2 Biologically Active Nucleoside Analogues with 5- Or 6- Membered Monocyclic Nucleobases 31

Total Page:16

File Type:pdf, Size:1020Kb

2 Biologically Active Nucleoside Analogues with 5- Or 6- Membered Monocyclic Nucleobases 31 VU Research Portal Robust Applications in Time-Shared Distributed Systems Dobber, A.M. 2006 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Dobber, A. M. (2006). Robust Applications in Time-Shared Distributed Systems. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 25. Sep. 2021 Mureidomycin A and Dihydropyrimidine Nucleosides Exploring efficient multicomponent reactions and chemo‐enzymatic approaches Danielle J. Vugts © 2006, D. J. Vugts, Amsterdam Cover design: Anette Coppens VRIJE UNIVERSITEIT Mureidomycin A and Dihydropyrimidine Nucleosides Exploring efficient multicomponent reactions and chemo-enzymatic approaches ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. L.M. Bouter, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Exacte Wetenschappen op vrijdag 15 december 2006 om 13.45 uur in het auditorium van de universiteit, De Boelelaan 1105 door Daniëlle Johanna Vugts geboren te Tilburg promotor: prof.dr. M.B. Groen copromotor: dr. R.V.A. Orru aan mijn ouders Table of Contents List of Abbreviation 9 Chapter 1 Mureidomycin A; a New Potential Antibiotic 13 Chapter 2 Biologically Active Nucleoside Analogues with 5- or 6- Membered Monocyclic Nucleobases 31 Chapter 3 Multicomponent Synthesis of Dihydropyrimidines 67 Chapter 4 Synthesis of Thiazines and Dihydropyrimidine-2-thiones 95 Chapter 5 A Mild Chemo-Enzymatic Oxidation-Hydrocyanation Protocol 115 Chapter 6 Synthetic Studies towards the 3’-Deoxyribose Moiety 131 Chapter 7 Synthetic Studies towards Mureidomycin A and Dihydropyrimidine Nucleosides 151 Summary and Outlook 169 Samenvatting 173 Dankwoord 177 Curriculum vitae 181 List of Publications 183 List of Abbreviations AICAR 5-aminoimidazole-4-carboxamide ribonucleoside AMBA 2-Amino-3-methylaminobutanoic acid ADP adenosine diphosphate AMP adenosine monophosphate ATP adenosine triphosphate BB building block BDV borna disease virus BH benzoyl hydrazide br broad BSA bis(trimethylsilyl)acetamide BVDU (E)-5-(2-Bromovinyl)-2’-deoxyuridine Cbz benzoyloxycarbonyl CC column chromatography CF continuous flow d doublet de diastereomeric excess DEE diethyl ether DHPM dihydropyrimidine DIPEA diisopropylethylamine DMAP dimethylaminopyridine DMP Dess–Martin periodinane DMSO dimethyl sulfoxide DSC differential scanning calorimetry EA ethyl acetate ee enantiomeric excess EI electron impact EICAR 5-ethynylimidazole-4-carboxamide ribonucleoside ED50 median effective dose equiv. equivalents FICAR 5-fluoro imidazole-4-carboxamide ribonucleoside FPV influenza virus A GC gas chromatography GMP guanosine monophosphate GTP guanosine triphosphate HbHNL Hevea Brasiliensis Hydroxy nitrile lyase HBV hepatitis B virus HIV human immunodeficiency virus HCV hepatitis C virus HCN hydrocyanic acid HMCV human cytomegalovirus HMDS hexamethyldisilazane HMPA hexamethylphosphoric acid HNL Hydroxynitrile lyase HPLC high-performance liquid chromatography 9 HRMS high-resolution mass spectra HSV herpes simplex virus HWE/aza-DA 4CR Horner-Wadsworth-Emmons/aza-Diels Alder four component reaction IC50 concentration at which cell growth is inhibited 50 % IMP inosine monophosphate IMPDH inosine monophosphate dehydrogenase IPCAR methyl-iodo-1-β-D-ribofuranosylpyrazole-3-carboxylate IPdR 5-Iodo-pyrimidin-2-one 2’-deoxyribose IPN infectious pancreatic necrosis IR infrared KU kilo unit