Slice Sinking Solution (Store at 4 C, Can Be Used Over an Extended Period of Time)
Total Page:16
File Type:pdf, Size:1020Kb
Version 1.0, July 3, 2016
Stock Solution
4 % Paraformaldehyde 4 % Paraformaldehyde (from Electron Microscopy Science 16% stock) 1x PBS
Slice Sinking solution (Store at 4 C, can be used over an extended period of time) 1x PBS 30% (w/v) sucrose 100 mM Glycine
Slice Blocking Buffer (Store at 4 C, can be used for at least 1 month) 1x PBS 0.1% Triton X-100 5% normal donkey serum
Monomer solution: Component Stock Amount (mL) Final concentration* concentration* Sodium acrylate 38 2.25 8.6 Acrylamide 50 0.5 2.5 N,N′-Methylenebisacrylamide 2 0.75 0.15 Sodium chloride 29.2 4 11.7 PBS 10x 1 1x Water 0.9 Total 9.4** *All concentrations in g/100 mL except PBS
**9.4/10 mL (1.06x), the remaining 6% volume brought up by initiator, accelerator and inhibitor as needed (see below).
Materials and Stock Solution Storage:
Sodium acrylate sometimes comes with a variable purity level, which can affect performance. For every fresh bottle purchased, we make a 38g/100mL (33 wt%) sodium acrylate stock and check to insure that it is colorless under normal room lighting. If the stock has a yellow tint (see Figure 1, below), we discard the bottle from which it was made. Once open, we have been storing sodium acrylate in an airtight, low humidity, or desiccator chamber in -20 degrees C, since the solid is moisture sensitive. APS powder and 100% TEMED solution are stored in a room temperature desiccator. Figure 1. 38g/100mL Sodium Acrylate stock solutions: correct (left) and low purity (right).
We have been storing the monomer solution mixed up at -20 degrees C for up to 1 month. TEMED, APS, and H-Tempo Stock solutions can be kept in -20 degrees C, and we generally remake the TEMED and APS stocks at least once every 2 weeks.
Slice Gelling Solution: Mix the following 4 solutions on ice. Monomer solutions + TEMED accelerator + APS initiator solution + 4-hydroxy-TEMPO (abbreviated 4HT) inhibitor solution. The initiator solution needs to be added last, to prevent premature gelation. Solutions need to be vortexed to ensure full mixing.
Each slice needs ~200µl of gelling solution. For 200µl gelling solution, mix the following: Monomer solution ( 1.06x ) (188µl) (keep at 4C to prevent premature gelation): Inhibitor solution (4µl): 4-hydroxy-TEMPO (4HT stock solution at 0.5%, final concentration 0.01%) (Inhibits gelation to enable diffusion into brain slices.) Accelerator solution (4µl): TEMED (TEMED stock solution at 10%, final concentration 0.2% (w/w). (Accelerates radical generation by APS). Initiator solution (4µl): APS (APS stock at 10%, final concentration 0.2% (w/w)). (This initiates the gelling process. This needs to be added last).
Digestion Buffer (can be stored as aliquots in freezer at -20C): 50 mM Tris pH 8.0 1 mM EDTA, 0.5% Triton X-100, 0.8 M guanidine HCl (8M guanidine HCl stock solution can be kept at RT) Add: Proteinase K (1:100, final concentration 8 units/mL) to digestion buffer before use. ExM procedures for brain slices
Perfusion and slicing: Essentially the same as conventional histology.
1. Perfuse with 4% paraformaldehyde. Post-fix the brain in 4% paraformaldehyde (e.g., overnight or as needed).
2. Cut 100 micron brain slices on a vibratome. Then go to the next section, skipping steps 3-5 of this section. OR,
3. Cryoprotect the brain in PBS+30% sucrose+ 100 mM glycine (sinking solution), for about one day until the brain sinks.
4. Freeze the brain using dry ice and 2-methylbutane, and embed brain in OCT, M-1 or other embedding matrix.
5. Cut brain slices with cryotome. 30 µm slices are typical for antibody penetration, although slices up to at least 100 µm thick are compatible. Store slices in PBS @ 4 C.
Primary antibody staining: Essentially the same as conventional histology, below is a typical staining protocol:
1. Permeabilize slices in blocking buffer, 6 hours, RT.
2. Incubate slice with primary antibodies in blocking buffer, overnight, at RT or 4C on a shaker.
3. Wash slices with blocking buffer, 4 times, ~30 min each.
Secondary Antibody Staining
1. Incubate slice with secondary antibodies in blocking buffer, overnight, at RT or 4C on a shaker.
a. Note: Do not use cyanine derivatives: (Cy3, Cy5, Alexa 647) on your secondary antibodies. We suggest using CF633 (from Biotium) for far red staining.
2. Wash slices with blocking buffer, 4 times, ~30 min each.
Anchoring treatment:
1. Re-suspend Acryloyl X – SE (Life technologies: A20770) in 500 uL anhydrous DMSO (10 mg/mL stock solution). Aliquot in 20 uL increments, and store desiccated at -20 C.
2. Dilute AcX 1:100 (0.1 mg/mL) in 1x PBS. 3. Treat stained slices or slices expressing genetically encoded FPs for > 6 hours at RT (this reaction can be left overnight).
4. Wash 2x 15 minutes each before proceeding to gelation. Samples can be stored at this point at 4 C.
Figure 2. Gel chamber schematic.
Gelling:
1. Make sure to remove excess PBS from brain slices before incubation with gelling solution. Incubate slices in gelling solution in an Eppendorf tube for 5 mins @ 4C, and then replace with new gelling solution for another 25 mins. Use freshly prepared gelling solution, immediately after adding APS at 4C. (Make sure at least 100-fold excess volume of monomer solution is used. E.g., ~200µl of gelling solution for each brain slice. Need ~100µl for each of two incubations.)
2. Transfer slices from Eppendorf tube into a gel chamber and then incubate at 37C for 2 hours. Gel chambers (Figure 2) are constructed by sandwiching the slice between a slide and a coverglass, with spacers on either side of the tissue section to prevent compression of tissue slice (see schematic below). For 30 and 100 µm sections, pieces of #1 coverglass were used for spacers and for 200 µm sections, pieces of # 1 coverglasses can be stacked two coverglasses thick. (Spacers are easy to make from full coverglasses with a diamond scribe.) Make sure the slices are flat, and avoid air bubbles trapped inside the chamber.
Digestion and Expansion:
1. Take off the cover of the gel chamber, and submerge it in digesting buffer, overnight @ room temperature. (Make sure at least 10-fold excess volume of digestion buffer is used, and make sure to completely submerge the slice; make sure it does not dry out.) A small slide box, or a plastic well can be used to incubate the gel and digestion buffer.
2. Wash slices with excess volume of ddH2O (we usually use at least 10x the final gel volume), 3-5 times, for 15mins each time. Slice expansion reaches plateau after about the 3rd or 4th wash. The expansion chamber needs to be of adequate size for the sample, we found that for hemislices of mouse brains, the expanded gel fits nicely in a glass bottom 6 well plate (In Vitro Scientific) when the excess gel around the brain is trimmed away (a razor blade works well for this). Gels can be immobilized with 2% low melt agarose in water to prevent drift during imaging. Image with conventional fluorescent, confocal microscope, or other desired scopes