Dialectica Dialectica Vol

Total Page:16

File Type:pdf, Size:1020Kb

Dialectica Dialectica Vol dialectica dialectica Vol. 63, N° 4 (2009), pp. 381–395 DOI: 10.1111/j.1746-8361.2009.01214.x Vectors and Beyond: Geometric Algebra and its Philosophical Significancedltc_1214 381..396 Peter Simons† In mathematics, like in everything else, it is the Darwinian struggle for life of ideas that leads to the survival of the concepts which we actually use, often believed to have come to us fully armed with goodness from some mysterious Platonic repository of truths. Simon Altmann 1. Introduction The purpose of this paper is to draw the attention of philosophers and others interested in the applicability of mathematics to a quiet revolution that is taking place around the theory of vectors and their application. It is not that new math- ematics is being invented – on the contrary, the basic concepts are over a century old – but rather that this old theory, having languished for many decades as a quaint backwater, is being rediscovered and properly applied for the first time. The philosophical importance of this quiet revolution is not that new applications for old mathematics are being found. That presumably happens much of the time. Rather it is that this new range of applications affords us a novel insight into the reasons why vectors and their mathematical kin find application at all in the real world. Indirectly, it tells us something general but interesting about the nature of the spatiotemporal world we all inhabit, and that is of philosophical significance. Quite what this significance amounts to is not yet clear. I should stress that nothing here is original: the history is quite accessible from several sources, and the mathematics is commonplace to those who know it. However, for philosophers who are not themselves mathematicians, I hope this may be of some interest. 2. Excerpts from the history of vector theory Dramatis personae Benjamin Olinde Rodrigues (1795–1851) Sir William Rowan Hamilton (1805–1865) Hermann Günther Grassmann (1808–1877) Peter Guthrie Tait (1831–1901) † Department of Philosophy, Trinity College Dublin, Dublin 2, Ireland; Email: [email protected] © 2010 The Author. Journal compilation © 2010 Editorial Board of dialectica. Published by Blackwell Publishing Ltd., 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA 382 Peter Simons Josiah Willard Gibbs (1839–1903) William Kingdon Clifford (1845–1879) Oliver Heaviside (1850–1925) David Hestenes (b. 1933) There is a classic history of vector theory, a marvellous book by Michael Crowe (1967). The subsequent history since Crowe’s book appeared shows that while he is quite right that vectors won out over quaternions in “the Great Quaternionic War” of roughly 1890–1910, it is no longer the case, as it seemed to him then, that vector analysis plus other things will remain the undisputed formalism of choice in modern applied mathematics. Although the idea of directed quantities was present in earlier mathematics, it emerged most obviously in the Wessel–Argand geometric interpretation of complex numbers. It was after thirteen years of trying to generalize this to three dimensions that in a famous episode Hamilton got the insight that three rather than two extra imaginary units were needed, and this was the key to the quaternions. The discovery, which can be located in space and time to a very small region near Broome Bridge in Dublin on the morning of 16 October 1843, is one of the best-known stories of mathematics. Quaternions (sometimes called ‘hypercomplex numbers’) are quantities: qw=+++ijk x y z where w, x, y, w are real, addition is defined termwise, and the imaginary units ijksatisfy: i22== j k 2 = ijk =−=−=1;; ij ji k jk =−= kj i ; ki =−= ik j Quaternions form the largest (non-commutative) division algebra: every non-zero quaternion has an inverse. From 1846 Hamilton called w the scalar part and ix + jy + kz the pure or vector part of a quaternion, and if q, q′ are two pure quaternions (vectors): qq′ =−() xx′ + yy′ + zz′ + ijk() yz′ − zy′ + () zx′ − xz′ + () xy′ − yx′ So quaternion multiplication embodies both (the negative of) the scalar product, and the vector product of later theory. Just as complex numbers handle rotations in the plane, so quaternions are meant to handle rotations in three-dimensional space. But, misled by the analogy with the two-dimensional case, where multiplication by a single unit complex number produces a rotation, Hamilton assumed