TOR Guideline - Water

Total Page:16

File Type:pdf, Size:1020Kb

TOR Guideline - Water

TOR guideline — Water The terms of reference for water include the following objectives: The environmental objectives to be met under the EP Act are that the activity (project) be operated in a way that:  minimises harm to the environmental values of waters  protects the environmental values of wetlands  protects the environmental values of groundwater and any associated surface ecological systems. The performance outcomes corresponding to this objective are in Schedule 5, Table 3 of the Environmental Protection Regulation 2008. The EIS should provide sufficient evidence (including through studies and proposed management measures) to demonstrate that these outcomes can be achieved. In general, to demonstrate that the environmental values of waters and wetlands are protected would involve:  identifying the waters and wetlands affected, including key characteristics  identifying the environmental values of the waters and wetlands  identifying the environmental objectives and indicators relevant to protection of the environmental values  monitoring the environmental quality indicators  determining how the activity may impact upon the environmental values and how these impacts will be mitigated  carrying out relevant monitoring including baseline and reference condition, effective implementation of mitigation measures and environmental impact. Information must be obtained on what waters, including groundwater and wetlands, are relevant to the project and considering the area of potential impacts and the corresponding environmental values. Environmental quality indicators should be established for each environmental value to describe the condition of the environmental value. Then an assessment can made of how the activity may impact on that condition. Potential impacts on environmental values must be avoided or minimised. Cumulative impacts must be considered, that is also consider harm that may occur as a result the combined effects of other activities. The EIS should demonstrate minimisation of harm by detailing measures to avoid or minimise the factors that may create harmful effects in the environment and, where such effects cannot be avoided, minimising the resultant harm in terms of nature, scale, and temporal and geographical extent. Effective monitoring of the actual impacts is critical to ensure that the proposed mitigation measures are effective. Identification of waters and key characteristics The EIS should describe the water resources and environmental values of water that may be affected by the project, including where relevant estuarine and marine waters. Reference should be made to Queensland Wetland Mapping and any available Aquatic Conservation Assessments produced by the Queensland Government. http://wetlandinfo.ehp.qld.gov.au/wetlands/index.html Surface water The description should include and illustrate the surface watercourses, overland flow, palustrine and lacustrine wetlands, estuaries and marine waters. It should include suitably scaled maps of catchments, watercourses, drainage pathways, wetlands, or sources of water supply (such as farm dams) potentially affected by the project, including those on and off the project site. Describe, with supporting photographs, the geomorphic condition of any watercourses likely to be affected by disturbance or stream diversion. The results of this description would form the basis for the planning and subsequent monitoring of rehabilitation of the watercourses during or after the operation of the project. Describe the hydrology of watercourses and overland flow in the project area and any downstream locations potentially affected by the project. Flooding EIS information guideline  Water

