RESEARCH ARTICLE Competing scaffolding proteins determine capsid size during mobilization of Staphylococcus aureus pathogenicity islands Altaira D Dearborn1†, Erin A Wall2†‡, James L Kizziah3†, Laura Klenow2, Laura K Parker2,3, Keith A Manning3, Michael S Spilman4, John M Spear5§, Gail E Christie2, Terje Dokland3* 1Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States; 2Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, United States; 3Department of Microbiology, University of Alabama, Birmingham, United States; 4Direct Electron, San Diego, United States; 5Biological Science Imaging Resource, Florida State University, Tallahassee, United States *For correspondence: Abstract Staphylococcus aureus pathogenicity islands (SaPIs), such as SaPI1, exploit specific
[email protected] helper bacteriophages, like 80a, for their high frequency mobilization, a process termed ‘molecular †These authors contributed piracy’. SaPI1 redirects the helper’s assembly pathway to form small capsids that can only equally to this work accommodate the smaller SaPI1 genome, but not a complete phage genome. SaPI1 encodes two proteins, CpmA and CpmB, that are responsible for this size redirection. We have determined the Present address: ‡Laboratory of structures of the 80a and SaPI1 procapsids to near-atomic resolution by cryo-electron microscopy, Molecular Biology, Center for and show that CpmB competes with the 80a scaffolding protein (SP) for a binding site on the Cancer Research, National Cancer Institute, Bethesda, capsid protein (CP), and works by altering the angle between capsomers. We probed these United States; §Thermo Fisher interactions genetically and identified second-site suppressors of lethal mutations in SP. Our Scientific, Hillsboro, United structures show, for the first time, the detailed interactions between SP and CP in a bacteriophage, States providing unique insights into macromolecular assembly processes.