molecular Sciences Article Role of Genetic Variation in ABC Transporters in Breast Cancer Prognosis and Therapy Response Viktor Hlaváˇc 1,2 , Radka Václavíková 1,2, Veronika Brynychová 1,2, Renata Koževnikovová 3, Katerina Kopeˇcková 4, David Vrána 5 , Jiˇrí Gatˇek 6 and Pavel Souˇcek 1,2,* 1 Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; [email protected] (V.H.); [email protected] (R.V.); [email protected] (V.B.) 2 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic 3 Department of Oncosurgery, Medicon Services, 140 00 Prague, Czech Republic; [email protected] 4 Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic; [email protected] 5 Department of Oncology, Medical School and Teaching Hospital, Palacky University, 779 00 Olomouc, Czech Republic; [email protected] 6 Department of Surgery, EUC Hospital and University of Tomas Bata in Zlin, 760 01 Zlin, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-267-082-711 Received: 19 November 2020; Accepted: 11 December 2020; Published: 15 December 2020 Abstract: Breast cancer is the most common cancer in women in the world. The role of germline genetic variability in ATP-binding cassette (ABC) transporters in cancer chemoresistance and prognosis still needs to be elucidated. We used next-generation sequencing to assess associations of germline variants in coding and regulatory sequences of all human ABC genes with response of the patients to the neoadjuvant cytotoxic chemotherapy and disease-free survival (n = 105).
    [Show full text]
  • The MRP4/ABCC4 Gene Encodes a Novel Apical Organic Anion Transporter in Human Kidney Proximal Tubules: Putative Efflux Pump for Urinary Camp and Cgmp
    J Am Soc Nephrol 13: 595–603, 2002 The MRP4/ABCC4 Gene Encodes a Novel Apical Organic Anion Transporter in Human Kidney Proximal Tubules: Putative Efflux Pump for Urinary cAMP and cGMP RE´ MON A. M. H. VAN AUBEL,* PASCAL H. E. SMEETS,* JANNY G. P. PETERS,* RENE´ J. M. BINDELS,† and FRANS G. M. RUSSEL* Departments of *Pharmacology and Toxicology and †Cell Physiology, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands. Abstract. The cyclic nucleotides cAMP and cGMP play key dependent transport of [3H]cAMP and [3H]cGMP. Both roles in cellular signaling and the extracellular regulation of probenecid and dipyridamole are potent MRP4 inhibitors. 3 3 fluid balance. In the kidney, cAMP is excreted across the apical ATP-dependent [ H]methotrexate and [ H]estradiol-17␤-D- proximal tubular membrane into urine, where it reduces phos- glucuronide transport by MRP4 and interactions with the phate reabsorption through a dipyridamole-sensitive mecha- anionic conjugates S-(2,4-dinitrophenyl)-glutathione, nism that is not fully understood. It has long been known that N-acetyl-(2,4-dinitrophenyl)-cysteine, ␣-naphthyl-␤-D- this cAMP efflux pathway is dependent on ATP and is glucuronide, and p-nitrophenyl-␤-D-glucuronide are also inhibited by probenecid. However, its identity and whether demonstrated. In kidneys of rats deficient in the apical cGMP shares the same transporter have not been estab- anionic conjugate efflux pump Mrp2, Mrp4 expression is lished. Here the expression, localization, and functional maintained at the same level. It is concluded that MRP4 is properties of human multidrug resistance protein 4 (MRP4) a novel apical organic anion transporter and the putative are reported.
    [Show full text]
  • Overexpression of MRP4 (ABCC4) and MRP5 (ABCC5) Confer Resistance to the Nucleoside Analogs Cytarabine and Troxacitabine, but No
    Adema et al. SpringerPlus 2014, 3:732 http://www.springerplus.com/content/3/1/732 a SpringerOpen Journal RESEARCH Open Access Overexpression of MRP4 (ABCC4) and MRP5 (ABCC5) confer resistance to the nucleoside analogs cytarabine and troxacitabine, but not gemcitabine Auke D Adema1, Karijn Floor1, Kees Smid1, Richard J Honeywell1, George L Scheffer2, Gerrit Jansen3 and Godefridus J Peters1* Abstract We aimed to determine whether the multidrug-resistance-proteins MRP4 (ABCC4) and MRP5 (ABCC5) confer resistance to the antimetabolites cytarabine (Ara-C), gemcitabine (GEM), and the L-nucleoside analog troxacitabine. For this purpose we used HEK293 and the transfected HEK/MRP4 (59-fold increased MRP4) or HEK/MRP5i (991-fold increased MRP5) as model systems and tested the cells for drug sensitivity using a proliferation test. Drug accumulation was performed by using radioactive Ara-C, and for GEM and troxacitabine with HPLC with tandem-MS or UV detection. At 4-hr exposure HEK/MRP4 cells were 2-4-fold resistant to troxacitabine, ara-C and 9-(2-phosphonylmethoxyethyl)adenine (PMEA), and HEK/MRP5i to ara-C and PMEA, but none to GEM. The inhibitors probenecid and indomethacin reversed resistance. After 4-hr exposure ara-C-nucleotides were 2-3-fold lower in MRP4/5 cells, in which they decreased more rapidly after washing with drug-free medium (DFM). Trocacitabine accumulation was similar in the 3 cell lines, but after the DFM period troxacitabine decreased 2-4-fold faster in MRP4/5 cells. Troxacitabine-nucleotides were about 25% lower in MRP4/5 cells and decreased rapidly in MRP4, but not in MRP5 cells.
