Unearthing the Chemistry of Ceramic Glazes

Total Page:16

File Type:pdf, Size:1020Kb

Unearthing the Chemistry of Ceramic Glazes Ouachita Baptist University Scholarly Commons @ Ouachita Honors Theses Carl Goodson Honors Program 2016 Creating Color: Unearthing the Chemistry of Ceramic Glazes Jessica Mariah Hargis Ouachita Baptist University Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses Part of the Ceramic Arts Commons, Chemistry Commons, and the Painting Commons Recommended Citation Hargis, Jessica Mariah, "Creating Color: Unearthing the Chemistry of Ceramic Glazes" (2016). Honors Theses. 218. https://scholarlycommons.obu.edu/honors_theses/218 This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact [email protected]. 1 Introduction There is something magical about taking lumps of cold clay and turning them into a functional form. The transformation process is what first peaked my interest in ceramics. I turned to this visual art form my junior year of college after being completely overwhelmed by my chemistry major. Not only did Ceramics 1 teach me basic hand building and surface design techniques, but it allowed me to literally pound out my stress. I've gained a strong adoration for ceramics because it relieves my stress and gives me the opportunity to express myself. After taking Ceramics 1, enrolling in Ceramics 2 was a no-brainer. The second course was all about learning how to throw on a wheel. Using the pottery wheel permitted me to make more refined and symmetrical forms. Ceramics 2 was even more enjoyable for me, because I was able to make functional kitchen ware forms like bowls, mugs, and casserole dishes. However, the part of ceramics that interested me the most was the different glazes. In the second semester, we began to mix glazes and see how they interacted with each other. I was amazed at how you can layer one glaze over another and get a completely different color. For example, Ancient Jasper (PC-53), a reddish-black glaze, over Chun Plum (PC-55), a pinky-purple glaze, combines to form a highly versatile glaze. This combination results in a Top Left: Ancient Jasper; Bottom Left: Chun Plum; Right: Ancient glaze with lots of blues, yellows, Jasper layered over Chun Plum (AMACO) 2 reds, and browns. The way the colors run together is different for each piece depending on the form's texture and thickness of glaze application. After spending a year in Ceramics 1 and 2, I knew that I had to take the third section of the class. Ceramics 3 gave me the time and practice I needed to refine my throwing skills. I got to learn new surface design techniques and focus on my craftsmanship. During this third semester of ceramics, I really began to create pieces that I was truly proud of. It might have taken me one hundred tries, but I finally made a mug that I consider to be perfect. In Ceramics 3, I had the opportunity to work with different clay bodies from stoneware to porcelain. It was intriguing to see how the clay body color affected the color of the glazes. Also, in this course, I had the opportunity to perform many glaze tests on the pieces I created. I got to use different Amaco Potter's Choice glazes and combine them to see how they would react. I tried sixteen different glaze combinations, resulting in some beautiful colors. After doing this research with manufactured glazes, I wanted to try mixing my own glaze and altering the chemical components of it. I turned to ceramics to get a break from chemistry. But little did I know, they are very intertwined. Seeing how glazes transform during firing made me wonder what causes the different color and texture variations. Ceramics led me to see that the elements, which I've spent the past four years learning about in chemistry classes, have fun and practical applications. Glaze Testing Basics Glaze testing can be performed in a variety of ways, but the most common is through the use of line blends. A lot of potters like to create new glazes to get a larger variety of colors in their work. Sometimes the combinations of oxides do not look anything 3 like what was hypothesized. Line blends allow potters to test different glazes on a smaller scale without having to chance a prized creation. Instead, experimentation is done with test tiles, small slabs of clay. This allows potters to try out different color combinations without excessive waste and without being emotionally attached The image on the left shows the front of the tile with slip-trailed dots and stamping. The right image shows the back of the tile with my initials carved in. to a piece, in case the combination is not a