IDENTIFICATIONOFASSOCIATEDWITH

DIAPAUSEANDTOLERANCE

DISSERTATION

PresentedinPartialFulfillmentoftheRequirementsfor theDegreeDoctorofPhilosophyintheGraduate SchoolofTheOhioStateUniversity By

AiqingLi,M.S.

*****

TheOhioStateUniversity

2008

DissertationCommittee:Approvedby

ProfessorDavidL.Denlinger,Advisor

ProfessorDonaldH.Dean ______

ProfessorGlenR.Needham Advisor GraduatePrograminEntomology

Copyrightby

AiqingLi

2008

ABSTRACT

This dissertation focuses on patterns of synthesis that are linked to several different stress responses in . These include the overwintering dormancyresponseofinsects,knownas;theresponseofinsectstorapid dropsintemperature,knownasrapidcoldhardening(RCH),andresponsesofan

Antarcticinsecttodesiccationandrehydration.

Proteomics, the comprehensive study of all proteins in an , has proven to be a powerful technique for studying changes in protein abundance during various stresses. However, only a few studies have used proteomics to examinediapauseandstressresponsesininsects.Theprimaryfocusofthiswork istoidentifyproteinsassociatedwithdiapause,lowtemperatureanddesiccation.

Theflesh, Sarcophaga crassipalpi s,andthemidge, ,were usedasmodel.

A proteomic analysis of pupal brains in S. crassipalpi s revealed that heat shockproteins(Hsp)wereamongthemostconspicuousbrainproteinspresentin higher amounts during diapause. While the mRNAs encoding Hsps were previouslyknowntobeassociatedwithdiapause,otherproteinsidentifiedduring

ii this study were not known to be linked to diapause, thus suggesting that the proteomic approach nicely supplements work done at the transcript level. A encoding neuropeptide like precursor 4 in S. crassipalpis showed close associationwithdiapause,suggestingapotentialroleforthisgeneininitiatingand maintaining diapause. Changes in brain proteins following pupal diapause termination in S. crassipalpis showed an increase in abundance of myoinositol1phosphate synthase (Inos). The elevation of Inos at diapause termination is likely downstream of the physiological regulation that initiates development.DuringRCH,anincreaseinATPsynthasesuggeststhatanelevation of ATP is an important component of this response, and a small Hsp increase suggeststhatatleastoneoftheHspsisactuallymobilizedduringRCH,ratherthat afterRCHaspreviouslyassumed.Proteomicsof B. antarctica larvaeindicatethat both desiccation and rehydration elicit synthesis of contractile and cytoskeletal proteinsthatarelikelytobeinvolvedinthebody contraction and cytoskeleton rearrangementsthatareassociatedwithsurvivalofchangesinbodywatercontent.

iii

Dedicatedtomyparents

iv

ACKNOWLEDGMENTS

I am grateful to my advisor, Dr. David L. Denlinger, for his great supportandintellectualguidancethroughoutmy5year Ph. D. study. His encouragement, enthusiasm and expert editorial contribution make this dissertationpossible.

I appreciate my committee members, Drs. Donald H. Dean, David J.

Horn,andGlenR.Needham,fortheirvaluablecommentsandsuggestions tothisdissertation.

IwouldliketothankDavidMandichofPlantMicrobeGenomicsFacilityat

TheOhioStateUniversity,forhisadviceonimageanalysisandKari

GreenChurch,OSUCampusChemicalInstrumentCenter,forassistancewith massspectrometricidentificationofproteins.

I thank all my current and previous lab colleagues. I appreciate Dr.

JosephRinehartandDr.RebeccaRobichfortheirconstanthelpduringmy

v graduatestudy.

Iwouldliketothankmyfamilyfortheirunconditionalloveandsupport duringmygraduatestudiesintheUnitesStates.Myspecialthanksgotomy husband.Withouthistremendousloveandsupport,thisdissertationcould notbeprepared.

This research is supported by grants from the National Science

FoundationtoDr.DavidL.Denlinger.

vi

VITA April9,1976…………………………………….…...Born–Jiangxi,China

1999………………….………….…….BachelorofScience,PlantProtection

JiangxiAgriculturalUniversity

Nanchang,China

2002………………………………....……..….MasterofScience,Zoology

JiangxiAgriculturalUniversity

Nanchang,China

20022003……………………………………………………...Staffmember

JiangxiPlantProtectionandQuarantineStation

20032008………….…………..GraduateTeachingandResearchAssociate

TheOhioStateUniversity

vii

PUBLICATIONS 1. Rinehart,J.P., Li , A., Yocum,G.D.,Robich,R.M.,Hayward,S.A.L., Denlinger,D.L.,2007.Upregulationofheatshockproteinsisessentialfor coldsurvivalduringinsectdiapause. Proceedings of the National Academy of Sciences of the United States of America 104,1113011137. 2. Li , A., PopovaButler,A.,Dean,D.H.,Denlinger,D.L.,2007.Proteomicsof thefleshflybrainrevealsanabundanceofupregulatedheatshockproteins duringpupaldiapause. Journal of Insect 53,385391. 3. Li , A., Xue,F.,Hua,A.,Tang,J.,2003.Photoperiodicclockofdiapause terminationin Pseudopidorus fasciata (Lepidoptera:Zygaenidae). European Journal of Entomology 100,287293. 4. Xue,F.,Spieth,H.R., Li A. ,HuaA.,2002.Theroleofphotoperiodand temperatureindeterminationofsummeranddiapauseinthecabbage beetle, Colaphellus bowringi (Coleoptera:Chrysomelidae). Journal of Insect Physiology 48,279286. 5. Wei,X.,Xue,F., Li , A., 2001.Photoperiodicclockofdiapauseinductionin Pseudopidorus fasciata (Lepidoptera:Zygaenidae). Journal of Insect Physiology 47,13671375. 6. Xue,F., Li , A., 2002.Diversityinlifehistoryoftheleafbeetle, Colaphellus bowringi Baly . Acta Entomologica Sinica. 45,494498. 7. Li, A., Xue,F.,2002.Theeffectsoftemperatureandphotoperiodondiapause maintenanceandterminationinboththeleafminingfly, Pegomyia bicolor Wiedemannanditsparasiticbraconidwasp, Biosteves sp. Acta Agriculturae Universitatis Jiangxiensis 24,436440. 8. Xue,F.,Li , A., Zhu,X.,2001.Theroleoftemperatureduringinsectdiapause. Acta Agriculturae Universitatis Jiangxiensis 23,6267.

viii 9. Xue,F.,Yang,A., Li , A., Li,F.,Zhu,X.,2001.Observationofand aestivationof Colaphellus bowringi (Col.Chrysomelidae). Jiangxi Plant Protection 24,12. 10. Li , A., 2001.Integratedpestmanagement:thehistoricalreviewand contemporarydevelopment. Jiangxi Plant Protection .24,6065. 11. Li , A., 2001.Integratedpestmanagement:thehistoricalreviewand contemporarydevelopment(continued). Jiangxi Plant Protection .24,8693. FIELDSOFSTUDY MajorField:Entomology StudyinMolecularBiology

ix

TABLEOFCONTENTS Abstract...... ii Dedication...... iv Acknowledgements...... v Vita...... vii ListofTables...... xii ListofFigures...... xiii Chapters: 1. Chapter1:Introduction...... 1 References...... 18 2. Chapter 2: Proteomics of the flesh fly brain reveals an abundance of upregulatedheatshockproteinsduringpupaldiapause...... 27 Abstract...... 28 Introduction...... 30 Materialandmethods...... 31 Results...... 36 Discussion...... 38 References...... 44 Illustrations...... 47 3.Chapter3:Neuropeptidelikeprecursor4isuniquely expressed during pupal diapauseinthefleshfly...... 49 Abstract...... 50 Introduction...... 51 Materialandmethods...... 52 Results...... 55 Discussion...... 57 References...... 59 Illustrations...... 61 4.Chapter4:RapidelevationofInosanddecreasesinabundanceofotherbrain proteins at pupal diapause termination in the flesh fly Sarcophaga crassipalpis ...... 64 Abstract...... 65

x Introduction...... 66 Materialandmethods...... 67 Results...... 72 Discussion...... 73 References...... 78 Illustrations...... 81 5.Chapter5:Rapidcoldhardeningelicitschangesinbrainproteinprofilesofthe fleshfly...... 85 Abstract...... 86 Introduction...... 87 Results...... 88 Discussion...... 89 Experimentalprocedures...... 95 References...... 100 Illustrations...... 104 6.Chapter6:DistinctcontractileandcytoskeletalproteinpatternsintheAntarctic midgeareelicitedbydesiccationandrehydration...... 108 Abstract...... 109 Introduction...... 110 Experimentalmaterialsandmethods...... 111 Results...... 117 Discussion...... 120 References...... 125 Illustrations...... 128 Conclusions...... 139 Appendics...... 139 AppendixA:Diapauseassociatedproteinsintheheadofthemosquito, Culex pipiens pipiens ...... 146

