Targeting Energy Expenditure—Drugs for Obesity Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Targeting Energy Expenditure—Drugs for Obesity Treatment pharmaceuticals Review Targeting Energy Expenditure—Drugs for Obesity Treatment Carlos M. Jimenez-Munoz 1 , Marta López 1 , Fernando Albericio 2,3,4,* and Kamil Makowski 2,3,* 1 School of Chemical Sciences and Engineering Yachay Tech University, San Miguel de Urcuquí 100119, Ecuador; [email protected] (C.M.J.-M.); [email protected] (M.L.) 2 Department of Surfactants and Biotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain 3 CIBER-BBN, Networking Centre of Bioengineering, Biomaterials, and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain 4 School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa * Correspondence: [email protected] (F.A.); [email protected] or [email protected] (K.M.) Abstract: Obesity and overweight are associated with lethal diseases. In this context, obese and overweight individuals infected by COVID-19 are at greater risk of dying. Obesity is treated by three main pharmaceutical approaches, namely suppressing appetite, reducing energy intake by impairing absorption, and increasing energy expenditure. Most compounds used for the latter were first envisaged for other medical uses. However, several candidates are now being developed explicitly for targeting obesity by increasing energy expenditure. This review analyzes the compounds that show anti-obesity activity exerted through the energy expenditure pathway. They are classified on the basis of their development status: FDA-approved, Withdrawn, Clinical Trials, and Under Citation: Jimenez-Munoz, C.M.; Development. The chemical nature, target, mechanisms of action, and description of the current López, M.; Albericio, F.; Makowski, K. stage of development are described for each one. Targeting Energy Expenditure— Drugs for Obesity Treatment. Pharmaceuticals 2021, 14, 435. https:// Keywords: obesity; energy expenditure; thermogenesis; energy metabolism; FDA-approved; treat- doi.org/10.3390/ph14050435 ments under development; clinical trials; withdrawn treatments Academic Editors: Magdalena Kota´nska,Amélia Pilar Rauter, Małgorzata Szafarz and 1. Introduction Monika Kubacka Obesity can be defined as conditions characterized by excessive body fat. In 2016, there were about 650 million obese adults, and this number is increasing each year [1]. Received: 29 March 2021 It is estimated that more people are currently dying as a consequence of overweight or Accepted: 29 April 2021 obesity than underweight due to undernutrition [2]. Obesity commonly encompasses other Published: 6 May 2021 health problems, particularly type 2 diabetes mellitus, coronary disorders, and an increased incidence of various forms of cancer, among other diseases. This susceptibility has been Publisher’s Note: MDPI stays neutral highlighted during the COVID-19 pandemic, where obesity has been associated with a with regard to jurisdictional claims in higher risk of death among those infected [3]. Additionally, obesity is associated with published maps and institutional affil- unemployment and social disadvantages. To make a clear distinction from being just a risk iations. factor, the World Obesity Federation and other organizations have recently declared obesity as a chronic progressive disease. Additional to health risks directly related to overweight, obesity presents different pathophysiology as strong homeostatic mechanisms promote further weight gain. Whereas healthy eating and exercise is undoubted the best way to Copyright: © 2021 by the authors. prevent obesity, this can be not enough for individuals with already developed obesity [2]. Licensee MDPI, Basel, Switzerland. Obesity has nowadays become a significant health and financial burden for developed This article is an open access article and developing societies. distributed under the terms and Though overweight causes many medical disorders, obesity treatment is still not the conditions of the Creative Commons Attribution (CC BY) license (https:// first medical prescription of choice. However, modern society is under pressure to become creativecommons.org/licenses/by/ fitter, which would not only save lives but also improve quality of life. Currently, exercise 4.0/). and diet followed by bariatric surgery are the gold standard treatment for obesity. While Pharmaceuticals 2021, 14, 435. https://doi.org/10.3390/ph14050435 https://www.mdpi.com/journal/pharmaceuticals