Provide details of the likelihood and history of flooding, including the extent, levels and frequency of floods in and around the project site. Flood studies should include a range of annual exceedance probabilities for potentially affected waterways, based on observed data if available or use of appropriate modelling techniques and conservative assumptions if there are no suitable observations. Groundwater Describe the quality, quantity and significance of groundwater in the project area and any surrounding area potentially affected by the project’s activities. The description of the quality, quantity and significance of groundwater in the project area, and any surrounding area, potentially affected by the project’s activities should address:  geology and stratigraphy, both on-site and at the regional scale  the geological sequence in the area, (from oldest to youngest), and with accompanying surface geology and cross sections  aquifer type – such as confined/unconfined, geology, groundwater pressure  location and depth of bores used to determine the stratigraphy and groundwater pressure  depth to (in m AHD and m BGL), and thickness of, the aquifers; their transmissivity and value or potential as water supply sources  major confining layers and connectivity between aquifers  major faulting  relationships between local groundwater and the regional groundwater flow system, including groundwater flow directions  groundwater chemistry and quality, including salinity and any factors affecting groundwater quality  proximity and possible interaction with saline water or seawater  interaction with surface water and any groundwater dependant ecosystems  sources and rates of recharge; major influences on recharge  vulnerability to pollution. The description should include a survey of existing groundwater supply facilities (bores, wells, or excavations) to the extent of any potential impacts. Information and analysis should include:  location of potentially affected bores or wells  pumping parameters  draw down and recharge at normal pumping rates  seasonal variations (if records exist) of groundwater levels. Coastal For coastal environment that may be affected by the project, the EIS should describe the physical processes of the littoral and marine environment, including currents, tides, freshwater flows and their interaction in relation to coastal morphology and the assimilation and transport of contaminants entering marine waters from, or adjacent to, the project area. Provide an assessment of physical and chemical characteristics of sediments within the littoral and marine zone potentially affected by the project. Identification of environmental values Describe the environmental values of waters, including surface waters, groundwater, coastal waters and wetlands that may be affected by the project. Under the Environmental Protection (Water) Policy 2009 (Water EPP), all Queensland waters including groundwater have prescribed environmental values and water quality objectives. For some waterway basins and areas, environmental values and water quality objectives are listed in schedule 1 of the Water EPP1. Where this is not the case, default environmental values are prescribed under section 6 (2) of the policy. These include protection of aquatic ecosystems, farm supply, irrigation, stock water, drinking use, human consumption of 1 http://www.ehp.qld.gov.au/water/policy/schedule1/index.html EIS information guideline  Water aquatic food, industrial use, recreational use, and cultural and spiritual use. The definition of waters includes the bed and banks of waters, so assessments also need to consider potential impacts on benthic sediments, such as any build-up of toxic metals, and riparian vegetation. Ecological health, public amenity and safety are also environmental values prescribed under the EP Act that may be adversely affected by resource projects and need to be considered where relevant to water quality. Describe current and potential future users and uses of water in areas potentially affected by the project, including farm water supply, stock water, and municipal, agricultural, aquaculture industrial and recreational uses of water. Where coastal areas may be affected, describe the coastal resources and values identified in any State and Regional Coastal Plans. When necessary to avoid duplication, cross-reference other sections of the EIS where coastal values, such as ecology or scenic amenity, are addressed. Identification of environmental objectives and indicators Harm to environmental values generally implies some adverse change in environmental condition. The degree of change permitted before harm is considered to have occurred is generally described by water quality objectives. These may include physical, chemical, radiological and biological objectives as well as narrative statements on environmental condition. Objectives are developed and considered differently between human use, environmental values and ecological values. The degree of change permitted in environmental condition for human use environmental values such as drinking, stock water, aquaculture and irrigation is related to levels which do not affect suitability for those uses. For ecological environmental values, a specified acceptable degree of departure from a reference condition is generally used for ecological stressors and biological indicators, and in respect of toxic substances, guidance based on relevant aquatic toxicity studies. The degree of departure from natural condition and level of ecosystem protection afforded from toxic substances is based on the level of ecosystem protection prescribed for the relevant waters. Under the Water EPP, there are four levels of ecosystem protection, namely high ecological value, slightly disturbed, moderately disturbed and highly disturbed. Guidance on how water quality objectives are applied in each case is described in the Queensland Water Quality Guidelines 2009. These guidelines provide water quality objectives for various water types for Queensland regions/sub regions2. Where waters are listed under schedule 1 of the Water EPP, the Water EPP scheduling documents provide environmental values and water quality objectives3. The Australian Water Quality Guidelines (ANZECC and ARMCANZ 2000), the Australian Drinking Water Guidelines (NHMRC 2011) and the Guidelines for Managing Risks in Recreational Water (NHMRC 2008) are also relevant and should be consulted. Guidance on how environmental values are developed is provided in the Queensland Water Quality Guidelines 2009 (QWQG) and the Departmental guideline Establishing Draft Environmental Values and Water Quality Objectives 2002 (EVWQOG)4. For issues of potential environmental concern, such as turbidity, salinity, environmentally significant anions and cations, toxicants and riparian vegetation, the EIS should identify all relevant water quality objectives for the environmental values. Biological objectives for impacted areas should also be determined. For coastal areas, the EIS should develop and describe suitable indicators for measuring coastal values, and objectives that would protect the coastal resources and values. Monitoring of environmental quality indicators General The EIS should design a plan for the ongoing monitoring of the impact of the development on water resources in areas where there may be impacts. Monitoring plans should focus on the mitigation/ management strategies for the risks to the key assets identified in the assessment of the project. They should be capable of tracking changes against pre‐development conditions. The monitoring network should, to an appropriate extent, extend beyond the predicted impact areas to confirm that impacts are not occurring beyond these areas.

