ALEA, Lat. Am. J. Probab. Math. Stat. 15, 353–374 (2018) DOI: 10.30757/ALEA.v15-15 Large time unimodality for classical and free Brownian motions with initial distributions Takahiro Hasebe and Yuki Ueda Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan E-mail address:
[email protected] URL: https://www.math.sci.hokudai.ac.jp/~thasebe/ Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan E-mail address:
[email protected] Abstract. We prove that classical and free Brownian motions with initial distri- butions are unimodal for sufficiently large time, under some assumption on the initial distributions. The assumption is almost optimal in some sense. Similar re- sults are shown for a symmetric stable process with index 1 and a positive stable process with index 1/2. We also prove that free Brownian motion with initial sym- metric unimodal distribution is unimodal, and discuss strong unimodality for free convolution. 1. Introduction A Borel measure µ on R is unimodal if there exist a R and a function f : R [0, ) which is non-decreasing on ( ,a) and non-increasing∈ on (a, ), such that→ ∞ −∞ ∞ µ(dx)= µ( a )δ + f(x) dx. (1.1) { } a The most outstanding result on unimodality is Yamazato’s theorem (Yamazato, 1978) saying that all classical selfdecomposable distributions are unimodal. After this result, in Hasebe and Thorbjørnsen (2016), Hasebe and Thorbjørnsen proved the free analog of Yamazato’s result: all freely selfdecomposable distributions are unimodal.