"Some Contributions to Parameterized Complexity"

Total Page:16

File Type:pdf, Size:1020Kb

Laboratoire d'Informatique, de Robotique et de Micro´electronique de Montpellier Universite´ de Montpellier Speciality: Computer Science Habilitation `aDiriger des Recherches (HDR) Ignasi Sau Valls Some Contributions to Parameterized Complexity Quelques Contributions en Complexit´eParam´etr´ee Version of June 21, 2018 { Defended on June 25, 2018 Committee: Reviewers: Michael R. Fellows - University of Bergen (Norway) Fedor V. Fomin - University of Bergen (Norway) Rolf Niedermeier - Technische Universit¨at Berlin (Germany) Examinators: Jean-Claude Bermond - CNRS, U. de Nice-Sophia Antipolis (France) Marc Noy - Univ. Polit`ecnica de Catalunya (Catalonia) Dimitrios M. Thilikos - CNRS, Universit´ede Montpellier (France) Gilles Trombettoni - Universit´ede Montpellier (France) Contents 0 R´esum´eet projet de recherche7 1 Introduction 13 1.1 Contextualization................................. 13 1.2 Scientific collaborations ............................. 15 1.3 Organization of the manuscript......................... 17 2 Curriculum vitae 19 2.1 Education and positions............................. 19 2.2 Full list of publications.............................. 20 2.3 Supervised students ............................... 32 2.4 Awards, grants, scholarships, and projects................... 33 2.5 Teaching activity................................. 34 2.6 Committees and administrative duties..................... 35 2.7 Research visits .................................. 36 2.8 Research talks................................... 38 2.9 Journal and conference refereeing........................ 43 3 Preliminaries 45 3.1 Graphs....................................... 45 3.1.1 Basic notation .............................. 45 3.1.2 Graph minors............................... 47 3.1.3 Treewidth................................. 48 3.1.4 (Counting) Monadic Second Order Logic................ 49 3.2 Parameterized complexity............................ 50 3.3 Some classical problems ............................. 53 4 Summary of my contributions 57 4.1 FPT algorithms.................................. 57 4.2 Kernelization................................... 70 4.3 Combinatorial results .............................. 74 4.4 Problems arising from applications....................... 77 5 Linear kernels and single-exponential algorithms via protrusion de- compositions 81 5.1 Introduction.................................... 82 5.2 Protrusions, t-boundaried graphs, and finite integer index.......... 87 5.3 Constructing protrusion decompositions.................... 92 5.4 Linear kernels on graphs excluding a topological minor............ 96 5.4.1 Proof of Theorem 5.1 .......................... 96 5.4.2 Problems affected by our result.....................102 5.4.3 A comparison with earlier results....................104 5.4.4 The limits of our approach .......................105 5.4.5 An illustrative example: Edge Dominating Set . 106 5.5 Single-exponential algorithm for Planar- -Deletion . 108 F 5.5.1 Analysis of the bag marking algorithm . 110 5.5.2 Branching step and linear protrusion decomposition . 111 5.5.3 Solving Planar- -Deletion with a linear protrusion decomposition112 F 5.5.4 Proof of Theorem 5.2 ..........................116 5.6 Some deferred results...............................117 5.6.1 Edge modification problems are not minor-closed . 117 5.6.2 Disconnected planar obstructions....................117 5.6.3 Disconnected Planar- -Deletion has not finite integer index . 118 F 5.6.4 MSO formula for topological minor containment . 119 5.7 Concluding remarks ...............................119 6 Explicit linear kernels via dynamic programming 123 6.1 Introduction....................................124 6.2 Preliminaries ...................................125 6.3 An explicit protrusion replacer .........................128 6.3.1 Encoders .................................129 6.3.2 Equivalence relations and representatives . 132 6.3.3 Explicit protrusion replacer.......................138 6.4 An explicit linear kernel for r-Dominating Set . 140 6.4.1 Description of the encoder........................140 6.4.2 Construction of the kernel........................144 6.5 An explicit linear kernel for r-Scattered Set . 145 6.5.1 Description of the encoder........................145 6.5.2 Construction of the kernel........................148 6.6 An explicit linear kernel for Planar- -Deletion . 