such rotations could be represented by a single multiplication qv, where v is any vector and q is a unit quaternion. This one-sided multiplication works only for a special case: rotations orthogonal to the © 2010 The Author. Journal compilation © 2010 Editorial Board of dialectica. Vectors and Beyond 383 vector, about its axis. Thus from the very evening of 16 October 1843 Hamilton bungled the quaternion account of rotation, which should be dealt with by pre- and postmultiplication by a quaternion rvr-1, with r defined not (as in Hamilton) by the angle of the rotation but by its half-angle. The geometry of composing rotations and the need to deal in half-angles had already been properly done in 1840 by a French mathematician who was also a socialist banker, Benjamin Olinde Rodrigues, but had (not unsurprisingly) escaped Hamilton’s notice. Particularly insightful and detailed accounts of Hamilton’s mistake and Rodrigues’s success are given by Altmann (1986, 1989, 1992), who deserves much credit for showing that the neglect of quaternions was for a long time excessive, as well as for investigating the hitherto highly obscure Rodrigues (Altmann and Ortiz, 2005).1 Hamilton was convinced that quaternions were the key to the universe. For a while, spurred by his deserved fame and his enthusiastic advocacy, quaternions were all the rage. His 1853 Lectures on Quaternions ran to nearly 900 pages, and James Clerk Maxwell used them though without total endorsement in his Treatise on Electricity and Magnetism. In the propagation of the quaternionic gospel, Hamilton was ably seconded by his bulldog, the Scottish mathematician Peter Guthrie Tait, but gradually the drawbacks of quaternions became apparent, not least through the work of Maxwell, who eventually dropped them. Quaternions came under fire from two thinkers who independently came up with the more flexible mathematics of vectors, the American mathematician–physicist–chemist Josiah Willard Gibbs and the English engineer–physicist Oliver Heaviside. Gibbs’s Yale lectures on vector analysis began to be circulated around 1881, while Heaviside’s Electromagnetic Theory came out in 1891. After the publication in 1901 by Edwin Bidwell Wilson of Vector Analysis: A Text Book for the Use of Students of Mathematics and Physics and Founded upon the Lectures of J. Willard Gibbs, the war was decided. That book reads like any modern textbook of vector theory, and indeed it was the first such. For example the definitions of scalar and vector are wholly modern: Definition:Avector is a quantity which is considered as possessing direction as well as magnitude. Definition:Ascalar is a quantity which is considered as possessing magnitude but no direction. Gibbs and Heaviside arrived at their ideas independently and in a remarkably similar way: by separating the scalar and vector parts of the quaternion product as two distinct products, and changing the sign of the scalar part. After embarking on vector theory, Gibbs discovered some convergence with ideas that had already 1 Quarternions have, sinceAltmann published his book in 1986, and in part because of the book, had about as much of a revival as they merit: they are now regularly used by space engineers and computer games developers for efficient and singularity-free representations of 3-dimensional spatial rotations, as of space vehicles and virtual game perspectives. See Kuipers (2002). © 2010 The Author. Journal compilation © 2010 Editorial Board of dialectica. 384 Peter Simons been proposed by Hermann Günther Grassmann.2 Grassmann was, in his day, and even to some extent now, one of the most unjustly neglected mathematicians of all time. His revolutionary Ausdehnungslehre [Theory of Extension] was first pub- lished in 1844 (Grassmann 1844), with a second revised and cut-down edition in 1862 (Grassmann 1862) and a third, which restored some of the first edition’s cuts, appearing in 1878 only after his death. Grassmann was led to his algebra of geometry initially by a problem in applied mathematics: that of describing the flow of water in tides (Grassmann 1840). For this purpose he introduced two notions which later became known as the scalar (inner) product and exterior (or outer) product of two vectors. Grassmann’s work, which was conceived for any finite number of dimensions, not just two or three, was more revolutionary than Hamil- ton’s and at a level of abstraction which even professional mathematicians such as Möbius and Kummer found