A COMPREHENSIVE STUDY of SUPERNOVAE MODELING By

Total Page:16

File Type:pdf, Size:1020Kb

A COMPREHENSIVE STUDY of SUPERNOVAE MODELING By A COMPREHENSIVE STUDY OF SUPERNOVAE MODELING by Chengdong Li BS, University of Science and Technology of China, 2006 MS, University of Pittsburgh, 2007 Submitted to the Graduate Faculty of the Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH PHYSICS AND ASTRONOMY DEPARTMENT This dissertation was presented by Chengdong Li It was defended on January 22nd 2013 and approved by John Hillier, Professor, Department of Physics and Astronomy Rupert Croft, Associate Professor, Department of Physics Steven Dytman, Professor, Department of Physics and Astronomy Michael Wood-Vasey, Assistant Professor, Department of Physics and Astronomy Andrew Zentner, Associate Professor, Department of Physics and Astronomy Dissertation Director: John Hillier, Professor, Department of Physics and Astronomy ii Copyright ⃝c by Chengdong Li 2013 iii A COMPREHENSIVE STUDY OF SUPERNOVAE MODELING Chengdong Li, PhD University of Pittsburgh, 2013 The evolution of massive stars, as well as their endpoints as supernovae (SNe), is important both in astrophysics and cosmology. While tremendous progress towards an understanding of SNe has been made, there are still many unanswered questions. The goal of this thesis is to study the evolution of massive stars, both before and after explosion. In the case of SNe, we synthesize supernova light curves and spectra by relaxing two assumptions made in previous investigations with the the radiative transfer code cmfgen, and explore the effects of these two assumptions. Previous studies with cmfgen assumed γ-rays from radioactive decay deposit all energy into heating. However, some of the energy excites and ionizes the medium. A new solver is developed to include these non-thermal excitation and ionization processes. Non-thermal excitation and ionization are crucial for forming some lines, especially Hα in the nebular phase. To investigate non-thermal effects, a comparison is made between models with, and without, the non-thermal solver. Benchmarking the solver is done by comparing the non-thermal models with observations of SN 1987A. Satisfactory agreement is achieved and possible problems are discussed. With the new solver, future studies will shed light on the mixing of material between layers of different composition in supernova explosions and put further constraints on supernova explosion models. Hubble expansion is a good approximation for most types of SNe, except Type II-P. Red supergiants are widely accepted to be the progenitors of Type II-P SNe and they have radii of hundreds to thousands of times larger than that of the Sun. Type II-P SNe \memorize" their large radii at the time of explosion for several weeks and material is still being accelerated. A time-dependent fully relativistic solver is developed to handle such cases. iv TABLE OF CONTENTS PREFACE ......................................... xxiii 1.0 INTRODUCTION ................................. 1 1.1 EVOLUTION OF MASSIVE STARS ..................... 1 1.1.1 Stellar evolution ............................. 1 1.1.2 Massive stars ............................... 3 1.2 CLASSIFICATION OF SUPERNOVAE ................... 5 1.3 THE IMPORTANCE OF CORE-COLLAPSE SUPERNOVAE ....... 11 1.4 THE PROBLEMS OF CORE-COLLAPSE SUPERNOVAE ......... 15 1.4.1 Progenitor problems ........................... 15 1.4.2 Explosion problems ............................ 19 1.4.3 Mixing problems ............................. 21 1.5 ASYMMETRY OF CORE-COLLAPSE SUPERNOVAE .......... 24 1.6 OUTLINE OF THE THESIS ......................... 25 2.0 RADIATION TRANSPORT THEORY .................... 27 2.1 THE RADIATIVE TRANSFER EQUATION ................ 27 2.1.1 The specific intensity ........................... 27 2.1.2 The radiative transfer equation ..................... 27 2.1.3 Sources of opacity and emissivity .................... 29 2.2 MOMENTS OF THE TRANSFER EQUATION ............... 29 2.2.1 Moments of the radiation field ..................... 29 2.2.2 Scattering problem ............................ 30 2.2.3 Moments of the transfer equation .................... 31 v 2.2.4 The boundary conditions ........................ 32 2.3 THE STATISTICAL AND RADIATIVE EQUILIBRIUM EQUATIONS .. 32 2.3.1 LTE VS Non-LTE ............................ 32 2.3.2 The statistical equilibrium equations .................. 33 2.3.3 The radiative equilibrium equation ................... 34 2.4 THE RADIATIVE TRANSFER CODE cmfgen .............. 34 2.4.1 Super levels ................................ 36 2.4.2 The elimination scheme ......................... 36 2.4.3 Fully Non-LTE .............................. 37 2.4.4 Time-dependence ............................. 38 2.4.5 Link to a hydrodynamical model .................... 