149 F 6.6.1 The encoder for -Deletion and the index of ;t . 150 F ∼G 6.6.2 Construction of the kernel on H-minor-free graphs . 152 6.6.3 Linear kernels on H-topological-minor-free graphs . 153 6.7 Concluding remarks ...............................155 7 On the number of labeled graphs of bounded treewidth 157 7.1 Introduction....................................157 7.2 The construction.................................159 7.2.1 Notation and definitions.........................159 7.2.2 Description of the construction.....................160 7.2.3 Bounding the treewidth.........................162 7.3 Proof of the main result.............................163 7.3.1 Number of constructible triples (σ; f; N) . 163 7.3.2 Bounding the number of duplicates...................163 7.3.3 Choosing the parameter s . 165 7.4 Concluding remarks ...............................166 8 Finding a spanning tree with minimum reload cost diameter 169 8.1 Introduction....................................170 8.2 Preliminaries ...................................173 8.3 Para-NP-hardness results.............................175 8.4 A polynomial-time algorithm on cactus graphs . 180 8.5 FPT algorithm parameterized by k + tw + ∆ . 187 8.6 Polynomially bounded costs...........................191 8.7 Concluding remarks ...............................193 9 Further research 195 Bibliography 197 Chapter 0 R´esum´eet projet de recherche Nous pr´esentons ici un petit r´esum´ede ce manuscrit, ainsi que quelques pistes de recherche pour les ann´ees `avenir, en relation avec le contenu scientifique expos´edans le manuscrit. R´esum´e Ce document contient une synth`ese de mes principales contributions scientifiques apr`es ma soutenance de th`ese, qui a eu lieu en octobre 2009, et surtout pendant le temps que j'ai pass´eau LIRMM (Montpellier, France) en tant que Charg´ede Recherche au CNRS. Au lieu d'une compilation exhaustive de toutes mes contributions, ce qui serait certaine- ment trop long et trop h´et´erog`ene, ce manuscrit contient deux parties principales. Dans la premi`ere, on pr´esente une description courte de toutes mes contributions, en les met- tant en contexte et en ´enon¸cant les r´esultats principaux, mais sans rentrer dans les d´etails scientifiques. Cette description permet d'avoir une vision globale sur l'ensemble de mes contributions. Dans la seconde partie, on pr´esente quatre de ces contributions avec tous les d´etails. Ces quatre contributions ont ´et´echoisies avec le crit`ere d'^etre repr´esentatives `ala fois sur les th´ematiques sur lequelles elles portent, et aussi sur le type de techniques utilis´ees pour obtenir les r´esultats. En rentrant sur la th´ematique de mes recherches, la grande plupart de mes contributions se placent dans le cadre de la complexit´eparam´etr´ee. Cette th´eorie a ´et´ed´evelopp´ee par Downey et Fellows dans les ann´ees 90, et aujourd'hui est d´ej`aun domaine de recherche compl`etement ´etabli avec, par exemple, quatre bouquins publi´essur le sujet, et de centaines d'articles accept´esannuellement dans les plus prestigieuses conf´erences internationales en informatique th´eorique. Nous allons maintenant introduire de mani`ere succincte les id´ees principales de la complexit´eparam´etr´ee,pour pouvoir mettre en contexte mes contribu- tions scientifiques. La th´eorie de la NP-compl´etude \classique" consid`ere qu'un probl`eme est facile s'il admet un algorithme polynomial pour le r´esoudre. Mais beaucoup de probl`emes sont NP-difficiles, c'est-`a-dire, ils n'admettent pas de tels algorithmes `amoins que P = NP, une hypoth`ese que, au jour d'aujourd'hui, est consid´er´eede mani`ere presque unanime comme essez peu probable dans la communaut´e. 7 8 R´esum´eet projet de recherche Cependant, une fois qu'un probl`eme est montr´e NP-difficile, que faire si on doit malgr´e tout le r´esoudre? Plusieurs m´ethodologies peuvent ^etre envisag´ees, les plus connues ´etant les suivantes: algorithmes d'approximation, algorithmes randomis´es, heuristiques, ou bien algorithmes exponentiels exacts. Logiquement, chacune de ces m´ethodes a des avantages et d´esavantages. L'algorithmique `aparam`etre fix´ee se place dans l'approche des algorithmes exponentiels exacts, notamment en proposant une analyse de la complexit´e bidimensionnelle, et donc plus fine que l'analyse classique. La motivation principale est d'essayer d'obtenir une meilleure vision de la complexit´ed'un probl`eme en explorant comment certains param`etres, sp´ecifiques