offputting. The Gibbs–Heaviside vector theory is as much a cut-down version of Grassmann’s work as of Hamilton’s, though because of Grassmann’s obscurity they discovered that only subsequently. Vectors in the Gibbs–Heaviside vein caught on rapidly in the early twentieth century, being both adequate to many applications and easy enough for non-mathematicians to grasp and manipulate. From then on, vector algebra and vector analysis have held sway throughout most of the twentieth century. The quaternionists did not however give up without a massive struggle. In 1888 Gibbs wrote in a letter: a Kampf ums Dasein is just commencing between the different methods and nota- tions of multiple algebra, especially between the ideas of Grassmann & of Hamilton. The rhetoric in the Great Quaternionic War became quite heated. So Tait wrote: Even Professor Gibbs must be ranked as one of the retarders of Quaternion progress, in virtue of his pamphlet on Vector Analysis, a sort of hermaphrodite monster, compounded of the notations of Hamilton and of Grassmann.
Recommended publications
  • Quaternions and Cli Ord Geometric Algebras
    Quaternions and Cliord Geometric Algebras Robert Benjamin Easter First Draft Edition (v1) (c) copyright 2015, Robert Benjamin Easter, all rights reserved. Preface As a rst rough draft that has been put together very quickly, this book is likely to contain errata and disorganization. The references list and inline citations are very incompete, so the reader should search around for more references. I do not claim to be the inventor of any of the mathematics found here. However, some parts of this book may be considered new in some sense and were in small parts my own original research. Much of the contents was originally written by me as contributions to a web encyclopedia project just for fun, but for various reasons was inappropriate in an encyclopedic volume. I did not originally intend to write this book. This is not a dissertation, nor did its development receive any funding or proper peer review. I oer this free book to the public, such as it is, in the hope it could be helpful to an interested reader. June 19, 2015 - Robert B. Easter. (v1) [email protected] 3 Table of contents Preface . 3 List of gures . 9 1 Quaternion Algebra . 11 1.1 The Quaternion Formula . 11 1.2 The Scalar and Vector Parts . 15 1.3 The Quaternion Product . 16 1.4 The Dot Product . 16 1.5 The Cross Product . 17 1.6 Conjugates . 18 1.7 Tensor or Magnitude . 20 1.8 Versors . 20 1.9 Biradials . 22 1.10 Quaternion Identities . 23 1.11 The Biradial b/a .
    [Show full text]
  • Geometric Algebra Rotors for Skinned Character Animation Blending
    Geometric algebra rotors for skinned character animation blending briefs_0080* QLB: 320 FPS GA: 381 FPS QLB: 301 FPS GA: 341 FPS DQB: 290 FPS GA: 325 FPS Figure 1: Comparison between animation blending techniques for skinned characters with variable complexity: a) quaternion linear blending (QLB) and dual-quaternion slerp-based interpolation (DQB) during real-time rigged animation, and b) our faster geometric algebra (GA) rotors in Euclidean 3D space as a first step for further character-simulation related operations and transformations. We employ geometric algebra as a single algebraic framework unifying previous separate linear and (dual) quaternion algebras. Abstract 2 Previous work The main goal and contribution of this work is to show that [McCarthy 1990] has already illustrated the connection between (automatically generated) computer implementations of geometric quaternions and GA bivectors as well as the different Clifford algebra (GA) can perform at a faster level compared to standard algebras with degenerate scalar products that can be used to (dual) quaternion geometry implementations for real-time describe dual quaternions. Even simple quaternions are identified character animation blending. By this we mean that if some piece as 3-D Euclidean taken out of their propert geometric algebra of geometry (e.g. Quaternions) is implemented through geometric context. algebra, the result is as efficient in terms of visual quality and even faster (in terms of computation time and memory usage) as [Fontijne and Dorst 2003] and [Dorst et al. 2007] have illustrated the traditional quaternion and dual quaternion algebra the use of all three GA models with applications from computer implementation. This should be so even without taking into vision, animation as well as a basic recursive ray-tracer.