LD50 concentration at which lethality is 50 % m medium MCR multi component reaction MIC minimal inhitory concentration MRD mureidomycin MS mass spectrum MTBE methyl t-butyl ether MVV maedi-visna virus MW microwave NAD nicotinamide adenine dinucleotide NaOCl sodium hypochlorite NDV newcastle disease virus NMP N-methyl-2-pyrrolidone NMR nuclear magnetic resonance PaHNL Prunus amygdalus Hydroxy nitrile lyase PCC pyridinium chlorochromate PDC pyridinium dichromate PE petroleum ether PG protecting group PsRV pseudorabies virus Rf retardation factor RVF rift valley fever RSV respiratory syncital virus Rt retention time s singlet/strong SAR structure-activity relationship spp species SVR sustained viral response t triplet TBS tert-butyldimethyl silyl TEMPO tetramethylpiperidinyloxy free radical THF tetrahydrofuran TLC thin layer chromatography TSAO 2’,5’-bis-O-(tert-butyldimethylsilyl)-β-D-ribofuranosyl-3’-spiro-5’’- (4’’amino-1’’2’’-oxathiole-2’’,2’’-dioxide) 10 UDP uridine 5’-diphosphate UPA uridylpeptide antibiotic VEE venezuelan equine encephalitis VV vaccinia virus w weak YFV yellow fever virus ZMP AICAribotide 5-AZA-CdR 5-aza-2’-deoxycytidine 4CR four-component reaction 3-DC 3-deazacytidine 3-DU 3-deazauridine 11 1 Mureidomycin A a New Potential Antibiotic Over the last twenty years the incidence of life-threatening infections has increased while the number of immuno compromised persons has also increased. As a consequence the resistance of bacterial strains to current antibiotics like penicillins and vancomycin has become a major clinical threat. In the late eighties a family of antibiotics, the mureidomycins, has been discovered which act as antibacterial agent via inhibition of MraY, an essential enzyme in the peptidoglycan synthesis of bacteria. The mureidomycins have been investigated, but a clear inhibition mechanism has not been found. In this chapter a short summary will be given of what is known about the mureidomycins and the synthesis of their analogues. Chapter 1 1.1 Introduction Some seventy-five years ago antibiotics became available. When first discovered, antibiotics were thought to provide a miracle cure, and they literally were. Infections that were fatal before 1900 were tamed to mere inconveniences during the 20th century. However, the misuse, overprescription and abuse of antibiotics has allowed resistant strains of bacteria to develop and they once again threaten health and life.1 The first example of resistance to an antibiotic was observed in the early 1940s. Right after the introduction of penicillin, it was found that the Minimal Inhitory concentrations (MICs) for Staphylococcus aureus, which can cause severe food poisoning, increased.2 In the period of the 1980s and 1990s very potent broad-spectrum antibacterials were introduced. However, this led to concomitant increase in antibiotic resistance.3 The resistance of bacteria, fungi and yeasts against antibiotics can be described with three types of mechanisms: 4 a) Drug modification or inactivation b) Target modification c) Modified Cellular Uptake The development of resistance against antibiotics is a cause of serious concern and the search for new antibacterial agents is a hot topic. The problem adherent to this is that these new antibiotic agents will show also resistance leading to the question: when does the next generation of resistance factor emerge after new antibacterial agents have been introduced? 