good result. My test tiles were made by throwing a bottomless cylinder and then slicing it into sections. I carved, stamped, and slip~ trailed different designs on my tiles, as shown in the image above. Having the different variations in surfaces allowed me to see how the glaze reacts to different textures. Once the tiles have been bisque fired, a line blend can be performed. The purpose of a line blend is to take a base glaze and add varying amounts of colorants to small samples. Usually, the experiment is performed by altering the amounts of two chemical compounds and analyzing the effects. To perform a line blend, you will need around 10 plastic cups with approximately 100g ofthe base glaze in each. Make sure that each cup is labeled with the amount and type of colorant to be added. Also, label the corresponding test tile to which the glaze will be applied with red iron oxide. Carefully weigh each colorant and add it to the correct cup. Cover the cup with plastic wrap and let the colorant hydrate for at least one hour. Then, stir each cup thoroughly, making sure all clumps are dissolved. Sieve each glaze to break up any remaining Test tile with number of dips labeled. 4 chunks and remove large particles. After all the glazes are sieved, the test tiles are ready to be dipped. It is important to stir each cup before each dip to prevent settling of the heavier compounds. The first dip should be an even coat covering the entire tile except for a 1h inch gap at the base. It's imperative to leave a gap so that if the glaze runs, it will not stick to the shelf of the kiln. The second dip should cover half of the first dip. A third dip can be performed if desired. Having all your tiles dipped at the same level allows for a more accurate comparison between tiles when they are lined up. It is important to note the difference that thickness of application can have on glaze color. The color changes as layers are added; normally they become brighter. However, if the glaze is applied too thick, blistering can occur. For my research, all tiles were fired to Cone 5, approximately 2,167°F, in an electric oxidation kiln. In oxidation firings, the kiln has an adequate supply of oxygen typically resulting in bright, rich colors (Peterson, 2014). In contrast, reduction firings have a limited supply of oxygen and the atmosphere becomes filled with free carbons. These free carbons are highly reactive and can break bonds in the glaze materials to bond with oxygen. When the carbon reduces the oxygen in the glaze materials, the color and the texture of the glaze can change (Peterson, 2014). Oxidation and reduction firings can have very different results as seen in the image to the right. The same glaze in reduction (left) and oxidation (right) at cone 10. (Hansen, a) It is also important to note the use of personal protective equipment while working with dry, powdered chemicals. Most of the compounds that I worked with were toxic if inhaled or ingested. To prevent exposure to 5 these harmful materials, I wore a respirator and particulate filter 2091 P100. Gloves were also worn when working with oxides. In addition to the protective measures I took, the ceramics room at Ouachita also has an air filter to remove dust particles from the air. Floating Blue Floating Blue is a popular Cone 6 oxidation glaze because of its large amount of variegation. This glaze has a deep blue background speckled with hints of brown and lighter blues that "float" on the surface (Roeder, 1996). Describing the glaze, Cappell said, "the colors seem to float on a surface of a darker background of great depth, reminiscent of a deep pool of water (Hansen, b)." The glaze color and opacity can vary greatly with the thickness, so it highlights irregularities or designs in the surface. The lighter blue tends to appear in areas where application is the thickest. The brown hues are more visible on areas of thinner application or where the glaze "breaks" on edges and irregularities. Also, small lngredlent Amount 510, AbO> S.O, MgO cao K20 Na20 KNoO P,05 Fe,03 110, CoO Nepheline Syenite 47.3 28.71 11.02 0.05 0.33 2.18 4.64 6.82 0.05 Gerst ley Boraie 27 4 0.27 7.24 0.94 5.24 0.11 1.08 1.19 0.03 0.11 0.03 Silica 20.3 20.3 EPK 5.4 2 4 , 202 0.01 0.01 0.02 0.02 0.01 0.04 0.02 + Rutile 4 0.4 3.6 + Red iron oxide 2 1.9 + Bentonite 2 !9 04 0.04 0.02 0.02 0.06 0.08 0.07 + Cobalt Oxide 0.93 Total 109 56.66 13.71 7.24 1.04 5.6 2.32 5.78 8.1 0.04 2.56 3.65 0.93 Adjusted Total (100'1\) 56.93 13.78 7.27 1.04 5.62 2.33 5.81 8.14 0.04 2.57 3.66 0.94 black speckles can be present, resulting from unground particles of iron.