Pharmaceuticals 2021, 14, x FOR PEER REVIEW 2 of 25 Pharmaceuticals 2021, 14, 435 2 of 23 and diet followed by bariatric surgery are the gold standard treatment for obesity. While dietdiet andand exerciseexercise areare thethe safestsafest andand healthiesthealthiest approaches,approaches, itit hashas beenbeen reportedreported thatthat theythey areare onlyonly long-termlong-term effectiveeffective inin aa smallsmall percentagepercentage ofof individualsindividuals [[4].4]. OnOn thethe otherother hand,hand, bariatricbariatric surgerysurgery intervention intervention come come with with some some significant significant risk, risk, so it so is onlyit is only used used for extreme for ex- casestreme of cases obesity. of obesity. Therefore,Therefore, in this context, context, there there is is an an urgent urgent and and highly highly demanded demanded need need for forthe thede- developmentvelopment of ofnew new drugs drugs to to treat treat obesity, obesity, either either as as an an alternative alternative or complement toto diet,diet, exercise,exercise, oror bariatricbariatric surgerysurgery treatment.treatment. ThreeThree pharmacologicalpharmacological approachesapproaches can can be be usedused toto achieveachieve aa caloriccaloric deficiencydeficiency thatthat wouldwould leadlead toto aa lossloss ofof bodybody weight:weight: (i)(i) decreasingdecreasing energyenergy intakeintake byby appetiteappetite suppression,suppression, (ii)(ii) reducingreducing energyenergy intakeintake bybyimpaired impaired absorption,absorption, andand (iii)(iii) increasingincreasing energyenergy expenditure expenditure [ 5[5]] (Figure (Figure1 ).1). FigureFigure 1.1. ExcessExcess intakeintake ofof calories calories causes causes overweight overweight and and obesity. obesity. There There are are three three main main pharmacolog- pharmaco- icallogical strategies strategies to achieve to achieve a caloric a caloric deficit. deficit. Two Two of them of them aim aim to prevent to prevent the th storagee storage of excess of excess calories, calo- firstries, byfirst acting by acting on the on central the centra nervousl nervous system system to cause to cause an anorexic an anorexic effect effect and regulateand regulate appetite, appetite, and secondand second by inducing by inducing early excretionearly excretion and thus and preventing thus preventing ingested ingested food from food becoming from becoming a useful a source useful source of calories. The third strategy, and the topic of this review, is the use of drugs that increase of calories. The third strategy, and the topic of this review, is the use of drugs that increase energy energy expenditure by causing the body to use calories already stored in the form of fat. expenditure by causing the body to use calories already stored in the form of fat. PrincipalPrincipal concernsconcerns regarding regarding pharmacological pharmacological energy energy intake intake reduction reduction strategy strategy are theare homeostaticthe homeostatic mechanisms mechanisms of the of human the human body body overcoming overcoming caloric caloric restriction restriction and long-term and long- clinicalterm clinical efficacy. efficacy. The energy The energy expenditure expenditure strategy strategy to fight to obesity fight obesity is crucial is becausecrucial because it does notit does prevent not prevent the absorption the absorption of essential of essentia nutrientsl nutrients such as vitamins such as vitamins and minerals and minerals and it might and beit might used alone be used orreinforce alone or thereinforce calorific the restriction calorific restriction strategies. strategies. Additionally, Additionally, there are only there a feware only available a few drugs available that drugs target that energy target expenditure, energy expenditure, hence making hence their making use an their attractive use an andattractive promising and promising approach forapproach obesity for treatment. obesity treatment. Identifying Identifying safe pharmaceutical safe pharmaceutical products forproducts this purpose for this ispurpose challenging is challenging because manybecause compounds many compounds that have that been have studied been studied do not showdo not a highshow selectivity a high selectivity for their for target, their resulting target, resulting in dangerous in dangerous side effects. side Nevertheless, effects. Never- a significanttheless, a significant number of number the drugs of studiedthe drugs to stud dateied have to reacheddate have clinical reached phases. clinical phases. ThereThere areare severalseveral processesprocesses inin thethe humanhuman bodybody thatthat areare inefficientinefficient inin termsterms ofof energyenergy preservation,preservation, where where energy energy is is lost lost as as heat heat and and not not used used to to drive drive another another cellular cellular process. process. In casesIn cases where where energy energy is lost is lost in a in significant a significant proportion, proportion, those those processes processes are calledare called uncoupled. uncou-
