Robust Face Recognition by Combining Projection-Based Image Correction and Decomposed Eigenface

Total Page:16

File Type:pdf, Size:1020Kb

Robust Face Recognition by Combining Projection-Based Image Correction and Decomposed Eigenface View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Okayama University Scientific Achievement Repository Engineering Industrial & Management Engineering fields Okayama University Year 2004 Robust face recognition by combining projection-based image correction and decomposed eigenface Takeshi Shakunaga Fumihiko Sakaue Okayama University Okayama University Kazuma Shigenari Okayama University This paper is posted at eScholarship@OUDIR : Okayama University Digital Information Repository. http://escholarship.lib.okayama-u.ac.jp/industrial engineering/24 Robust Face Recognition by Combining Projection-Based Image Correction and Decomposed Eigenface Takeshi Shakunaga Fumihiko Sakaue Kazuma Shigenari Department of Information Technology, Faculty of Engineering Okayama University Okayama-shi, Okayama 700-8530, Japan E-mail: {shaku,sakaue}@chino.it.okayama-u.ac.jp Abstract lected in the registration stage, the EF can be constructed by Principal Component Analysis (PCA). However, an EF for This paper presents a robust face recognition method which an individual cannot be stably constructed when an insuf- can work even when an insufficient number of images are ficient number of sample images are available or when the registered for each person. The method is composed of im- sample images have been taken under very similar light- age correction and image decomposition, both of which are ing conditions. In these situations, realizing illumination- specified in the normalized image space (NIS). The image insensitive identification requires some refinements of the correction[1, 2] is realized by iterative projections of an eigenface method. In our previous paper [3], we analyzed image to an eigenspace in NIS. It works well for natural the eigenface approach and proposed concepts of virtual images having various kinds of noise, including shadows, eigenfaces and the decomposed eigenface for the forego- reflections, and occlusions. We have proposed decompo- ing purpose. In this paper, we combine these concepts with sition of an eigenface into two orthogonal eigenspaces[3], a projection-based image correction method [2] in order to and have shown that the decomposition is effective for re- refine the face recognition methodology. alizing robust face recognition under various lighting con- ditions. This paper shows that the decomposed eigenface 2. Normalized Image Space and Nor- method can be refined by projection-based image correc- tion. malized Eigenspace 2.1. Normalized Image Space 1. Introduction In object recognition, eigenspaces are often constructed in A human face changes in appearance with lighting condi- a least-squares sense, faithful to the original images [4, 6]. tions, and difficulty is encountered in controlling lighting Eigenspaces are also effective for image-based rendering conditions in natural environments where face images are under changing lighting conditions [7, 8]. They can also be taken. These facts suggest that robust face recognition re- constructed from original images, by use of the photomet- quires construction of a face recognition algorithm that is ric SVD (Singular Value Decomposition) algorithm [9, 10]. insensitive to lighting conditions. Meanwhile, appearance- These methods are commonly discussed in the original im- based face recognition can be resolved into the eigenface age space. method [4], which in many cases is identical with the sub- Although the original image space is effective for some space method [5, 6]. Eigenfaces are widely used for both purposes, it often fails to work when illumination falls out personal identification and detection of (unknown) faces in of range. In such a case, we empirically utilize some types an image. When intended for detection of faces in an image, of image normalization. eigenfaces are constructed from many persons and when In this paper, normalization is based on L1-norm. Let an intended for personal identification, each eigenface should N-dimensional vector X denote an image whose elements be constructed from face images of the individual. In the are all non-negative, and let 1 denote an N-dimensional present paper we focus on the second purpose, and as used vector whose elements are all 1. The normalized image x of herein an eigenface (EF) always means an eigenspace con- an original image X is defined as x = X/(1T X). After the structed from face images of the individual for the purpose normalization, x is normalized in the sense that 1T x =1. of personal identification. If many face images can be col- By this normalization, any