Recommended publications
  • Colonial Archaeology: 070 333 Spring 2006 Prof C. Schrire Room 201
    Colonial Archaeology: 070 333 Spring 2006 Prof C. Schrire [email protected] Room 201/202 RAB Phone: 932 9006 Course Outline: This course will teach the rudiments of identification and analysis of colonial artifacts dating from about 1600-1900 AD. Our teaching collection includes a variety of ceramics, pipes, glass and small finds. The course if taught largely by supervision and not lectures. Students will sort collections, draw objects, measure objects and identify them according to numerous criteria. Course Requirements: A prerequisite for this course is 070: 208, Survey of Historical Archaeology, normally taught in the Fall term. Students for whom this requirement was waived are expected to study a suitable textbook on the subject, such as Orser, C. 1995 Historical Archaeology and Deetz, J In small things forgotten. Students will attend one three hour class, once a week. During this time they will handle material, analyze it, and draw objects. Each student will need a clean writing pad or notebook, a pad of graph paper, pencils, colored pencils, eraser, a ruler, and a divider. There will be two exams, a midterm and final. Useful Texts: 1. Noel-Hume, I. 2001. The Artifacts of Colonial America 2. Fournier, Robert. Illustrated Dictionary of Practical Pottery. Paperback, 4th ed. 2000 Radnor Pa. Available at Amazon.com ($31.96) 3. Numerous additional sources will be present at class for used during the practicals. Colonial Archaeology: 070 330 Significant technical terms: (see Fournier 2000) Absorption: The taking up of liquid into the pores of a pot. The water absorption of a ceramic is an indicator of its degree of vitrification.
    [Show full text]
  • Floor Tile Glass-Ceramic Glaze for Improvement of Glaze Surface
    Journal of the European Ceramic Society xxx (2006) xxx–xxx Floor tile glass-ceramic glaze for improvement of glaze surface properties Bijan Eftekhari Yekta a,∗, Parvin Alizadeh b, Leila Rezazadeh c a Ceramic Division, Department of Materials, Iran University of Science and Technology, Tehran, Iran b School of Engineering, Tarbiat Modaress University, Tehran, Iran c Ceramic Division, Materials & Energy Research Centre, Tehran, Iran Received 16 September 2005; received in revised form 4 December 2005; accepted 28 December 2005 Abstract Simultaneous improvement of surface hardness and glossiness of floor tile glaze, without changing its firing temperature, was the main purpose of the present paper. Thus, various glazes in the system of CaO–MgO–SiO2–Al2O3–ZrO2 were prepared and their crystallization behaviors within a fast firing cycle were investigated. With increasing amounts of calcium and magnesium oxides to base glass, the optimum glass-ceramic glaze was obtained. The results showed that with increasing of CaO and MgO part weights in frit, the crystallization peak temperature was gradually decreased and the intensities of diopside and zirconium silicate were increased. The comparison of micro hardness for the optimum glass ceramic glaze derived in this work with a traditional one used in floor tile industries indicates an improvement of 21%. It was found that the glaze hardness not only depend on the amount and type of crystalline phases, but also on the residual glass composition. Furthermore, it was observed that the glaze micro hardness is only slightly affected by thermal expansion mismatch of body and glaze. © 2006 Elsevier Ltd. All rights reserved. Keywords: Glass ceramic; Glaze 1.
