The Starting System Includes the Battery, Starter Motor, Solenoid, Ignition Switch and in Some Cases, a Starter Relay
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ignition System
IGNITION SYSTEM The ignition system of an internal combustion engine is an important part of the overall engine system. All conventional petrol[[1]] (gasoline)[[2]] engines require an ignition system. By contrast, not all engine types need an ignition system - for example, a diesel engine relies on compression-ignition, that is, the rise in temperature that accompanies the rise in pressure within the cylinder is sufficient to ignite the fuel spontaneously. How it helps It provides for the timely burning of the fuel mixture within the engine. How controlled The ignition system is usually switched on/off through a lock switch, operated with a key or code patch. Earlier history The earliest petrol engines used a very crude ignition system. This often took the form of a copper or brass rod which protruded into the cylinder, which was heated using an external source. The fuel would ignite when it came into contact with the rod. Naturally this was very inefficient as the fuel would not be ignited in a controlled manner. This type of arrangement was quickly superseded by spark-ignition, a system which is generally used to this day, albeit with sparks generated by more sophisticated circuitry. Glow plug ignition Glow plug ignition is used on some kinds of simple engines, such as those commonly used for model aircraft. A glow plug is a coil of wire (made from e.g. nichrome[[3]]) that will glow red hot when an electric current is passed through it. This ignites the fuel on contact, once the temperature of the fuel is already raised due to compression. -
Development of Two-Stage Electric Turbocharging System for Automobiles
Mitsubishi Heavy Industries Technical Review Vol. 52 No. 1 (March 2015) 71 Development of Two-stage Electric Turbocharging system for Automobiles BYEONGIL AN*1 NAOMICHI SHIBATA*2 HIROSHI SUZUKI*3 MOTOKI EBISU*1 Engine downsizing using supercharging is progressing to cope with tightening global environmental regulations. In addition, further improvement in fuel consumption is expected with such applications as ultra-high EGR, Miller cycle, and lean combustion. Mitsubishi Heavy Industries, Ltd. (MHI) has developed a two-stage electric turbocharging system to balance better drivability and improved fuel consumption by increasing the turbocharging pressure and improving the transient response. |1. Introduction Engine downsizing/downspeeding through supercharging is progressing to cope with annually enhanced improvement in fuel consumption and exhaust gas. Downsizing through direct injection and supercharging has been developed mainly in European countries where the CO2 regulations are the most stringent, and it has expedited the increase of the turbocharger installation rate in other areas. Diesel vehicles are supposed to satisfy the CO2 and exhaust gas regulation standards in 2021. However, gasoline vehicles are still not able to meet the standards even in the case of low-fuel consumption vehicles with supercharged downsizing, and further measures are required. The adoption of WLTC (Worldwide harmonized Light duty driving Test Cycle) is planned globally in and after 2017, and new regulations taking actual driving conditions into consideration are being discussed. Turbochargers are required to provide a further boost pressure and better response, as well as robust and easy to operate characteristics, for this purpose. Existing turbochargers have a time-lag and EGR response delay, and proper control is difficult. -
DEUTZ Pose Also Implies Compliance with the Con- Original Parts Is Prescribed
Operation Manual 914 Safety guidelines / Accident prevention ● Please read and observe the information given in this Operation Manual. This will ● Unauthorized engine modifications will in- enable you to avoid accidents, preserve the validate any liability claims against the manu- manufacturer’s warranty and maintain the facturer for resultant damage. engine in peak operating condition. Manipulations of the injection and regulating system may also influence the performance ● This engine has been built exclusively for of the engine, and its emissions. Adherence the application specified in the scope of to legislation on pollution cannot be guaran- supply, as described by the equipment manu- teed under such conditions. facturer and is to be used only for the intended purpose. Any use exceeding that ● Do not change, convert or adjust the cooling scope is considered to be contrary to the air intake area to the blower. intended purpose. The manufacturer will The manufacturer shall not be held respon- not assume responsibility for any damage sible for any damage which results from resulting therefrom. The risks involved are such work. to be borne solely by the user. ● When carrying out maintenance/repair op- ● Use in accordance with the intended pur- erations on the engine, the use of DEUTZ pose also implies compliance with the con- original parts is prescribed. These are spe- ditions laid down by the manufacturer for cially designed for your engine and guaran- operation, maintenance and servicing. The tee perfect operation. engine should only be operated by person- Non-compliance results in the expiry of the nel trained in its use and the hazards in- warranty! volved. -