du probl`eme ou des instances, influencent cette complexit´e. Id´ealement, on cherche `aidentifier un param`etre k tel que si k est petit alors le probl`eme peut ^etre r´esolu efficacement. Mais qu'est-ce qu'on veut dire par “efficacement"? La notion fondamentale de la th´eorie param´etr´eeest la d´efinition suivante d'algorithme “efficace": un algorithme tel que son temps d'ex´ecution peut ^etre born´epar f(k) x (1), o`u f est une · j jO fonction quelconque qui ne d´epend que du param`etre k, et x repr´esente la taille de j j l'entr´ee du probl`eme. Les probl`emes param´etr´es qui poss`edent un tel algorithme sont appel´es solubles a param`etre fix´e (en anglais, fixed-parameter tractable),
Recommended publications
  • Arxiv:2006.06067V2 [Math.CO] 4 Jul 2021
    Treewidth versus clique number. I. Graph classes with a forbidden structure∗† Cl´ement Dallard1 Martin Milaniˇc1 Kenny Storgelˇ 2 1 FAMNIT and IAM, University of Primorska, Koper, Slovenia 2 Faculty of Information Studies, Novo mesto, Slovenia [email protected] [email protected] [email protected] Treewidth is an important graph invariant, relevant for both structural and algo- rithmic reasons. A necessary condition for a graph class to have bounded treewidth is the absence of large cliques. We study graph classes closed under taking induced subgraphs in which this condition is also sufficient, which we call (tw,ω)-bounded. Such graph classes are known to have useful algorithmic applications related to variants of the clique and k-coloring problems. We consider six well-known graph containment relations: the minor, topological minor, subgraph, induced minor, in- duced topological minor, and induced subgraph relations. For each of them, we give a complete characterization of the graphs H for which the class of graphs excluding H is (tw,ω)-bounded. Our results yield an infinite family of χ-bounded induced-minor-closed graph classes and imply that the class of 1-perfectly orientable graphs is (tw,ω)-bounded, leading to linear-time algorithms for k-coloring 1-perfectly orientable graphs for every fixed k. This answers a question of Breˇsar, Hartinger, Kos, and Milaniˇc from 2018, and one of Beisegel, Chudnovsky, Gurvich, Milaniˇc, and Servatius from 2019, respectively. We also reveal some further algorithmic implications of (tw,ω)- boundedness related to list k-coloring and clique problems. In addition, we propose a question about the complexity of the Maximum Weight Independent Set prob- lem in (tw,ω)-bounded graph classes and prove that the problem is polynomial-time solvable in every class of graphs excluding a fixed star as an induced minor.
    [Show full text]
  • Vertex Cover Reconfiguration and Beyond
    algorithms Article Vertex Cover Reconfiguration and Beyond † Amer E. Mouawad 1,*, Naomi Nishimura 2, Venkatesh Raman 3 and Sebastian Siebertz 4,‡ 1 Department of Informatics, University of Bergen, PB 7803, N-5020 Bergen, Norway 2 School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada; [email protected] 3 Institute of Mathematical Sciences, Chennai 600113, India; [email protected] 4 Institute of Informatics, University of Warsaw, 02-097 Warsaw, Poland; [email protected] * Correspondence: [email protected] † This paper is an extended version of our paper published in the 25th International Symposium on Algorithms and Computation (ISAAC 2014). ‡ The work of Sebastian Siebertz is supported by the National Science Centre of Poland via POLONEZ Grant Agreement UMO-2015/19/P/ST6/03998, which has received funding from the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie Grant Agreement No. 665778). Received: 11 October 2017; Accepted: 7 Febuary 2018; Published: 9 Febuary 2018 Abstract: In the Vertex Cover Reconfiguration (VCR) problem, given a graph G, positive integers k and ` and two vertex covers S and T of G of size at most k, we determine whether S can be transformed into T by a sequence of at most ` vertex additions or removals such that every operation results in a vertex cover of size at most k. Motivated by results establishing the W[1]-hardness of VCR when parameterized by `, we delineate the complexity of the problem restricted to various graph classes. In particular, we show that VCR remains W[1]-hard on bipartite graphs, is NP-hard, but fixed-parameter tractable on (regular) graphs of bounded degree and more generally on nowhere dense graphs and is solvable in polynomial time on trees and (with some additional restrictions) on cactus graphs.