    [Show full text]
  • Transparent Glazes for Porcelain Tile: Glassy and Glass-Ceramic Glazes with Cristobalite Crystallisations
    CASTELL6N (SPAIN) ' QUALI ~ 2 00 2 TRANSPARENT GLAZES FOR PORCELAIN TILE: GLASSY AND GLASS-CERAMIC GLAZES WITH CRISTOBALITE CRYSTALLISATIONS Sanc' hez- M unoz- , L"J,C a b rera M .J.," 'J FA00 ."'J, Be It ran' H "J., Car d a J..B "J ,'J Dept of Inorganic and Organ ic Chem istry, Un iversitat [aume I, Caste1l6n ("JVid res S.A., Villarreal. Caste1l6n ABSTRACT As result of the collabora tion betuieen the compallY Vidres S.A. mid the Dept. ofInorganic and Organic Chemistry of Unioersitat [aume I of Castellon, frits have beell developed ofa glassy and glass-ceramic nature (with crustallisation ofchemically stabilised -cristobalite), which call be used ill transparent glaze compositionsfor porcelain tile, with the possibility ofpolishing. Both the glassy and the glass-ceramic glazes have beell developed ill the system SiO,-AI,O,-B,O,-CaO-ZIlO-Na,O­ K,O-BaO-SrO with contents ill SiO, up to 73 wt%, using raw materials typically found ill the ceramic indusiru. Cnjs tutlisation of cristobalite of composition Si'.xAI,Sr'i'O, mid Si,.,AI,Ca,/,O, takes place by heterogeneous nucleation at the glaze surface and at the fr it particle COil tact points, growillg fi rst as regular isolated crystals and then as dendritic crystals, ill which case thelj call OCCll py large surfaceareas of theglaze. The glazes developed, ill which thesefrits are the[undamental component, haoe higher mechanical properties with regard to hardness, resistance to abrasion. acids and stains than contentional transparent glazes alld the porcelain tile polished surface. P.GI- 239 CA STELL6 :--1 (SPAJ:--I j 1.
    [Show full text]
  • Development of a Glass-Ceramic Glaze Formulated from Industrial Residues to Improve the Mechanical Properties of the Porcelain Stoneware Tiles
    ABSTRACT TO THE WORKSHOP: VITROGEOWASTES, Elche, sept 2017 Development of a glass-ceramic glaze formulated from industrial residues to improve the mechanical properties of the porcelain stoneware tiles. E. Barrachina1, M. Esquinas2, J. Llop2, M.D. Notari2, J.B. Carda1 1 Department of Inorganic and Organic Chemistry, Universitat Jaume I, Castellón, 12071 (Spain) 2 Superior School of Ceramic in l´Alcora, Castellón 12110 (Spain) ABSTRACT In this research a mixture of 90%wt of industrial residues (recycled soda-lime glass and ashes from a coal power thermal plant) have been vitrified for their use as “secondary raw material”. Then, a glaze suspension was prepared to be applied as a glaze suspension on the porcelain stoneware tile. The tested pieces have been fired by a conventional porcelain cycle at 1180ºC of maximum temperature. The XRD, XRF, SEM/EDS and the dilatometric analysis have been the instrumental techniques used to characterize the final material. Finally, an ecological glass-ceramic glaze perfectly fitting on porcelain ceramic tile has been produced, exhibiting a unique phase, anorthite, which ensures a high flexural strength (around 96 MPa) and a significant Vickers microhardness of 250 GPa, improving the mechanical properties of a conventional the porcelain ceramic tile. Keywords Circular economy, revalorization of industrial waste, glass-ceramic glaze, porcelain stoneware, mechanical properties 1. Introduction Citizen environmental awareness has increased in the past decade, due to the publication of many studies on the impacts of environmental degradation. In that sense, scientific research is contributing to arouse public awareness about the new technological challenges in society. One of the concepts which at the moment seems to be proliferating in a significant way is the circular economy.
    [Show full text]
  • Rustoleum Tub and Tile Refinishing Kit Directions
    Rustoleum Tub And Tile Refinishing Kit Directions Is Weylin missive when Giffy follows fuliginously? Rodge liberalises ashore while eightpenny Raj weaves Gallice reinventor gelatinate wrathfully, anxiously. is Prasun Unnavigated Pythian? and fractured Timotheus syncretizes her renting discard dubiously or Follow all of paint been reimagined, there are a painting your account for my bathtub kit. Everyone in love our tile rustoleum tub under no refinishing kit in protective finish or. Loyal nanaimo bathtub post of paint cans together to get this? Really mean really well that time just about this is easier solution that this diy paint is a container did you only a experimentar. Some actions you had help all unused materials to care to tile tub and installation cost. Set the end of porcelain and that my bathroom again shortly after a kitchen and ask your tile kit click to the tub gets less expensive if. Combine colours in my landlord had to keep windows, dingy next steps! Itsepoxy chemistry is also be bound by: i do you do the back to remove your brushes for rustoleum tub and tile refinishing kit again with the home improvement over the! She explores her enthusiasm for sure to this. They can choose something that this is an eye wear contacts, get about an hour between. What did you sand paper craft paint a tub and tile rustoleum tub were super disappointed to refinish a week i noticed blisters on the! Sharing a project for bedrooms, then it would love all directions state, see stroke patterns must be dangerous? Then i wrapped around the good news for convenience only paint last time that is durable stuff! Superior performance for.