1.2 Targets for antibacterial drugs Almost all of the major antibiotics act against three primary processes in the pathogenic bacteria: protein biosynthesis, DNA replication and repair, and cell-wall biosynthesis (Figure 1.1).5-7 Protein biosynthesis offers many steps where antibiotics could disrupt the machinery; examples of these antibiotics are macrolides, tetracyclines, aminoglycosides and oxazolidinones.5 The only class of antibiotics in current use that blocks DNA replication and repair are the fluoroquinolones that exert their action by blocking the enzyme DNA gyrase and a cognate topoisomerase.8 Antibiotics directed against cell-wall biosynthesis include the β-lactam group of penicillins and cephalosporins as well as the glycopeptide antibiotic class, of which two members, vancomycin and teicoplanin, are approved for clinical use in humans.5 However, resistance has been reported against all of these antibiotics, which is a cause of concern. One of the possible solutions to overcome this problem is to find new biological targets e.g. in the cell-wall biosynthesis on which no antibiotic is currently acting. 14 Mureidomycin A; a New Potential Antibiotic Cell Wall Biosynthesis β−Lactams Vancomycin Teicoplanin Protein Biosynthesis Macrolides Tetracyclines Aminoglycosides Oxazolidinones DNA Replication and Repair Fluoroquinolones Figure 1.1 Bacterial targets of antibiotics This thesis focuses on the mureidomycins (MRDs), and this new class of antibiotics has been shown to disrupt the bacterial cell wall synthesis. The biosynthesis of peptidoglycan is a complex three-stage process. The first stage involves synthesis of N-acetylmuramyl- pentapeptide by enzymes located in the cytoplasm, or at the inner surface of the cytoplasmic membrane. First UDP-N-acetylmuramic acid is formed from UDP-
Recommended publications
  • Endogenous Metabolites: JHU NIMH Center Page 1
    S. No. Amino Acids (AA) 24 L-Homocysteic acid 1 Glutaric acid 25 L-Kynurenine 2 Glycine 26 N-Acetyl-Aspartic acid 3 L-arginine 27 N-Acetyl-L-alanine 4 L-Aspartic acid 28 N-Acetyl-L-phenylalanine 5 L-Glutamine 29 N-Acetylneuraminic acid 6 L-Histidine 30 N-Methyl-L-lysine 7 L-Isoleucine 31 N-Methyl-L-proline 8 L-Leucine 32 NN-Dimethyl Arginine 9 L-Lysine 33 Norepinephrine 10 L-Methionine 34 Phenylacetyl-L-glutamine 11 L-Phenylalanine 35 Pyroglutamic acid 12 L-Proline 36 Sarcosine 13 L-Serine 37 Serotonin 14 L-Tryptophan 38 Stachydrine 15 L-Tyrosine 39 Taurine 40 Urea S. No. AA Metabolites and Conjugates 1 1-Methyl-L-histidine S. No. Carnitine conjugates 2 2-Methyl-N-(4-Methylphenyl)alanine 1 Acetyl-L-carnitine 3 3-Methylindole 2 Butyrylcarnitine 4 3-Methyl-L-histidine 3 Decanoyl-L-carnitine 5 4-Aminohippuric acid 4 Isovalerylcarnitine 6 5-Hydroxylysine 5 Lauroyl-L-carnitine 7 5-Hydroxymethyluracil 6 L-Glutarylcarnitine 8 Alpha-Aspartyl-lysine 7 Linoleoylcarnitine 9 Argininosuccinic acid 8 L-Propionylcarnitine 10 Betaine 9 Myristoyl-L-carnitine 11 Betonicine 10 Octanoylcarnitine 12 Carnitine 11 Oleoyl-L-carnitine 13 Creatine 12 Palmitoyl-L-carnitine 14 Creatinine 13 Stearoyl-L-carnitine 15 Dimethylglycine 16 Dopamine S. No. Krebs Cycle 17 Epinephrine 1 Aconitate 18 Hippuric acid 2 Citrate 19 Homo-L-arginine 3 Ketoglutarate 20 Hydroxykynurenine 4 Malate 21 Indolelactic acid 5 Oxalo acetate 22 L-Alloisoleucine 6 Succinate 23 L-Citrulline 24 L-Cysteine-glutathione disulfide Semi-quantitative analysis of endogenous metabolites: JHU NIMH Center Page 1 25 L-Glutathione, reduced Table 1: Semi-quantitative analysis of endogenous molecules and their derivatives by Liquid Chromatography- Mass Spectrometry (LC-TripleTOF “or” LC-QTRAP).