Recommended publications
  • Telmisartan Use in Rats with Preexisting Osteoporotics Bone
    Life Sciences 237 (2019) 116890 Contents lists available at ScienceDirect Life Sciences journal homepage: www.elsevier.com/locate/lifescie Telmisartan use in rats with preexisting osteoporotics bone disorders T increases bone microarchitecture alterations via PPARγ Antonio Marcos Birocalea, Antonio Ferreira de Melo Jr.b, Pollyana Peixotob, Phablo Wendell Costalonga Oliveirab, Leandro Dias Gonçalves Ruffonic, Liliam Masako Takayamad, Breno Valentim Nogueirae, Keico Okino Nonakac, ∗ Rosa Maria Rodrigues Pereirad, José Martins de Oliveira Jr.f, Nazaré Souza Bissolib, a Department of Health Integrated Education, Federal University of Espirito Santo, Vitória, ES, Brazil b Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil c Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil d Department of Medical Clinic, Medicine College, University of São Paulo, São Paulo, SP, Brazil e Department of Morphology, Federal University of Espirito Santo, Vitoria, ES, Brazil f Laboratory of Applied Nuclear Physics, University of Sorocaba, Sorocaba, SP, Brazil ARTICLE INFO ABSTRACT Keywords: Aims: Telmisartan (TEL), an angiotensin II type I receptor blocker and PPARγ partial agonist, has been used for Telmisartan to treat hypertension. It is known that PPARγ activation induces bone loss. Therefore, we evaluate the effects of PPARγ telmisartan on PPARγ protein expression, biomechanics, density and bone microarchitecture of femurs and Hypertension lumbar vertebrae in SHR ovariectomized animals, a model of hypertension in which preexisting bone impair- Ovariectomy ment has been demonstrated. Bone Main methods: SHR females (3 months old) were distributed into four groups: sham (S), sham + TEL (ST), OVX (C) and OVX + TEL (CT). TEL (5 mg/kg/day) or vehicle were administered according to the groups.
    [Show full text]
  • Efficacy and Safety of the MC4R Agonist Setmelanotide in POMC
    Efficacy and Safety of the MC4R Agonist Setmelanotide in POMC Deficiency Obesity: A Phase 3 Trial TT-P-LB-3712 Presenting Author: Karine Clément,1,2 Jesús Argente,3 Allison Bahm,4 Hillori Connors,5 Kathleen De Waele,6 Sadaf Farooqi,7 Gregory Gordon,5 James Swain,8 Guojun Yuan,5 Peter Kühnen9 Peter Kühnen 1Sorbonne Université, INSERM, Nutrition and Obesities Research Unit, Paris, France; 2Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, Paris, France; 3Department of Pediatrics & Pediatric Endocrinology, Universidad Autónoma de Madrid University, Madrid, Spain; 4Peel Memorial Hospital, Toronto, Ontario, Canada; 5Rhythm Pharmaceuticals, Inc., Boston, MA; [email protected] 6Ghent University Hospital, Ghent, Belgium; 7Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; 8HonorHealth Bariatric Center, Scottsdale, AZ; 9Institute for Experimental Pediatric Endocrinology Charité Universitätsmedizin Berlin, Berlin, Germany Summary ¡ In this phase 3 trial, setmelanotide was associated with clinically meaningful weight loss and reduction in hunger scores in individuals with proopiomelanocortin (POMC) or proprotein convertase subtilisin/kexin type 1 (PCSK1) deficiency obesity ¡ No new safety concerns emerged, and setmelanotide was generally well tolerated in individuals with POMC or PCSK1 deficiency obesity ¡ Further evaluation of setmelanotide is warranted in other disorders resulting from variants in the central melanocortin pathway that cause impaired melanocortin 4 receptor (MC4R) activation ¡ Participants were instructed to not change their regular diet or exercise regimen Table 1. Baseline Participant Characteristics ¡ During the placebo withdrawal period, participants gained an average of 5.52 kg (n=8), and Introduction participants’ mean “most hunger” score (n=6) increased from 4.87 during the first open-label active Figure 2.