    [Show full text]
  • A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs
    A Tight Extremal Bound on the Lovász Cactus Number in Planar Graphs Parinya Chalermsook Aalto University, Espoo, Finland parinya.chalermsook@aalto.fi Andreas Schmid Max Planck Institute for Informatics, Saarbrücken, Germany [email protected] Sumedha Uniyal Aalto University, Espoo, Finland sumedha.uniyal@aalto.fi Abstract A cactus graph is a graph in which any two cycles are edge-disjoint. We present a constructive proof of the fact that any plane graph G contains a cactus subgraph C where C contains at least 1 a 6 fraction of the triangular faces of G. We also show that this ratio cannot be improved by showing a tight lower bound. Together with an algorithm for linear matroid parity, our bound implies two approximation algorithms for computing “dense planar structures” inside any graph: (i) 1 A 6 approximation algorithm for, given any graph G, finding a planar subgraph with a maximum 1 number of triangular faces; this improves upon the previous 11 -approximation; (ii) An alternate (and 4 arguably more illustrative) proof of the 9 approximation algorithm for finding a planar subgraph with a maximum number of edges. Our bound is obtained by analyzing a natural local search strategy and heavily exploiting the exchange arguments. Therefore, this suggests the power of local search in handling problems of this kind. 2012 ACM Subject Classification Mathematics of computing → Graph theory Keywords and phrases Graph Drawing, Matroid Matching, Maximum Planar Subgraph, Local Search Algorithms Digital Object Identifier 10.4230/LIPIcs.STACS.2019.19 Related Version Full Version: https://arxiv.org/abs/1804.03485. Funding Parinya Chalermsook: Part of this work was done while PC and AS were visiting the Simons Institute for the Theory of Computing.
    [Show full text]
  • Maximum Bounded Rooted-Tree Problem: Algorithms and Polyhedra
    Maximum Bounded Rooted-Tree Problem : Algorithms and Polyhedra Jinhua Zhao To cite this version: Jinhua Zhao. Maximum Bounded Rooted-Tree Problem : Algorithms and Polyhedra. Combinatorics [math.CO]. Université Clermont Auvergne, 2017. English. NNT : 2017CLFAC044. tel-01730182 HAL Id: tel-01730182 https://tel.archives-ouvertes.fr/tel-01730182 Submitted on 13 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Numéro d’Ordre : D.U. 2816 EDSPIC : 799 Université Clermont Auvergne École Doctorale Sciences Pour l’Ingénieur de Clermont-Ferrand THÈSE Présentée par Jinhua ZHAO pour obtenir le grade de Docteur d’Université Spécialité : Informatique Le Problème de l’Arbre Enraciné Borné Maximum : Algorithmes et Polyèdres Soutenue publiquement le 19 juin 2017 devant le jury M. ou Mme Mohamed DIDI-BIHA Rapporteur et examinateur Sourour ELLOUMI Rapporteuse et examinatrice Ali Ridha MAHJOUB Rapporteur et examinateur Fatiha BENDALI Examinatrice Hervé KERIVIN Directeur de Thèse Philippe MAHEY Directeur de Thèse iii Acknowledgments First and foremost I would like to thank my PhD advisors, Professors Philippe Mahey and Hervé Kerivin. Without Professor Philippe Mahey, I would never have had the chance to come to ISIMA or LIMOS here in France in the first place, and I am really grateful and honored to be accepted as a PhD student of his.