AppendixB:Ovaryproteinsinvolvedinadiapausematernaleffectinthe fleshfly, Sarcophaga bullata...... 154 Bibliography...... 162

xi

LISTOFTABLES 2.1. Identification of diapauseregulated brain proteins in pupae of S. crassipalpis ………….…………………………………………….……………...49 4.1. Identification of brain proteins that change in abundances within 24 h of pupaldiapauseterminationin S. crassipalpis ...... 85 5.1Identificationofdifferentiallyregulatedbrainproteinsinpharateadultsof S. crassipalpis ...... 109 6.1Numberofproteinsthatrespondedtodesiccation(75%RHfor12hat4°C) andrehydration(100%RHfor6handtheninwaterfor6hat4°C,following desiccation)...... 135 6.2 Identification of larval proteins in Belgica antarctica that responded to desiccation...... 136 6.3 Identification of larval proteins in Belgica antarctica that responded to rehydrationafterdesiccation...... 139 A.1.Diapauseassociatedproteinsidentifiedinheadsof Culex pipiens ...... 154

B.1. Differentially regulated ovary proteins in Sarcophaga bullata exposedtoa shortdayhistorycomparedtoexposedtoalongdayhistory...... 162

xii

LISTOFFIGURES 2.1.Twodimensionalelectrophoresismapsofbrainproteinsfrom(A)diapausing and(B)nondiapausingpupaeof S. crassipalpis ...... 47 2.2.Selected areaoftwodimensionalgelsand corresponding spot volumes for selected spots identified in the nondiapausing (ND) and diapausing (D) flesh flies…………………………………………………………………………….....48 3.1 Nucleotide and deduced amino acid sequence of Nplp4 in Sarcophaga crassipalpis ...... 63 3.2Alignmentofaminoacidsequencesof S. crassipalpis and D. melanogaster (CG15361PA) neuropeptide like precursor 4 by ClustalW multiple alignment (http://www.cbs.dtu.dk/clustalw2)...... 64 3.3 Expression profiles of Nplp4 in diapausing and nondiapausing pupae of S. crassipalpis ...... 65 4.1.Twodimensionalelectrophoresismasterimagesofpupalbrainproteinsin S. crassipalpis (A)duringdiapauseand(B)24hafterdiapausewasterminatedby theapplicationofhexane...... 83 4.2. Enlarged gel images, corresponding 3D profiles and fold change in abundance of selected proteins identified in brains of S. crassipalpis during diapause(D)and24hfollowingdiapausetermination(DT)...... 84 5.1A2dimensionalelectrophoresismapofbrainproteinsfromredeyepharate adultsofthefleshfly Sarcophaga crassipalpi ...... 106 5.2 Selected 2DE images demonstrating changes in abundance of identified proteinsfollowingrapidcoldhardening(RCH)for2hat0°C.Controls(CNT) wereheldcontinuouslyat20°C...... 107 5.3 Statistically significant differences in protein abundance in response to RCH...... 108

xiii 6.1Flowchartofproteomicanalysisofhydrated,desiccated and rehydrated B. antarctica larvae...... 130 6.2 Representative 2DE maps of proteins from Belgica antarctica larvae after desiccationat75%RHfor12hat4°C...... 131 6.3 Representative 2DE maps of proteins from Belgica antarctica larvae after rehydrationat100%RHfor6handtheninwaterfor6hfollowingdesiccationat 75%RHfor12hat4°C...... 132 6.4Quantificationofproteinsthatchangedinabundance(A)afterdesiccationat 75%RHfor12hand(B)rehydrationat100%RHfor6handtheninwaterfor6 hfollowingdesiccationat75%RHfor12h...... 133 6.5Functionalclassificationoftheidentifiedproteinsthatchangedinabundance inresponseto(A)desiccationand(B)rehydration...... 134 A.1.A2dimensionalelectrophoresisimageofheadproteinsfromfemaleadults of Culex pipiens ...... 152 A.2.Relativeabundanceofmosquitoheadproteins...... 153 B.1. A 2dimensional electrophoresis map of 2day ovary proteins from Sarcophaga bullata exposedtoashortdayhistory...... 159 B.2. A 2dimensional electrophoresis map of 5day ovary proteins from Sarcophaga bullata exposedtoashortdayhistory...... 160 B.3.Relativeabundanceofproteinsfrom(A)2dayand(B)5dayovariesinthe fleshfly S. bullata ...... 161

xiv

CHAPTER1

INTRODUCTION

1.1 Diapause

Diapauseisanimportantsurvivalstrategythatallowsinsectstoescapeharsh weatherduringcoldandhotsummers,shortageofresources,orother adverseconditions.Diapauseisnotastaticstate,butadynamicdevelopmental processwidespreadamonginsectsandotherinvertebratessuchasnematodes, crustaceansandearthworms(Denlinger,2005;Kostal,2006).Itischaracterized byarresteddevelopment,suppressed,increasedenergyreserves,and usuallyincreasedresistancetowaterlossandprotectionfromlowtemperature

(Denlinger,2000).

Diapausestudieshavebeengainingincreasedattentionduringthelasttwo decades.Denlingerhasprovidedexcellentreasonswhyweneedtostudydiapause

(Denlinger,2007).Diapauseresearchisessentialforunderstandingpopulation modeling,pestmanagement,biologicalcontrol,developmental,andevenoffers insightsintoaging,obesity,anddiseasetransmission.

1 Environmentalregulationofdiapausehasbeencomprehensivelystudied

(Tauberet.al.,1986;Danks,1987).Diapauseisgeneticallydeterminedand generallyoccursataspecificdevelopmentalstageforeachspecies.Itisinduced byenvironmentalfactorssuchasphotoperiod,temperature,humidity,food conditions,andpopulationdensity,amongwhich,photoperiodistheprimarycue usedtoprogramdiapause.Diapauseterminationofafewspeciesisdeterminedby environmentalcues,whileinmostcases,daylength,ortemperaturealoneworkas modulatorsoftherateofdiapausedevelopment.Oncediapausedevelopmenthas beencompleted,theinsectiscapableofbreakingdiapauseandresuming developmentiffavorableconditionssuchaselevationintemperatureandrainfall areavailable(Denlinger,2000).

Thedynamicprocessesofinsectdiapauseincludethreesuccessivephases, prediapauseconsistingofinductionandpreparation,diapauseconsistingof initiation,maintenanceandtermination,andpostdiapause,i.e.,quiescence,as proposedbyKostal(2006).Duringtheinductionphase,insectsperceive environmentalsignalsuntilacriticallevelhasbeenattained,andthenintegrates theinformationintothedecisiontoenterdiapause.Duringthepreparationphase, theinsectcontinuesdirectdevelopment,anddecisiontoenterdiapauseornotand sometimesdiapausedurationaswellaremade.Duringtheinitiationphaseof diapause,directdevelopmentceases,metabolicratedecreases,physiological preparationsforadversitymaytakeplaceanddiapauseintensityincreases.During

2 themaintenancephase,developmentalarrestremains;metabolicrateislowand constant;unknownphysiologicalprocessesgraduallydecreasethediapause intensity.Duringtheterminationphase,specificenvironmentalconditions decreasediapauseintensitytoitsminimumlevelanddirectdevelopmentis reinitiated.Duringthepostdiapausequiescencephase,developmentand metabolismareinhibitedafterdiapauseterminationwhenenvironmental conditionsarenotfavorable(Kostal,2006).