    [Show full text]
  • Identification of ABCG2 As an Exporter of Uremic Toxin Indoxyl Sulfate in Mice and As a Crucial Factor Influencing CKD Progressi
    www.nature.com/scientificreports OPEN Identifcation of ABCG2 as an Exporter of Uremic Toxin Indoxyl Sulfate in Mice and as a Crucial Received: 6 March 2018 Accepted: 6 July 2018 Factor Infuencing CKD Progression Published: xx xx xxxx T. Takada1, T. Yamamoto1, H. Matsuo2, J. K. Tan1, K. Ooyama3, M. Sakiyama2, H. Miyata1, Y. Yamanashi1, Y. Toyoda 1, T. Higashino2, A. Nakayama2, A. Nakashima4, N. Shinomiya2, K. Ichida5, H. Ooyama6, S. Fujimori7 & H. Suzuki1 Chronic kidney disease (CKD) patients accumulate uremic toxins in the body, potentially require dialysis, and can eventually develop cardiovascular disease. CKD incidence has increased worldwide, and preventing CKD progression is one of the most important goals in clinical treatment. In this study, we conducted a series of in vitro and in vivo experiments and employed a metabolomics approach to investigate CKD. Our results demonstrated that ATP-binding cassette transporter subfamily G member 2 (ABCG2) is a major transporter of the uremic toxin indoxyl sulfate. ABCG2 regulates the pathophysiological excretion of indoxyl sulfate and strongly afects CKD survival rates. Our study is the frst to report ABCG2 as a physiological exporter of indoxyl sulfate and identify ABCG2 as a crucial factor infuencing CKD progression, consistent with the observed association between ABCG2 function and age of dialysis onset in humans. The above fndings provided valuable knowledge on the complex regulatory mechanisms that regulate the transport of uremic toxins in our body and serve as a basis for preventive and individualized treatment of CKD. Chronic kidney disease (CKD) is a disease characterized by chronically impaired kidney function and is attrib- uted to various causes.
    [Show full text]
  • Substrate Overlap Between Mrp4 and Abcg2/Bcrp Affects Purine Analogue Drug Cytotoxicity and Tissue Distribution
    Research Article Substrate Overlap between Mrp4 and Abcg2/Bcrp Affects Purine Analogue Drug Cytotoxicity and Tissue Distribution Kazumasa Takenaka,1 Jessica A. Morgan,1 George L. Scheffer,2,3 Masashi Adachi,1 Clinton F. Stewart,1 Daxi Sun,1 Markos Leggas,1 Karin F.K. Ejendal,4 Christine A. Hrycyna,4 and John D. Schuetz1 1Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee; 2Department of Pathology, VU Medical Center and 3Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; and 4Department of Chemistry and the Purdue Cancer Center, Purdue University, West Lafayette, Indiana Abstract interactions amongABC transporters is to evaluate both substrate The use of probe substrates and combinations of ATP-binding and transporter tissue distribution in knockout (KO) animals. We cassette (ABC) transporter knockout (KO) animals may speculated that if two transporters showed similar tissue facilitate the identification of common substrates between distribution and patterns of up-regulation in each others absence, apparently unrelated ABC transporters.An unexpectedly low then it was likely they shared similar endogenous or drug concentration of the purine nucleotide analogue, 9-(2-(phos- substrates. Mrp4 (also known as Abcc4) and Abcg2 have similar phonomethoxy)ethyl)-adenine (PMEA), and up-regulation of patterns of tissue distribution (3, 4). Mrp4 was first identified as a Abcg2 in some tissues of the Mrp4 KO mouse prompted us to transporter of nucleoside monophosphates [primarily purine evaluate the possibility that Abcg2 might transport purine- nucleoside monophosphates; e.g., 9-(2-(phosphonomethoxy)ethyl)- adenine (PMEA); ref. 5], but more recent studies have indicated derived drugs.Abcg2 transported and conferred resistance to PMEA.Moreover, a specific Abcg2 inhibitor, fumitremorgin C, that Mrp4 transports substrates in common with Abcg2, most both increased PMEA accumulation and reversed Abcg2- recently camptothecin analogues (6, 7).