2 http://www.ehp.qld.gov.au/water/pdf/water-quality-guidelines.pdf 3 http://www.ehp.qld.gov.au/water/policy/schedule1/index.html 4 http://www.ehp.qld.gov.au/water/pdf/factsheet-evs-wqos-epp-water.pdf EIS information guideline  Water

Monitoring plans should address all impacts identified through the assessment where a management regime or intervention is required to mitigate the risk of a significant impact. They should have clearly defined monitoring objectives. Maps should be provided to demonstrate the location of monitoring points and their purpose. A surface water monitoring program should be established to collect sufficient data to assess background hydrological and water quality conditions, inter-annual and seasonal variation, to underpin the monitoring of the effectiveness of mitigation and management measures. The monitoring program should enable early detection of impacts arising from project development, and identification of the cause of any changes from baseline conditions, or changes from specified water quality and hydrological objectives. A groundwater monitoring network should be established to collect sufficient data to assess background conditions, seasonal variations and recharge/discharge behaviours. The monitoring programs should target dedicated groundwater monitoring bores and not include uncased test holes or bore holes where there is insufficient data (such as drilling logs) to identify the strata intercepted and monitored. Ecological monitoring should be undertaken to evaluate the effectiveness of impact prevention or mitigation measures, measure trends in ecological responses and detect whether ecological responses are within identified thresholds of acceptable change. A proposed reporting program should be provided, which includes triggers for the review of the program, and identify additional data, assessment, analysis and reporting requirements. In general, water quality monitoring should be managed in accordance with the relevant National Water Quality Management Strategy (NWQMS) guideline: Australian Guidelines for Water Quality Monitoring and Reporting (AWQG)5 6. Surface water Develop and describe suitable surface and ground water quality and resource project-specific indicators for measuring environmental values, and objectives that would protect the identified values against project impacts. Guidance on indicators is provided in the AWQG, the QWQG and the EVWQOG. A baseline condition assessment monitoring program, with sampling stations located upstream at background reference sites (that would be un-impacted), and sites downstream of the project, would provide a sound basis for the description of the EVs, the assessment of likely impacts (including through modelling) and the effectiveness of impact mitigation strategies. The monitoring sites should be representative of the diversity of potentially affected water related values. The quality of waters should be described using a desktop approach where relevant quality assured monitoring results are available and/or field monitoring where no desk top information is available. Clearly identify and reference existing data obtained from other monitoring programs. Complementary stream-flow data should also be obtained from historical records from the current stream gauging station network to help interpretation. Where data exists, describe the flow regime for the receiving environment using plots of flow (cumecs) versus flow duration (per cent) to identify the flow duration of event high-flow, base- flow and no-flow periods to characterise the receiving environment. Describe seasonal variations in water quality and variations with flow. Where there are significant variations in flow, such as in ephemeral streams, condition should be described for high and low flow periods separately rather than averaging. Estimate the event flow trigger for environmentally significant analytes in each receiving waterway based on this observed variation (plot flow against environmentally significant analytes). The event flow trigger is the flow at which environmentally significant analytes increase and begin to exceed the applicable high flow water quality objective. The event flow trigger can also be any flow above this point. This data should be used to determine the appropriate conditions for the release of mine-affected water into the receiving environment that minimise environmental harm. Measure a range of physical, chemical and biological parameters relevant to the potential environmental harm on any affected creek or wetland system. The monitoring program should measure a range of physical, chemical and biological parameters relevant to the potential environmental harm on any affected waters. This would include, but not necessarily be limited to, water quality indicators likely to be affected by the project such as: electrical conductivity; anions and cations that contribute to salinity, total and dissolved metals; turbidity; suspended sediments; and pH. Biological indicators should include macro-invertebrate surveys undertaken at appropriate locations according to best practice methods.

5 http://www.environment.gov.au/resource/national-water-quality-management-strategy-australian-guidelines- water-quality-monitoring-0 6 http://www.environment.gov.au/system/files/resources/0b71dfb9-8fea-44c7-a908-826118d403c8/files/nwqms- monitoring-reporting.pdf EIS information guideline  Water