Sincephotoperiodisthemajorenvironmentalfactortoinducediapause,itis necessarytomentionphotoreceptorproteinsandclocklinkedto photoperiodism.Thewelldocumentedphotoreceptorsincludetheflavinbased bluelightphotoreceptorcryptochrome(Stanewsky,etal.,1998;Gotoand

Denlinger,2002a)andcarotenoid/vitaminAassociatedopsinphotoreceptors

(Denlinger,etal.,2005).Themolecularstudyoftimekeepinghasbeenwell developedin Drosophila malanogaster ,whichinvolvesinteractionsoftheclock genes period, timeless , clock , cycle areandothers(WilliamsandSehgal,2001).

Hormonalcontrolofdiapausehasbeendiscussedindetail(Denlinger,etal.,

2005).Thehormonalbasisofdiapausedifferswithbothspeciesanddiapausing stages.Forinstance,in Bombyx mori ,theneuropeptidediapausehormoneplaysa roleindiapauseinduction(YamashitaandHasegawa,1985),whilein Helicoverpa armigera (Zhang,etal.,2004)and Heliothis virescens (XuandDenlinger,2003), itiseffectiveinbreakingpupaldiapause.Prothoracicotropichormone(PTTH)is

3 theprinciplehormonecontrollinglarvalorpupaldiapauseinsomespeciessuchas

Hyalophora cecropia (Aguietal.,1979),and Manduca sexta (Tomiokaetal.,

1995);whenPTTHisnotreleased,theprothoracicglandfailstoproduce ecdysoneandlarvaldevelopmentishalted.Juvenilehormone(JH)isessentialfor reproductioninmostspeciesandplaysamajorroleinregulatingadultdiapause characterizedbysuppressionofreproduction(deKort,1990).

Diapauseevokesaspecificgeneexpressionpattern,ratherthansimply shuttingdowntheexpressionofmanygenes(Joplinetal.,1990;Flannaganetal.,

1998).Ourunderstandingofthemolecularbasisofdiapausehasadvanced considerablyduringthelastdecade(Denlingeretal.,1995;Flannaganetal.,1998;

Denlinger,2000;Denlinger,2002;Robichetal.,2005;Robichetal.,2007).Based ontheirexpressionpatterns,diapauseassociatedgenescanbeclassifiedinto

(i)genesupregulatedthroughoutdiapause,includingthe70kDaheatshockprotein

(Hsp70)(Rinehartetal.,2000)andHsp23(Yocumetal.,1998),(ii)genes downregulatedthroughoutdiapause,includingproliferatingnuclearantigen

(PCNA)(TammarielloandDenlinger,1998)andHsp90(RinehartandDenlinger,

2000);(iii)genesunchangedduringdiapauseincludingecdysonereceptor

(Rinehartetal.,2001),heatshock70cognate,and28Sribosomalprotein

(Rinehartetal.,2000);(iv)earlydiapausegenessuchasoneencodingcystatin,a cysteineproteinaseinhibitor(GotoandDenlinger,2002b);(v)latediapausegenes suchasultraspiracle(USP)(Rinehartetal.,2001);and(vi)thoseexpressed

4 intermittentlythroughdiapausesuchasageneencoding60Sribosomalprotein

PO,anapurinic/apyrimidinicendonuclease(CraigandDenlinger,2000),as describedinthefleshfly, Sarcophaga crassipalpis (Denlinger,2002).Among thesediapauseassociatedgenes,Hspsareawellknownfamilyofproteins upregulatedinresponsetoavarietyofstresses.However,notalloftheHspsare upregulatedinthefleshflyduringdiapause(Rinehartetal.,2007).Twomembers ofHsp70familyandatleastfourmembersofthesmallHspfamilyare upregulated,whileHsp90isdownregulatedduringdiapause.Upregulationof

Hspsduringdiapuseisnotspecifictothefleshfly,butisrathercommoninmany otherinsectorderswithdifferentdiapausingstages.Diapauserelatedgenesalso canbecategorizedintodifferentfunctionalgroupssuchasgeneswithregulatory functions,metabolicallyrelatedgenes,stressresponsegenes,cytoskeletalgenes, ribosomalgenes,transposableelements,asrepresentedinthenorthernhouse mosquito, Culex pipiens pipiens (Robichetal.,2007).Severalcriticaldiapause regulatorygenesunderpinthemolecularbasisofametabolicswitchfromblood feedingtosugargluttonyandsequestrationinresponsetodiapauseinthe mosquito(RobichandDenlinger,2005).Trypsinandachymotrypsinlikeprotease, genesencodingforbloodmealdigestion,remainundetectableduring diapauseandbegintobeexpressedinfemalesthatarereadytobloodfeedupon diapausebreak,whilefattyacidsynthase,ageneinvolvedinlipidaccumulationis highlyupregulatedduringdiapause(RobichandDenlinger,2005).

5 Metabolomicsapproachhasrecentlybeenexploitedtounderstanddiapause

(MichaudandDenlinger,2006;Podrabskyetal.,2007).Inthefleshfly S. crassipalpis ,fattyacidschangedduetodiapause,andtheproportionofoleicacid

(18:1n9)indiapausingpupaeincreasedfrom43%to58%ofthetotalfattyacid pool.Thusfar,littleresearchhasbeendonewithrespecttodiapauseusing proteomicstechnology(Joplinetal.,1990),andtheworkthatwasdone,e.g.

Joplinetal.,(1990),wasdonepriortotheadventofmodernproteomics technologythatisnowcapableofidentifyingproteinsthatcanbeobservedona twodimensionalgel.

1.2 Rapid Cold Hardening

Rapidcoldhardeningdescribesthevariousphysiologicalandbiochemical processesthatincreaseaninsect’sabilitytotoleratelowtemperatures.Insects usuallyincurcellularinjury,referredtoascoldshock,whentheyarerapidly exposedtolowtemperatures,evenattemperaturesabovethepointfor extracellularfluids(Morrisetal.,1983;Denlinger,1991).Injuryfromcoldshock canbesignificantlyreducedbyfirstconditioninginsectsforashortperiodatless severelowtemperatures.Typically,thehardinesscanberapidlyacquiredby exposinginsectsbetween0°Cand10°Cforashorttimefromafewminutestoa fewhours,whichenhancedtheirsubsequentsurvivalatsubzerotemperatures.

Forinstance,pharateadultsof S. crassipalpis cannotsurvivedirectexposureto

6 –10°C,whichisabovethesupercoolingpoint,23°C(LeeandDenlinger,1985;

Denlingeretal.,1991).But,iftheyarefirsttransferredto0°Cfor2h,they readilysurviveexposureto–10°C(Chenetal.,1987).Thisrapidcoldhardening capabilityhasbeenobservedinseveraldevelopmentalstageswithinthesame species.InS. crassipalpis ,thecapabilitywasshowninfeedinglarvae,wandering larvae,diapausingandnondiapausingpupae,andpharateadults(Chenetal.,1987;

Leeetal.,1987).Otherspeciesofinsectsandotherdemonstratingsuch similarresponseincludelarvaeofthepineneedlegallmidge, Thecodiplosis japonensis (Lietal,1999),thekelpfly Paractora dreuxi (Terblancheetal.,2007), theAntarcticmidge Belgica antarctica (Leeetal.,2006),theAntarcticmite

Halozetes belgicae (Hawesetal.,2007),pupaeandpharateadultsof S. bullata , adultsoftheelmleafbeetle Xanthogaleruca luteola (Leeetal.,1987),the milkweedbug Oncopeltus fasciatus (Leeetal.,1987),thefruitfly ,(CzajkaandLee,1990),theolivefruitfly Bactrocera oleae

(Koveos,2001),thepredatorymite Euseius (Amblyseius) finlandicus (Broufas andKoveos,2001),themigratorylocust Locusta migratoria (WangandKang,

2003),thegrainaphid, Sitobion avenae (PowellandBale,2004;),thehighArctic collembolan, Hypogastrura tullbergi (Hawesetal.,2006),thesubAntarctic springtail Tullbergia antarctica (Worland,2005),athrips Frankliniella occidentalis (McDonaldetal.,1997),aKaroobeetle, Afrinus sp .(Sinclairand

Chown,2006);abeetleChirodica chalcoptera (Terblancheetal.,2005),and

7 othercoleopteranspecies(BurksandHagstrum,1999).