    [Show full text]
  • Kinesin Motor Protein Inhibitors: Toward the Synthesis Of
    KINESIN MOTOR PROTEIN INHIBITORS: TOWARD THE SYNTHESIS OF ADOCIASULFATE ANALOGS by CHETAN PADMAKAR DARNE (Under the Direction of TIMOTHY M. DORE) ABSTRACT Cell division and intracellular functions are dependent on kinesin motor proteins. These proteins convey their cellular cargos by “walking” along the microtubule tracks. Specific inhibitors of kinesin would selectively abolish its activity in vivo, and knowledge regarding this inhibition pathway would aid our understanding regarding the enzyme mechanism. Currently, few inhibitors of kinesins exist. The marine natural products adociasulfates (AS) might act as lead compounds toward designing analogous inhibitors. Only AS-1 has been synthesized, requiring twenty-eight steps; therefore, we envisioned the synthesis of simpler analogs via shorter routes. We attempted functionalizing commercial steroids at one end, while the other end was transformed into an anionic moiety pivotal for binding with the kinesin motor domain. Though our AS analog does not inhibit the ATPase activity of human kinesin, this synthetic approach is practical and with some modifications, offers the potential to generate bioactive analogs of therapeutic importance. INDEX WORDS: kinesin, motor protein inhibitors, adociasulfate, AS analog KINESIN MOTOR PROTEIN INHIBITORS: TOWARD THE SYNTHESIS OF ADOCIASULFATE ANALOGS by CHETAN PADMAKAR DARNE B.Sc., University of Bombay, India, 1994 M.Sc., University of Mumbai, India, 1998 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2005 © 2005 Chetan Padmakar Darne All Rights Reserved KINESIN MOTOR PROTEIN INHIBITORS: TOWARD THE SYNTHESIS OF ADOCIASULFATE ANALOGS by CHETAN PADMAKAR DARNE Major Professor: Timothy M. Dore Committee: George Majetich Robert Phillips Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia May 2005 DEDICATION To my family members- for their unconditional love and encouragement, and for keeping my faith alive.
    [Show full text]
  • Chiral Separation for Enantiomeric Determination in the Pharmaceutical Industry
    Chapter CHIRAL SEPARATION FOR ENANTIOMERIC DETERMINATION IN THE PHARMACEUTICAL INDUSTRY Nelu Grinberg, Su Pan Contents 6.1. INTRODUCTION ...................................................................................................................................... 235 6.2. ENANTIOMERS, DIASTEREOMERS, RACEMATES ................................................................... 236 6.3. REQUIREMENTS FOR CHIRAL SEPARATION ............................................................................ 237 6.4. THE TYPES OF MOLECULAR INTERACTIONS ........................................................................... 237 6.4.1. Chiral separation through hydrogen bonding ............................................................. 237 6.4.2. Chiral separation through inclusion compounds ....................................................... 243 6.4.2.1. Cyclodextrins ............................................................................................................ 243 6.4.2.2. Crown ethers ............................................................................................................. 245 6.4.3. Charge transfer .......................................................................................................................... 259 6.4.4. Chiral separation through a combination of charge transfer, hydrogen bonding and electrostatic interactions ........................................................................... 260 233 Chapter 6 6.4.5. Ligand exchange ......................................................................................................................
