JGeomAnal https://doi.org/10.1007/s12220-018-0025-3 The Weighted Connection and Sectional Curvature for Manifolds With Density Lee Kennard1 · William Wylie2 · Dmytro Yeroshkin3 Received: 15 September 2017 © Mathematica Josephina, Inc. 2018 Abstract In this paper we study sectional curvature bounds for Riemannian manifolds with density from the perspective of a weighted torsion-free connection introduced recently by the last two authors. We develop two new tools for studying weighted sec- tional curvature bounds: a new weighted Rauch comparison theorem and a modified notion of convexity for distance functions. As applications we prove generalizations of theorems of Preissman and Byers for negative curvature, the (homeomorphic) quarter- pinched sphere theorem, and Cheeger’s finiteness theorem. We also improve results of the first two authors for spaces of positive weighted sectional curvature and sym- metry. Keywords Comparison geometry · Sectional curvature · Manifold with density · Jacobi fields · Sphere theorem B William Wylie
[email protected] https://wwylie.expressions.syr.edu Lee Kennard
[email protected] https://www.math.ou.edu/∼kennard Dmytro Yeroshkin
[email protected] https://www2.cose.isu.edu/∼yerodmyt 1 Department of Mathematics, University of Oklahoma, 601 Elm Ave., Norman, OK 73019, USA 2 Department of Mathematics, Syracuse University, 215 Carnegie Building, Syracuse, NY 13244, USA 3 Department of Mathematics and Statistics, Idaho State University, 921 S. 8th Ave., Stop 8085, Pocatello, ID 83209, USA 123 L. Kennard et al. Mathematics Subject Classification 53C20 1 Introduction Let the triple (Mn, g,μ)denote an n-dimensional Riemannian manifold (M, g) with μ a smooth measure on M.In[30] the last two authors introduced a natural connection ∇g,μ that can be associated to (Mn, g,μ).