    [Show full text]
  • Efficacy and Safety of the MC4R Agonist Setmelanotide in POMC Deficiency Obesity: a Phase 3 Trial
    Efficacy and Safety of the MC4R Agonist Setmelanotide in POMC Deficiency Obesity: A Phase 3 Trial Karine Clément,1,2 Jesús Argente,3 Allison Bahm,4 Hillori Connors,5 Kathleen De Waele,6 Sadaf Farooqi,7 Greg Gordon,5 James Swain,8 Guojun Yuan,5 Peter Kühnen9 1Sorbonne Université, INSERM, Nutrition and Obesities Research Unit, Paris, France; 2Assistance Publique Hôpitaux de Paris, Pitié- Salpêtrière Hospital, Nutrition Department, Paris, France; 3Department of Pediatrics & Pediatric Endocrinology Universidad Autónoma de Madrid University, Madrid, Spain; 4Peel Memorial Hospital, Toronto, Canada; 5Rhythm Pharmaceuticals, Inc., Boston, MA; 6Ghent University Hospital, Ghent, Belgium; 7Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; 8HonorHealth Bariatric Center, Scottsdale, AZ; 9Institute for Experimental Pediatric Endocrinology Charité Universitätsmedizin Berlin, Berlin, Germany Melanocortin Signaling Is Crucial for Regulation of Body Weight1,2 • Body weight is regulated by the hypothalamic central melanocortin pathway • In response to leptin signaling, POMC is produced in POMC neurons and is cleaved by protein convertase subtilisin/kexin type 1 into α-MSH and β-MSH • α-MSH and β-MSH bind to the MC4R, which decreases food intake and increases energy expenditure, thereby promoting a reduction in body weight Hypothalamus AgRP/NPY Neuron LEPR Hunger AgRP Food Intake ADIPOSE Weight TISSUE MC4R- Energy Expressing Expenditure MC4R Neuron LEPTIN PCSK1 BLOOD-BRAIN BARRIER POMC α-MSH LEPR POMC Neuron AgRP, agouti-related protein; LEPR, leptin receptor; MC4R, melanocortin 4 receptor; MSH, melanocyte-stimulating hormone; NPY, neuropeptide Y; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin. 2 1. Yazdi et al.
    [Show full text]
  • Obesity Pharmacotherapy: Options and Applications in Clinical Practice
    Obesity Pharmacotherapy: Options and Applications in Clinical Practice Scott Kahan, MD, MPH Obesity Pharmacotherapy • Few providers prescribe pharmacotherapy. • Few patients use pharmacotherapy. • Pharmacotherapy can be extremely effective but also misused, overused, or underused. • Patients respond differently to each medication. • Combining therapeutic options significantly improves weight loss and other outcomes. • Pharmacotherapy can be effective for weight maintenance, not just weight loss. Few Eligible Patients Use Obesity Pharmacotherapy 2 1.8 1.6 1.4 1.3 1.2 1 0.9 0.8 0.7 0.6 0.6 0.4 12 months after the index date, % 0.2 0.2 Use of pharmacotherapy for weight loss within 0 >27‐<30 >30‐<35 >35‐<40 >40 Overall Body mass index at index (kg m2) Zhang S, et al. Obesity Science & Practice.2016;2:104-114. FDA-approved Pharmacotherapy Options for the Treatment of Obesity • Phentermine and other noradrenergic agents • Orlistat • Phentermine/topiramate ER • Lorcaserin • Naltrexone SR/bupropion SR • Liraglutide 3.0mg ER = extended release; SR = sustained release. Phentermine • Sympathomimetic amine, NE release • Blunts appetite • Approved in 1959 for short-term use, schedule IV • Dosing: 8 to 37.5 mg qAM; use lowest effective dose • Contraindications: pregnancy, nursing, MAOIs, glaucoma, drug abuse history, hyperthyroidism • Relative contraindications: uncontrolled hypertension, tachycardia, history of CAD, CHF, stroke, arrhythmia • Warnings: primary pulmonary hypertension, valvular heart disease, tolerance, risk of abuse, concomitant use with alcohol CAD = coronary artery disease; CHF = congestive heart failure; HTN = hypertension; MAOIs = monoamine oxidase inhibitors; NE = norepinephrine. Phentermine [package insert]. Cranford, NJ: Alpex Pharma SA; 2011; Munro JF, et al. Br Med J.
