Peripheral Nerve Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Occupational Therapy Guide for Entry
University of North Dakota UND Scholarly Commons Occupational Therapy Capstones Department of Occupational Therapy 2008 An Occupational Therapy Guide for Entry-Level Therapists not Specializing in the Treatment of Upper Extremity Dysfunction: Three Common Cumulative Trauma Injuries Ryan Edwards University of North Dakota Follow this and additional works at: https://commons.und.edu/ot-grad Part of the Occupational Therapy Commons Recommended Citation Edwards, Ryan, "An Occupational Therapy Guide for Entry-Level Therapists not Specializing in the Treatment of Upper Extremity Dysfunction: Three Common Cumulative Trauma Injuries" (2008). Occupational Therapy Capstones. 57. https://commons.und.edu/ot-grad/57 This Scholarly Project is brought to you for free and open access by the Department of Occupational Therapy at UND Scholarly Commons. It has been accepted for inclusion in Occupational Therapy Capstones by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. AN OCCUPATIONAL THERAPY GUIDE FOR ENTRY-LEVEL THERAPISTS NOT SPECIALIZING IN THE TREATMENT OF UPPER EXTREMITY DYSFUNCTION: THREE COMMON CUMULATIVE TRAUMA INJURIES by Ryan Edwards Advisor: Anne Haskins PhD, OTR/L A Scholarly Project Submitted to the Occupational Therapy Department of the University of North Dakota In partial fulfillment of the requirements for the degree of Master’s of Occupational Therapy Grand Forks, North Dakota August 1, 2008 This Scholarly Project Paper, submitted by Ryan Edwards in partial fulfillment of the requirement for the Degree of Master’s of Occupational Therapy from the University of North Dakota, has been read by the Faculty Advisor under whom the work has been done and is hereby approved. -
An Improved Technique for Radial Nerve Conduction Studies
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.30.4.332 on 1 August 1967. Downloaded from J. Neurol. Neurosurg. Psychiat., 1967, 30, 332 An improved technique for radial nerve conduction studies ALLAN W. DOWNIE1 AND THOMAS R. SCOTT From the Division of Neurology, Department of Medicine, School of Medicine, University ofNorth Carolina, Chapel Hill, North Carolina, U.S.A. A technique for recording evoked sensory potentials MATERIALS AND METHOD from the radial nerve has already been reported by us (Downie and Scott, 1964). This technique, The apparatus used was a TECA two-channel electro- myograph. The recording electrodes consisted of a pair although reliable, is time consuming and occasion- of chlorided silver discs 1 cm. in diameter, mounted ally difficult and the amplitude of potentials may be 2 5 cm. apart on a plastic base. The active recording as low as 1 to 2 microvolts. The purpose of this electrode was placed over the largest palpable branch communication is to describe a simpler technique by of the radial nerve as it crossed the tendon of the extensor which potentials of greater amplitude can be pollicis longus. The distal recording electrode was placed obtained. In addition, the segment of nerve tested is over the first dorsal interosseous muscle but not neces- Protected by copyright. one which can be readily identified and biopsied if sarily over the nerve, of which the position in this area so desired without causing unpleasant or disturbing cannot be precisely determined (Fig. 1). An experiment sensory loss to the subject. made to assess the importance of the position of this electrode showed no significant difference in latency to The location of a nerve which is to be tested is peak when it was placed in turn on three points along usually determined by stimulating its motor fibres a line between the tendons of the extensor pollicis and finding the stimulus site from which maximal longus and extensor indicis provided the interelectrode muscle contraction is obtained. -
A Guide to Transthyretin Amyloidosis