Tecumseh V-Twins
TECUMSEH V-TWIN ENGINE TABLE OF CONTENTS CHAPTER 1. GENERAL INFORMATION CHAPTER 2. AIR CLEANERS CHAPTER 3. CARBURETORS AND FUEL SYSTEMS CHAPTER 4. GOVERNORS AND LINKAGE CHAPTER 5. ELECTRICAL SYSTEMS CHAPTER 6. IGNITION CHAPTER 7. INTERNAL ENGINE AND DISASSEMBLY CHAPTER 8. ENGINE ASSEMBLY CHAPTER 9. TROUBLESHOOTING AND TESTING CHAPTER 10. ENGINE SPECIFICATIONS Copyright © 2000 by Tecumseh Products Company All rights reserved. No part of this book may be reproduced or transmitted, in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission in writing from Tecumseh Products Company Training Department Manager. i TABLE OF CONTENTS (by subject) GENERAL INFORMATION Page Engine Identification ................................................................................................ 1-1 Interpretation of Engine Identification ...................................................................... 1-1 Short Blocks ............................................................................................................ 1-2 Fuels ........................................................................................................................ 1-2 Engine Oil ................................................................................................................ 1-3 Basic Tune-Up Procedure ....................................................................................... 1-4 Storage ................................................................................................................... -
Starters & Alternators
Starters & Alternators Technical Manual www.denso-am.eu n UK & IE n RU n DACH n Eastern Europe n Export n Iberia, France, Italy DENSO Europe B.V. After Market and Industrial Solutions Business Unit Sales Representation European Headquarters Albania Hungary Portugal Weesp, Netherlands Austria Ireland Romania Belarus Israel Russia (Moscow) Belgium Italy Russia (Novosibirsk) Distribution warehouses Bosnia and Herzegovina Kaliningrad Slovakia Bulgaria Kazakhstan Slovenia Gennevilliers, France Cyprus Latvia Spain Leipzig, Germany Czech Republic Lithuania Sweden Madrid, Spain Denmark Luxembourg Switzerland Milton Keynes, UK Estonia Macedonia Turkey Moscow, Russia Finland Moldova United Kingdom Polrino, Italy France Montenegro Ukraine Weesp, Netherlands Georgia Netherlands Germany Norway Greece Poland DENSO Starters & Alternators Table of Content DENSO in Europe > The Aftermarket Originals 04 Introduction > About This Publication 04 > Product Range 05 PART 1 – DENSO Starters PART 2 – DENSO Alternators Characteristics Characteristics > System outline 08 > System outline 42 > How Starters work 09 > How Alternators work 43 Types Types > Pinion Shift Type 11 > Conventional Type 45 > Reduction Type 14 > Type III 46 > Planetary Type 17 > SC Type 47 Wall Chart 21 Wall Chart 53 Stop & Start Technology 22 Replacement Guide 54 Replacement Guide 28 Troubleshooting > Diagnostic Chart 55 Troubleshooting > Inspection 56 > Diagnostic Chart 29 > Q&A 58 > Inspection 30 > Q&A 37 Edition: 1, date of publication: August 2016 All rights reserved by DENSO EUROPE B.V. This document may not be reproduced or copied, in Edition: 2, date of publication: October 2016 whole or in part, without the written permission of the publisher. DENSO EUROPE B.V. reserves Editorial dept, staff: DNEU AMIS Technical Service, K. -
Diesel Engine Starting Systems Are As Follows: a Diesel Engine Needs to Rotate Between 150 and 250 Rpm
chapter 7 DIESEL ENGINE STARTING SYSTEMS LEARNING OBJECTIVES KEY TERMS After reading this chapter, the student should Armature 220 Hold in 240 be able to: Field coil 220 Starter interlock 234 1. Identify all main components of a diesel engine Brushes 220 Starter relay 225 starting system Commutator 223 Disconnect switch 237 2. Describe the similarities and differences Pull in 240 between air, hydraulic, and electric starting systems 3. Identify all main components of an electric starter motor assembly 4. Describe how electrical current flows through an electric starter motor 5. Explain the purpose of starting systems interlocks 6. Identify the main components of a pneumatic starting system 7. Identify the main components of a hydraulic starting system 8. Describe a step-by-step diagnostic procedure for a slow cranking problem 9. Describe a step-by-step diagnostic procedure for a no crank problem 10. Explain how to test for excessive voltage drop in a starter circuit 216 M07_HEAR3623_01_SE_C07.indd 216 07/01/15 8:26 PM INTRODUCTION able to get the job done. Many large diesel engines will use a 24V starting system for even greater cranking power. ● SEE FIGURE 7–2 for a typical arrangement of a heavy-duty electric SAFETY FIRST Some specific safety concerns related to starter on a diesel engine. diesel engine starting systems are as follows: A diesel engine needs to rotate between 150 and 250 rpm ■ Battery explosion risk to start. The purpose of the starting system is to provide the torque needed to achieve the necessary minimum cranking ■ Burns from high current flow through battery cables speed. -
Altronic® Ignition Systems for Industrial Engines