nonzero image X(= 0) is Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR’04) 0-7695-2122-3/04 $ 20.00 © 2004 IEEE mapped to a point in the Normalized Image Space (NIS). Let n and y denote the normalized images of image N The NIS is closed to any averaging operation, and the real and Y = X + N, where X is a signal, N is a noise and Y is variance is encoded up to a scale factor. an input image. Let us define y =(1− α)x + αn, where α = 1T N/1T Y. Then the projection, y∗, and the residual, 2.2. Normalized Eigenspace y, are respectively represented by When an image class is given, a k-dimensional eigenspace ∗ ∗ T y =(1− α)x + αΦk (n − x) (3) is constructed in NIS by the conventional PCA from the mean vector x and covariance matrix Σ T y = αn = α(n − x) − αΦkΦk (n − x). (4) K K 1 1 T x = xj Σ= (xj − x)(xj − x) , In Eq. (4), the first term indicates the existence of n it- K and K j=1 j=1 self. The second term indicates that the noise affects the T whole image with weight −αΦkΦk .Evenifn is very where K is the number of images in the class. localized, the effect spreads to the whole image. Since Let Λ denote a diagonal matrix in which diagonal terms T ΦkΦk is positive semidefinite, the second term yields a are eigenvalues of Σ in descending order, and Φ a matrix counteraction to the noise. A negative reaction is generated in which the i-th column is the i-th eigenvector of Σ. Then T from a positive noise, whereas a positive reaction is gener- PCA implies Λ=Φ ΣΦ. Using a submatrix Φk of Φ, ated from a negative noise. Refer to [1] on the estimations which consists of k principal eigenvectors, the projection, ∗ ∗ of α and x as well as a detection of noise region in image x ,ofx onto the eigenspace and the residual, x , of the correction. projection are given by x∗ T x − x , =Φk ( ) (1) 3.2. Noise Detection by Relative Residual ∗ x = x − x − Φkx . (2) Let us define a relative residual ri for the i-th pixel of x by k In our problems, is a small number because human faces T ei x are almost Lambertian. ri = , eT x x∗ Let us call the k-dimensional eigenspace the Normalized i ( +Φk ) Eigenspace (NES). We also use another notation, x, Φk, x e which explicitly specify x and Φk. where is an absolute residual given by Eq.(2), and i is a unit vector which consists of 1 in the i-th element and 0 in the other elements. We use the relative residual instead of 2.3. Canonical Space T absolute residual for the i-th pixel, ei x , because we would In this paper, a face space is defined as a space composed like to suppress noise not in the absolute scale but in the rel- from a set of frontal faces, which includes images of nu- ative scale. For example, low noise in a dark area should be merous persons taken under a wide variety of lighting con- suppressed when the relative residual is sufficiently large. ditions. To simplify the problem, we assume that good Noise detection is basically performed by |ri|. However, segmentation is readily accomplished as shown in Fig. 10. Eq. (4) suggests that when a considerable amount of noise Eigenspace analysis on the face space reduces the dimen- is included, the zero level of the relative residual may shift sion of the face space, with little loss of representability in response to the amount of noise and Φk. In order to com- [6, 4]. pensate the possible shift, we use |ri − r| instead of |ri|, Let xc, Φc denote a NES constructed over a canonical where r is the median of the whole ri. We don’t use the av- set. We call this the canonical space (CS). In our experi- erage, because we would like to neglect the direct noise fac- ments, a 45d CS is constructed from a canonical image set tors in Eq. (4). Consequently, noise can be detected when that consists of face images of 50 persons taken under 24 |ri − r|≥rθ, where rθ is a threshold. lighting conditions. 3. Noise Detection and Image Correc- 3.3. Image Correction by Projection The noise correction algorithm can be created on the basis tion of the noise detection, as follows: When |ri − r|≥rθ, the i x − α eT x x∗ 3.1. Effect of Noise in NIS -th pixel of should be replaced to (1 ) i ( +Φk ), where x∗ and α are provided simultaneously by calculat- Let us analyze the effect of noise on the projection onto ing a partial projection[1] when the partial region excludes NES x, Φk and the residual. Suppose that an object view noise regions. The image correction makes an intensity is completely encoded to the NES by value consistent with the projection. For example, shad- ∗ T x =Φk (x − x). ows and reflection regions are corrected when the NES is 2 Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR’04) 0-7695-2122-3/04 $ 20.00 © 2004 IEEE Figure 1: Example of eigenplane for Lambertian surface: Figure 3: Individual Eigenface: Average and 3 principal Average and 2 principal bases.