    [Show full text]
  • Vectors and Beyond: Geometric Algebra and Its Philosophical
    dialectica Vol. 63, N° 4 (2010), pp. 381–395 DOI: 10.1111/j.1746-8361.2009.01214.x Vectors and Beyond: Geometric Algebra and its Philosophical Significancedltc_1214 381..396 Peter Simons† In mathematics, like in everything else, it is the Darwinian struggle for life of ideas that leads to the survival of the concepts which we actually use, often believed to have come to us fully armed with goodness from some mysterious Platonic repository of truths. Simon Altmann 1. Introduction The purpose of this paper is to draw the attention of philosophers and others interested in the applicability of mathematics to a quiet revolution that is taking place around the theory of vectors and their application. It is not that new math- ematics is being invented – on the contrary, the basic concepts are over a century old – but rather that this old theory, having languished for many decades as a quaint backwater, is being rediscovered and properly applied for the first time. The philosophical importance of this quiet revolution is not that new applications for old mathematics are being found. That presumably happens much of the time. Rather it is that this new range of applications affords us a novel insight into the reasons why vectors and their mathematical kin find application at all in the real world. Indirectly, it tells us something general but interesting about the nature of the spatiotemporal world we all inhabit, and that is of philosophical significance. Quite what this significance amounts to is not yet clear. I should stress that nothing here is original: the history is quite accessible from several sources, and the mathematics is commonplace to those who know it.
    [Show full text]
  • Università Degli Studi Di Trieste a Gentle Introduction to Clifford Algebra
    Università degli Studi di Trieste Dipartimento di Fisica Corso di Studi in Fisica Tesi di Laurea Triennale A Gentle Introduction to Clifford Algebra Laureando: Relatore: Daniele Ceravolo prof. Marco Budinich ANNO ACCADEMICO 2015–2016 Contents 1 Introduction 3 1.1 Brief Historical Sketch . 4 2 Heuristic Development of Clifford Algebra 9 2.1 Geometric Product . 9 2.2 Bivectors . 10 2.3 Grading and Blade . 11 2.4 Multivector Algebra . 13 2.4.1 Pseudoscalar and Hodge Duality . 14 2.4.2 Basis and Reciprocal Frames . 14 2.5 Clifford Algebra of the Plane . 15 2.5.1 Relation with Complex Numbers . 16 2.6 Clifford Algebra of Space . 17 2.6.1 Pauli algebra . 18 2.6.2 Relation with Quaternions . 19 2.7 Reflections . 19 2.7.1 Cross Product . 21 2.8 Rotations . 21 2.9 Differentiation . 23 2.9.1 Multivectorial Derivative . 24 2.9.2 Spacetime Derivative . 25 3 Spacetime Algebra 27 3.1 Spacetime Bivectors and Pseudoscalar . 28 3.2 Spacetime Frames . 28 3.3 Relative Vectors . 29 3.4 Even Subalgebra . 29 3.5 Relative Velocity . 30 3.6 Momentum and Wave Vectors . 31 3.7 Lorentz Transformations . 32 3.7.1 Addition of Velocities . 34 1 2 CONTENTS 3.7.2 The Lorentz Group . 34 3.8 Relativistic Visualization . 36 4 Electromagnetism in Clifford Algebra 39 4.1 The Vector Potential . 40 4.2 Electromagnetic Field Strength . 41 4.3 Free Fields . 44 5 Conclusions 47 5.1 Acknowledgements . 48 Chapter 1 Introduction The aim of this thesis is to show how an approach to classical and relativistic physics based on Clifford algebras can shed light on some hidden geometric meanings in our models.