Where the activity has potential to contaminate sediments, for example base metal mines dealing with sulfidic ores, characterisation of the stream sediments including reference condition should be undertaken. Sediment quality data should be standardised to particle size for metals and metalloids and organic carbon for organic contaminants. All sampling should be performed in accordance with the Monitoring and Sampling Manual 2009 Version 2, or the most current edition. The QWQG recommends the taking of 18 samples to provide estimates of medium, 20th and 80th percentiles at a reference site. The ANZECC Water Quality Guidelines recommend taking 24 samples to estimate these percentiles at a reference site. The number of monitoring sites and monitoring frequency should capture seasonal and inter-annual variability and enable valid statistical analysis of results. The program should offer an ability to identify ‘first flush’ effects and impacts. All water quality data should be presented in a suitable format for assessment against relevant water quality objectives under the EPP Water, or guideline trigger values as described in the QWQG and the AWQG. Physico- chemical parameters should at least be presented as 50th percentiles and toxicants such as metals presented as 95th percentiles, together with data ranges and the limit of reporting. All relevant metadata that would facilitate an assessment of the quality of this data set should be provided including number of samples, timing and frequency of sampling and any quality assurance and quality control undertaken (such as replicates, blanks and calibration). Monitoring should include sites closest to the proposed release points and at downstream locations that would be below any mixing zone. Sites should include permanent and semi-permanent water holes, known aquatic habitat, weirs or reservoirs. Available complementary stream-flow data should also be obtained from historical records from the current stream gauging station network to help interpretation. The results of these descriptions would also form the basis for the planning and subsequent monitoring of the rehabilitation of the watercourses during or after the operation of the project. Clearly and consistently distinguish between the EIS monitoring program for the baseline condition assessment and any monitoring programs required for future compliance assessment throughout the life of the development or as a component of the receiving environment monitoring program. Detailed mapping and site information (latitude and longitude) should be provided to illustrate the locations of each sampling site within these monitoring programs with respect to release points and gauging stations. For projects in coastal areas that may affect sediments, provide an assessment of physical and relevant chemical characteristics of sediments within the littoral and marine zone potentially affected by the project. The rationale for selection of variables should be provided. Use of satellite or aerial imagery may be necessary to identify and monitor large-scale impacts. Groundwater A groundwater monitoring network should be established to collect sufficient data to assess background conditions, seasonal variations and recharge/discharge behaviours. The monitoring programs should target dedicated groundwater monitoring bores and not include uncased test holes or bore holes where there is insufficient data (such as drilling logs) to identify the strata intercepted and monitored. The groundwater monitoring plan should include the following:  a methodology for the number, location and placement of monitoring bores and the outcomes of the groundwater monitoring network, which can accurately describe water quality and water levels over time  adequate sites and spatial distribution to provide an understanding of groundwater gradients, flow directions, recharge and discharge processes, quality and water levels in each hydrogeological unit in both the project area and the surrounding areas where impacts to groundwater from project operations are likely to occur, including shallow alluvial aquifers  indicators such as water level reduced to a common datum, electrical conductivity (salinity) and pH, measured at monthly intervals or daily by data logger, to allow for the assessment of seasonal variations in storage and quality  a full chemical analysis covering all major ions should be undertaken at appropriate intervals. Parameters should be monitored that are relevant to ecotoxicology, human and animal health and human use of the groundwater  stygofauna sampling considerations should be incorporated. Refer to DSITIA’s Guideline for the Environmental Assessment of Subterranean Aquatic Fauna  where the monitoring bore is located in an area vulnerable to groundwater contamination from mine impacts, additional parameters such as heavy metals should be monitored EIS information guideline  Water

 drilling logs and construction details of all monitoring bores and accurate co‐ordinates should be provided

 where vibrating wire piezometers are installed, depths and construction details of each piezometer should be provided. All data supplied should be linked to the hydrogeological unit it is representing. Potential impacts and mitigation measures General impact mitigation For all phases of the project, the EIS must:  assess potential impacts on environmental values of waters and wetlands  define and describe the objectives and practical measures for protecting or enhancing environmental values of waters and wetlands  describe how the achievement of the objectives would be monitored, audited and managed. Broadly, the possible water-related impacts associated with resource projects typically include:  direct or indirect dewatering of hydrogeological units  the hydraulic properties of hydrogeological units - potential changes in storage, potential for physical transmission of water within and between units, effects of depressurisation due to gas extraction; and the leakage of contaminants from coal beds through hydrogeological units

 hydrological interactions between water resources - surface water/groundwater connectivity, inter‐aquifer

connectivity and connectivity with sea water; and the extent of the cone of depression  surface watercourse diversions  direct and indirect impacts on ecological assets such as flora and fauna dependent on surface water and groundwater, springs and other GDEs (e.g. riparian vegetation, base flows in streams)  on water related assets due to operational and emergency discharges of water and waste water, from both a quality contamination and flow regime modification perspective (particularly saline water), including potential emergency discharges due to unusual events  contamination of groundwater due to well stimulation techniques  subsidence and other effects from dewatering and depressurisation (including lateral effects) on surface topography, water related assets, groundwater and movement of water across the landscape and possible fracturing of and other damage to confining layers  long term impacts to water resources, erosion and fragmentation of water dependent species/communities habitat through landscape modifications, for example, voids (including partial backfilling), onsite earthworks, roadway and pipeline networks  release of contaminants to waters from wastes including tailings, mineral processing activities, waste rock dumps, sewage disposal, hazardous materials including fuels, process reagents, lubricants, detergents, explosives, solvents and paints and general waste  release of contaminants to waters due to disturbance of rock and soils with potential to generate hazardous contaminants due to chemical reactions, including pyritic minerals, acid sulfate soil and sodic soils  creation of mining voids with water quality inconsistent with agreed uses  the cumulative impact of the proposal when all developments (past, present and/or reasonably foreseeable) are considered in combination Undertake monitoring and sampling of groundwater in accordance with Geoscience Australia’s Groundwater EIS information guideline  Water