Recommended publications
  • A Study of the Missing Data Problems in 3D Structure Reconstruction and 2D Face Recognition
    A STUDY OF THE MISSING DATA PROBLEMS IN 3D STRUCTURE RECONSTRUCTION AND 2D FACE RECOGNITION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hongjun Jia, B.E., M.E. ***** The Ohio State University 2009 Dissertation Committee: Approved by Prof. Aleix M. Martinez, Ph.D., Adviser Prof. Yuan F. Zheng, Ph.D. Adviser Prof. Alper Yilmaz, Ph.D. Graduate Program in Electrical and Computer Engineering °c Copyright by Hongjun Jia 2009 ABSTRACT Missing data problems exist in many science and engineering fields. In this thesis, we discuss two important missing data problems in computer vision and pattern recognition: 3D reconstruction with structure from motion and 2D face recognition with occlusions. The task of structure from motion for 3D reconstruction can be reduced to the problem of finding a low-rank (r) matrix that best fits an original data matrix of higher rank. The problem becomes especially difficult when the original data matrix has some missing en- tries and contains an unknown additive noise term in the remaining elements. The former problem can be solved by concatenating a set of r-column matrices which share a common, single r-dimensional solution space. Unfortunately, the number of possible submatrices is generally very large and, hence, the results obtained with one set of r-column matrices will generally be different from that captured by a different set. Ideally, we would like to find that solution which is least affected by noise. This requires that we determine which of the r-column matrices (i.e.
    [Show full text]
  • Principal Component Analysis in the Eigenface Technique for Facial Recognition
    Trinity College Trinity College Digital Repository Senior Theses and Projects Student Scholarship Spring 2012 Principal Component Analysis in the Eigenface Technique for Facial Recognition Kevin Huang Trinity College, [email protected] Follow this and additional works at: https://digitalrepository.trincoll.edu/theses Part of the Other Applied Mathematics Commons Recommended Citation Huang, Kevin, "Principal Component Analysis in the Eigenface Technique for Facial Recognition". Senior Theses, Trinity College, Hartford, CT 2012. Trinity College Digital Repository, https://digitalrepository.trincoll.edu/theses/216 Principal Component Analysis in the Eigenface Technique for Facial Recognition Kevin Huang Advisor: Professor Philip Brown Introduction Several facial recognition algorithms have been explored in the past few decades. Progress has been made towards recognition under varying lighting conditions, poses and facial expressions. In a general context, a facial recognition algorithm and its implementation can be considered as a system. The input to the facial recognition system is a two dimensional image, while the system distinguishes the input image as a user’s face from a pre-determined library of faces. Finally, the output is the discerned face image. In this project, we will examine one particular system: the Eigenface technique. Since the facial recognition problem itself deals with images, each pixel in an image is considered as a coordinate in an n-dimensional space, where n is the total number of pixels per image. Now suppose that there is a collection of several images that forms a library of faces that serve as candidates for recognition. Since each image is a point in n-space, and n can be a relatively large number, it would be convenient and computationally efficient to reduce the dimensionality of the data set.
    [Show full text]
  • Sparse Shape Modelling for 3D Face Analysis
    Sparse Shape Modelling for 3D Face Analysis Stephen Clement Doctor of Philosophy University of York Computer Science September 2014 Abstract This thesis describes a new method for localising anthropometric landmark points on 3D face scans. The points are localised by fitting a sparse shape model to a set of candidate landmarks. The candidates are found using a feature detector that is designed using a data driven methodology, this approach also informs the choice of landmarks for the shape model. The fitting procedure is developed to be robust to missing landmark data and spurious candidates. The feature detector and landmark choice is determined by the performance of different local surface descriptions on the face. A number of criteria are defined for a good landmark point and good feature detector. These inform a framework for measuring the performance of various surface descriptions and the choice of parameter values in the surface description generation. Two types of surface description are tested: curvature and spin images. These descriptions, in many ways, represent many aspects of the two most common approaches to local surface description. Using the data driven design process for surface description and landmark choice, a feature detector is developed using spin images. As spin images are a rich surface description, we are able to perform detection and candidate landmark labelling in a single step. A feature detector is developed based on linear discriminant analysis (LDA). This is compared to a simpler detector used in the landmark and surface description selection process. A sparse shape model is constructed using ground truth landmark data.