    [Show full text]
  • High Lead Exposures Resulting from Pottery Production in a Village in Michoacaân State, Mexico
    Journal of Exposure Analysis and Environmental Epidemiology (1999) 9, 343±351 # 1999 Stockton Press All rights reserved 1053-4245/99/$12.00 http://www.stockton-press.co.uk High lead exposures resulting from pottery production in a village in MichoacaÂn State, Mexico ROBIN HIBBERT,a ZHIPENG BAI,b JAIME NAVIA,c DANIEL M. KAMMENa,d AND JUNFENG (JIM) ZHANGb a Science, Technology and Environmental Policy (STEP) Program, Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey 08544-1013 b Environmental and Occupational Health Sciences Institute, UMDNJ-Robert Wood Johnson Medical School and Rutgers University, 170 Frelinghuysen Road, Piscataway, New Jersey 08854 c Grupo Interdisciplinario de TecnologIÁa Rural Apropiada (GIRA), AC, Apartado Postal 158, PaÂtzcuaro, MichoacaÂn 61609, Mexico d Energy and Resources Group (ERG), University of California, Berkeley, Berkeley, California 94720-3050 This paper reports findings from a screening study conducted to examine potential lead (Pb) exposures in residents of a Mexican village where Pb oxide continues to be used in ceramic pottery production. Extremely high Pb concentrations were measured in personal and indoor air samples, household surface dust samples, and household soil samples. Personal air Pb concentrations for workers performing pottery firing and glazing were up to 454 g/m3. Results from indoor air samples indicate that airborne Pb concentrations were lower during nonglazing period compared to the glazing period. Soil Pb concentrations measured in 17 homes ranged from 0.39 to 19.8 mg/g. Dust Pb loading on surfaces of household items, hands, and clothes of a worker ranged from 172 to 33 060 g/f t 2.
    [Show full text]
  • Thin Section Petrography for Ceramic Glaze Microstructures
    minerals Commentary Breaking Preconceptions: Thin Section Petrography For Ceramic Glaze Microstructures Roberta Di Febo 1,2,3,*, Lluís Casas 4 , Jordi Rius 5, Riccardo Tagliapietra 6 and Joan Carles Melgarejo 7 1 Dept. de Ciències de l’Antiguitat i Edad Mitjana, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona (UAB), Edifici B, 08193 Bellaterra, Spain 2 Institut Català d’Arqueologia Clàssica (ICAC), Unitat d’Estudis Arqueomètrics (UEA), Plaça d’en Rovellat, s/n, 43003 Tarragona, Spain 3 U Science Tech, MECAMAT group, University of Vic—Central University of Catalonia, C. De la Laura 13, 08500 Catalonia, Spain 4 Departament de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; [email protected] 5 Institute de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain; [email protected] 6 Renishaw S.p.A Via dei Prati 5, 10044 Pianezza (TO), Italia; [email protected] 7 Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +34-977-249-133 Received: 16 December 2018; Accepted: 12 February 2019; Published: 15 February 2019 Abstract: During the last thirty years, microstructural and technological studies on ceramic glazes have been essentially carried out through the use of Scanning Electron Microscopy (SEM) combined with energy dispersive X-ray analysis (EDX). On the contrary, optical microscopy (OM) has been considered of limited use in solving the very complex and fine-scale microstructures associated with ceramic glazes.