42 3.0 PART I. NONTHERMAL EXCITATION AND IONIZATION IN SU- PERNOVAE ..................................... 43 3.1 WHY WITH NON-THERMAL EXCITATION AND IONIZATION .... 43 3.2 THE NON-THERMAL SOLVER ....................... 44 3.2.1 The Spencer-Fano Equation ....................... 44 3.2.2 Ionization cross sections ......................... 47 3.2.3 Excitation cross sections ......................... 49 3.3 The hydrodynamical input ........................... 52 3.4 The non-thermal model ............................. 53 3.4.1 The degradation spectrum ........................ 54 3.4.2 Number density of non-thermal electrons ................ 55 3.4.3 Energy fraction of the three channels .................. 56 3.4.4 Excitation and ionization ........................ 57 3.5 Non-thermal vs thermal models ........................ 59 3.5.1 Comparison of the temperature structure ............... 59 3.5.2 Controlling processes for H i and He i lines .............. 60 3.5.3 Comparison of optical and IR spectra ................. 66 3.5.4 Comparison of the spectral evolution .................. 68 3.6 The influence of Fe i .............................. 70 vi 3.7 Comparison with the observations ....................... 72 3.7.1 The synthetic and observed light curves ................ 72 3.7.2 Spectral comparison ........................... 75 3.7.3 Comparison of the spectral evolution .................. 77 3.8 UNCERTAINTIES ............................... 77 3.8.1 Impact excitation and ionization cross sections ............ 77 3.8.2 Emax for high energy electrons ...................... 81 3.8.3 The time-dependence effects on non-thermal processes ........ 81 3.9 DISCUSSION .................................. 82 3.10 CONCLUSION ................................. 84 4.0 PART II. FULLY RELATIVISTIC RADIATIVE TRANSFER ..... 87 4.1 DEVIATION FROM HUBBLE EXPANSION ................ 87 4.2 TRANSFER EQUATIONS IN THE FULLY RELATIVISTIC FORM ... 88 4.3 INITIAL SETUP ................................ 92 4.4 TESTING .................................... 93 4.4.1 Solution to homologous models ..................... 93 4.4.2 Departure coefficients .......................... 95 4.4.3 Ejecta temperature ............................ 97 4.4.4 Global energy constraint ......................... 100 4.5 MODEL EVOLUTION ............................. 101 4.6 LIGHT CURVES AND SPECTRAL EVOLUTION ............. 105 4.6.1 Bolometric and multi-band light curves ................. 105 4.6.2 Spectral evolution ............................ 106 4.7 DISCUSSION .................................. 106 4.7.1 Bias of distance measurements ..................... 106 4.8 CONCLUSIONS ................................ 108 5.0 PART III. ETA CARINAE ........................... 110 5.1 INTRODUCTION ............................... 110 5.2 OPTICAL MAPPING OF THE HOMUNCULUS .............. 113 5.3 THE POSITIONAL APPEARANCES OF HYDROGEN PROFILES ... 115 vii 5.4 THE EQUIVALENT WIDTH MAP OF Hα ................. 117 5.4.1 Calculation of EW and uncertainty ................... 118 5.4.2 Positional variation of the EW map ................... 120 5.4.3 The Equatorial disk and NW lobe ................... 121 5.4.4 SE lobe .................................. 124 5.4.5 Core region ................................ 124 5.4.6 The EW \sword" ............................. 125 5.4.7 The pixel-to-pixel variation ....................... 126 5.4.8 Interpretation of the EW map ...................... 128 5.4.8.1 The NW lobe .......................... 128 5.4.8.2 The SE lobe ........................... 131 5.4.8.3 Pixel-to-pixel variations ..................... 133 5.5 Absorption constraints on the wind structure ................. 134 5.5.1 P Cygni absorption in the SE lobe ................... 134 5.5.2 Abnormality of the P Cygni absorption ................ 136 5.6 Optical depth of the Homunculus ....................... 141 5.7 CONCLUSION ................................. 146 6.0 PART IV. FUNDAMENTAL PARAMETERS AND THE EUV FLUX OF ϵ CANIS MAJORIS ............................. 149 6.1 INTRODUCTION ............................... 149 6.2 OBSERVATIONAL DATA ........................... 151 6.3 MODELS .................................... 154 6.4 RESULTS .................................... 155 6.4.1 Balmer line wings fitting ......................... 155 6.4.2 Balmer jump ............................... 156 6.4.3 Equivalent widths of silicon lines .................... 159 6.4.4 Spectral energy distribution ....................... 161 6.5 DISCUSSION .................................. 167 6.5.1 Continuum determination of echelle spectra .............. 167 6.5.2 Microturbulence ............................. 168 viii 6.5.3 Mass loss ................................. 168 6.5.4 Reddening ...............................