A Guide to Transthyretin Amyloidosis Authored by Teresa Coelho, Bo-Goran Ericzon, Rodney Falk, Donna Grogan, Shu-ichi Ikeda, Mathew Maurer, Violaine Plante-Bordeneuve, Ole Suhr, Pedro Trigo 2016 Edition Edited by Merrill Benson, Mathew Maurer What is amyloidosis? Amyloidosis is a systemic disorder characterized by extra cellular deposition of a protein-derived material, known as amyloid, in multiple organs. Amyloidosis occurs when native or mutant poly- peptides misfold and aggregate as fibrils. The amyloid deposits cause local damage to the cells around which they are deposited leading to a variety of clinical symptoms. There are at least 23 different proteins associated with the amyloidoses. The most well-known type of amyloidosis is associated with a hematological disorder, in which amyloid fibrils are derived from monoclonal immunoglobulin light-chains (AL amyloidosis). This is associated with a clonal plasma cell disorder, closely related to and not uncommonly co-existing with multiple myeloma. Chronic inflammatory conditions such as rheumatoid arthritis or chronic infections such as bronchiectasis are associated with chronically elevated levels of the inflammatory protein, serum amyloid A, which may misfold and cause AA amyloidosis. The hereditary forms of amyloidosis are autosomal dominant diseases characterized by deposition of variant proteins, in dis- tinctive tissues. The most common hereditary form is transthyretin amyloidosis (ATTR) caused by the misfolding of protein monomers derived from the tetrameric protein transthyretin (TTR). Mutations in the gene for TTR frequently re- sult in instability of TTR and subsequent fibril formation. Closely related is wild-type TTR in which the native TTR protein, particu- larly in the elderly, can destabilize and re-aggregate causing non- familial cases of TTR amyloidosis. -
Expert Consensus Recommendations to Improve Diagnosis of ATTR Amyloidosis with Polyneuropathy
Journal of Neurology https://doi.org/10.1007/s00415-019-09688-0 REVIEW Expert consensus recommendations to improve diagnosis of ATTR amyloidosis with polyneuropathy David Adams1 · Yukio Ando2 · João Melo Beirão3 · Teresa Coelho4 · Morie A. Gertz5 · Julian D. Gillmore6 · Philip N. Hawkins6 · Isabelle Lousada7 · Ole B. Suhr8 · Giampaolo Merlini9,10 Received: 10 December 2019 / Revised: 20 December 2019 / Accepted: 23 December 2019 © The Author(s) 2020 Abstract Amyloid transthyretin (ATTR) amyloidosis with polyneuropathy (PN) is a progressive, debilitating, systemic disease wherein transthyretin protein misfolds to form amyloid, which is deposited in the endoneurium. ATTR amyloidosis with PN is the most serious hereditary polyneuropathy of adult onset. It arises from a hereditary mutation in the TTR gene and may involve the heart as well as other organs. It is critical to identify and diagnose the disease earlier because treatments are available to help slow the progression of neuropathy. Early diagnosis is complicated, however, because presentation may vary and family history is not always known. Symptoms may be mistakenly attributed to other diseases such as chronic infammatory demyelinating polyradiculoneuropathy (CIDP), idiopathic axonal polyneuropathy, lumbar spinal stenosis, and, more rarely, diabetic neuropathy and AL amyloidosis. In endemic countries (e.g., Portugal, Japan, Sweden, Brazil), ATTR amyloidosis with PN should be suspected in any patient who has length-dependent small-fber PN with autonomic dysfunction and a family history of ATTR amyloidosis, unexplained weight loss, heart rhythm disorders, vitreous opacities, or renal abnormali- ties. In nonendemic countries, the disease may present as idiopathic rapidly progressive sensory motor axonal neuropathy or atypical CIDP with any of the above symptoms or with bilateral carpal tunnel syndrome, gait disorders, or cardiac hypertro- phy. -
Practical Neurology: Peripheral Neuropathy for the Internist
Practical Neurology: Polyneuropathy for the Non-Neurologist Steven A. Day, MD Providence Neurological Specialties Definitions Foundational Principle: With neurological problems think of LOCALIZATION before SYNDROME Definitions • Neuronopathy – Motor neuronopathy – Sensory neuronopathy • Radiculopathy • Plexopathy • Neuropathy – Mononeuropathy – Polyneuropathy The Netter Collection of Medical Illustrations, Volume 1, Nervous System, 2002 “ROOTS” C4 TRUNKS C5 Dorsal scapular n. C6 TRUNKS C7 Suprascapular n. T1 DIVISIONS Musculocut- aneous n. CCF CORDS 2002 Long thoracic n. TERMINAL NERVES CCF ©2002 Axillary n. Radial n. Median n. Ulnar n. Definitions ‘Neuropathy’ is a diagnosis which specifies the location of pathology, not a symptom Definitions • Axonal = axon loss pathology • Demyelinating = myelin loss pathology Topical Diagnosis in Neurology, 3rd ed. 1998 Topical Diagnosis in