    [Show full text]
  • Appendix E Papers That Were Accepted for ECOTOX
    Appendix E Papers that Were Accepted for ECOTOX E1. Acceptable for ECOTOX and OPP 1. Aitken, R. J., Ryan, A. L., Baker, M. A., and McLaughlin, E. A. (2004). Redox Activity Associated with the Maturation and Capacitation of Mammalian Spermatozoa. Free Rad.Biol.Med. 36: 994-1010. EcoReference No.: 100193 Chemical of Concern: RTN,CPS; Habitat: T; Effect Codes: BCM,CEL; Rejection Code: LITE EVAL CODED(RTN,CPS). 2. Akpinar, M. B., Erdogan, H., Sahin, S., Ucar, F., and Ilhan, A. (2005). Protective Effects of Caffeic Acid Phenethyl Ester on Rotenone-Induced Myocardial Oxidative Injury. Pestic.Biochem.Physiol. 82: 233- 239. EcoReference No.: 99975 Chemical of Concern: RTN; Habitat: T; Effect Codes: BCM,PHY; Rejection Code: LITE EVAL CODED(RTN). 3. Amer, S. M. and Aboul-Ela, E. I. (1985). Cytogenetic Effects of Pesticides. III. Induction of Micronuclei in Mouse Bone Marrow by the Insecticides Cypermethrin and Rotenone. Mutation Res. 155: 135-142. EcoReference No.: 99593 Chemical of Concern: CYP,RTN; Habitat: T; Effect Codes: CEL,PHY,MOR; Rejection Code: LITE EVAL CODED(RTN),OK(CYP). 4. Bartlett, B. R. (1966). Toxicity and Acceptance of Some Pesticides Fed to Parasitic Hymenoptera and Predatory Coccinellids. J.Econ.Entomol. 59: 1142-1149. EcoReference No.: 98221 Chemical of Concern: AND,ARM,AZ,DCTP,Captan,CBL,CHD,CYT,DDT,DEM,DZ,DCF,DLD,DMT,DINO,ES,EN,ETN,F NTH,FBM,HPT,HCCH,MLN,MXC,MVP,Naled,KER,PRN,RTN,SBDA,SFR,TXP,TCF,Zineb; Habitat: T; Effect Codes: MOR; Rejection Code: LITE EVAL CODED(RTN),OK(ARM,AZ,Captan,CBL,DZ,DCF,DMT,ES,MLN,MXC,MVP,Naled,SFR).
    [Show full text]
  • Selective Acetylation of Small Biomolecules and Their Derivatives Catalyzed by Er(Otf)3
    Article Selective Acetylation of Small Biomolecules and Their Derivatives Catalyzed by Er(OTf)3 Monica Nardi 1,2,*, Maria Luisa Di Gioia 3,*, Paola Costanzo 4, Antonio De Nino 1, Loredana Maiuolo 1, Manuela Oliverio 4, Fabrizio Olivito 4 and Antonio Procopio 4 1 Dipartimento di Chimica, Università della Calabria Cubo 12C, 87036 Arcavacata di Rende CS, Italy; [email protected] (A.D.N.); [email protected] (L.M.) 2 Dipartimento di Agraria, Università Telematica San Raffaele, Roma, Via di Val Cannuta, 247, 00166 Rome, Italy 3 Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Edificio Polifunzionale, Università della Calabria, Arcavacata di Rende, 87030 Cosenza, Italy 4 Dipartimento di Scienze della Salute, Università Magna Graecia, Viale Europa, Germaneto, 88100 Catanzaro CZ, Italy; [email protected] (P.C.); [email protected] (M.O.); [email protected] (F.O.); [email protected] (A.P.) * Correspondence: [email protected] (M.N.); [email protected] (M.L.D.G.); Tel.: +39‐0984‐492‐850 (M.N. & M.L.D.G.) Received: 21 July 2017; Accepted: 6 September 2017; Published: 12 September 2017 Abstract: It is of great significance to develop sustainable processes of catalytic reaction. We report a selective procedure for the synthesis of acetylated bioactive compounds in water. The use of 1‐acetylimidazole combined with Er(OTf)3 as a Lewis acid catalyst gives high regioselectivity and good yields for the acetylation of primary hydroxyl groups, as well as amino groups. The protection is achieved in short reaction times under microwave irradiation, and is successful even in the case of base‐sensitive substrates.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,890,933 B1 Feng Et Al
