Section 1.2. Properties of the Real Numbers As an Ordered Field
1.2. The Real Numbers, Ordered Fields 1 1.2. Properties of the Real Numbers as an Ordered Field. Note. In this section we give 8 axioms related to the definition of the real numbers, R. All properties of sets of real numbers, limits, continuity of functions, integrals, and derivatives will follow from this definition. Definition. A field F is a nonempty set with two operations + and called addition · and multiplication, such that: (1) If a,b F then a + b and a b are uniquely determined elements of F (i.e., + ∈ · and are binary operations). · (2) If a,b,c F then (a + b)+ c = a +(b + c) and (a b) c = a (b c) (i.e., + and ∈ · · · · are associative). · (3) If a,b F then a + b = b + a and a b = b a (i.e., + and are commutative). ∈ · · · (4) If a,b,c F then a (b + c)= a b + a c (i.e., distributes over +). ∈ · · · · (5) There exists 0, 1 F (with 0 = 1) such that 0+ a = a and 1 a = a for all ∈ 6 · g F. ∈ (6) If a F then there exists a F such that a +( a) = 0. ∈ − ∈ − 1 1 (7) If a F a = 0, then there exists a− such that a a− = 1. ∈ 6 · 1 0 is the additive identity, 1 is the multiplicative identity, a and a− are inverses − of a. 1.2. The Real Numbers, Ordered Fields 2 Example. Some examples of fields include: 1. The rational numbers Q. 2. The rationals extended by √2: Q[√2]. 3.
[Show full text]