Neurology, 3rd ed. 1998 Duss’ Topical Diagnosis in Neurology, 4th ed. 2005 Polyneuropathy Polyneuropathy: Typical Presentation • Insidious onset • Distal (toes, pads of feet) • Gradual progression • Complaints are primarily sensory Polyneuropathy: Key Exam Features • Sensory – Distal gradient of sensory loss • Pin prick or cold • Monofilament • Cotton wisp • Vibration at toes and ankles • Proprioception: toe movements Polyneuropathy: Key Exam Features • Motor – Is there intrinsic foot or hand muscle atrophy? – Weakness pattern • Distal • Proximal and distal • Asymmetric – Able to stand/elevate on toes and heels? Polyneuropathy: Key Exam Features • Reflexes – Distal -
Anatomical, Clinical, and Electrodiagnostic Features of Radial Neuropathies
Anatomical, Clinical, and Electrodiagnostic Features of Radial Neuropathies a, b Leo H. Wang, MD, PhD *, Michael D. Weiss, MD KEYWORDS Radial Posterior interosseous Neuropathy Electrodiagnostic study KEY POINTS The radial nerve subserves the extensor compartment of the arm. Radial nerve lesions are common because of the length and winding course of the nerve. The radial nerve is in direct contact with bone at the midpoint and distal third of the humerus, and therefore most vulnerable to compression or contusion from fractures. Electrodiagnostic studies are useful to localize and characterize the injury as axonal or demyelinating. Radial neuropathies at the midhumeral shaft tend to have good prognosis. INTRODUCTION The radial nerve is the principal nerve in the upper extremity that subserves the extensor compartments of the arm. It has a long and winding course rendering it vulnerable to injury. Radial neuropathies are commonly a consequence of acute trau- matic injury and only rarely caused by entrapment in the absence of such an injury. This article reviews the anatomy of the radial nerve, common sites of injury and their presentation, and the electrodiagnostic approach to localizing the lesion. ANATOMY OF THE RADIAL NERVE Course of the Radial Nerve The radial nerve subserves the extensors of the arms and fingers and the sensory nerves of the extensor surface of the arm.1–3 Because it serves the sensory and motor Disclosures: Dr Wang has no relevant disclosures. Dr Weiss is a consultant for CSL-Behring and a speaker for Grifols Inc. and Walgreens. He has research support from the Northeast ALS Consortium and ALS Therapy Alliance. -
Reference List for RMA425-2 As at 7 April 2020 Number
ULNAR NEUROPATHY AT THE ELBOW RMA ID Reference List for RMA425-2 as at 7 April 2020 Number Addas BM (2012). Ulnar neuropathy caused by traumatic arterio-venous 63167 fistula following gunshot wound. Neurosciences, 17(2): 165-6. Al-Najjim M, Mustafa A, Fenton C, et al (2013). Giant solitary synovial osteochondromatosis of the elbow causing ulnar nerve neuropathy: a 81900 case report and review of the literature. J Brachial Plex Peripher Nerve Inj, 8(1): 1. Altun Y, Aygun SM, Cevik MU, et al (2013). Relation between 63195 electrophysiological findings and diffusion weighted magnetic resonance imaging in ulnar neuropathy at the elbow. J Neuroradiol, 40(4): 260-6. Aly AR, Rajasekaran S, Obaid H, et al (2013). Bilateral ulnar neuropathy 63758 at the elbow secondary to neuropathic arthropathy associated with syringomyelia. PM & R, 5(6): 533-8. Andersen JH, Frost P, Fuglsang-Frederiksen A, et al (2012). Computer 81462 use and ulnar neuropathy: results from a case-referent study. Work, 41(Suppl 1): 2434-7. Babal JC, Mehlman CT, Klein G (2010). Nerve injuries associated with 81463 pediatric supracondylar humeral fractures: a meta-analysis. J Pediatr Orthop, 30(3): 253-63. Balakrishnan A, Chang YJ, Elliott DA, et al (2012). Intraneural lipoma of 81901 the ulnar nerve at the elbow: A case report and literature review. Can J Plast Surg, 20(3): e42-3. Bales J, Bales K, Baugh L, et al (2012). Evaluation for ulnar neuropathy 81464 at the elbow in Ironman triathletes: physical examination and electrodiagnostic evidence. Clin J Sport Med, 22(2): 126-31. Balik G, Balik MS, Ustuner I, et al (2014). -
The Usefulness of Proximal Radial Motor Conduction in Acute Compressive Radial Neuropathy