    [Show full text]
  • Parameterized Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter∗†
    Parameterized Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter∗† Julien Baste1, Didem Gözüpek2, Christophe Paul3, Ignasi Sau4, Mordechai Shalom5, and Dimitrios M. Thilikos6 1 Université de Montpellier, LIRMM, Montpellier, France [email protected] 2 Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey [email protected] 3 AlGCo project team, CNRS, LIRMM, France [email protected] 4 Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Brazil and AlGCo project team, CNRS, LIRMM, France [email protected] 5 TelHai College, Upper Galilee, Israel and Department of Industrial Engineering, Bogaziçiˇ University, Istanbul, Turkey [email protected] 6 Department of Mathematics, National and Kapodistrian University of Athens, Greece and AlGCo project team, CNRS, LIRMM, France [email protected] Abstract We study the minimum diameter spanning tree problem under the reload cost model (Diameter- Tree for short) introduced by Wirth and Steffan (2001). In this problem, given an undirected edge-colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The objective is to find a spanning tree of G of minimum diameter with respect to the reload costs. We initiate a systematic study of the parameterized complexity of the Diameter-Tree problem by considering the following parameters: the cost of a solution, and the treewidth and the maximum degree ∆ of the input graph. We prove that Diameter- Tree is para-NP-hard for any combination of two of these three parameters, and that it is FPT parameterized by the three of them. We also prove that the problem can be solved in polynomial time on cactus graphs.
    [Show full text]
  • Quick but Odd Growth of Cacti∗
    Quick but Odd Growth of Cacti∗ Sudeshna Kolay1, Daniel Lokshtanov2, Fahad Panolan1, and Saket Saurabh1,2 1 Institute of Mathematical Sciences, Chennai, India 2 University of Bergen, Norway Abstract Let F be a family of graphs. Given an input graph G and a positive integer k, testing whether G has a k-sized subset of vertices S, such that G \ S belongs to F, is a prototype vertex deletion problem. These type of problems have attracted a lot of attention in recent times in the domain of parameterized complexity. In this paper, we study two such problems; when F is either a family of cactus graphs or a family of odd-cactus graphs. A graph H is called a cactus graph if every pair of cycles in H intersect on at most one vertex. Furthermore, a cactus graph H is called an odd cactus, if every cycle of H is of odd length. Let us denote by C and Codd, families of cactus and odd cactus, respectively. The vertex deletion problems corresponding to C and Codd are called Diamond Hitting Set and Even Cycle Transversal, respectively. In this paper we design randomized algorithms with running time 12knO(1) for both these problems. Our algorithms considerably improve the running time for Diamond Hitting Set and Even Cycle Transversal, compared to what is known about them. 1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity Keywords and phrases Even Cycle Transversal, Diamond Hitting Set, Randomized Algorithms Digital Object Identifier 10.4230/LIPIcs.IPEC.2015.258 1 Introduction In the field of parameterized graph algorithms, vertex (edge) deletion (addition, editing) problems constitute a considerable fraction.
    [Show full text]
  • Minor-Obstructions for Apex Sub-Unicyclic Graphs1
    Minor-Obstructions for Apex Sub-unicyclic Graphs1 Alexandros Leivaditis2 Alexandros Singh3 Giannos Stamoulis3 Dimitrios M. Thilikos4,2,3,5 Konstantinos Tsatsanis3 Vasiliki Velona6,7,8 Abstract A graph is sub-unicyclic if it contains at most one cycle. We also say that a graph G is k-apex sub-unicyclic if it can become sub-unicyclic by removing k of its vertices. We identify 29 graphs that are the minor-obstructions of the class of 1-apex sub-unicyclic graphs, i.e., the set of all minor minimal graphs that do not belong in this class. For bigger values of k, we give an exact structural characterization of all the cactus graphs that are minor-obstructions of k-apex sub- unicyclic graphs and we enumerate them. This implies that, for every k, the class of k-apex sub-unicyclic graphs has at least 0.34 · k−2.5(6.278)k minor-obstructions. Keywords: Graph Minors, Obstruction set, Sub-unicyclc graphs. 1 Introduction A graph is called unicyclic [17] if it contains exactly one cycle and is called sub-unicyclic if it contains at most one cycle. Notice that sub-unicyclic graphs are exactly the subgraphs of unicyclic graphs. A graph H is a minor of a graph G if a graph isomorphic to H can be obtained by some subgraph of G after a series of contractions. We say that a graph class G is minor-closed if every minor of every graph in G also belongs in G. We also define obs(G), called the minor-obstruction set of G, as the set of minor-minimal graphs not in G.