    USOO6890933B1 (12) United States Patent (10) Patent No.: US 6,890,933 B1 Feng et al. (45) Date of Patent: May 10, 2005 (54) KINESIN INHIBITORS Hagan, et al., “Kinesin-related cut7 protein associates with mitotic and meiotic spindles in fission yeast Nature, 356: (75) Inventors: Yan Feng, Brookline, MA (US); Tarun 74-76, 1992. M. Kapoor, New York, NY (US); Hamel, E., “Antimitotic Natural Products and Their Inter Thomas Mayer, Brookline, MA (US); actions with Tubulin', Med. Res. Rev. 16: 207-231, 1996. Zoltan Maliga, East Brunswick, NJ He, et al., “A Simplified System for Generating Recombi (US); Timothy J. Mitchison, nant Adenoviruses', Proc. Natl. Acad. Sci. USA., 95: Brookline, MA (US); Justin Yarrow, 2509-2514, 1998. Boston, MA (US) Hirokawa, “Kinesin and Dynenin Superfamily Proteins and (73) Assignee: President and Fellows of Harvard the Mechanisms of Organelle Transport Science, 279: College, Cambridge, MA (US) 519–526, 1998. Hirschberg, et al., “Kinetic Analysis of Secretory Protein (*) Notice: Subject to any disclaimer, the term of this Traffic and Characterization of Golgi to Plasma Membrane patent is extended or adjusted under 35 Transport Intermediates in Living Cells' J. Cell Biol. 143: U.S.C. 154(b) by 0 days. 1485–1503, 1998. Hoyt, et al., “Two Saccharomyces cerevisiae kinesin-related (21) Appl. No.: 09/791,339 gene products required for mitotic Spindle assambly J. Cell Biol. 118: 109-120, 1992. (22) Filed: Feb. 23, 2001 Hung, et al., “Understanding and Controlling the Cell Cycle Related U.S. Application Data with Natural Products” Chem. Biol. 3: 623–639, 1996. (60) Provisional application No.
    [Show full text]
  • Synthesis and Cytotoxicity
    XXI INTERNATIONAL SYMPOSIUM „ADVANCES IN THE CHEMISTRY OF HETEROORGANIC COMPOUNDS” ORGANIZED BY Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Section of Heteroorganic Chemistry Polish Chemical Society in cooperation with Faculty of Mathematics Faculty of Chemistry and Natural Sciences Łódź Branch University of Łódź Jan Dlugosz University Polish Chemical Society in Czestochowa ŁÓDŹ, November 23, 2018 Printed by PIKTOR Szlaski i Sobczak Spółka Jawna, Tomaszowska 27, 93-231 Łódź, 2018. ISBN 978-83-7455-585-2 http://www.cbmm.lodz.pl/ XXI International Symposium “Advances in the Chemistry of Heteroorganic Compounds” is dedicated to Professor Tadeusz Gajda and Professor Janusz Zakrzewski on the occasion of their 70th birthday Conference Chairman Józef Drabowicz Organizing Committee Bogdan Bujnicki Tomasz Cierpiał Ignacy Janicki Piotr Kiełbasiński Dorota Krasowska Jerzy Krysiak Piotr Łyżwa Aneta Rzewnicka Wanda H. Midura Sponsored by XXI International Symposium “Advances in the Chemistry of Heteroorganic Compounds” Programme Friday, November 23 9:00 – 9:30 OPENING SESSION I – chairman: Tadeusz Gajda Stefano Menichetti University of Florence, Italy 9:30 – 10:15 PL-1 Synthesis and selected properties of heterohelicenes: A new twist on our chemistry György Keglevich 10:15– 11:00 PL-2 Budapest University of Technology and Economics, Hungary Microwave irradiation and catalysis in organophosphorus chemistry – green synthesis of organophosphorus compounds 11:00 – 11:20 COFFEE BREAK 11:20 – 12:50 POSTER SESSION 12:50 – 13:50
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • Proteostasis of Glial Intermediate Filaments: Disease Models, Tools, and Mechanisms