Recommended publications
  • Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
    Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler
    [Show full text]
  • THE EVOLUTION of SOLAR FLUX from 0.1 Nm to 160Μm: QUANTITATIVE ESTIMATES for PLANETARY STUDIES
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St Andrews Research Repository The Astrophysical Journal, 757:95 (12pp), 2012 September 20 doi:10.1088/0004-637X/757/1/95 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 μm: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES Mark W. Claire1,2,3, John Sheets2,4, Martin Cohen5, Ignasi Ribas6, Victoria S. Meadows2, and David C. Catling7 1 School of Environmental Sciences, University of East Anglia, Norwich, UK NR4 7TJ; [email protected] 2 Virtual Planetary Laboratory and Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA 3 Blue Marble Space Institute of Science, P.O. Box 85561, Seattle, WA 98145-1561, USA 4 Department of Physics & Astronomy, University of Wyoming, Box 204C, Physical Sciences, Laramie, WY 82070, USA 5 Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411, USA 6 Institut de Ciencies` de l’Espai (CSIC-IEEC), Facultat de Ciencies,` Torre C5 parell, 2a pl, Campus UAB, E-08193 Bellaterra, Spain 7 Virtual Planetary Laboratory and Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195, USA Received 2011 December 14; accepted 2012 August 1; published 2012 September 6 ABSTRACT Understanding changes in the solar flux over geologic time is vital for understanding the evolution of planetary atmospheres because it affects atmospheric escape and chemistry, as well as climate. We describe a numerical parameterization for wavelength-dependent changes to the non-attenuated solar flux appropriate for most times and places in the solar system.
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • ASTR 545 Module 2 HR Diagram 08.1.1 Spectral Classes: (A) Write out the Spectral Classes from Hottest to Coolest Stars. Broadly
    ASTR 545 Module 2 HR Diagram 08.1.1 Spectral Classes: (a) Write out the spectral classes from hottest to coolest stars. Broadly speaking, what are the primary spectral features that define each class? (b) What four macroscopic properties in a stellar atmosphere predominantly govern the relative strengths of features? (c) Briefly provide a qualitative description of the physical interdependence of these quantities (hint, don’t forget about free electrons from ionized atoms). 08.1.3 Luminosity Classes: (a) For an A star, write the spectral+luminosity class for supergiant, bright giant, giant, subgiant, and main sequence star. From the HR diagram, obtain approximate luminosities for each of these A stars. (b) Compute the radius and surface gravity, log g, of each luminosity class assuming M = 3M⊙. (c) Qualitative describe how the Balmer hydrogen lines change in strength and shape with luminosity class in these A stars as a function of surface gravity. 10.1.2 Spectral Classes and Luminosity Classes: (a,b,c,d) (a) What is the single most important physical macroscopic parameter that defines the Spectral Class of a star? Write out the common Spectral Classes of stars in order of increasing value of this parameter. For one of your Spectral Classes, include the subclass (0-9). (b) Broadly speaking, what are the primary spectral features that define each Spectral Class (you are encouraged to make a small table). How/Why (physically) do each of these depend (change with) the primary macroscopic physical parameter? (c) For an A type star, write the Spectral + Luminosity Class notation for supergiant, bright giant, giant, subgiant, main sequence star, and White Dwarf.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Arxiv:1709.05344V1 [Astro-Ph.SR] 15 Sep 2017 (A(Li) = 2.75), Higher Than Its Companion by 0.5 Dex
    Draft version September 19, 2017 Typeset using LATEX modern style in AASTeX61 KRONOS & KRIOS: EVIDENCE FOR ACCRETION OF A MASSIVE, ROCKY PLANETARY SYSTEM IN A COMOVING PAIR OF SOLAR-TYPE STARS Semyeong Oh,1, 2 Adrian M. Price-Whelan,1 John M. Brewer,3, 4 David W. Hogg,5, 6, 7, 8 David N. Spergel,1, 5 and Justin Myles3 1Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA 2To whom correspondence should be addressed: [email protected] 3Department of Astronomy, Yale University, 260 Whitney Ave, New Haven, CT 06511, USA 4Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA 5Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Ave, New York, NY 10010, USA 6Center for Cosmology and Particle Physics, Department of Physics, New York University, 726 Broadway, New York, NY 10003, USA 7Center for Data Science, New York University, 60 Fifth Ave, New York, NY 10011, USA 8Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl17, D-69117 Heidelberg ABSTRACT We report and discuss the discovery of a comoving pair of bright solar-type stars, HD 240430 and HD 240429, with a significant difference in their chemical abundances. The two stars have an estimated 3D separation of ≈ 0:6 pc (≈ 0:01 pc projected) at a distance of r ≈ 100 pc with nearly identical three-dimensional velocities, as inferred from Gaia TGAS parallaxes and proper motions, and high-precision radial velocity measurements. Stellar parameters determined from high-resolution Keck HIRES spectra indicate that both stars are ∼ 4 Gyr old. The more metal-rich of the two, HD 240430, shows an enhancement of refractory (TC > 1200 K) elements by ≈ 0:2 dex and a marginal enhancement of (moderately) volatile elements (TC < 1200 K; C, N, O, Na, and Mn).