Sampling and Analysis – A Field Guide7 and, in the absence of applicable direction, apply guidance from the Monitoring and Sampling Manual 8. In general, an assessment of the potential water quantity and quality impacts due to the all aspects of the project (construction and operational phases) on the surface and ground water environmental values identified should address the impacts on both other water users and on flow-dependant ecological functions. Note that consequential impacts of changes to water flow or groundwater recharge on ecosystems and wildlife should be cross-referenced in the flora/fauna (ecology) section of the EIS. Consideration should be given to present and potential users, and uses, of water in areas potentially affected by the project, including municipal, agricultural, industrial and recreational uses of water. The options for supplying water for the consumptive purposes of the project should be described. Where this supply is to be drawn, in whole or in part, from the project site, the EIS should assess the possible impacts of this, particularly in relation to any water resource plan, resource operations plan and any declaration that may apply. Indicate the extent to which the impacts of the development of a water source for the project external to the site maybe being assessed, or has been assessed, under a separate assessment process. Where a licence or permit would be required under the Water Act 2000, provide sufficient information and assessment for the administering authority to consider the suitability of approving any necessary works, or take of water, under the Water Act 2000 – in accordance with the NRM EIS Guidelines9. General guidance on mitigation requirements is provided is provided in the EP regulation. This includes the following requirements:  the storage and handling of contaminants will include effective means of secondary containment to prevent or minimise releases to the environment from spillage or leaks. This requirement would include bunding of fuel and hazardous chemical storages.  contingency measures will prevent or minimise adverse effects on the environment due to unplanned releases or discharges of contaminants to water. This includes: spill response kits and procedures; and contingency plans for flood events to avoid or minimise creation of legacy water.  the activity will be managed so that stormwater contaminated by the activity that may cause an adverse effect on an environmental value will not leave the site without prior treatment. This includes sedimentation dams serving disturbed areas and oil interceptors treating runoff from workshop and refuelling areas.  the disturbance of any acid sulphate soil, or potential acid sulphate soil, will be managed to prevent or minimise adverse effects on environmental values. This includes complying with best practice guidance for identification and management of acid sulphate soils.  acid producing rock will be managed to ensure that the production and release of acidic waste is prevented or minimised, including impacts during operation and after the environmental authority has been surrendered. This includes complying with best practice guidelines for identification of potential acid producing rock and tailings and management of this material, including the Commonwealth Government best practice handbook on Managing Acid and Metalliferous Drainage and the Global Acid Rock Drainage (GARD) Guide produced by the International Network for Acid Prevention (INAP)10.  any discharge to water or a watercourse or wetland will be managed so that there will be no adverse effects due to the altering of existing flow regimes for water or a watercourse or wetland. This requires understanding flow regimes and managing timing and volumes of releases so as to avoid deleterious impacts.  for a petroleum activity, the activity will be managed in a way that is consistent with the coal seam gas water management policy, including the prioritisation hierarchy for managing and using coal seam gas water and the prioritisation hierarchy for managing saline waste11.  the activity will be managed so that adverse effects on environmental values are prevented or minimised. This includes compliance with the water management hierarchy under the Water EPP. Under this requirement, release of contaminants to waters is a last resort option only permitted if environmental values are protected.

7 http://www.ga.gov.au/corporate_data/68901/Rec2009_027.pdf 8 http://www.ehp.qld.gov.au/water/monitoring/monitoring_and_sampling_manual.html 9 https://www.dnrm.qld.gov.au/our-department/corporate-publications/preparing-an-environmental-impact- statement 10 http://www.industry.gov.au/resource/Documents/LPSDP/LPSDP-AcidHandbook.pdf 11 https://www.ehp.qld.gov.au/management/non-mining/documents/csg-water-management-policy.pdf EIS information guideline  Water