Protection against low temperature injury usually involves a gradual accumulationofasuchasandotherlowmolecularweight polyhydricalcoholsandsugars(Leeetal.,1987).Rapidaccumulationofglycerol during rapid cold hardening has provided at least a partial basis for the cryoprotective response. Shortterm chilling contributes to rapid increase of glycerol in larvae and pharate adults in S. crassipalpis (Chen et al., 1987;

Denlinger et al., 1991). A 2h exposure to 0 °C induced a two to threefold increaseofglycerolinwanderinglarvae(18to43mM)andpharatedadults(28to

81 mM). Meanwhile, pharate adults also increase hemolymph osmolatity from

309to346mOsm,aresponsethatmaybeattributedtoanincreaseofglycerol.

Inducedaccumulationofglycerolduetocoldtreatmentisalsonotedinlarvaeof S. bullat ,andthebrainplaysacriticalroleininitiatingglycerolproduction(Yoderet al., 2006). Interestingly, rapid cold hardening can also protect against other stresses such as desiccation. The concentrations of including myoinositol,trehalose,mannitol,glycerol,andsorbitol,differsignificantlywith coolingratesinacclimatedeggsof L. migratoria (WangandKang,2005).Several articlesillustratedhowglycerolcanprotectagainstcoldinjury.Glycerolfunctions in lowering the supercooling point and prevents protein denaturation and membranes (Chen et al., 1987b; Tsvetkova and Quinn, 1994; Tang and Pikal,

2005;MichaudandDenlinger,2006).Protectionagainstinjuryaffordedbyrapid

8 coldhardening, however, cannot be fully explained by the accumulation of glycerol, because no changes of polyol levels were detected in some rapidly coldhardenedinsects(KeltyandLee,2001).

Astemperaturesdecrease,cellularmembranestendtoincreaserigidityuntil themembranechangesfromaliquidcrystaltogelstateandlosesitsfunctionasa barrier(Cossins,1983).Themembranecanmaintaintheliquidcrystallinestateat lower temperature by a process of changing its composition known as homeoviscous or membrane compositional changes (Sinensky, 1974;

Hazel, 1995). The changes include increasing points of unsaturation along phospholipid fatty acid chains, increasing cholesterol content, and changing phospholipid class distribution (Thompson, 1983; Hazel, 1995; Michaud and

Denlinger,2006).Inthefleshfly S. crassipalpis ,themembranefattyacidschange inresponsetorapidcoldhardening,andtheproportionofoleicacidinpharate adults increased from 30 to 47% of the total fatty acid pool with declined proportions of almost all the other fatty acids. Oleic acid enhances membrane fluidity and helps maintain a crystalline state of the membrane (Michaud and

Denlinger,2006).

The physiological mechanisms for insect cold hardiness have been summarizedbyMichaudandDenlinger(2004).Inresponsetoorinpreparation for low temperatures, insects produce polyols and other lowmolecular weight compounds such as the abovementioned glycerol, sorbitol, mannitol, trehalose

9 and(ChenandDenlinger,1990;Lee,1991;Miseneretal.,2001).Insects can also be protected against injury from ice crystal formation by synthesizing antifreezeproteins and icenucleating agents (Dumanetal.,2004;Michaudand

Denlinger, 2004). Heat shock proteins (Hsps) are another diverse family of proteins manufactured by insects to increase cold hardiness. Hsps have been studiedindepthinthefleshfly S. crassipalpis (Rinehartetal.,2000;Rinehartand

Denlinger,2000;Yocumetal.,1998;Rinehartetal.,2007).

Both cold hardiness and diapause are essential to survive winter for most temperateinsects.Denlinger(1991)clearlyilluminatedhowthesetwoarerelated.

Coldhardinessisnotnecessarilyassociatedwithdiapause and can be acquired independently of diapause. This distinction is evident by the fact that cold hardening occurs in species lacking the genetic capacity for diapause, cold hardiness occurs in nondiapausing stages of diapausing species, and in rapidly cold hardened insects that are not in diapause. However, quite commonly cold hardinessisacomponentofthediapausesyndromeandtheexpressionofdiapause enhances the insect’s capacity to cold harden. Flesh flies are good examples showinglinkageofcoldhardinessandthediapauseprogram. Diapausingpupae haveahigherlevelofcoldhardinessthannondiapausingpupaerearedatthesame temperature (Adedokun and Denlinger, 1984; Lee and Denlinger, 1985). Even reared under a range of photoperiods and temperatures, pupae are consistently coldhardyiftheyareindiapauseandlesscoldhardyiftheyarenotindiapause

10 (Adekokun and Denlinger, 1984; Lee et al., 1988; Denlinger 1991). There is a tightlinkagebetweencoldhardeninganddiapausesincetheenvironmentalcues for both are unlikely to be separated in Sarcophaga . Many other examples of interdependence of cold hardiness and diapause include species from different ordersandspeciesthatdiapauseindifferentstages(Denlinger,1991).

The ecological importance of rapid cold hardening capacity has been reviewed by Danks (2005). The response induced by different cooling rates in natureallowsinsectstoadapttoshorttermtemperaturechangesandincreasetheir survival (Kelty and Lee, 1999; Powell and Bale, 2004). Furthermore, the rapid coldhardeningresponsealsopreservesreproductivebehaviorssuchascourtship andmating(KeltyandLee,2001;Shreveetal.,2004). Different responses are adaptivetotheexpectednaturaltemperatureatdifferentstages(WangandKang,

2003;PowellandBale,2004).Theresponsemaybeconsiderablyimportantfor enablinginsectstosurviveshortperiodsoflowtemperaturesinspringandautumn, althoughitmightnotallowthemtosurvivelongerterm extreme cold in winter

(Leeetal.,1987;CoulsonandBale,1990).

1.3 The organisms used in this study

1.3.1 The flesh fly Sarcophaga crassipalpis

Thefleshflies, Sarcophaga crassipalpis ,feedoncarrionaslarvae.Theseflies areovoviviparous, i.e., theylayactivelarvaeofthefirstinstar.Thelarvaleaves

11 thefoodtopupariateatthelatethirdinstarstage.Inthetemperateregions,thefly exhibitsafacultativediapauseandphotoperiodistheprimaryenvironmentalcue to induce diapause, with temperature modifying the incidence of diapause

(Denlinger, 1972; Denlinger, 1981; Denlinger, 2005). A short photoperiod less than13.5hlight/dayand4day(thelast2daysofembryonicdevelopmentandthe first2daysoflarvallife)exposuretotheseconditionsiseffectivetoinitiatepupal diapause in the fly (Denlinger, 1971). Temperature plays an important role in diapauseregulation,thatis,lowtemperatureincreasestheincidenceandduration of diapause. Cold temperature in winter suppresses diapause termination thus ensuringsurvivaloftheoverwinteringperiod.

The neuroendocrine system plays a critical role in the programming of diapause(Denlinger,2005).Thebrainistheprimarysiteofphotoreception.Itcan measuredaylengthandstoretheinformationfordiapauseinitiation,whichcanbe transferred between individuals by brain transplantation (Giebultowicz and

Denlinger,1986).

Ecdysteroid is important for diapause regulation. Ecdysone synthesis and release by the prothoracic glands is stimulated by prothoracicotropic hormone from the brain. The pupal diapause of flesh flies lack ecdysteroid, with titers quickly dropping at diapause initiation and increasing at diapause termination

(OhtakiandTakahashi,1972;WalkerandDenlinger,1980).Ecdysteroidbindsto the ecdysone receptor (EcR) and its dimerization partner ultraspiracle (USP).