    [Show full text]
  • Chairside Zirconia Is Here Clinical Flexibility and Predictability for CEREC Dentists
    INTRODUCING Abutment Solutions For customized implant restorations fabricated with CEREC® technology Digital all around. The complete solution from temporary to final restoration • Total abutment solution Optimally® cementedHybrid Abutment with • Accurately fitting restorations due to the digital manufacturing process Multilink • Stable bond using Multilink® Hybrid Abutment Cement 100% CUSTOMER SATISFACTION GUARANTEED! ivoclarvivadent.com Call us toll free at 1-800-533-6825 in the U.S., 1-800-263-8182 in Canada. © 2016 Ivoclar Vivadent, Inc. Ivoclar Vivadent, Telio and IPS e.max are registered trademarks of Ivoclar Vivadent, Inc. CEREC® is a registered trademark of Sirona Dental Systems, Inc. 8942_AD.indd 1 12/28/15 10:37 AM Dear Friends: Thank you for reading this special digital supplement of cerecdoctors.com magazine focusing on the new zirconia solution by Dentsply Sirona. Our aim is to provide you with an overview of the entire process of fabricating zirconia restorations chairside with the CEREC system. For more detailed information, please visit www.cerecdoctors.com/oven where you can watch videos on each step of the process of fabricating zirconia with the CEREC system. The video series is intended to guide all users on techniques, protocols and required equipment. The ability to fabricate zirconia with CEREC in a single appointment is certainly an exciting advancement for CEREC users, and therefore, we will be including this workflow in our upcoming seminar, Treating Comprehensive and Esthetic Cases With a Digital Workflow. As always, cerecdoctors.com remains at the forefront of providing the most current information to all CEREC users. With our team of clinicians and contributors, and our strong partnership with Dentsply Sirona, you can be sure that we are committed to keeping CEREC users engaged and informed on all things CEREC.
    [Show full text]
  • Achieving Opacity in Ceramic Tiles: Microstructural and Spectrophotometric Analysis
    CASTELL6N (SPAIN) Dt QUALILa?L 2004 ACHIEVING OPACITY IN CERAMIC TILES: MICROSTRUCTURAL AND SPECTROPHOTOMETRIC ANALYSIS Santos?', C.R.; Fontana?', T.L.B.; Uggioni'", E.; Riella(2), H.G.; Bernardin?', A.M. (1) Departamento de Engenharia de Materiais; Departamento de Matematica Universidade do Extremo SuI Catarinense - UNESC Avenida Universitaria 1105; 88806-000; Criciuma, SC, Brazil [email protected] (2) Departamento de Engenharia Qufrnica Universidade Federal de Santa Catarina - UFSC Campus Universitario: 88040-900; Florian6polis, SC, Brazil [email protected] ABSTRACT A majorfactor in obtaining stablecolours in ceramic tiles is the use of agents that can cause opacity in transparent enamels. These agents are used as additives in enamel preparation, and the control of their effect during firing is fundamental, due the possible elimination or reduction of tonality variation during processing. The most widely used agents to cause opacity are zirconia (zirconium silicate: ZrSi04) and rutile (titanium oxide: Ti02). Particle size, refraction index and volumetric fraction of the opacifying agent being used affect the enamel degree of opacity. This work therefore aims to evaluate the influence of the zirconia mass fraction on the opacity of a transparent enamel, based on microstructural aspects, mainly particle dispersion in the glaze matrix. A transparent frit for single firing was used; thefrit was milled in a laboratory jar mill (# 325 mesh) and fine zirconia was added (1% to 24%; mass fraction). The glazes obtained were homogenized (5min; jar mill) and compacted (25MPa) in cylindrical samples with wax (10% weight). The pressed samples were sintered (1100°C; 5min) after a dewaxing process. After sample preparation, microstructural (SEM and OM) and spectrophotometric analysis was carried out.