    [Show full text]
  • Conditional Expression of Human Pparδ and a Dominant Negative Variant of Hpparδ in Vivo
    Hindawi Publishing Corporation PPAR Research Volume 2012, Article ID 216817, 12 pages doi:10.1155/2012/216817 Research Article Conditional Expression of Human PPARδ and a Dominant Negative Variant of hPPARδ In Vivo Larry G. Higgins,1 Wojciech G. Garbacz,1 Mattias C. U. Gustafsson,2 Sitheswaran Nainamalai,3 Peter R. Ashby,1 C. Roland Wolf,1 and Colin N. A. Palmer1 1 CRUK Molecular Pharmacology Unit, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK 2 Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, Solvegatan¨ 23, SE-223 62 Lund, Sweden 3 Division of Molecular Medicine, Medical Science Institute, College of Life Sciences, University of Dundee, Dundee DD1 4HN, UK Correspondence should be addressed to Colin N. A. Palmer, [email protected] Received 21 September 2011; Revised 7 December 2011; Accepted 20 December 2011 Academic Editor: James P. Hardwick Copyright © 2012 Larry G. Higgins et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The nuclear receptor, NR1C2 or peroxisome proliferator-activated receptor (PPAR)-δ, is ubiquitously expressed and important for placental development, fatty acid metabolism, wound healing, inflammation, and tumour development. PPARδ has been hypothesized to function as both a ligand activated transcription factor and a repressor of transcription in the absence of agonist. In this paper, treatment of mice conditionally expressing human PPARδ with GW501516 resulted in a marked loss in body weight that was not evident in nontransgenic animals or animals expressing a dominant negative derivative of PPARδ.
    [Show full text]
  • MC4R) Agonist (Setmelanotide) in MC4R Deficiency
    Brief Communication Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency Tinh-Hai Collet 1,2,12, Béatrice Dubern 3,4,12, Jacek Mokrosinski 1,12, Hillori Connors 5,12, Julia M. Keogh 1, Edson Mendes de Oliveira 1, Elana Henning 1, Christine Poitou-Bernert 3,4, Jean-Michel Oppert 3,4, Patrick Tounian 3,4, Florence Marchelli 3, Rohia Alili 3,4, Johanne Le Beyec 6,7,8, Dominique Pépin 6, Jean-Marc Lacorte 3,4,6, Andrew Gottesdiener 5, Rebecca Bounds 1, Shubh Sharma 5, Cathy Folster 5, Bart Henderson 5, Stephen O’Rahilly 1, Elizabeth Stoner 5, Keith Gottesdiener 5, Brandon L. Panaro 9,10, Roger D. Cone 10,11, Karine Clément 3,4,***,12, I. Sadaf Farooqi 1,*,12, Lex H.T. Van der Ploeg 5,**,12 ABSTRACT Objective: Pro-opiomelanocortin (POMC)-derived peptides act on neurons expressing the Melanocortin 4 receptor (MC4R) to reduce body weight. Setmelanotide is a highly potent MC4R agonist that leads to weight loss in diet-induced obese animals and in obese individuals with complete POMC deficiency. While POMC deficiency is very rare, 1e5% of severely obese individuals harbor heterozygous mutations in MC4R.We sought to assess the efficacy of Setmelanotide in human MC4R deficiency. Methods: We studied the effects of Setmelanotide on mutant MC4Rs in cells and the weight loss response to Setmelanotide administration in rodent studies and a human clinical trial. We annotated the functional status of 369 published MC4R variants. Results: In cells, we showed that Setmelanotide is significantly more potent at MC4R than the endogenous ligand alpha-melanocyte stimulating hormone and can disproportionally rescue signaling by a subset of severely impaired MC4R mutants.