    [Show full text]
  • Quick but Odd Growth of Cacti
    Algorithmica (2017) 79:271–290 DOI 10.1007/s00453-017-0317-1 Quick but Odd Growth of Cacti Sudeshna Kolay1 · Daniel Lokshtanov2 · Fahad Panolan2 · Saket Saurabh1 Received: 31 December 2015 / Accepted: 25 April 2017 / Published online: 8 May 2017 © Springer Science+Business Media New York 2017 Abstract Let F be a family of graphs. Given an n-vertex input graph G and a positive integer k, testing whether G has a vertex subset S of size at most k, such that G − S belongs to F, is a prototype vertex deletion problem. These type of problems have attracted a lot of attention in recent times in the domain of parameterized complexity. In this paper, we study two such problems; when F is either the family of forests of cacti or the family of forests of odd-cacti. A graph H is called a forest of cacti if every pair of cycles in H intersect on at most one vertex. Furthermore, a forest of cacti H is called a forest of odd cacti, if every cycle of H is of odd length. Let us denote by C and Codd, the families of forests of cacti and forests of odd cacti, respectively. The vertex deletion problems corresponding to C and Codd are called Diamond Hitting Set and Even Cycle Transversal, respectively. In this paper we design randomized algorithms with worst case run time 12knO(1) for both these problems. Our algorithms The conference version of this paper has been published in the Proceedings of IPEC 2015. The research leading to these results has received funding from the European Research Council (ERC) via grants Rigorous Theory of Preprocessing, reference 267959 and PARAPPROX, reference 306992 and the Bergen Research Foundation via grant “Beating Hardness by Preprocessing”.
    [Show full text]
  • Graph Coloring, Zero Forcing, and Related Problems by Boris Brimkov
    RICE UNIVERSITY Graph Coloring, Zero Forcing, and Related Problems by Boris Brimkov A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE: Professor of Computational and Applied Mathematics Andrew J. Schaefer Noah Harding Professor of Computational and Applied Mathematics Assistant Professor of Computational and Applied Mathematics C~tneAssociate Professor of Computer Science Houston, Texas May, 2017 ABSTRACT Graph Coloring, Zero Forcing, and Related Problems by Boris Brimkov This thesis investigates several problems related to classical and dynamic color- ing of graphs, and enumeration of graph attributes. In the first part of the thesis, I present new efficient methods to compute the chromatic and flow polynomials of specific families of graphs. The chromatic and flow polynomials count the number of ways to color and assign flow to the graph, and encode information relevant to various physical applications. The second part of the thesis focuses on zero forcing | a dynamic graph coloring process whereby at each discrete time step, a colored vertex with a single uncolored neighbor forces that neighbor to become colored. Zero forcing has applications in linear algebra, quantum control, and power network monitoring. A connected forcing set is a connected set of initially colored vertices which forces the entire graph to become colored; the connected forcing number is the cardinality of the smallest connected forcing set. I present a variety of structural results about connected forcing, such as the effects of vertex and edge operations on the connected forcing number, the relations between the connected forcing number and other graph parameters, and the computational complexity of connected forcing.