12 Expressionofecrisnotsignificantlyalteredthroughoutdiapause.However,USP isaffectedbydiapause,theexpressiongraduallydeclinesattheonsetofdiapause, rises during the late stages of diapause, and is highly upregulated upon terminationofdiapause.ItissuggestedthatUSPisessentialtothemaintenance andterminationofdiapause(Rinehartetal.,2001).

Regulation and the molecular mechanisms of diapause and cold tolerance havebeenstudiedfairlyextensivelyinthefleshfly, using a variety of modern moleculartechniquesincludingPCR,Northern blotting, Western blotting, DNA microarray,metabolomics,aswellasproteomicsinourpresentstudy(Denlinger,

2002; Denlinger et al., 2005, Kostal, 2006, Michaud and Denlinger, 2006,

FujiwaraandDenlinger,2007).

1.3.2 The Antarctic midge Belgica antarctica

TheAntarcticaisafrozen,isolatedandinhospitablecontinentwithveryfew terrestrial.Thechironomidmidge Belgica antarctica isanexceptionthat hasbeenabletocolonizethiscontintentdespiteitsextremelylowtemperatureand lowhumidity(Convey,1996;CampbellandClaridge,1987). B. antarctica isthe largestnaturallyoccurringterrestrialontheAntarcticcontinent.Although itisendemic,ithasasporadicdistributiononthecontinent(UsherandEdwards,

1984;Suggetal.,1983).Suchpapersdescribethelifehistoryandecologyof B. antarcitca indetail(UsherandEdwards,1984;Suggetal.,1983;Conveyand

13 Block,1996).Briefly,itisaholometabolousspecieswitha2yearlifecycle,and itcanoverwinterinanyofitsfouredaphiclarvalstages.Larvaefeedonmoss, algae,deadplantandanimalmaterialsandmicroorganisms.Thelarvaecan toleratefreezing,desiccation,andallsortsofotherenvironmentalstresses.

Winglessadultsmateinaggregationswithinonedayofemergence,andfemales layeggswithin12daysandliveforfewerthantwoweeksinthesummer.

Howcanoverwinteringlarvaesurvivefreezingduringwinterlowsdownto

40°C?Theyareprotectedagainstfreezingduetothermalbufferingprovidedby iceandsnowcoveringandthesurroundingseawater(BaustandLee,1981).In contrasttomosttemperateinsectsthatdramaticallyincreasecoldtolerancebefore temperaturesdecreaseinwinter,thisspeciesmaintainsafairlystablelevelof freezetolerancethroughouttheyearwhileitissensitivetothermalstress(Baust andLee,1987).Rapidcoldhardeningresponse of B. antarctica hasbeen investigatedunderbothsummeracclimatizedandcoldacclimatedstates(Leeet al.,2006).Adultslackthecapacityforrapidcoldhardening.Coldacclimated larvaehavehighersupercoolingpointsandaremorecoldtolerantthansummer larvae.Rapidcoldhardeningallows B. antarctica larvaetoincreasecoldtolerance atthecellularlevel,eveninthefrozenstate(Leeetal.,2006).Likelow temperatureextremesduringthewinter, B. antarctica confrontshightemperature stressduringtheaustralsummersincethetemperatureofitshabitatcanreach20

°Chigherthansummerairhighsof5°C(Suggetal.,1983).Larvaecanmaintain

14 ahighintrinsictolerancetoheatstressbymeansofconstitutiveupregulationof heatshockproteins(Hsp),includingsmallHsps,Hsp70andHsp90,andthus preventingirreversibleproteinsaggregationresultingfromstresses.Onthe contrary,adultshavealowtolerancetohightemperatures,buttheycanthermally activatetheirHspsandgeneratethermoprotectionaccordingly(Rinehartetal.,

2006).

Otherthantemperatureinducedstresses,desiccationposesanothercommon environmentalstressto B. antarctica .TheAntarcticcontinentisfrozenandis effectivelyadesert,andwaterisbiologicallyunavailableintheformofice

(CampbellandClaridge,1987;Haywardetal.,2007;Benoitetal.,2007aandb).

B. antarctica larvaearehighlypermeablewithrelativelyhighosmolalityandlose waterataextremelyhighrate(Haywardetal.,2007;Benoitetal.,2007a).Athigh relativehumidity(RH),thisspecieshasaslowerrateofdesiccationandhigh survival.Rehydrationat100%RHismorebeneficialtolarvaethandirectcontact withwater.Desiccationenhancesfreezetoleranceofthispolarinsect(Haywardet al.,2007).Thelarvaeexhibitahighlevelofdehydrationtoleranceandexploit multiplemechanismstosuppressdehydration(Benoitetal.,2007a).Larvae predominantlyrelyondrinkingfreewateroringestingfoodtoreplenishwater stores.Waterconservationcanbeachievedbyclustering.Themidgessignificantly increasetheiroverallpolysaccharidelevelsandaccumulatetrehaloseandglycerol inresponsetoslowdehydration(Haywardetal.,2007;Benoitetal.,2007a).A

15 shiftfromshorttolonghydrocarbonsmaycontributetowaterretentionaslarvae dehydrate(MichaudandDenlinger,2007).Adecreaseinoxygenconsumption leadstoreducedwaterloss.Thecapacityfordroughtacclimationamelioratesthe stressofdrying.

Theadultmidgesareveryhygricandgainwatermainlybyfreewateruptake asobservedinlarvae(Benoitetal.,2007b).Adultsemergeduringverybrief periodonlywhenfreewaterisreadilyaccessible,andmoistmicrohabitatsare vitaltoprotectthemagainstdesiccation.

1.4 Research goals

Proteomics,thelargescalestudyofproteins,isayoungtechnologyandmany ofthetoolsforproteinpurificationandidentificationweredevelopedduringthe

1980s and early 1990s. But, it has proven to be a powerful technique for monitoringproteinchangesofcells,tissuesorevenwholebodiesassociatedwith differentconditions.Mostmolecularstudiesrelatedtodiapausedonesofarare based on the work at the genome and transcript levels. Therefore, we feel it necessary and important to investigate the molecular mechanisms of diapause usingproteomictoolsbecauseproteinsarethefinalproductsofgeneactivation.

Myresearchfocusesonexploringdiapauseassociatedproteinsinthefleshfly,

S. crassipalpis andastudyofdesiccationandrehydrationintheAntarcticmidge,

B. antarctica , using a proteomic approach, and characterization of some

16 diapauserelatedgenes.Thegoalsofmyresearchare:

1)Todeterminediapausespecificbrainproteinsandthefunctionalimplicationsof thoseproteinsduringpupaediapauseinthefleshfly, S. crassipalpis.

2)Toidentifypupalbrainproteinsinvolvedindiapauseterminationinthefleshfly,

S. crassipalpis atselecttimesimmediatelybeforeandafterdiapausetermination.

3)Tostudyproteinchangesduringrapidcoldhardeninginpharateadultsofthe fleshfly, S. crassipalpis .

4)Toanalyzetheproteinpatternchangesduetodesiccationandrehydrationinthe

Antarcticmidge, B. antarctica.

5) To clone and evaluate the role of a potential diapause regulatory gene

Neuropeptidelikeprecursor4.