    [Show full text]
  • Anti-Obesity Therapy: from Rainbow Pills to Polyagonists
    1521-0081/70/4/712–746$35.00 https://doi.org/10.1124/pr.117.014803 PHARMACOLOGICAL REVIEWS Pharmacol Rev 70:712–746, October 2018 Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license. ASSOCIATE EDITOR: BIRGITTE HOLST Anti-Obesity Therapy: from Rainbow Pills to Polyagonists T. D. Müller, C. Clemmensen, B. Finan, R. D. DiMarchi, and M. H. Tschöp Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (T.D.M., C.C., M.H.T.); German Center for Diabetes Research, Neuherberg, Germany (T.D.M., C.C., M.H.T.); Department of Chemistry, Indiana University, Bloomington, Indiana (B.F., R.D.D.); and Division of Metabolic Diseases, Technische Universität München, Munich, Germany (M.H.T.) Abstract ....................................................................................713 I. Introduction . ..............................................................................713 II. Bariatric Surgery: A Benchmark for Efficacy ................................................714 III. The Chronology of Modern Weight-Loss Pharmacology . .....................................715 A. Thyroid Hormones ......................................................................716 B. 2,4-Dinitrophenol .......................................................................716 C. Amphetamines. ........................................................................717 Downloaded from 1. Methamphetamine
    [Show full text]
  • Pharmacological Interventions for Obesity Issues Document Updated: April 21, 2021
    EMERGINGTHERAPEUTICS Pharmacological Interventions for Obesity Issues Document Updated: April 21, 2021 Summary Obesity is a chronic health condition that should be managed long-term. Over the past few decades, obesity has steadily increased in the U.S. and it continues to be a health concern for children, adolescents and adults. Increased weight is a risk factor for many conditions including diabetes, high cholesterol and high blood pressure. Studies have shown that even a moderate weight loss (5% to 10% from baseline) can decrease the severity of these obesity-associated conditions when it is sustained. Historically, weight-management drugs and supplements have been plagued by low effectiveness, rebounding weight gain, undesirable side effects and/or safety concerns. However, some recent FDA approved and near-term pipeline agents will challenge this narrative and require a closer look. This document provides an overview of currently available obesity drugs and highlights therapies under development that could enter this market over the next several years. Take-Aways The obesity epidemic continues to grow in the U.S. Current estimates are that 42.5% of U.S. adults age 20 years and older were obese in 2018 and 31.1% more were overweight, with no significant difference seen between genders. Also, for children and adolescents between two years and 19 years of age, approximately 19.3% were obese and another 16.1% were overweight. Obesity is a chronic disease, which commonly, incorrectly and insensitively is stigmatized. Actually, underlying causes can include genetic, social, economic and environmental circumstances. Obesity is a risk factor for many conditions, including diabetes, high cholesterol and high blood pressure.
    [Show full text]
  • Rxoutlook® 1St Quarter 2019
    ® RxOutlook 1st Quarter 2020 optum.com/optumrx a RxOutlook 1st Quarter 2020 Orphan drugs continue to feature prominently in the drug development pipeline In 1983 the Orphan Drug Act was signed into law. Thirty seven years later, what was initially envisioned as a minor category of drugs has become a major part of the drug development pipeline. The Orphan Drug Act was passed by the United States Congress in 1983 in order to spur drug development for rare conditions with high unmet need. The legislation provided financial incentives to manufacturers if they could demonstrate that the target population for their drug consisted of fewer than 200,000 persons in the United States, or that there was no reasonable expectation that commercial sales would be sufficient to recoup the developmental costs associated with the drug. These “Orphan Drug” approvals have become increasingly common over the last two decades. In 2000, two of the 27 (7%) new drugs approved by the FDA had Orphan Designation, whereas in 2019, 20 of the 48 new drugs (42%) approved by the FDA had Orphan Designation. Since the passage of the Orphan Drug Act, 37 years ago, additional regulations and FDA designations have been implemented in an attempt to further expedite drug development for certain serious and life threatening conditions. Drugs with a Fast Track designation can use Phase 2 clinical trials to support FDA approval. Drugs with Breakthrough Therapy designation can use alternative clinical trial designs instead of the traditional randomized, double-blind, placebo-controlled trial. Additionally, drugs may be approved via the Accelerated Approval pathway using surrogate endpoints in clinical trials rather than clinical outcomes.
    [Show full text]
  • Development of Novel Synthetic Routes to the Epoxyketooctadecanoic Acids
    DEVELOPMENT OF NOVEL SYNTHETIC ROUTES TO THE EPOXYKETOOCTADECANOIC ACIDS (EKODES) AND THEIR BIOLOGICAL EVALUATION AS ACTIVATORS OF THE PPAR FAMILY OF NUCLEAR RECEPTORS By ROOZBEH ESKANDARI Submitted in partial fulfillment of the requirements for The Degree of Doctor of Philosophy Thesis Advisor: Gregory P. Tochtrop, Ph.D. Department of Chemistry CASE WESTERN RESERVE UNIVERSITY January, 2016 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ROOZBEH ESKANDARI Candidate for the Ph.D degree *. (signed) Anthony J. Pearson, PhD (Chair of the committee) Gregory P. Tochtrop, PhD (Advisor) Michael G. Zagorski, PhD Blanton S. Tolbert, PhD Witold K. Surewicz, PhD (Department of Physiology and Biophysics) (date) 14th July, 2015 *We also certify that written approval has been obtained for any proprietary material contained therein. I dedicate this work to my sister Table of Contents Table of Contents ........................................................................................................................ i List of Tables .............................................................................................................................. vi List of Figures ........................................................................................................................... vii List of Schemes .......................................................................................................................... ix Acknowledgements ..................................................................................................................