    [Show full text]
  • The Construction of Spinors in Geometric Algebra
    The Construction of Spinors in Geometric Algebra Matthew R. Francis∗ and Arthur Kosowsky† Dept. of Physics and Astronomy, Rutgers University 136 Frelinghuysen Road, Piscataway, NJ 08854 (Dated: February 4, 2008) The relationship between spinors and Clifford (or geometric) algebra has long been studied, but little consistency may be found between the various approaches. However, when spinors are defined to be elements of the even subalgebra of some real geometric algebra, the gap between algebraic, geometric, and physical methods is closed. Spinors are developed in any number of dimensions from a discussion of spin groups, followed by the specific cases of U(1), SU(2), and SL(2, C) spinors. The physical observables in Schr¨odinger-Pauli theory and Dirac theory are found, and the relationship between Dirac, Lorentz, Weyl, and Majorana spinors is made explicit. The use of a real geometric algebra, as opposed to one defined over the complex numbers, provides a simpler construction and advantages of conceptual and theoretical clarity not available in other approaches. I. INTRODUCTION Spinors are used in a wide range of fields, from the quantum physics of fermions and general relativity, to fairly abstract areas of algebra and geometry. Independent of the particular application, the defining characteristic of spinors is their behavior under rotations: for a given angle θ that a vector or tensorial object rotates, a spinor rotates by θ/2, and hence takes two full rotations to return to its original configuration. The spin groups, which are universal coverings of the rotation groups, govern this behavior, and are frequently defined in the language of geometric (Clifford) algebras [1, 2].
    [Show full text]
  • The Devil of Rotations Is Afoot! (James Watt in 1781)
    The Devil of Rotations is Afoot! (James Watt in 1781) Leo Dorst Informatics Institute, University of Amsterdam XVII summer school, Santander, 2016 0 1 The ratio of vectors is an operator in 2D Given a and b, find a vector x that is to c what b is to a? So, solve x from: x : c = b : a: The answer is, by geometric product: x = (b=a) c kbk = cos(φ) − I sin(φ) c kak = ρ e−Iφ c; an operator on c! Here I is the unit-2-blade of the plane `from a to b' (so I2 = −1), ρ is the ratio of their norms, and φ is the angle between them. (Actually, it is better to think of Iφ as the angle.) Result not fully dependent on a and b, so better parametrize by ρ and Iφ. GAViewer: a = e1, label(a), b = e1+e2, label(b), c = -e1+2 e2, dynamicfx = (b/a) c,g 1 2 Another idea: rotation as multiple reflection Reflection in an origin plane with unit normal a x 7! x − 2(x · a) a=kak2 (classic LA): Now consider the dot product as the symmetric part of a more fundamental geometric product: 1 x · a = 2(x a + a x): Then rewrite (with linearity, associativity): x 7! x − (x a + a x) a=kak2 (GA product) = −a x a−1 with the geometric inverse of a vector: −1 2 FIG(7,1) a = a=kak . 2 3 Orthogonal Transformations as Products of Unit Vectors A reflection in two successive origin planes a and b: x 7! −b (−a x a−1) b−1 = (b a) x (b a)−1 So a rotation is represented by the geometric product of two vectors b a, also an element of the algebra.