Ignition Systems for Industrial Engines Altronic Ignition Systems CONTENTS Altronic Ignition Systems Overview and Guide Contents and Introduction ................................................................................ 2 Engine Application Guide ................................................................................. 3 Solid-State/Mechanical Ignition Systems Theory and Overview ........................................................................................ 4 Altronic I, II, III, and V ..................................................................................... 5 Disc-Triggered Digital Ignition Systems Theory and Overview ........................................................................................ 6 CD1, CD200, DISN ......................................................................................... 7 Crankshaft-Referenced Digital Ignition Systems Theory and Overview ........................................................................................ 8 CPU-95, CPU-2000 ......................................................................................... 9 Crankshaft-Referenced, Directed Energy Digital Ignition Systems CPU-XL VariSpark .......................................................................................... 10 Ignition Coils ................................................................................................... 12 Conversion Kits for Caterpillar Engines ......................................................... 14 Flashguard® Spark Plugs & Secondary -
Cummins ISL-G
Cummins ISL-G Webinar Moderator Jerry Guaracino Deputy Chief Engineering Officer Southeastern Pennsylvania Transportation Authority (SEPTA) Philadelphia, PA Presenters Obed Mejia Victoria Chesney Senior Bus Equipment Maintenance Instructor Maintenance Supervisor Los Angeles Metropolitan Transportation Authority Omnitrans Los Angeles, CA San Bernardino, CA Objectives Participants on today’s webinar will learn how to: • Identify Maintenance Procedures • Examine components to meet specifications • Perform maintenance practices to OEM specifications Related APTA Standards • APTA BTS-BMT-RP-008-16: Training Syllabus to Instruct Bus Technicians on EPA Emissions Standards and Treatment Technologies For additional resources visit: http://www.apta.com/resources/standards/bus/ Pages/default.aspx Fleet Facts Metro Omnitrans • 2400+ Buses in service • 187 Fixed Route Coaches • 2300 ISL-G • 22 Cummins 8.3 C+ • 100 L Gas Plus • 43 8.1 John Deere HFN04 • 122 8.9 Cummins ISL G • Revenue Miles ≈ 90 million per year • Service area of 456 sq. miles with just over 9 million miles run per year. Operating Parameters • Maximum Horsepower 320 HP • Peak Torque 1000 LB-FT • Governed Speed 2200 RPM • Engine Displacement 540 CU IN 8.9 LITERS • spark-ignited, in-line 6-cylinder, turbocharged, CAC • Fuel Type CNG/LNG/RNG Methane number75 or greater • Aftertreatment Three-Way Catalyst (TW Engine Management System • The control system for the ISL-G engine is a closed loop control system. The electronic control module controls the throttle plate and fuel control valve to provide the correct fueling and spark timing. • The ISL-G engine through the years has been built with several potential sensor configurations and terminology variances. • Ensure that you are using the latest software version to correctly interact with control system. -
Internal Combustion Engines
Lecture-16 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Introduction The combustion in a spark ignition engine is initiated by an electrical discharge across the electrodes of a spark plug, which usually occurs from 100 to 300 before TDC depending upon the chamber geometry and operating conditions. The ignition system provides a spark of sufficient intensity to ignite the air-fuel mixture at the predetermined position in the engine cycle under all speeds and load conditions. 2 Introduction – contd. In a four-stroke, four cylinder engine operating at 3000 rpm, individual cylinders require a spark at every second revolution, and this necessitates the frequency of firing to be (3000/2) x 4 = 6000 sparks per minute or 100 sparks per second. This shows that there is an extremely short interval of time between firing impulses. 3 Introduction – contd. The internal combustion engines are not capable of starting by themselves. Engines fitted in trucks, tractors and other industrial applications are usually cranked by a small starting engine or by compressed air. Automotive engines are usually cranked by a small electric motor, which is better known as a starter motor, or simply a starter. The starter motor for SI and CI engines operates on the same principle as a direct current electric motor. 4 Ignition System -Requirements It should provide a good spark between the electrodes of the plugs at the correct timing The duration -
735.5270 Inc D-Of-C TCG250 (N1 Engine Shaft) with Part Numbers (WITH Machine Stand) Current 28.9.17.Pub