17

References Adedokun,T.A.andDenlinger,D.L.,1984.Coldhardiness:acomponentofthe diapause syndrome in pupae of the flesh flies, Sarcophaga crassipalpis and S. bullata .PhysiologicalEntomology9,361364. Agui,N.,Granger,N.A.,Gilbert,L.I.,Bollenbacher,W.E.,1979.Cellular localizationofinsectprothoracicotropichormone.ProceedingsoftheNational AcademyofSciencesoftheUnitedStatesofAmerica76,56845690. Baust, J. G., Lee, R. E., 1981. Environmental “homeothermy” in an Antarctic insect.AntarcticJournaloftheUnitedStates 15,170172. Baust,J.G.,Lee,R.E.,1987.MultiplestresstoleranceinanAntarcticterrestrial : Belgica antarctica .24,140147. Benoit,J.B.,LopezMartineza,G.,Michaud,M.R.,Elnitsky,M.A.,LeeJr,R.E., Denlinger,D.L.,2007a.Mechanismstoreducedehydrationstressinlarvaeofthe Antarcticmidge, Belgica antarctica .JournalofInsectPhysiology53,656–667. Benoit,J.B.,LopezMartineza,G.,Elnitsky,M.A.,LeeJr,R.E.,Denlinger,D.L., 2007b. Moist habitats are essential for adults of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae), to avoid dehydration. European Journal of Entomology,104,914. Broufas,G.D.,Koveos,D.S.,2001.Rapidcoldhardeninginthepredatorymite Euseius (Amblyseius) finlandicus (Acari: Phytoseiidae). Journal of Insect Physiology47,699708. Burks,C.S.andHagstrum,D.W.,1999.Rapidcoldhardeningcapacityinfive speciesofcoleopteranpestsofstoredgrain.JournalofStoredProductsResearch 35:65–75. Campbell,I.B.,Claridge,G.G.C.,1987. Antarctica: Soils, Weathering Processes and Environment .Amsterdam:Elsevier. Chen,C.P.,Denlinger,D.L.,LeeJr.,R.E.,1987.Coldshockinjuryandrapidcold hardeninginthefleshfly Sarcophaga crassipalpis .PhysiologicalZoology60,

18 297–304. Chen,C.P.,Denlinger,D.L.,1990.Activationofphosphorylaseinresponseto coldandheatstressinthefleshfly, Sarcophaga crassipalpis .JournalofInsect Physiology36,549553. Convey,P.,1996.OverwinteringstrategiesofterrestrialinvertebratesinAntarctica – the significance of flexibility in extremely seasonal environments. European JournalofEntomology93,489505. Cossins, A.R., 1983. The adaptation of membrane structure and function to changes in temperature. In: Cossins, A.R., Sheterline, P. (Eds.), Cellular Acclimatisation to Environmental Change. Cambridge University Press, Cambridge,pp.3–31. Craig,T.L.,Denlinger,D.L.,2000.Sequenceandpatternsof60S ribosomalproteinPO,adiapauseregulatedAPendonucleaseinthefleshfly, Sarcophaga crassipalpis .Gene 255,38188. Czajka, M., Lee, R. E., 1990. A rapid coldhardening protection against cold shockinjuryin Drosophila melanogaster .JournalofExperimentalBiology148, 245–254. DanksHV.1987. Insect Dormancy: An Ecological Perspective .Ottawa:Biol. SurveyCan. Danks,H.V.,2005.KeythemesinthestudyofseasonalininsectsI. Patternsofcoldhardiness.AppliedEntomologyandZoology40,199211. deKortC.A.D.,1990.ThirtyfiveyearsofdiapauseresearchwiththeColorado potatobeetle.EntomologiaExperimentalisetApplicata56,113. Denlinger,D.L.,1971.Embryonicdeterminationofpupaldiapauseintheflesh fly Sarcophaga crassipalpis .JournalofInsectPhysiology17,18151822. Denlinger, D. L., 1972. Induction and termination of pupal diapause in Sarcophaga fleshflies.BiologicalBulletin 142,11–24. Denlinger,D.L.,1981.Thephysiologyofpupaldiapauseinfleshflies.InCurrent TopicsinInsectEndocrinologyandNutrition,eds.G.Bhaskaran,S,Friedmanand J.G.Rodriguez,pp.131160.Plenum,NewYork.

19 Denlinger,D.L.,1991.Relationshipbetweencoldhardinessanddiapause.In:R. E.Lee&D.L.Denlinger, Insects at low temperature .ChapmanandHall,New York/London.Pp.174–198. Denlinger,D.L.,Joplin,K.H.,Chen,C.P.,andLeeJr.,R.E.,1991.Coldshock and heat shock. In: R. E. Lee & D. L. Denlinger, Insects at low temperature . ChapmanandHall,NewYork/London.Pp.131148. Denlinger,D.L.,2000.Molecularregulationofinsectdiapause.In:Storey,K.B., Storey,J.M.(Eds.),EnvironmentalStressorsandGeneResponses.Elsevier, Amsterdam,pp.259–275. Denlinger,D.L.,Yocum,G.D.,Rinehart,J.P.,2005.Hormonalcontrolofdiapause. In: Gilbert, L.I., Iatrou, K., Gill, S. (Eds.), Comprehensive Molecular Insect Science,vol.3.Elsevier,Amsterdam,pp.615–650. Denlinger,D.L.,2002.Regulationofdiapause.AnnualReviewofEntomology47, 93–122. Denlinger,D.L.,2008.Whystudydiapause?EntomologicalReasearch38,19. Denlinger , D.L.,Joplin,K.H.,Flannagan,R.D.,Tammariello,S.P.,Zhang, M,L.,Yocum,G.D.&Lee,K.Y.(1995)in Molecular Mechanism s of Insect Metamorphosis and Diapause ,eds.Suzuki,A.,Kataoka,H.&Matsumoto,S. (IndustrialPublishingandConsultingInc.,Tokyo),pp.289297. DenlingerD.L.,JoplinK.H.,FlannaganR.D.,TammarielloS.P.,ZhangM.L., YocumG.D.,LeeK.Y.,1995.Diapausespecificgeneexpression.In:Molecular mechanismsofinsectmetamorphosisanddiapause.A.Suzuki,H.Kataoka,andS. Matsumoto,IndustrialPublishing&Consulting,Inc.,Tokyo,pp289–297. Denlinger,D.L.,Yocum,G.D.,Rinehart,J.P.,2005.Hormonalcontrolofdiapause. In:Gilbert,L.I.,Iatrou,K.,Gill,S.(Eds.),ComprehensiveMolecularInsect Science,vol.3.Elsevier,Amsterdam,pp.615–650. Duman,J.G.,Bennett,V.,Sformo,T.,Hochstrasser,R.,Barnes,B.M,,2004. AntifreezeproteinsinAlaskaninsectsandspiders.JournalofInsectPhysiology 50,259266. Flannagan,R.D.,Tammariello,S.P.,Joplin,K.H.,CikraIreland,R.A.,Yocum, G.D.,Denlinger,D.L.,1998.Diapausespecificgeneexpressioninpupaeofthe fleshfly Sarcophaga crassipalpis .ProceedingsoftheNationalAcademyof

20 SciencesoftheUnitedStatesofAmerica95,5616–5620. Fujiwara,Y.,Denlinger,D.L.,2007.p38MAPKinaseisalikelycomponentof thesignaltransductionpathwaytriggeringrapidcoldhardeninginthefleshfly, Sarcophaga crassipalpis .JournalofExperimentalBiology210,32953300 Giebultowicz,J.M.,Denlinger,D.L.,1986.Roleofthebrainandringglandin relationtopupaldiapauseinthefleshfly, Sarcophaga crassipalpis .Journalof InsectPhysiology32,161–166. Goto,S.G.,Denlinger,D.L.,2002a.Shortdayandlongdayexpressionpatterns ofgenesinvolvedinthefleshflyclockmechanism:period,timeless,cycleand cryptochrome.JournalofInsectPhysiology48,803816. Goto,S.G.,Denlinger,D.L.,2002b.Genesencodingtwocystatinsinthefleshfly Sarcophaga crassipalpis andtheirdistinctexpressionpatternsinrelationtopupal diapause.Gene292,121127. Hawes,T.C.,Couldridge,C.E.,Bale,J.S.,Worland,M.R.,Convey,P.,2006. HabitattemperatureandthetemporalscalingofcoldhardeninginthehighArctic collembolan, Hypogastrura tullbergi (Schaffer).EcologicalEntomology,31, 450459. Hawes,T.C.,Bale,J.S.,Worland,M.R.,Convey,P.,2007.Plasticityand superplasticityintheacclimationpotentialoftheAntarcticmite Halozetes belgicae (Michael).JournalofExperimentalBiology210,593601. Hayward,S.A.L.,Rinehart,J.P.,Sandro,L.H.,Lee,Jr,R.E.,Denlinger,D.L., 2007.SlowdehydrationpromotesdesiccationandfreezetoleranceintheAntarctic midge Belgica antarctica .JournalofExperimentalBiology210,836844. Hazel,J.R.,1995.Thermaladaptationinbiologicalmembranes:ishomeoviscous adaptationtheexplanation?AnnualReviewofPhysiology57,19–42. Joplin,K.H.,Yocum,G.D.,Denlinger,D.L.,1990.Diapausespecificproteins expressedbythebrainduringthepupaldiapauseofthefleshfly, Sarcophaga crassipalpis .JournalofInsectPhysiology36,775783. KeltyJ.D.andLee,R.E.Jr.,1999.Inductionofrapidcoldhardeningbycooling atecologicallyrelevantratesin Drosophila melanogaster .JournalofInsect Physiology4,719–726.