    PROTEOSTASIS OF GLIAL INTERMEDIATE FILAMENTS: DISEASE MODELS, TOOLS, AND MECHANISMS Rachel Anne Battaglia A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Cell Biology and Physiology in the School of Medicine. Chapel Hill 2021 Approved by: Natasha T. Snider Carol Otey Keith Burridge Douglas Cyr Mohanish Deshmukh Damaris Lorenzo i © 2021 Rachel Anne Battaglia ALL RIGHTS RESERVED ii ABSTRACT Rachel Anne Battaglia: Proteostasis of Glial Intermediate Filaments: Disease Models, Tools, and Mechanisms (Under the direction of Natasha T. Snider) Astrocytes are a major glial cell type that is crucial for the health and maintenance of the Central Nervous System (CNS). They fulfill diverse functions, including synapse formation, neurogenesis, ion homeostasis, and blood brain barrier formation. Intermediate filaments (IFs) are components of the astrocyte cytoskeleton that support many of these functions in healthy individuals. However, upon cellular stress or genetic mutations, IF proteins are prone to accumulation and aggregation. These processes are thought to contribute to disease pathogenesis of different tissue-specific disorders, but therapeutic targeting of IFs is hindered by a lack of pharmacological tools to modulate their assembly and disassembly states. Moreover, the mechanisms that govern the formation and dissolution of IF aggregates are poorly defined. In this dissertation, I investigate IF aggregates called Rosenthal fibers (RFs), which form in astrocytes of patients with two pediatric neurodegenerative diseases, Alexander disease (AxD) and Giant Axonal Neuropathy (GAN). My aim was to gain a better understanding of the mechanisms of how astrocyte IF protein aggregates form and interrogate the role of post- translational modifications (PTMs) in this process.
    [Show full text]
  • Viscoelastic Phase Separation Process and the Development of Micro and Nanomorphologies in Epoxy Based Blends for Super Toughness
    Republic of IRAQ 2nd International Conference Ministry of Higher Education of Chemistry and Scientific Research Department of Chemistry University of Basrah College of Science Viscoelastic Phase Separation Process and the Development of Micro and Nanomorphologies in Epoxy Based Blends for Super Toughness Sabu Thomas Centre for Nanoscience and Nanotechnology and School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills P. O. Kottayam, Kerlala, India -686 560 E. mail: [email protected] Abstract Phase separation in general could be either by diffusion or by diffusion and hydrodynamic flow. A new model has been suggested recently to follow the phase separation process in dynamically asymmetric mixtures composed of fast and slow components. This new model is often called the viscoelastic phase separation process due to the fact that viscoelastic effects play a dominant role in the phase separation process [1-6]. The dynamic asymmetry can be induced by either the large size difference (mol.wt) or the difference in glass-transition temperature between the components of a mixture or blend. The mol.wt difference often exists in complex fluids, such as polymer solutions, polymer blends, micellar solutions, colloidal suspensions, emulsions, and protein solutions. The Tg differences, can exist in any mixtures. In dynamically asymmetric mixtures, phase separation generally leads to the formation of a long-lived `interaction network' (a transient gel) of slow- component molecules (or particles), if the attractive interactions between them are strong enough. Because of its long relaxation time, it cannot catch up with the deformation rate of the phase separation itself and as a result the stress is asymmetrically divided between the components.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0076019 A1 Tyers Et Al