    [Show full text]
  • Beyond Eigenfaces: Probabilistic Matching for Face Recognition
    M.I.T Media Lab oratory Perceptual Computing Section Technical Rep ort No. 443 App ears in: The 3rd IEEE Int'l ConferenceonAutomatic Face & GestureRecognition, Nara, Japan, April 1998 Beyond Eigenfaces: Probabilistic Matching for Face Recognition Baback Moghaddam, Wasiuddin Wahid and Alex Pentland MIT Media Lab oratory, 20 Ames St., Cambridge, MA 02139, USA. Email: fbaback,wasi,[email protected] facial expressions of the same individual ) and extrapersonal Abstract variations (corresp onding to variations b etween di er- E We prop ose a novel technique for direct visual ent individu al s). Our similarity measure is then expressed matching of images for the purp oses of face in terms of the probabili ty recognition and database search. Sp eci call y, we argue in favor of a probabilistic measure of S (I ;I )=P ( 2 )=P ( j) (1) 1 2 I I similarity, in contrast to simpler metho ds which where P ( j) is the aposteriori probabilitygiven by I are based on standard L norms (e.g., template 2 Bayes rule, using estimates of the likeliho o d s P (j )and I matching) or subspace-restricted norms (e.g., P (j )which are derived from training data using an E eigenspace matching). The prop osed similarity ecient subspace metho d for density estimation of high- measure is based on a Bayesian analysis of image dimensional data [6]. This Bayesian (MAP) approach di erences: we mo del twomutually exclusive can also b e viewed as a generalized nonlinear extension of classes of variation b etween two facial images: Linear Discriminant Analysis (LDA) [8, 3] or \FisherFace" intra-personal (variations in app earance of the techniques [1] for face recognition.
    [Show full text]
  • 10-701 Machine Learning, Fall 2011: Homework 5
    10-701 Machine Learning, Fall 2011: Homework 5 Due 12/5 at the beginning of class. November 17, 2011 1 Principal Component Analysis: Eigenfaces [25 points, Bin] PCA is applied to recognize faces by Matthew Turk and Alex Pentland in their \Eigenface" ap- proach, which is considered as the first successful example of face recognition. In this question, you will implement your own face recognition system. Please print out your codes and attach them at the end of your answer sheet for this question. 1.1 ORL Face Data The face data set used in this question is the ORL database of faces1. There are 4 files in HW4 data.zip: • X train.csv: each of the 360 lines contains data for a 112 × 92 face image. If you are using MATLAB, you can load the images using 'data = csvread('X train.csv')', and display the i-th image using 'colormap(gray); imagesc(reshape(data(i,:),112,92))'. • Y train.csv: each of the 360 lines contains the label for the corresponding line in X train.csv • X test.csv: 40 test images organized in the same way as in X train.csv • Y test.csv: labels for face images in X test.csv 1.2 Calculating Eigenfaces This step will only use X train.csv: • [3 points] First compute the mean Ψ of the 360 training faces, and subtract the mean from each training data point. • [7 points] Compute the covariance matrix for the 360 training faces, then apply eigen- decomposition on the obtained covariance matrix. In order to save computation time, you could use 'eigs' in MATLAB to compute only the eigenvectors corresponding to the 50 largest eigenvalues.
    [Show full text]
  • Face Recognition Using Principle Component Analysis, Eigenface and Neural Network
    SENSORS, SIGNALS, VISUALIZATION, IMAGING, SIMULATION AND MATERIALS Face Recognition using Principle Component Analysis, Eigenface and Neural Network Mayank Agarwal Nikunj Jain Student Member IEEE Student Jaypee Institute of Information Technology Jaypee Institute of Information Technology University University Noida ,India Noida ,India [email protected] [email protected] Mr. Manish Kumar Himanshu Agrawal Sr. Lecturer (ECE) Student Member IEEE Jaypee Institute of Information Technology Jaypee Institute of Information Technology University University Noida, India Noida, India [email protected] [email protected] Abstract-Face is a complex multidimensional visual Face recognition has become an important issue in many model and developing a computational model for face applications such as security systems, credit card recognition is difficult. The paper presents a methodology verification, criminal identification etc. Even the ability to for face recognition based on information theory approach merely detect faces, as opposed to recognizing them, can of coding and decoding the face image. Proposed be important. methodology is connection of two stages – Feature Although it is clear that people are good at face extraction using principle component analysis and recognition, it is not at all obvious how faces are encoded recognition using the feed forward back propagation or decoded by a human brain. Human face recognition Neural Network. has been studied for more than twenty years. Developing The algorithm has been tested on 400 images (40 classes). a computational model of face recognition is quite A recognition score for test lot is calculated by difficult, because faces are complex, multi-dimensional considering almost all the variants of feature extraction.