TCG 250 Floor Grinder Operation and Maintenance Manual www.trelawnyspt.co.uk OPERATION Foreword Safety that the operators wear personal Thank you for your purchase of the WEAR SAFETY BOOTS, FACE protective equipment [PPE] TRELAWNY TCG250 Floor Grinder. MASK, SHATTERPROOF particularly gloves and clothing to GLASSES, HELMET, GLOVES and keep them warm and dry. This manual contains the necessary any other personal protective Employers should consider setting maintenance information for you to equipment required for the working up a programme of health ensure proper operation and care for conditions. Avoid loose clothing; this surveillance to establish a this machine. may become trapped in moving benchmark for each operator and to parts and cause serious injury. detect early symptoms of vibration See also the manual that is TO AVOID NUISANCE DUST, injury. supplied by the engine connect an industrial vacuum We are not aware of any PPE that manufacturer. cleaner (minimum 3000watts or provides protection against vibration equivalent) to the 50mm (2”) vacuum injury by attenuating vibration It is essential for you to read port situated at the rear of the emissions. through these manuals machine. thoroughly. ENSURE THAT THE WORK PLACE See ‘Specifications’ section for IS WELL VENTILATED. Avoid vibration emission data. In the unlikely event that you operating engine-powered machines experience problems with your in an enclosed area, since engine Further advice is available from our TCG250, please do not hesitate to exhaust gases are poisonous. Technical Department. contact your local Trelawny dealer or BE VERY CAREFUL WITH HOT agent. We always welcome COMPONENTS. The exhaust and We strongly advise you to visit the feedback and comments from our other parts of the engine are hot Health & Safety Executive website valued customers. -
Investigation of Micro-Pilot Fuel Ignition System for Large Bore Natural Gas Engines
2004 Gas Machinery Conference Albuquerque, NM INVESTIGATION OF MICRO-PILOT FUEL IGNITION SYSTEM FOR LARGE BORE NATURAL GAS ENGINES Scott A. Chase, Daniel B. Olsen, and Bryan D. Willson Colorado State University Engines and Energy Conversion Laboratory Mechanical Engineering Department Fort Collins, CO 80523 and oxides of nitrogen (NOx) below their original ABSTRACT design values. The cost of replacing these engines is This investigation assesses the feasibility of a highly prohibitive creating a need for retrofit retrofit diesel micro-pilot ignition system on a technologies to reduce emissions within the current Cooper-Bessemer GMV-4TF two-stroke cycle standards. natural gas engine with a 14” (36 cm) bore and a One of the current retrofit technologies 14” (36 cm) stroke. The pilot fuel injectors are being investigated is a pilot fuel ignition system. installed in a liquid cooled adapter mounted in a Pilot fuel ignition systems have been investigated spark plug hole. The engine is installed with a set of by a number of engine manufactures with a high dual-spark plug heads, with the other spark plug degree of success. Pilot fuel ignition systems used to start the engine. A high pressure, common- implemented on large bore reciprocating engines rail, diesel fuel delivery system is employed and employ natural gas as the primary fuel. Natural gas customizable power electronics control the current is either inducted into the cylinder through an intake signal to the pilot injectors. manifold or directly injected into the cylinder. In Three independent micropilot variables are order to initiate combustion, a small amount of pilot optimized using a Design of Experiments statistical fuel is injected into the cylinder self igniting at technique to minimize a testing variable consisting compression temperatures. -
1.1 HFM Sequential Multiport Fuel Injection/Ignition System (HFM-SFI) Engine
1.1 HFM Sequential Multiport Fuel Injection/Ignition System (HFM-SFI) Engine 104 –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Electrical Test Program – Preparation for Test Preliminary work: Diagnosis - Malfunction Memory . 11 Preparation for Test Electrical wiring diagrams, see Electrical Troubleshooting Manual. 1. Ignition: OFF 2. Connect test cable with socket box to engine control module (N3/4) Model 124 according to connection diagram. Model 129 Model 140 Model 202 Model 210 • If installing an engine control module from another vehicle (only Note regarding “Test Connection” column: possible on vehicles without drive authorization system (DAS) stage 2 The numbers indicated in parentheses, for example, O 1.0 (1.23) signify: up to the end of model year 1995), the control module’s memory must 1= Connector 1 on wiring diagram, be erased and the control module must be reactivated, see 11/5. 23= Socket 23 on wiring diagram. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– b Diagnostic Manual • Engines • 09/00 1.1 HFM-SFI 22/1 1.1 HFM Sequential Multiport Fuel Injection/Ignition System (HFM-SFI) Engine 104 –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Electrical Test Program – Preparation for Test Special Tools 102 589 04 63 00 124 589 45 63 00 201 589 00 99 00 201 589 13 21 00 Test cable 82-pin test cable CAN Electrical connecting set Tester 129 589 00 21 00 124 589 09 63 00 140 589 29 63 00 126-pin socket box Ohm decade CAN 140 82-pin test cable Conventional tools, test equipment Description Brand, model, etc. Multimeter 1) Fluke models 23, 83, 85, 87 Engine analyzer 1) Bear DACE (Model 40-960) Sun Master 3 Sun MEA-1500MB 1) Available through the MBUSA Standard Equipment Program.