    [Show full text]
  • Geometric (Clifford) Algebra and Its Applications
    Geometric (Clifford) algebra and its applications Douglas Lundholm F01, KTH January 23, 2006∗ Abstract In this Master of Science Thesis I introduce geometric algebra both from the traditional geometric setting of vector spaces, and also from a more combinatorial view which simplifies common relations and opera- tions. This view enables us to define Clifford algebras with scalars in arbitrary rings and provides new suggestions for an infinite-dimensional approach. Furthermore, I give a quick review of classic results regarding geo- metric algebras, such as their classification in terms of matrix algebras, the connection to orthogonal and Spin groups, and their representation theory. A number of lower-dimensional examples are worked out in a sys- tematic way using so called norm functions, while general applications of representation theory include normed division algebras and vector fields on spheres. I also consider examples in relativistic physics, where reformulations in terms of geometric algebra give rise to both computational and conceptual simplifications. arXiv:math/0605280v1 [math.RA] 10 May 2006 ∗Corrected May 2, 2006. Contents 1 Introduction 1 2 Foundations 3 2.1 Geometric algebra ( , q)...................... 3 2.2 Combinatorial CliffordG V algebra l(X,R,r)............. 6 2.3 Standardoperations .........................C 9 2.4 Vectorspacegeometry . 13 2.5 Linearfunctions ........................... 16 2.6 Infinite-dimensional Clifford algebra . 19 3 Isomorphisms 23 4 Groups 28 4.1 Group actions on .......................... 28 4.2 TheLipschitzgroupG ......................... 30 4.3 PropertiesofPinandSpingroups . 31 4.4 Spinors ................................ 34 5 A study of lower-dimensional algebras 36 5.1 (R1) ................................. 36 G 5.2 (R0,1) =∼ C -Thecomplexnumbers . 36 5.3 G(R0,0,1)...............................
    [Show full text]
  • A Guided Tour to the Plane-Based Geometric Algebra PGA
    A Guided Tour to the Plane-Based Geometric Algebra PGA Leo Dorst University of Amsterdam Version 1.15{ July 6, 2020 Planes are the primitive elements for the constructions of objects and oper- ators in Euclidean geometry. Triangulated meshes are built from them, and reflections in multiple planes are a mathematically pure way to construct Euclidean motions. A geometric algebra based on planes is therefore a natural choice to unify objects and operators for Euclidean geometry. The usual claims of `com- pleteness' of the GA approach leads us to hope that it might contain, in a single framework, all representations ever designed for Euclidean geometry - including normal vectors, directions as points at infinity, Pl¨ucker coordinates for lines, quaternions as 3D rotations around the origin, and dual quaternions for rigid body motions; and even spinors. This text provides a guided tour to this algebra of planes PGA. It indeed shows how all such computationally efficient methods are incorporated and related. We will see how the PGA elements naturally group into blocks of four coordinates in an implementation, and how this more complete under- standing of the embedding suggests some handy choices to avoid extraneous computations. In the unified PGA framework, one never switches between efficient representations for subtasks, and this obviously saves any time spent on data conversions. Relative to other treatments of PGA, this text is rather light on the mathematics. Where you see careful derivations, they involve the aspects of orientation and magnitude. These features have been neglected by authors focussing on the mathematical beauty of the projective nature of the algebra.
    [Show full text]
  • Quantum/Classical Interface: Fermion Spin
    Quantum/Classical Interface: Fermion Spin W. E. Baylis, R. Cabrera, and D. Keselica Department of Physics, University of Windsor Although intrinsic spin is usually viewed as a purely quantum property with no classical ana- log, we present evidence here that fermion spin has a classical origin rooted in the geometry of three-dimensional physical space. Our approach to the quantum/classical interface is based on a formulation of relativistic classical mechanics that uses spinors. Spinors and projectors arise natu- rally in the Clifford’s geometric algebra of physical space and not only provide powerful tools for solving problems in classical electrodynamics, but also reproduce a number of quantum results. In particular, many properites of elementary fermions, as spin-1/2 particles, are obtained classically and relate spin, the associated g-factor, its coupling to an external magnetic field, and its magnetic moment to Zitterbewegung and de Broglie waves. The relationship is further strengthened by the fact that physical space and its geometric algebra can be derived from fermion annihilation and creation operators. The approach resolves Pauli’s argument against treating time as an operator by recognizing phase factors as projected rotation operators. I. INTRODUCTION The intrinsic spin of elementary fermions like the electron is traditionally viewed as an essentially quantum property with no classical counterpart.[1, 2] Its two-valued nature, the fact that any measurement of the spin in an arbitrary direction gives a statistical distribution of either “spin up” or “spin down” and nothing in between, together with the commutation relation between orthogonal components, is responsible for many of its “nonclassical” properties.