    [Show full text]
  • ABC. See ATP-Binding Cassette (ABC) ABC Transporters, 12, 107
    325 Index a amidotransferases, 263 ABC. see ATP-binding cassette (ABC) – γ-glutamyl transpeptidase, 263 ABC transporters, 12, 107 amine hypothesis, 21 – effects on drug disposition, 112 amino acidpolyamine-organocation – mutations, 113 superfamily, 16 – neurological disorders, role in, 180–181 amino acid/polyamine/organocation – PET imaging, 181–183 transporter (APC), 262 – PET tracers amino acid transporters, 254 –– applications, 184–185 γ-aminobutyric acid (GABA), 24, 69 –– designing, challenges in, 184 – neurotransmission, 85 – pharmacochaperones and, 113, 114 – signaling, 73, 85 – proteins, 7 aminophospholipid, 204 – role of, 108 ammonia channel transporter (Amt) family, 7 – superfamily, 2 amyloid precursor protein (APP), 180 – from targets to antitargets, 111–113 anaesthetics, 1 absorption, disposition, metabolism and anion exchanger, 144 excretion (ADME), 253 anoctamin 1 (ANO1), 231, 233, 234 – SLC transporters, importance in, 253 – activators of, 240 acetylcholine, 41 – biophysical properties of, 234, 235 ADME. see absorption, disposition, metabolism – calcium activated chloride channel, 232 and excretion (ADME) – and cancer, 236–238 age-related insensitivity, 40 – characterization of, 232 alanine-serine-cysteine transporter 1 – as contributor to renal cyst growth, 245 (ASCT1), 260 – cystic fibrosis-related diabetes (CFRD), 232, alanine-serine-cysteine transporter 2 245 (ASCT2), 253, 260 – discovery of, 232, 233 Alisma orientalis, 212, 213 – effect on motility of human cancer cells, 237 allosteric effect – expression and physiological
    [Show full text]
  • The ABCC4 Gene Is Associated with Pyometra in Golden Retriever Dogs Maja Arendt1,2*, Aime Ambrosen3, Tove Fall4, Marcin Kierczak5, Katarina Tengvall2, Jennifer R
    www.nature.com/scientificreports OPEN The ABCC4 gene is associated with pyometra in golden retriever dogs Maja Arendt1,2*, Aime Ambrosen3, Tove Fall4, Marcin Kierczak5, Katarina Tengvall2, Jennifer R. S. Meadows2, Åsa Karlsson2, Anne‑Sofe Lagerstedt3, Tomas Bergström7, Göran Andersson7, Kerstin Lindblad‑Toh2,6 & Ragnvi Hagman3* Pyometra is one of the most common diseases in female dogs, presenting as purulent infammation and bacterial infection of the uterus. On average 20% of intact female dogs are afected before 10 years of age, a proportion that varies greatly between breeds (3–66%). The clear breed predisposition suggests that genetic risk factors are involved in disease development. To identify genetic risk factors associated with the disease, we performed a genome‑wide association study (GWAS) in golden retrievers, a breed with increased risk of developing pyometra (risk ratio: 3.3). We applied a mixed model approach comparing 98 cases, and 96 healthy controls and identifed an associated locus on chromosome 22 (p = 1.2 × ­10–6, passing Bonferroni corrected signifcance). This locus contained fve signifcantly associated SNPs positioned within introns of the ATP-binding cassette transporter 4 (ABCC4) gene. This gene encodes a transmembrane transporter that is important for prostaglandin transport. Next generation sequencing and genotyping of cases and controls subsequently identifed four missense SNPs within the ABCC4 gene. One missense SNP at chr22:45,893,198 (p.Met787Val) showed complete linkage disequilibrium with the associated GWAS SNPs suggesting a potential role in disease development. Another locus on chromosome 18 overlapping the TESMIN gene, is also potentially implicated in the development of the disease.
    [Show full text]