    US 20090076019A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0076019 A1 Tyers et al. (43) Pub. Date: Mar. 19, 2009 (54) METHODS FOR TREATING Publication Classification NEUROLOGICAL DISORDERS OR DAMAGE (51) Int. Cl. Inventors: Mike Tyers, Toronto (CA); Phedias A63/496 (2006.01) (75) CI2O 1/02 (2006.01) Diamandis, Toronto (CA); Peter B. A6II 3/445 (2006.01) Dirks, Toronto (CA) A63/64 (2006.01) Correspondence Address: A6IP 25/00 (2006.01) HOWSON AND HOWSON A6IP 25/6 (2006.01) SUITE 210,501 OFFICE CENTER DRIVE A6IP 25/18 (2006.01) FT WASHINGTON, PA 19034 (US) (52) U.S. Cl. ...................... 514/252.13:435/29: 514/317; 514f613 (73) Assignees: Mount Sinai Hospital, Toronto (CA); HSC Research and Development Limited (57) ABSTRACT Partnership, Toronto (CA) A clonogenic neurosphere assay is described that carries out high throughput screens (HTS) to identify potent and/or (21) Appl. No.: 11/871,562 selective modulators of proliferation, differentiation and/or renewal of neural precursor cells, neural progenitor cells and/ (22) Filed: Oct. 12, 2007 or self-renewing and multipotent neural stem cells (NSCs). Compositions comprising the identified modulators and Related U.S. Application Data methods of using the modulators and compositions, in par (60) Provisional application No. 60/851,615, filed on Oct. ticular to treat neurological disorders (e.g. brain or CNS can 13, 2006. cer) or damage are also disclosed. Neurosphere Stein Progenitor Differentiated eEE eEE t Prolifefatic Assay Patent Application Publication Mar. 19, 2009 Sheet 1 of 26 US 2009/0076019 A1 Figure 1 Neurosphere Progenitor O Defeitiated e CE M.
    [Show full text]
  • Fertility 2021 Full Abstract Book
    ORAL PRESENTATIONS 1 ORAL PRESENTATIONS SRF PhD Prize Session SRF.1 The novel use of androgens to optimise detection of the fertile window in giant pandas Kirsten Wilsona, Jella Wautersb, Iain Valentinec, Alan McNeillya, Mick Raed, A. Forbes Howiea, Ruth Andrewe, W. Colin Duncana aMRC CRH, University of Edinburgh; bGhent University, Belgium; Pairi Daiza Foundation, Belgium; Leibniz Institute for Zoo and Wildlife Research, Germany; cZoocraft; dEdinburgh Napier University; eBHF CVS, University of Edinburgh Background: Giant pandas are seasonally monoestrus. In Spring, estrogens increase for 1-2 weeks before a peak is reached, followed by 24-48 hours of fertility. Accurately monitoring the hormone profile is therefore vital for prediction and detection of this fertile window to facilitate insemination in a captive breeding programme. Aim: To consider biomarkers for advanced warning of estrus and the accurate timing of insemination. Methods: Urine samples from three females covering 9 breeding cycles, from 40 days before estrus until 10 days after estrus, were assayed for estrone-3-glucuronide (E1G) and progesterone (P4) by Arbor Assays ELISAs, for testosterone (T) and DHEA by validated in-house ELISAs, and for luteinising hormone (LH) by bioassay. Hormone concentrations were corrected against urinary specific gravity (USpG). Results: E1G increased for 11.4 days (range 9-14) before peaking, with the start of the rise detected retrospectively. Prospectively, using current methods, it starts when E1G concentrations become higher than P4 (9.6 days, range 7- 11). Alternatively, E1G becoming higher than T gives 4-days advanced warning of impending estrus (12.7 days, range 9-17). LH was analysed as a marker of peak fertility to time insemination.
    [Show full text]