Guidance on demonstrating this is provided in the EHP Technical Guideline Wastewater release to Queensland Waters12. Impacts on flow regimes Assess the project's potential impacts on other water users and flow-dependant ecological functions associated with identified surface water and groundwater resources. Define and describe the agreed objectives for protecting and enhancing surface waters and ground waters and describe measures to avoid or mitigate any predicted impacts. Nominate quantitative water standards and indicators which describe the health of surface water and groundwater environments and how these environments will be monitored, audited and managed. The potential impacts of the project on the hydrology and hydraulics of watercourses and aquifers in the region should be assessed by flow modelling, particularly with regard to the various components of the flow regime of watercourses and aquifers likely to be affected. This includes assessments of the extent of hydrological connectivity between surface water and groundwater resources. An understanding of the pre-development flow regime conditions should underpin the assessment of possible project impacts. This assessment of pre-development flow regime conditions should include the Integrated Quantity and Quality Model (IQQM) modelling using available hydrological data and appropriate modelling assumptions. (Note: The flow regime may have been altered by other upstream users). A description of the parameters of a flow regime typically includes: the timing of flows, frequency, duration of flow events, magnitude and rate of rise and fall of flows. The flow regime of each relevant watercourse should be described from stream flow data (including simulated data) in terms of plots of flow (cumecs) versus flow duration (per cent) to identify the flow duration of high-flow, base-flow and no-flow event periods. Include an assessment of the quality of, and risks inherent in, the data used in the background data and modelling. Define and describe the environmental flow objectives (and water allocation security objectives) of any relevant statutory Water Resource Plan13 and describe the flow-related water quality objectives of the receiving environment. A description of the flow parameters of the releases should also address timing, frequency, duration, magnitude and rate of rise and fall. The proposed management of water on the project site should include a spatial and temporal description of the water release strategy. This strategy should aim to ensure protection and/or improvement of the flow regime towards ‘naturalness’, including protection of pre-development ‘no flow periods’ and protection and/or restoration of natural variability of flows. Under this strategy, releases to watercourses, especially ephemeral streams, should be ‘pulsed’ in order to ‘mimic’ the flow regime (this would include the consideration of storing water during ‘no flow periods’). The discharge strategy should include measurable criteria against which the applicant will monitor and assess the effectiveness of the management of the water. The discharge strategy should also be consistent with the objectives and desired outcomes of the relevant Water Resource Plan (WRP). Site-specific water balance Section 13 of the Water EPP prescribes a waste management hierarchy that must be applied for any activity that affects a water. The hierarchy includes, in order of preference, the following:  reducing use of water and the production of waste water or contaminants  waste prevention  treatment and recycling  treatment and release to waters (with release to groundwater being the least favoured). A site specific water balance incorporating waste segregation where practicable is necessary to demonstrate compliance with the Water EPP hierarchy. A site specific water balance should be developed for the project, complemented by a regional water balance, which should cover the larger area of potential impact. Specific factors that need to be assessed in a water and salt balance include:  hydrogeological unit storage properties and groundwater flows and pressures resulting from the depressurisation/ dewatering of target coal measures  water infiltration from surface stores

12 http://www.ehp.qld.gov.au/licences-permits/business-industry/pdf/wastewater-to-waters-em112.pdf 13 https://www.dnrm.qld.gov.au/water/catchments-planning EIS information guideline  Water