21 Kelty,J.D.,LeeJr.,R.E.,2001.Rapidcoldhardeningof Drosophila melanogaster (Diptera:Drosophilidae)duringecologicallybasedthermoperiodiccycles.Journal ofExperimentalBiology204,1659–1666. Kostal,V.,2006.Ecophysiologicalphasesofinsectdiapause.JournalofInsect Physiology52,113127. Koveos,D.S.,2001.Rapidcoldhardeningintheolivefruitfly Bactrocera oleae underlaboratoryandfieldconditions.EntomologiaExperimentalisetApplicata 101,257263. Lee,R.E.,Jr.,Denlinger,D.L.,1985.Coldtoleranceindiapausingand nondiapausingstagesofthefleshfly, Sarcophaga crassipalpis .Physiological Entomology10,309315. Lee,R.E.,Chen,C.P.,Denlinger,D.L.,1987.Arapidcoldhardeningprocessin insects.Science238,14151417. Lee,R.E.,DenlingerD.L.,Chen, C.P. , 1988.Insectcoldhardinessanddiapause: Regulatoryrelationships.In: Endocrinological Frontiers in Physiological Insect Ecology (eds.F.Sehnal,A.ZabzaandD.L.Denlinger),pp.243262.Wroclaw TechnicalUniversityPress,Wroclaw,Poland. Lee,R.E.,1991.Principlesofinsectlowtemperaturetolerance.In:LeeRE, DenlingerDL,editors.Insectsatlowtemperature.NewYork:ChapmanandHall, pp.1746. Lee,R.E.,Elnitsky,M.A.,Rinehart,J.P.,Hayward,S.A.L.,Sandro,L.H., Denlinger,D.L.,2006.Rapidcoldhardeningincreasesthefreezingtoleranceof theAntarcticmidge Belgica antarctica .JournalofExperimentalBiology209, 399406. Li,Y.P.,Gong,H.,Park,H.Y.,1999.Characterizationofrapidcoldhardening responselntheoverwinteringmaturelarvaeofpineneedlegallmidge, Thecodiplosis japonensis .CryoLetters20,383392. McDonald,J.R.,BaleJ.S.andWaltersK.F.A.,1997.Rapidcoldhardeningin thewesternflowerthrips Frankliniella occidentalis .JournalofInsectPhysiology 43,759766. Michaud,M.R.,Denlinger,D.L.,2004.Molecularmodalitiesofinsectcold survival:currentunderstandingandfuturetrends.In:AnimalsandEnvironments,

22 Morris,S.,Vosloo,A,eds.Elsevier,Amsterdam.pp.3246. Michaud,M.R.,Denlinger,D.L.,2006.Oleicacidiselevatedincellmembranes duringrapidcoldhardeningandpupaldiapauseinthefleshfly, Sarcophaga crassipalpis .JournalofInsectPhysiology52,10731082. Misener,S.R.,Chen,C.P.,Walker,V.K.,2001.Coldtoleranceandproline metabolicgeneexpressionin Drosophila melanogaster .JournalofInsect Physiology47,393400. Morris,G.J.,Coulson,G.,Meyer,M.A.,Mclellan,M.R.,Fuller,B.J.,Grout,B. W.W.,Pritchard,H.W.,andKnightS.C.,1983.Coldshockawidespresdcellular reaction.CryoLetter4,179192. Ohtaki,T.,Takahashi,M.,1972.Inductionandterminationofpupaldiapausein relationtothechangeofecdysonetiterinthefleshfly, Sarcophaga peregrina . JapaneseJournalofMedicalSciencesandBiology25,369–376. Podrabsky,J.E.,Lopez,J.P.,Fan,T.W.M.,Higashi,R.,Somero,G.N.,2007. Extremeanoxiatoleranceinembryosoftheannualkillifish Austrofundulus limnaeus :insightsfromametabolomicsanalysis.JournalofExperimentalBiology 210,22532266. Powell,S.J.,Bale,J.S.,2004.Coldshockinjuryandecologicalcostsofrapid coldhardeninginthegrainaphid Sitobion avenae (Hemiptera:Aphididae) JournalofInsectPhysiology50,277284. Powell,S.J.,Bale,J.S.,2006.Effectoflongtermandrapidcoldhardeningon thecoldtorportemperatureofanaphid.PhysiologicalEntomology31,348352. Rinehart,J.P.,Yocum,G.D.,Denlinger,D.L.,2000.Developmental upregualtionofinduciblehsp70transcripts,butnotthecognateform,duringpupal diapauseinthefleshfly, Sarcophaga crassipalpis .InsectBiochemMolBiol30, 518521. RinehartJ.P.,DenlingerD.L.,2000.Heatshockprotein90isdownregulated duringpupaldiapauseinthefleshfly, Sarcophaga crassipalpis ,butremains responsivetothermalstress.InsectMolecularBiology9,641–645 Rinehart,J.P.,Yocum,G.D.,Denlinger,D.L.,2000.Developmental upregulationofinduciblehsp70transcripts,butnotthecognateform,duringpupal diapauseinthefleshfly, Sarcophaga crassipalpis .Insectand

23 MolecularBiology 30,515521. Rinehart,J.P.,CikraIreland,R.A.,Flannagan,R.D.,Denlinger,D.L.,2001. Expressionofecdysonereceptorisunaffectedbypupaldiapauseinthefleshfly, Sarcophaga crassipalpis ,whileitsdimerizationpartner,USP,isdownregulated. JournalofInsectPhysiology47,915921. Rinehart,J.P.,Hayward,S.A.L.,Elnitsky,M.A.,Sandro,L.H,Lee,Jr.,R.E., Denlinger,D.L.,2006.Continuousupregulationofheatshockproteinsinlarvae, butnotadults,ofapolarinsect.ProceedingsoftheNationalAcademyofSciences oftheUnitedStatesofAmerica103,1422314227. Rinehart,J.P.,Li,A.,Yocum,G.D.,Robich,R.M.,Hayward,S.A.L., Denlinger,D.L.,2007. Upregulationofheatshockproteinsisessentailforcold survivalduringinsectdiapause.ProceedingsoftheNationalAcademyofSciences oftheUnitedStatesofAmerica104,1113011137. Robich,R.M.,Denlinger,D.L.,2005.Diapauseinthemosquito Culex pipiens evokesametabolicswitchfrombloodfeedingtosugargluttony.Proceedingsof theNationalAcademyofSciencesoftheUnitedStatesofAmerica102, 1591215917. Robich,R.M.,Rinehart,J.P.,Kitchen,L.J.,Denlinger,D.L.,2007. Diapausespecificgeneexpressioninthenorthernhousemosquito, Culex pipiens L.,identifiedbysuppressivesubtractivehybridization.JournalofInsect Physiology53,235245. Shreve,S.M.,Kelty,J.D.,LeeJr.,R.E.,2004.Preservationofreproductive behaviorsduringmodestcooling:rapidcoldhardeningfinetunesorganismal response.JournalofExperimentalBiology 207,17971802. Sinclair,B.J.,Chown,S.L.,2006.RapidcoldhardeninginaKaroobeetle, Afrinus sp.PhysiologicalEntomology31,98101. Sinensky,M.,1974.Homeoviscousadaptation—ahomeostaticprocessthat regulatestheviscosityofmembranein Escherichia coli.Proceedingsofthe NationalAcademyofSciences,USA71,522525. Sugg,P.,Edwards,J.S.,Baust,J.,1983.Phenologyandlifehistoryof Belgica antarctica ,anAntarcticmidge(Diptera:Chironomidae). Ecol. Entomol. 8, 105113.