    [Show full text]
  • Using Optical Coherence Tomography to Characterize the Crack Morphology of Ceramic Glaze and Jade
    13 Using Optical Coherence Tomography to Characterize the Crack Morphology of Ceramic Glaze and Jade M.-L. Yang, A.M. Winkler, J. Klein, A. Wall and J.K. Barton Tamkang University, Taipei, Taiwan 1. Introduction The utilization of optical coherence tomography (OCT) in artworks’ examination for the past several years has confirmed its feasibility (Elias et al., 2010; Targowski, 2008). The results not only aid authentication of museum collections, but also provide crucial information for understanding artworks’ manufacturing technology and use history, as well as for continuing preservation. To display certain characteristics of ceramic glaze and jade materials, such as components assemblage, bubbles distribution, glaze-layer structure, cracks morphology and alteration phenomenon, OCT is an ideal tool. In previous research, the bubble distribution and components assemblage within Chinese glaze samples has been discussed (Yang et al., 2011, 2009), and the alteration of archaic jade has also been examined (Liang et al., 2008; Yang et al., 2004). In addition, with specific algorithm programs, the researcher is also able to obtain quantitative data, such as the bubble size and number in a glaze or intensities of texture vector in a jade material (Klein et al., 2011; Chang et al., 2010). In the present chapter, various cracks’ morphology in Chinese glaze and jade samples are described and characterized using OCT systems. Cracks are common in brittle materials, such as traditional glass, ceramics, or even tougher semi-gem or rock. In general, they are regarded as defective in artistic or industrial products. However, certain cracks were endowed with an artistic or cultural attribute or significance because of their special morphology and uniquely formed patterns.
    [Show full text]
  • Titanium Oxide Photocatalytic Materials and Their Applications in Ceramics
    Ceramic Sciences and Engineering (2018) Original Research Article Titanium Oxide Photocatalytic Materials and Their Applications in Ceramics Zhigang Chen,Hao Liu,Jianwei Su School of Materials Science and Engineering, Chengdu Jiaotong University, Sichuan, China ABSTRACT Titanium oxide has the advantages of high activity, good stability, non-toxic and low cost cost eff ective. It is one of the most widely studied photocatalysts and the most promising material for photocatalytic ceramics. In this paper, the photocatalytic mechanism of TiO2, the influence factors of photocatalytic activity, the preparation of nano- TiO2, the phase change of nano-TiO2, the application of TiO2 photocatalytic materials and the research progress of photocatalytic ceramics were reviewed. KEYWORDS: titanium oxide; photocatalysis; ceramics; application 1. Introduction In 1972, Japanese scholars Fujishima and Honda discovered that photocatalytic decomposition of water can be done in the semiconductor TiO2 electrode to prepare hydrogen [1]. TiO2 photocatalytic technology has aroused great interest of science and technology workers ever since [2-9]. In 1976, Canadian scientists along with other studies done had discovered that under the ultraviolet light irradiation, nano-TiO2 may decompose the organic compounds biphenyl and chlorinated biphenyl [10]. With the increasingly prominent energy and environmental problems, semiconductor photocatalytic technology has unprecedentedly received an extensive global attention and achieved rapid development [11-14]. At present, the most widely studied semiconductor photocatalysts are n-type semiconductor compounds [12, 15- 21], such as: TiO2, ZnO, CdS, ZnS, MoO3, WO3 and others. Of all, TiO2 has been the most favorable semiconductor compound chosen for its high catalytic activity, good stability, non-toxic and cost effective advantages [22-26].
    [Show full text]
  • Since 1949 Welcome!
    © Since 1949 Welcome! Table of Contents Introduction…................................... 1 Environmental Statement.................. 2 Morgan............................................. 3 Morgan II.......................................... 4 Morgan II Tall.................................... 5 Venetian II........................................ 6 Venetian II Tall.................................. 7 Venetian Bowl/Rectangle.................. 8 Jewel................................................ 9 Aegean............................................. 10 Gainey Grande................................. 11 China Bowl....................................... 12 Portofino........................................... 13 Portofino (continued)........................ 14 Mesa Bowl/Morgan Bowl................... 15 Flower Bowl...................................... 16 Azalea.............................................. 17 Cylinder............................................ 18 Ash & Trash...................................... 19 GFRC............................................... 20 Terms & Conditions........................... 21 PLANTERS 101 There is nothing like a classic, handcrafted planter to bring out the beauty of any space. Incorporating design elements from ancient Roman vessels to iconic mid-century ceramics, our incomparable modern styles bring life to any commercial or residential environment. From our substantial construc- tion to our extensive range of rich glazes and sizes, Gainey Ceramics can meet the needs of any design professional
    [Show full text]