 an estimation of flow/exchange of water between overlying and/or underlying hydrogeological units and the target coal measure for all major units over the project area  waste water from the proposal, including brine treatment processes, disposal methods, volumes and timing  segregation of any hazardous waste streams from less hazardous mine affected water and clean storm water runoff  all volumes and quality of water intended for injection  volumes and quality of water used during mining, including within the mine itself (for example, coal washing, dust suppression) and for other associated activities (for example, cooling or other industrial processes)  volumes (and qualities) of water that is not available from within the extraction and treatment loops that must be imported from elsewhere. This water may be from surface, underground or from another activity external to the system boundary.  All existing interactions and flows that are part of the background (baseline) water flows of any given system. For example, each recharge and discharge for each hydrogeological unit and seepage/recharge for each surface water storage, rainfall interception and evaporation, where there is a shallow subsurface transition zone (hyporheic) of interchange between surface water and groundwater where water may recharge the underlying hydrogeological units, or may be discharged to the surface water system.  estimates of water use in transpiration by vegetation, and the predicted changes to vegetation water use as a result of the proposal  volumes of salt affected water and mass salt loads. Flood management Describe the hydrology of watercourses and overland flow in the project area and any downstream locations potentially hydrologically affected by the project. Include details of the history and likelihood of flooding, including the extent, levels and frequency of floods in and around the project site. Flood studies should include a range of annual exceedance probabilities up to the probable maximum flood for potentially affected waterways, based on observed data, if available, or use appropriate modelling techniques and conservative assumptions if there are no suitable observations. The flood modelling assessment should include consideration of local flooding due to short duration events from contributing catchments on-site, as well as larger scale regional flooding of waterways downstream, and upstream, of the project. When flooding levels would be affected by the project, model the afflux and illustrate the predictions with maps. The flood impacts management strategy for the project should describe and illustrate how all pits would be protected from flooding during the operation of the project, and describe the flood protection level required to protect the final voids from the probable maximum flood; preferably without the need to construct and maintain levees. It should also describe how any flood protection levees will be maintained after project closure. Water management Management practices to mitigate impacts should address surface and ground water quality and quantity, drainage patterns (including the separation of natural and mine affected run-off) and sediment movement and quantity. The location and operation of all proposed water management infrastructure should be detailed on flow diagrams. This includes, but is not necessarily limited to, water storages, sedimentation dams, water treatment plants, levees, drains, diversions, containment channels, bunding, monitoring points, release points and any interconnections between these and the receiving environment. The management practices proposed to mitigate the impacts of all mine-affected water releases should be described in terms of the risk that the releases may cause the exceedance of predicted contaminant levels over water quality objectives. This should be considered both on a project-only basis, and on a cumulative impacts basis. This should include a description and illustration of: the locations, catchments, footprints, cross-sections and method of construction of any dams or levees on the site; their flood immunity; the quality of water or waste water they would contain; and an assessment of their hazard category as determined by the Manual for Assessing Hazard Categories and Hydraulic Performance of Dams. Hazardous dams should be designed by a suitably qualified and experienced engineer using current best practice. EIS information guideline  Water

The ‘design storage allowances’ for tailings dams, process water dams, and waste water dams should be in accordance with relevant guidelines. EA conditions will require that the design and construction of regulated dams be certified by a suitably qualified and experienced person. Measures to manage sediment dams, tailings dams and process/wastewater dams should outline their proposed discharge practices, and how they will decommission and rehabilitate the dams when their use ends. Assess the potential impacts on local and downstream water quality and environmental values due to any controlled and uncontrolled release of mine affected water from the site. Describe the proposed quality, quantities and locations of waste water discharges. The EIS must contain tables with the latitude and longitude (GDA94) for all release points, sampling sites and gauging stations relevant to monitoring programs. Use stream flow data, receiving environment monitoring data (background water quality condition assessment), and proposed release limits and rates to estimate in-stream dilution and water quality at different points downstream of the proposed release. If sensitive receptors such as farm supply offtakes and drinking water storages are located downstream, these should be identified and the assessment should extend at least to that point downstream. Consider periods of low-flow, medium-flow and high-flow in this assessment. Compare the predicted contaminant levels to the water quality objectives and provide an assessment of the assimilative capacity of the receiving waters. Assess the acute and chronic potential impacts of the release of mine affected waters (or other discharges) including the cumulative impacts to water quality and environmental values of the receiving environment due to discharges from other projects or industry. Describe any proposed no-release water systems, assess the management and fate of contaminants in the systems, the risk of environmental harm due to a temporal decline in water quality, and propose mitigation measures for any potential impacts. Management practices should describe proposed measures to manage any leachate or seepage from tailings storages, mine voids, adits and waste rock dumps, either during operations or following decommissioning of the mine and its rehabilitation. Hazardous leachate and seepage should be segregated from general mine affected water and treated for appropriate disposal, reuse or recycling. Conduct a risk assessment, based on conservative water quality estimates and hydrology, for uncontrolled emissions to water due to system or catastrophic failure, assess the potential impacts of such emissions on human health and natural ecosystems, and provide detailed measures to avoid or minimise impacts. Describe and illustrate with maps, plans and cross-sections any proposal to divert creeks or undertake other in- stream works. Assess the potential impacts of in-stream works on hydrology and water quality, and propose measures for avoiding or mitigating the impacts and stabilising and rehabilitating any works. Groundwater management The EIS should assess the potential for project operations or residual effects to contaminate groundwater resources and propose measures to avoid, mitigate and remediate any impacts on groundwater resources or quality. The EIS should also identify and describe groundwater dependent ecosystems (GDEs) that rely on groundwater for some or all of their water requirements). The impact of changes in groundwater quantity and quality on GDEs is determined by the degree and nature of their groundwater dependency. Refer to the EIS guideline on groundwater dependent ecosystems for more information. The possible groundwater impacts of the proposed project during mine life and post mine closure should be assessed, and proposed mitigation measures developed, in terms of:  risk assessment of impacts on existing groundwater users and GDEs for both during mine life and at post mine closure groundwater equilibrium  the projected watertable drawdown and the resultant impact on GDEs and on existing users of groundwater  proposed mitigation and prevention measures for impacts on GDEs and existing users  assessment of impacts of any subsidence, including subsidence induced changes to the local hydrology  quantification of changes to surface water flow regimes impacting on depression storage, runoff, infiltration and groundwater recharge  assessment of potential generation of contaminants including acid mine drainage, salinity development and pollutant transport to groundwater  prediction of post mining impacts on the groundwater budget including mine induced changes to the hydrology such as from evaporation from mine voids. EIS information guideline  Water

