Interval Notation / Absolute Value Worksheet
Total Page:16
File Type:pdf, Size:1020Kb
Interval Notation / Absolute Value Worksheet Answers
Graph the given intervals and find their intersection.
1. ( -3, 2) and [ 1 , 4 ) intersection = [ 1 , 2 )
-3 1 2 4
2. ( - ∞, 3 ) and ( - 2 , + ∞ ) intersection = ( - 2 , 3 )
-2 3
Solve and graph each inequality.
3. 6x 2 5 7 6x 2 5 6 2 2 6x 7 Divided by a negative, inequality 6x 7 switches direction 6 6 7 x 6
7 4. 1 2x 3 4 x 1 , x 2 1 2x 3 4 3 3 3 2 2x 7 2 2x 7 1 7 2 2 2 2 7 1 x 2 1 5. x 1 x 0 2 TTTT FFFFFFFFF TTTT Critical points are … 1 1 1 x 1 0 and x 0 2 2 1 1 1 1 2 2 1 x 1 and x 2
TEST x = 0
1 0 10 0 2 1 1 0 2 1 0 2
FALSE
2 1 6. x x x 0 3 3 Critical points are … 2 1 x 0 and x 0 and x 0 3 3 2 1 x 0, x , x 3 3
TEST x = 1 TTTT FF TTT FFFF 2 1 11 1 0 1 2 3 3 0 3 3 1 4 1 0 3 3 4 0 FALSE 9 7. 4x3 6x 2 0 Critical points are … FFFF TTTT FFFF 2x 2 2x 3 0 0 3
2 2 2x 0 2x 3 0 3 x 0 x 2
TEST x = 1
413 612 0 4 6 0 TRUE 2 0
Solve the absolute value equations.
8. 6x 5 0
6x 5 0 5 5 6x 5 5 x 6
CHECK
5 6 5 0 6 5 5 0 0 0 0 0 2 9. x 1 3 x 1 4 0 Let u = x 1
u 2 3u 4 0 u 4u 1 0
x 1 4 0 x 1 4
No solution, abs. value ≠ (-)
x 1 1 0 x 1 1
1 x 1 1 1 x 1 1 Solution set x = { 0 , - 2 } 1 1 1 - 2 x 0
CHECK
0 1 2 30 1 4 0 1 2 31 4 0 1 3 4 0 0 0
2 1 2 3 2 1 4 0 1 2 31 4 0 1 3 4 0 0 0 Solve and find the solution for each absolute value inequality as an interval.
10. x 2 1
1 x 2 1 2 2 2 1 3 1 x 3 Interval ( 1 , 3 )
11. x 3 3
3 x 3 3 - 6 0 3 3 3 6 x 0 Interval ( - ∞ , -6 ] U [ 0 , + ∞ )
12. 2x 1 1
1 2x 1 1 - 1 0 1 1 1 2 2x 0 Interval ( - ∞ , -1 ] U [ 0 , + ∞ ) 2 2x 0 2 2 2 1 x 0
1 2 13. 2x 3 3 1 1 2 6 2 1 2 2x 3 3 3 1 1 1 3 3 3 1 1 Interval , , 1 2 6 2x 1 3 1 1 x 6 2