    [Show full text]
  • Towards Face Recognition Using Eigenface
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 7, No. 5, 2016 Towards Face Recognition Using Eigenface Md. Al-Amin Bhuiyan Department of Computer Engineering King Faisal University Hofuf, Al-Ahsa 31982, Saudi Arabia Abstract—This paper presents a face recognition system Liu and Wechsler [6] established a Gabor filter based employing eigenface-based approach. The principal objective of identification method for dimensional reduction employing this research is to extract feature vectors from images and to Fisher linear discriminate model. Kirby [8] and Terzopoulos, reduce the dimension of information. The method is implemented et al. [9] analysed the facial images on the bsis of facial on frontal view facial images of persons to explore a two- characteristics. Wu [10] and Manjunath [11], et al. performed dimensional representation of facial images. The system is face recognition with feature vectors extracted from profile organized with RMS (Root Mean Square) contrast scaling silhouettes. Kerin, et al. [12] have prposed a face recognition technique employed for pre-processing the images to adjust with system employing neural network in tendem with self- poor lighting conditions. Experiments have been conducted using organizing feature map. Nakamura, et al. [13] utilized Carnegie Mellon University database of human faces and isodensity maps to establish a face recognition system. Yullie, University of Essex Computer Vision Research Projects dataset. et al. [14] extracted feature vectors from the facial Experimental results indicate that the proposed eigenface-based components like eyes, nose, mouth, and and employed approach can classify the faces with accuracy more than 80% in all cases. deformable templates to the extraction of contours for facial images and outlined a face recognition procedure.
    [Show full text]
  • Performance Evaluation of PCA and LDA for Face Recognition S
    ISSN: 2278 – 909X International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 2, Issue 2, February 2013 Performance Evaluation of PCA and LDA for Face Recognition S. K. Hese, M. R. Banwaskar Department of Electronics & Telecommunication, MGM’s College of Engineering Nanded Near Airport, Nanded, Maharashtra, India Abstract — Automated face recognition has become a major [3], [4]. The Fisherfaces is an enhancement of the Eigenface field of interest. In this field several facial recognition algorithms method. The Eigenface method uses PCA for dimensionality have been explored in the past few decades. Progress has been reduction, thus, yields projection directions that maximize the made towards recognition under varying lighting conditions, total scatter across all classes, i.e. across all images of all poses and facial expressions. In a general context, a facial faces. The PCA projections are optimal for representation in a recognition algorithm and its implementation can be considered as a system. The input to the facial recognition system is a two low dimensional basis, but they may not be optional from a dimensional image, while the system distinguishes the input discrimination standpoint. Instead, the Fisherfaces method image as a user’s face from a pre-determined library of faces. uses Fisher’s Linear Discriminant Analysis (FLDA or LDA) Finally, the output is a discerned face image. which maximizes the ratio of between-class scatter to that of within-class scatter [5]. This paper discusses different appearance based face recognition techniques. The experimentation includes the use of At one level, PCA and LDA are very different: LDA image preprocessing techniques followed by most popular is a supervised learning technique that relies on class labels, dimensionality reduction algorithms based on PCA and LDA.
    [Show full text]
  • SYMMETRIC EIGENFACES 1. Introduction. Facial Recognition Is A
    SYMMETRIC EIGENFACES MILI I. SHAH ∗ Abstract. Over the years, mathematicians and computer scientists have produced an extensive body of work in the area of facial analysis. Several facial analysis algorithms have been based on mathematical concepts such as the singular value decomposition (SVD). The SVD is generalized in this paper to take advantage of the mirror symmetry that is inherent in faces, thereby developing a new facial recognition algorithm: the symmetry preserving singular value decomposition (SPSVD). The SPSVD recognizes faces using half the total computations employed by the conventional SVD. Moreover, the SPSVD provides more accurate recognition, even in the presence of noise in the form of light variation and/or facial occlusion. Key words. Facial analysis, eigenfaces, reflection, symmetry, SVD, PCA, SPSVD AMS subject classifications. 15A18, 65F15 1. Introduction. Facial recognition is a technology that is fast becoming criti- cal for contemporary security applications. For instance, many airports employ facial recognition algorithms in their closed-circuit televisions to identify - in real-time - potential terrorists. Future applications of facial recognition may include the use of these algorithms in facilitating user identification by, e.g., automated teller machines (ATMs). Many facial recognition algorithms are based on the singular value decomposition (SVD) [3,4,7]. The SVD takes an image of a given face and compares it to facial images stored in a database, using a reduced representation of the face. The representation in the database that most closely matches the face of the person being scanned is returned, as is a measure of difference between the two faces. Thus, this approach can provide an estimate of the probability that a match has been detected.