JCN Open Access ORIGINAL ARTICLE pISSN 1738-6586 / eISSN 2005-5013 / J Clin Neurol 2015;11(2):178-182 / http://dx.doi.org/10.3988/jcn.2015.11.2.178 The Usefulness of Proximal Radial Motor Conduction in Acute Compressive Radial Neuropathy Kun Hyun Kima b Background and PurposezzThe objective of this study was to determine diagnostic and Kee-Duk Park a prognostic values of proximal radial motor conduction in acute compressive radial neuropathy. Pil-Wook Chung a MethodszzThirty-nine consecutive cases of acute compressive radial neuropathy with radial Heui-Soo Moon conduction studies–including stimulation at Erb’s point–performed within 14 days from a Yong Bum Kim clinical onset were reviewed. The radial conduction data of 39 control subjects were used as a Won Tae Yoon reference data. b Hyung Jun Park ResultszzThirty-one men and eight women (age, 45.2±12.7 years, mean±SD) were enrolled. Bum Chun Suha All 33 patients in whom clinical follow-up data were available experienced complete recov- ery, with a recovery time of 46.8±34.3 days. Partial conduction block was found frequently a Department of Neurology, Kangbuk Samsung Hospital, (17 patients) on radial conduction studies. The decrease in the compound muscle action po- Sungkyunkwan University tential area between the arm and Erb’s point was an independent predictor for recovery time. School of Medicine, Seoul, Korea zzProximal radial motor conduction appears to be a useful method for the early b Conclusions Department of Neurology, detection and prediction of prognosis of acute compressive radial neuropathy. Mokdong Hospital, Ewha Womans University Key Wordszz radial neuropathy, nerve conduction study, conduction block, diagnosis, School of Medicine, Seoul, Korea prognosis. -
Perioperative Upper Extremity Peripheral Nerve Injury and Patient Positioning: What Anesthesiologists Need to Know
Anaesthesia & Critical Care Medicine Journal ISSN: 2577-4301 Perioperative Upper Extremity Peripheral Nerve Injury and Patient Positioning: What Anesthesiologists Need to Know Kamel I* and Huck E Review Article Lewis Katz School of Medicine at Temple University, USA Volume 4 Issue 3 Received Date: June 20, 2019 *Corresponding author: Ihab Kamel, Lewis Katz School of Medicine at Temple Published Date: August 01, 2019 University, MEHP 3401 N. Broad street, 3rd floor outpatient building ( Zone-B), DOI: 10.23880/accmj-16000155 Philadelphia, United States, Tel: 2158066599; Email: [email protected] Abstract Peripheral nerve injury is a rare but significant perioperative complication. Despite a variety of investigations that include observational, experimental, human cadaveric and animal studies, we have an incomplete understanding of the etiology of PPNI and the means to prevent it. In this article we reviewed current knowledge pertinent to perioperative upper extremity peripheral nerve injury and optimal intraoperative patient positioning. Keywords: Nerve Fibers; Proprioception; Perineurium; Epineurium; Endoneurium; Neurapraxia; Ulnar Neuropathy Abbreviations: PPNI: Perioperative Peripheral Nerve 2018.The most common perioperative peripheral nerve Injury; MAP: Mean Arterial Pressure; ASA CCP: American injuries involve the upper extremity with ulnar Society of Anesthesiology Closed Claims Project; SSEP: neuropathy and brachial plexus injury being the most Somato Sensory Evoked Potentials frequent [3,4]. In this article we review upper extremity PPNI with regards to anatomy and physiology, Introduction mechanisms of injury, risk factors, and prevention of upper extremity PPNI. Perioperative peripheral nerve injury (PPNI) is a rare complication with a reported incidence of 0.03-0.1% [1,2]. Anatomy and Physiology of Peripheral PPNI is a significant source of patient disability and is the Nerves second most common cause of anesthesia malpractice claims [3,4]. -
069-Workshop-Food Allergy
WORKSHOP Practical Pointers For Your Practice Short Snappers in Neurology: Clinical Strategies and Problems Alan E. Goodridge , MD, FRCPC Presented at Memorial University’s Wednesday at Noon Ask the Consultant Seminar, January 17, 2007. Scenario 1 The approach to the neurological hen faced with a examination Wneurological The neurological exam can be daunting, but strate - problem, it is helpful, gies can be developed to target the key aspects of the during the history, to n neurological exam to answer the clinical questions make ©a judgment utio raised by the history. When faced with a neurologi - ht rib ig ist ad, cal problem, it is helpful, during the history, to mayke rregarding Dwhetwhnelor the p ial n do a