    [Show full text]
  • Arxiv:1108.0403V1 [Astro-Ph.CO] 1 Aug 2011 Esitps Hleg Oglx Omto Oesadthe and Models Formation Galaxy at to Tion
    Noname manuscript No. (will be inserted by the editor) Production of dust by massive stars at high redshift C. Gall · J. Hjorth · A. C. Andersen To be published in A&A Review Abstract The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust forma- tion. At z > 6 only stars of relatively high mass (> 3 M⊙) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production ef- ficiency of stars in the mass range 3–40 M⊙ using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (> 3 M⊙) asymptotic giant branch stars can only be −3 dominant dust producers if SNe generate . 3 × 10 M⊙ of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust pro- duction at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium. C. Gall Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark Tel.: +45 353 20 519 Fax: +45 353 20 573 E-mail: [email protected] J.
    [Show full text]
  • On the Variation of the Microturbulence Parameter with Chemical Composition
    1 . ON THE VARIATION OF THE MICROTURBULENCE PARAMETER WITH CHEMICAL COMPOSITION S. E. Strom $- $- CSFTI PRICE(S) $ Micrcfiche (MF) I b.5' ff 653 Julb 65 January 1968 Smithsonian Institution Ast r ophys ica1 Ob s e rvato r y Cambridge, Massachusetts 021 38 I ON THE VARIATION OF THE MICROTURBULENCE PARAMETER WITH CHEMICAL COMPOSITION S. E. STROM Smithsonian Astrophysical Observatory Cambridge, Massachusetts Received ABSTRACT It is shown that the correlation found bv previous investigators between and the iron to hydrogen .-t .-t the value of the microturbulent velocity parameter 5 ratio for G dwarfs results from invalid assumptions implicit in the differen- tial curve-of-growth techniques used to derive By using model atmos- 6 t' phere abundance analyses, the deduced values of EL will be very close to the ~. mean value found for stars for approximately solar composition. Several authors (e. g., Wallerstein 1962, Aller and Greenstein 1960) have suggested on the basis of differential curve-of -growth (DCOG) analyses that extreme subdwarf atmospheres are characterized by unusually small values of the turbulent velocity parameter Wallerstein (1962) has presented 5 t' evidence that the turbulent velocity decreases along with the iron-to-hydrogen ratio and thus, in a crude way, with age. This suggestion has led to the speculation that the lower values of et (e, 5 1 km/sec) for the most metal- deficient subdwarfs are related to the decrease of chromospheric activity with age. Recent work by Cohen and Strom (1968), based on detailed model atmospheres, contradicts the results of previous investigations in that for two extreme subdwarfs, HD 19445 and HD 140283, they find, respectively, & - 2 km/sec and 2 5,L 3 km/sec.
    [Show full text]
  • Radiation Hydrodynamics Experiments on Large High-Energy-Density-Physics Facilities That Are Relevant to Astrophysics
    Radiation Hydrodynamics Experiments on Large High-Energy-Density-Physics Facilities that are Relevant to Astrophysics by Heath J. LeFevre A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Applied Physics) in The University of Michigan 2021 Doctoral Committee: Professor Emeritus R P. Drake, Chair Dr. Paul A. Keiter, Los Alamos National Laboratory, Co-Chair Associate Professor Eric Johnsen Associate Professor Carolyn C. Kuranz Associate Professor Ryan D. McBride Heath J. LeFevre [email protected] ORCID iD: 0000-0002-7091-4356 c Heath J. LeFevre 2021 ACKNOWLEDGEMENTS I want to thank my family and friends for supporting me and listening to my various plans on how I will finish my thesis and when I would graduate. You don't have to hear about my thesis anymore, but you will almost certainly have to suffer through more plans. I would also like to thank my advisors Paul Drake, Carolyn Kuranz, and Paul Keiter. I appreciate the opportunity you gave me to complete my PhD and the financial support you provided so that I could run around the country blowing things up, with lasers, for five years. Further thanks are due to my committee members Eric Johnsen and Ryan McBride who are unlucky enough to be the only people who have to read this thesis that did not sign up for the job when I entered grad school. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS :::::::::::::::::::::::::: ii LIST OF FIGURES ::::::::::::::::::::::::::::::: vi LIST OF TABLES :::::::::::::::::::::::::::::::: xvi LIST OF APPENDICES :::::::::::::::::::::::::::: xvii LIST OF ABBREVIATIONS ::::::::::::::::::::::::: xviii ABSTRACT ::::::::::::::::::::::::::::::::::: xx CHAPTER I. Introduction .............................. 1 1.1 High-Energy-Density-Physics .