    [Show full text]
  • Bezafibrate Improves Insulin Sensitivity and Metabolic Flexibility
    2540 Diabetes Volume 65, September 2016 Andras Franko,1,2,3 Peter Huypens,1,3 Susanne Neschen,1,3,4 Martin Irmler,1 Jan Rozman,1,3,4 Birgit Rathkolb,1,4,5 Frauke Neff,1,6 Cornelia Prehn,7 Guillaume Dubois,1 Martina Baumann,1 Rebecca Massinger,1 Daniel Gradinger,1,3 Gerhard K.H. Przemeck,1,3 Birgit Repp,8 Michaela Aichler,9 Annette Feuchtinger,9 Philipp Schommers,10,11 Oliver Stöhr,12 Carmen Sanchez-Lasheras,13 Jerzy Adamski,3,7,14 Andreas Peter,2,3,15 Holger Prokisch,8 Johannes Beckers,1,3,16 Axel K. Walch,9 Helmut Fuchs,1,3,4 Eckhard Wolf,5 Markus Schubert,12,17 Rudolf J. Wiesner,10,18,19 and Martin Hrabe de Angelis1,3,4,16 Bezafibrate Improves Insulin Sensitivity and Metabolic Flexibility in STZ-Induced Diabetic Mice Diabetes 2016;65:2540–2552 | DOI: 10.2337/db15-1670 Bezafibrate (BEZ), a pan activator of peroxisome pro- the expression of PPAR and insulin target gene liferator–activated receptors (PPARs), has been gener- transcripts was increased. Furthermore, BEZ-treated ally used to treat hyperlipidemia for decades. Clinical mice also exhibited improved metabolic flexibility as trials with type 2 diabetes patients indicated that BEZ well as an enhanced mitochondrial mass and func- also has beneficial effects on glucose metabolism, tion in the liver. Finally, we show that the number of although the underlying mechanisms of these effects pancreatic islets and the area of insulin-positive remain elusive. Even less is known about a potential cells tended to be higher in BEZ-treated mice.
    [Show full text]
  • PPAR-Δ Is Repressed in Huntington's Disease, Is Required for Normal
    ARTICLES PPAR-δ is repressed in Huntington’s disease, is required for normal neuronal function and can be targeted therapeutically Audrey S Dickey1, Victor V Pineda2, Taiji Tsunemi1, Patrick P Liu3–5, Helen C Miranda1, Stephen K Gilmore-Hall1, Nicole Lomas1, Kunal R Sampat1, Anne Buttgereit1, Mark-Joseph Manalang Torres2, April L Flores1, Martin Arreola1, Nicolas Arbez6, Sergey S Akimov6, Terry Gaasterland5,7, Eduardo R Lazarowski8, Christopher A Ross6,9–11, Gene W Yeo3–5, Bryce L Sopher2, Gavin K Magnuson12, Anthony B Pinkerton12, Eliezer Masliah13,14 & Albert R La Spada1,3–5,14–16 Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which encodes a polyglutamine tract in the HTT protein. We found that peroxisome proliferator-activated receptor delta (PPAR-) interacts with HTT and that mutant HTT represses PPAR-–mediated transactivation. Increased PPAR- transactivation ameliorated mitochondrial dysfunction and improved cell survival of neurons from mouse models of HD. Expression of dominant-negative PPAR- in the central nervous system of mice was sufficient to induce motor dysfunction, neurodegeneration, mitochondrial abnormalities and transcriptional alterations that recapitulated HD-like phenotypes. Expression of dominant-negative PPAR- specifically in the striatum of medium spiny neurons in mice yielded HD-like motor phenotypes, accompanied by striatal neuron loss. In mouse models of HD, pharmacologic activation of PPAR- using the agonist KD3010 improved motor function, reduced neurodegeneration and increased survival. PPAR- activation also reduced HTT-induced neurotoxicity in vitro and in medium spiny-like neurons generated from stem cells derived from individuals with HD, indicating that PPAR- activation may be beneficial in HD and related disorders.
    [Show full text]