judgment regarding whether the probleom is more rc rs ca use C proeblemuseis monoarl e likely likely to be of peripheral or central nervous system mm rised pers o utho y for (CNS) origin. r C ed. Ato bceopof peripheral or o hibit ingle When there are localizianglseymptomprs,osuch ats a s S use prin CNS origin. acute presentatiofnoofra hemirpisleegdia, the ceanntrdal origin t utho view of theNprooblem wUilnl abe obvioluasy. ,With clinical prob - This approach contrasts with problems that, disp lems where there are usually no localizing symp - based on the history, suggest a peripheral nervous toms, such as a headache or a seizure, the clinical system origin. For example, when the symptoms are exam is primarily directed towards the question of a localized to one limb ( i.e., with pain and numbness possible problem of central origin. in one arm). -
A Case of Bickerstaff S Brainstem Encephalitis in Childhood '
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals Korean Journal of Pediatrics Vol. 53, No. 4, 2010 DOI : 10.3345/kjp.2010.53.4.607 Case report 1)jtj A case of Bickerstaff’s brainstem encephalitis in childhood Ji Youn Kim, M.D., Young Ok Kim, M.D., Young Jun Son, M.D. and Young Jong Woo, M.D. Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea = Abstract = Bickerstaff's brainstem encephalitis (BBE) is a rare disease diagnosed by specific clinical features such as 'progressive, relatively symmetric external ophthalmoplegia and ataxia by 4 weeks' and 'disturbance of consciousness or hyperreflexia' after the exclusion of other diseases involving the brain stem. Anti-ganglioside antibodies (GM, GD and GQ) in the serum or cerebrospinal fluid (CSF) are sometimes informative for the diagnosis of BBE because of the rarity of positive findings in other diagnositic methods: brain magnetic resonance imaging (MRI), routine CSF examination, motor nerve conduction study, and needle electromyography. We report a rare case of childhood BBE with elevated anti-GM1 antibodies in the serum, who had specific clinical symptoms such as a cranial polyneuropathy presenting as ophthalmoplegia, dysarthria, dysphagia, and facial weakness; progressive motor weakness; altered mental status; and ataxia. However, the brain MRI, routine CSF examination, nerve conduction studies, electromyography, somatosensory evoked potentials, and brainstem auditory evoked potentials were normal. BBE was suspected and the patient was successfully treated with intravenous immunoglobulins. (Korean J Pediatr 2010;53:607-611) Key Words : Encephalitis, Brain stem, Child bulins (IVIG) for the treatment of BBE suggests an auto- Introduction immune etiology5, 6). -
Cubital Tunnel Syndrome Guidance
CUBITAL TUNNEL SYNDROME GUIDANCE Author Louise Ross ([email protected]) Organisation NHS Greater Glasgow and Clyde Created 15/04/2016 15:32:54 Modified 26/10/2016 16:17:15 Modified By Louise Ross This pathway can be viewed at http://www.ckp.scot.nhs.uk/Published/Viewer.aspx?id=1743 Copyright © NHS Greater Glasgow and Clyde 2012. All rights reserved Cubital Tunnel Syndrome Guidance Author: Louise Ross CUBITAL TUNNEL SYNDROME GUIDANCE AHP Exit/ Parallel Serious Red Flags Routes Pathology Cubital Tunnel Syndrome Post Operatively Mild - Moderate Signs Moderate - Severe Signs and and Symptoms Symptoms 1st Line Management Place on hold/ Review in 6/52 Discharge Escalate 2nd Line Management Review Discharge Escalate Surgical Opinion/ List for surgery Post Operative Key More Infomation Decision Discharge Intervention Red Flag Self-Management Default Page 1/9 Cubital Tunnel Syndrome Guidance Author: Louise Ross GENERAL RELATED INFORMATION FOR PATHWAY Copyright Information Copyright © NHS Greater Glasgow and Clyde, 2013-2016, All rights reserved Page 2/9 Cubital Tunnel Syndrome Guidance Author: Louise Ross SPECIFIC RELATED INFORMATION FOR PATHWAY SECTIONS RED FLAGS Pathways Related pathway: MSK Foot and Ankle Red Flags NHSGGC SERIOUS PATHOLOGY Pathways Related pathway: Serious Pathology AHP EXIT/ PARALLEL ROUTES Pathways Related pathway: exit routes x 6 CUBITAL TUNNEL SYNDROME Information Description Cubital tunnel syndrome occurs due to compression of the ulnar nerve at the elbow. It is the second most common nerve compression and causes para/anaesthesia of the little and ulnar half of the ring finger with weakness of small muscles of the hand and/or the thumb.