Document the network of observation bores that monitor groundwater resources both before and after commencement of operations. The groundwater monitoring network should be established such that there is sufficient data, generally of at least 12 months duration, for assessment of background conditions, including seasonal variations and recharge/discharge behaviours. This monitoring network will form the basis of any permanent monitoring network established for the project. The data obtained from the groundwater survey must be sufficient to enable specification of the major ionic species, pH, electrical conductivity, total dissolved solids and any potentially toxic or harmful substances. Define the likely recharge sources for each hydrogeological unit, details of discharge from the hydrogeological units, direction of groundwater flow and discharge pathways for all hydrogeological units likely to be impacted by the project. Assess the frequency, volume and direction of interactions between water sources, including surface water/groundwater connectivity, inter‐aquifer connectivity and connectivity with sea water.

Groundwater modelling Numeric groundwater models should be calibrated to baseline conditions and to enable a probabilistic evaluation of potential future scenarios. The groundwater modelling should:  outline the model conceptualisation of the hydrogeological system or systems, including key assumptions and model limitations  represent each hydrogeological unit, storage and flow characteristics of each unit, linkages between units and the existing recharge/discharge pathways of the units and the changes that are predicted to occur upon commencement of the project  incorporate the various stages of the project and provide predictions of water level/pressure declines in each hydrogeological unit for the life of the project and beyond  provide information on the time for maximum drawdown and drawdown equilibrium to be reached  identify the volumes predicted to be dewatered on an annual basis with an indication of the proportion supplied from each hydrogeological unit  provide information on potential water level recovery rates and timeframes in each hydrogeological unit for the life of the project and beyond  include recommendations and a program for review and update of the models as more data and information becomes available  include an assessment of the quality of, and risks inherent in, the data used in the background data and modelling. The Australian groundwater modelling guidelines June 201214 published by the National Water Commission are considered relevant for conceptualising groundwater and making predictions about groundwater impacts. The National Water Commission advises that “these guidelines are a point of reference for best practice for all those involved in the development, application and review of groundwater models, and those who use the outputs from models. It is anticipated that the guidelines will be adopted by regulatory bodies, modellers, reviewers and proponents of groundwater models as a nationally consistent guide to groundwater modelling.” Coastal areas For coastal areas, assess the potential impacts that may be caused by the project on coastal processes, resources and values. Include assessment and management measures for acid sulphate soils (ASS) where these may be disturbed, where the water table may be altered in the vicinity of potential or actual ASS. Useful references and guidelines - water The Australian Government’s Water publications and resources: http://www.environment.gov.au/water/publications Leading practice sustainable development in mining, documents

14 http://nwc.gov.au/__data/assets/pdf_file/0016/22840/Waterlines-82-Australian-groundwater-modelling- guidelines.pdf EIS information guideline  Water

The Australian Government, in conjunction with the minerals industry, prepared a series of documents on Leading Practice Sustainable Development in Mining. Documents in the series that relate or assist in water management include the following: Cyanide Management: http://www.industry.gov.au/resource/Documents/LPSDP/LPSDP-CyanideHandbook.pdf Managing Acid and Metalliferous Drainage: http://www.industry.gov.au/resource/Documents/LPSDP/LPSDP- AcidHandbook.pdf Water Management: http://www.industry.gov.au/resource/Documents/LPSDP/LPSDP-WaterHandbook.pdf Tailings Management: http://www.industry.gov.au/resource/Documents/LPSDP/LPSDP-TailingsHandbook.pdf Mine Rehabilitation: http://www.industry.gov.au/resource/Documents/LPSDP/LPSDP- MineRehabilitationHandbook.pdf Mine Closure: http://www.industry.gov.au/resource/Documents/LPSDP/LPSDP- MineClosureCompletionHandbook.pdf

Recommended publications