    [Show full text]
  • Ioptron CEM40 Center-Balanced Equatorial Mount
    iOptron®CEM40 Center-Balanced Equatorial Mount Instruction Manual Product CEM40 (#7400A series) and CEM40EC (#7400ECA series, as shown) Please read the included CEM40 Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper operation will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while using a telescope. 2 Table of Contents Table of Contents ........................................................................................................................................ 3 1. CEM40 Introduction ............................................................................................................................... 5 2. CEM40 Overview ................................................................................................................................... 6 2.1. Parts List .........................................................................................................................................
    [Show full text]
  • Luminous Blue Variables: an Imaging Perspective on Their Binarity and Near Environment?,??
    A&A 587, A115 (2016) Astronomy DOI: 10.1051/0004-6361/201526578 & c ESO 2016 Astrophysics Luminous blue variables: An imaging perspective on their binarity and near environment?;?? Christophe Martayan1, Alex Lobel2, Dietrich Baade3, Andrea Mehner1, Thomas Rivinius1, Henri M. J. Boffin1, Julien Girard1, Dimitri Mawet4, Guillaume Montagnier5, Ronny Blomme2, Pierre Kervella7;6, Hugues Sana8, Stanislav Štefl???;9, Juan Zorec10, Sylvestre Lacour6, Jean-Baptiste Le Bouquin11, Fabrice Martins12, Antoine Mérand1, Fabien Patru11, Fernando Selman1, and Yves Frémat2 1 European Organisation for Astronomical Research in the Southern Hemisphere, Alonso de Córdova 3107, Vitacura, 19001 Casilla, Santiago de Chile, Chile e-mail: [email protected] 2 Royal Observatory of Belgium, 3 avenue Circulaire, 1180 Brussels, Belgium 3 European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany 4 Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125, USA 5 Observatoire de Haute-Provence, CNRS/OAMP, 04870 Saint-Michel-l’Observatoire, France 6 LESIA (UMR 8109), Observatoire de Paris, PSL, CNRS, UPMC, Univ. Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France 7 Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 8 ESA/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218,
    [Show full text]
  • ON the PROGENITORS of TWO TYPE II-P SUPERNOVAE in the VIRGO CLUSTER1,2 Weidong Li,3 Xiaofeng Wang,3,4 Schuyler D
    The Astrophysical Journal, 661:1013 Y 1024, 2007 June 1 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. ON THE PROGENITORS OF TWO TYPE II-P SUPERNOVAE IN THE VIRGO CLUSTER1,2 Weidong Li,3 Xiaofeng Wang,3,4 Schuyler D. Van Dyk,5 Jean-Charles Cuillandre,6 Ryan J. Foley,3 and Alexei V. Filippenko3 Received 2007 January 2; accepted 2007 February 14 ABSTRACT Direct identification of the progenitors of supernovae (SNe) is rare because of the required spatial resolution and depth of the archival data prior to the SN explosions. Here we report on the identification of the progenitors of two nearby SNe in the Virgo Cluster: SN 2006my in NGC 4651 and SN 2006ov in M61. We obtained high-quality ground-based images of SN 2006my with the Canada-France-Hawaii Telescope, and are able to locate the site of the SN on pre-SN Hubble Space Telescope (HST ) Wide Field Planetary Camera 2 images to a high precision (1 uncer- tainty of Æ0.0500). We pinpoint the site of SN 2006ov to within 0.0200 from HSTAdvanced Camera for Surveys images of the SN. We detected a red supergiant progenitor for each SN within the error circles, with an inferred zero-age main- sequence mass (M )of10þ5 and 15þ5 M for the progenitors of SNe 2006my and 2006ov, respectively. The mass zams À3 À3 estimates for the progenitors of both SNe confirm a suggested trend that the most common Type IIYplateau SNe Y originate from low-mass supergiants with Mzams 8 20 M .
    [Show full text]