    [Show full text]
  • Eigenface-Based Facial Recognition
    Eigenface-based facial recognition Dimitri PISSARENKO December 1, 2002 1 General This document is based upon Turk and Pentland (1991b), Turk and Pentland (1991a) and Smith (2002). 2 How does it work? The task of facial recogniton is discriminating input signals (image data) into several classes (persons). The input signals are highly noisy (e.g. the noise is caused by differ- ing lighting conditions, pose etc.), yet the input images are not completely random and in spite of their differences there are patterns which occur in any input signal. Such patterns, which can be observed in all signals could be – in the domain of facial recog- nition – the presence of some objects (eyes, nose, mouth) in any face as well as relative distances between these objects. These characteristic features are called eigenfaces in the facial recognition domain (or principal components generally). They can be ex- tracted out of original image data by means of a mathematical tool called Principal Component Analysis (PCA). By means of PCA one can transform each original image of the training set into a cor- responding eigenface. An important feature of PCA is that one can reconstruct recon- struct any original image from the training set by combining the eigenfaces. Remember that eigenfaces are nothing less than characteristic features of the faces. Therefore one could say that the original face image can be reconstructed from eigenfaces if one adds up all the eigenfaces (features) in the right proportion. Each eigenface represents only certain features of the face, which may or may not be present in the original im- age.
    [Show full text]
  • Face Recognition Using Multiple Eigenface Subspaces
    Journal of Engineering and Technology Research Vol. 2(8), pp. 139-143, August 2010 Available online at http://www.academicjournals.org/JETR ISSN 2006-9790 ©2010 Academic Journals Full Length Research Paper Face recognition using multiple eigenface subspaces P. Aishwarya1* and Karnan Marcus2 1Department of Computer Science and Engineering, Atria Institute of Technology, Bangalore – 24, India. 2Department of Computer Science and Engineering, Tamil Nadu College of Engineering, Coimbatore, India. Accepted 14 June, 2010 Face recognition is grabbing more attention in the area of network information access. Areas such as network security and content retrieval benefit from face recognition technology. In the proposed method, multiple face eigensubspaces are created, with each one corresponding to one known subject privately, rather than all individuals sharing one universal subspace as in the traditional eigenface method. Compared with the traditional single subspace face representation, the proposed method captures the extra personal difference to the most possible extent, which is crucial to distinguish between individuals, and on the other hand, it throws away the most intrapersonal difference and noise in the input. Our experiments strongly support the proposed idea, in which 20% improvement of performance over the traditional “eigenface” has been observed when tested on the same face base. Key words: Face recognition, eigenspace, subspaces. INTRODUCTION Face recognition (FR) has emerged as one of the most In this paper, the method proposed is derived from the extensively studied research topics that spans multiple traditional Eigenface but differs from it in essence. In disciplines such as pattern recognition, signal processing Eigenface, each face image is represented as a point in a and computer vision.
    [Show full text]
  • Face Recognition Using PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) Techniques
    ISSN (Online) 2278-1021 ISSN (Print) 2319-5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 3, March 2015 Face Recognition Using PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) Techniques Amritpal Kaur1, Sarabjit Singh2, Taqdir 3 Student M.Tech (CSE), Computer Science, Guru Nanak Dev University RC, Gurdaspur, India 1, 2 Assistant Professor, Computer Science, Guru Nanak Dev University RC, Gurdaspur, India 3 Abstract: image processing field is becoming more popular for the security purpose in now days. It has many sub fields and face recognition is one from them. Many techniques have been developed for the face recognition but in our work we just discussed two prevalent techniques PCA (Principal component analysis) and LDA (Linear Discriminant Analysis) and others in brief. These techniques mostly used in face recognition. PCA based on the eigenfaces or we can say reduce dimension by using covariance matrix and LDA based on linear Discriminant or scatter matrix. In our work we also compared the PCA and LDA. Keywords: Face recognition, PCA, LDA, eigenvectors, eigenface. I. INTRODUCTION Image processing is method to convert an image into We can recognize faces with computer vision using digital form and perform some operations on it. The variety of models including. purpose of these operations is to get the enhanced or best quality of the image or to extract some useful feature or a) Extract feature and boosted learning algorithm. information from it. In which input is image, any video b) Principal component analysis model such as frame or photograph and output may be image or some eigenfaces.
    [Show full text]