    [Show full text]
  • Minimum Fundamental Cut Basis Problem
    Minimum Fundamental Cut Basis Problem Diploma Thesis by Anne Margarete Schwahn Supervisor: Prof. Dr. Horst W. Hamacher Department of Mathematics Technical University of Kaiserslautern August 2005 Die Mathematiker sind eine Art Franzosen: Redet man zu ihnen, so ¨ubersetzen sie es in ihre Sprache, und dann ist es alsbald ganz etwas anderes. J. W. von Goethe Contents 1 Preface 1 1.1 Overview.............................. 1 1.2 Ubersicht¨ ............................. 1 1.3 Thanks! .............................. 2 2 Basics 3 2.1 Definitionsandresultsingraphtheory . 3 2.1.1 Graphs,cutsandcycles . 3 2.1.2 Treesandfundamentalcuts . 7 2.1.3 Minimum Fundamental Cut Basis Problem . 8 2.1.4 Cut space/ Relation to linear algebra . 9 2.1.5 Fundamental cut sets and bases of the cut space . 13 2.1.6 Treesandcuts....................... 14 2.1.7 Biconnectivity, cut-vertices and separability . .. 15 2.2 Fundamentalcycles . 18 2.2.1 Relationtofundamentalcuts . 19 2.2.2 Algorithms ........................ 20 2.2.3 Applications........................ 20 2.2.4 Minimum Cycle Basis Problem . 21 2.3 Treegraph............................. 21 2.4 Complexity ............................ 25 2.5 “Sandwiching” the optimal solution . 30 2.6 Applications............................ 30 v vi CONTENTS 3 Formulation of the problem 33 3.1 Newobjectivefunction . 33 3.2 Constraints ............................ 35 4 Relaxations and lower bounds 43 4.1 LP-Relaxation .......................... 43 4.2 Minimum Cut Basis Problem . 43 5 Heuristics and upper bounds 47 5.1 “Basics” .............................. 47 5.1.1 Pairwiseshortestpaths. 47 5.1.2 Incidencevectors . 48 5.1.3 Calculating the total cut weight . 48 5.1.4 Unweightedgraphs . 48 5.2 Initialsolutions .......................... 49 5.2.1 HeavyTree ........................ 49 5.2.2 ShortTree........................
    [Show full text]
  • On the Some Parameters Related to Matching of Graph Powers
    On the some parameters related to matching of graph powers Saeid Alikhani∗ Neda Soltani June 4, 2018 Department of Mathematics, Yazd University, 89195-741, Yazd, Iran [email protected], neda [email protected] Abstract Let G = (V; E) be a simple connected graph. A matching of G is a set of disjoint edges of G. For every n; m 2 , the n-subdivision of G is a simple graph 1 N G n which is constructed by replacing each edge of G with a path of length n and the mth power of G, denoted by Gm, is a graph with the same vertex set as G such that two vertices are adjacent in Gm if and only if their distance is at most m in G. The mth power of the n-subdivision of G has been introduced as a fractional power m of G and is denoted by G n . In this paper, we study some parameters related to matching of the natural and the fractional powers of some specific graphs. Also we study these parameters for power of graphs that are importance of in Chemistry. Keywords: matching, subdivision of a graph, power of a graph. AMS Subj. Class.: 05C70, 05C76. 1 Introduction Let G be a simple graph with vertex set V (G) and edge set E(G). The distance between every two vertices u and v of the graph G, is defined as the length of a minimum path arXiv:1806.00330v1 [math.CO] 1 Jun 2018 connecting u and v and is denoted by d(u; v).
    [Show full text]
  • Proper Orientation of Cacti Julio Araujo, Frédéric Havet, Claudia Linhares Sales, Ana Silva
    Proper orientation of cacti Julio Araujo, Frédéric Havet, Claudia Linhares Sales, Ana Silva To cite this version: Julio Araujo, Frédéric Havet, Claudia Linhares Sales, Ana Silva. Proper orientation of cacti. Theo- retical Computer Science, Elsevier, 2016, 639, pp.14-25. 10.1016/j.tcs.2016.05.016. hal-01338646 HAL Id: hal-01338646 https://hal.inria.fr/hal-01338646 Submitted on 29 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proper orientation of cacti I Julio Araujoa, Fr´ed´ericHavetb,2, Claudia Linhares Salesc,3, Ana Silvaa,4 aParGO, Departamento de Matem´atica, Universidade Federal do Cear´a,Fortaleza, Brazil bProjet COATI, I3S (CNRS, UNS) and INRIA, Sophia-Antipolis, France cParGO, Departamento de Computa¸c~ao,Universidade Federal do Cear´a,Fortaleza, Brazil Abstract An orientation of a graph G is proper if two adjacent vertices have different in-degrees. The proper-orientation number −!χ (G) of a graph G is the minimum maximum in-degree of a proper orientation of G. In [1], the authors ask whether the proper orientation number of a planar graph is bounded. We prove that every cactus admits a proper orientation with maximum in- degree at most 7.
    [Show full text]