    [Show full text]
  • Spacetime Algebra As a Powerful Tool for Electromagnetism
    Spacetime algebra as a powerful tool for electromagnetism Justin Dressela,b, Konstantin Y. Bliokhb,c, Franco Norib,d aDepartment of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA bCenter for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198, Japan cInterdisciplinary Theoretical Science Research Group (iTHES), RIKEN, Wako-shi, Saitama, 351-0198, Japan dPhysics Department, University of Michigan, Ann Arbor, MI 48109-1040, USA Abstract We present a comprehensive introduction to spacetime algebra that emphasizes its prac- ticality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in stud- ies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials.
    [Show full text]
  • A Classical Spinor Approach to the Quantum/Classical Interface
    A Classical Spinor Approach to the Quantum/Classical Interface William E. Baylis and J. David Keselica Department of Physics, University of Windsor A promising approach to the quantum/classical interface is described. It is based on a formulation of relativistic classical mechanics in the Cli¤ord algebra of physical space. Spinors and projectors arise naturally and provide powerful tools for solving problems in classical electrodynamics. They also reproduce many quantum results, allowing insight into quantum processes. I. INTRODUCTION The quantum/classical (Q/C) interface has long been a subject area of interest. Not only should it shed light on quantum processes, it may also hold keys to unifying quantum theory with classical relativity. Traditional studies of the interface have largely concentrated on quantum systems in states of large quantum numbers and the relation of solutions to classical chaos,[1] to quantum states in decohering interactions with the environment,[2] or in continuum states, where semiclassical approximations are useful.[3] Our approach[4–7] is fundamentally di¤erent. We start with a description of classical dynamics using Cli¤ord’s geometric algebra of physical space (APS). An important tool in the algebra is the amplitude of the Lorentz transfor- mation that boosts the system from its rest frame to the lab. This enters as a spinor in a classical context, one that satis…es linear equations of evolution suggesting superposition and interference, and that bears a close relation to the quantum wave function. Although APS is the Cli¤ord algebra generated by a three-dimensional Euclidean space, it contains a four- dimensional linear space with a Minkowski spacetime metric that allows a covariant description of relativistic phe- nomena.
    [Show full text]
  • On Rotor Calculus, I 403 1
    ON ROTOR CALCULUS I H. A. BUCHDAHL (Received 25 October 1965) Summary It is known that to every proper homogeneous Lorentz transformation there corresponds a unique proper complex rotation in a three-dimensional complex linear vector space, the elements of which are here called "rotors". Equivalently one has a one-one correspondence between rotors and self- dual bi-vectors in space-time (w-space). Rotor calculus fully exploits this correspondence, just as spinor calculus exploits the correspondence between real world vectors and hermitian spinors; and its formal starting point is the definition of certain covariant connecting quantities rAkl which trans- form as vectors under transformations in rotor space (r-space) and as tensors of valence 2 under transformations in w-space. In the present paper, the first of two, w-space is taken to be flat. The general properties of the rA*i are established in detail, without recourse to any special representation. Corresponding to any proper Lorentz transformation there exists an image in r-space, i.e. an ^-transformation such that the two transformations carried out jointly leave the xAkl numerically unchanged. Nevertheless, all relations are written in such a way that they are invariant under arbitrary ^-transformations and arbitrary r-transformations, which may be carried out independently of one another. For this reason the metric tensor a.AB in r-space may be chosen arbitrarily, except that it shall be non-singular and symmetric. A large number of identities involving the basic quan- tities of the calculus is presented, including some which relate to com- plex conjugated rotors rAkl, xAg.
    [Show full text]