Almost-Periodic Single-Valued and Multivalued Functions
APPENDIX 1 599 APPENDIX 1 ALMOST-PERIODIC SINGLE-VALUED AND MULTIVALUED FUNCTIONS In this supplement, the hierarchy of almost-periodic function spaces is mainly clarified. The various types of definitions of almost-periodic functions are examined and compared. Apart from the standard definitions, we also introduce new classes and comment some, less traditional, definitions, to make a picture as much as pos sible complete. All is related to possible applications to nonlinear almost-periodic oscillations. The material for this exposition is based on the papers [AndBeGr], [AndBeL]. In the theory of almost-periodic (a.p.) functions, there are used many various definitions, mostly related to the names of H. Bohr, S. Bochner, V. V. Stepanov, H. Weyland A. S. Besicovitch ([AP-M], [BH-M], [BJM-M], [Bes-M], [BeBo], [Bo M], [BF], [BPS-M], [Cor-M], [Fav-M], [GKL-M], [Lev-M], [LZ-M], [Muc], [NG-M], [Pn-M]). On the other hand, it is sometimes difficult to recognize whether these defi nitions are equivalent or if one follows from another. It is well-known that, for example, the definitions of uniformly a.p. (u.a.p. or Bohr-type a.p.) functions, done in terms of a relative density ofthe set of almost-periods (the Bohr-type criterion), a compactness of the set of translates (the Bochner-type criterion, sometimes called normality), the closure of the set of trigonometric polynomials in the sup-norm metric, are equivalent (see, for example, [Bes-M], [Cor-M]). The same is true for the Stepanov class of a.p. functions ([Bes-M], [BF], [GKL M], [Pn-M]), but if we would like to make some analogy for, e.g., the Besicovitch class of a.p.
[Show full text]