24 Tammariello,S.P.,Denlinger,D.L.,1998.G0/G1cellcyclearrestinthebrainof Sarcophaga crassipalpis duringpupaldiapauseandtheexpressionpatternofthe cellcycleregulator,proliferatingcellnuclearantigen.InsectBiochemistryand MolecularBiology 28,8389. Tang,X.,Pikal,M.J.,2005.Theeffectsofstabilizersanddenaturantsonthecold denaturationtemperaturesofproteinsandimplicationsforfreezedrying. PharmaceuticalResearch(Dordrecht)22,1167–1175. Tauber,M.J.,Tauber,C.A.&Masaki,S.(1986) Seasonal Adaptations of Insects (OxfordUniv.Press,NewYork). Terblanche,J.S.,Sinclair,B.J.,Klok,C.J.,McFarlane,M.L.,Chown,S.L.,2005. Theeffectsofacclimationonthermaltolerance,desiccationresistanceand metabolicratein Chirodica chalcoptera (Coleoptera:Chrysomelidae).Journalof InsectPhyiology51,10131023. Terblanche,J.S.,Marais,E.,Chown,S.L.,2007.Stagerelatedvariationinrapid coldhardeningasatestoftheenvironmentalpredictabilityhypothesis.Journalof InsectPhyiology53,455462. Thompson,Jr.,G.A.,1983.Mechanismsofhomeoviscousadaptationin membranes.In:Cossins,A.R.,Sheterline,P.(Eds.),CellularAcclimatisationto EnvironmentalChange.CambridgeUniversityPress,Cambridge,pp.33–54. Tomioka,K.,Agui,N.,Bollenbacher,W.E.,1995.Electricalpropertiesofthe cerebralprothoracicotropichormonecellsindiapausingandnondiapausingpupae ofthetobaccohornworm, Manduca sexta .ZoologicalScience12,165173. Tsvetkova,N.M.,Quinn,P.J.,1994.Compatiblesolutesmodulatemembranelipid phasebehaviour.In:Cossins,A.R.(Ed.),TemperatureAdaptationofBiological Membranes.PortlandPress,London,pp.49–62. Stanewsky,R.,Kaneko,M.,Emery,P.,Beretta,B.,WagerSmith,K.,Kay,S.A., Rosbash,M.,Hall,J.C.,1998.Thecry(b)mutationidentifiescryptochromeasa circadianphotoreceptorin Drosophila .Cell95,681692. Usher,M.B.,Edwards,M.,1984.AdipteranfromsouthoftheAntarcticCircle: Belgica antarctica (Chironomidae),withadescriptionofitslarva. Biological Journal of the Linnean Society 23,1931. Walker,G.P.andDenlinger,D.L.,1980.Juvenilehormoneandmoulting

25 hormonetitresindiapauseandnondiapausedestinedfleshflies.JournalofInsect Physiology 26,661664. Wang,X.H.,Kang,L.,2003.Rapidcoldhardeninginyounghoppersofthe migratorylocust Locusta migratoria L.(Orthoptera:Acridiidae).Cryoletters24, 331340. Wang,H.S.,Kang,L.,2005.Effectofcoolingratesonthecoldhardinessand cryoprotectantprofilesoflocusteggs.Cryobiology51,220–229. Williams,J.A.,Sehgal,A.,2001.Molecularcomponentsofthecircadiansystem in Drosophila .AnnualReviewofPhysiology63,729755. Worland,M.R.,2005.FactorsthatinfluencefreezinginthesubAntarctic springtail Tullbergia Antarctica .JournalofInsectPhyiology51,881894. Xu,W.H.,Denlinger,D.L.,2003.Molecularcharacterizationof prothoracicotropichormoneanddiapausehormoneinHeliothis virescens during diapause,andanewrolefordiapausehormone.InsectMolecularBiology12, 509516. Yocum,G.D.,Joplin,K.H.,Denlinger,D.L.,1998.Upregulationofa23kDa smallheatshockproteintranscriptduringpupaldiapauseinthefleshfly, Sarcophaga crassipalpis .InsectBiochemistryandMolecularBiology 28, 677682. Yoder,J.A.,Benoit,J.B.,Denlinger,D.L.,Rivers,D.B.,2006.Stressinduced accumulationofglycerolinthefleshfly, Sarcophaga bullata :Evidenceindicating antidesiccantandcryoprotectantfunctionsofthispolyolandaroleforthebrain incoordinatingtheresponse.JournalofInsectPhysiology52,383392. Zhang,T.Y.,Sun,J.S.,Zhang,L.B.,Shen,J.L.,Xu,W.H.,2004.Cloningand expressionofthecDNAencodingtheFXPRLfamilyofpeptidesandafunctional analysisoftheireffectonbreakingpupaldiapausein Helicoverpa armigera . JournalofInsectPhysiology50,2533.

26

CHAPTER2

PROTEOMICSOFTHEFLESHFLYBRAINREVEALSANABUNDANCE

OFUPREGULATEDHEATSHOCKPROTEINSDURINGPUPALDIAPAUSE

A.Q.Li 1,A.PopovaButler 2,D.H.Dean 1,2 ,andD.L.Denlinger 1,*

1Department of Entomology, 2Department of Biochemistry, The Ohio State

University,Columbus,OH43210,USA

*Correspondingauthor:

Tel:+16142928209

Fax:+16142927865

Email:[email protected]

27 Abstract

Most molecular work on insect diapause has focused on the expression of unique diapause transcripts, rather than the protein products. Here we present results from a proteomic comparison of diapausing and nondiapausing pupal brains. Proteins extracted from diapausing pupal brains of the flesh fly

Sarcophaga crassipalpis were separated by twodimensional gel electrophoresis andcomparedwiththosefromnondiapausingpupalbrains.Uniqueproteinsand proteinspresentatdifferentlevelsofabundanceindiapausingandnondiapausing brains were identified by NanoLC/MS/MS (capillaryliquid chromatographynanospray tandem mass spectrometry). With this approach and

Coomassiestainingwedetected37diapauseuniqueorupregulated(≥2x)proteins, and43proteinsthatweredownregulatedornotpresentindiapause.Heatshock proteins(Hsp70andseveralsmallHsps)wereamongthemostconspicuousbrain proteinspresentinhigheramountsduringdiapause.Brainproteinsthatwereless abundant in diapause included phosphoenolpyruvate synthase,fattyacidbinding protein,EG0003.7,andanendonuclease.Our2Dproteomemapsincludedseveral additional unknown proteins that are more abundant in either the diapause or nondiapausebrains.WhilethemRNAsencodingsomeoftheseproteins(e.g.Hsps) werepreviouslyknowntobeassociatedwithdiapause,theotherproteinswerenot known to be linked to diapause, thus suggesting that the proteomic approach nicelysupplementsworkdoneatthetranscriptlevel.

28 Key words: proteomics; diapause; nondiapause, brain proteins, Sarcophaga crassipalpis

29 2.1. Introduction

One of the first approaches used by our laboratory to probe molecular changesassociatedwithdiapausewastheuseoftwodimensionalelectrophoresis ofradiolabeledbrainproteinsinthefleshflypupaetodeterminewhetherbrains fromdiapausingflypupaeweremakingdifferentproteinsthanthoseproducedby nondiapausing pupae (Joplin et al., 1990). Although it was evident from this earlierworkthatthebrainsofdiapausingpupaeareindeedsynthesizingdistinct proteins,thetechnologyatthattimedidnotallowustoidentify such proteins.

With the advent of capillaryliquid chromatographynanospray tandem mass spectrometryitisnowpossibletoidentifythesmallquantitiesofproteinsthatcan be detected with two dimensional gel electrophoresis. The goal of the present studywastoexploitthistechniquetoidentifytheproteinsthataremoreorless abundantinthebrainsofdiapausingpupae.

Asinmostinsects(Denlingeretal.,2005),thebrainofthefleshflypresides overthedecisiontoenterandterminatediapause(Giebultowicz and Denlinger,

1986),thuseventsoccurringinthebrainareespeciallycriticalforunravelingthe regulation of this overwintering, developmental arrest. Though a number of genes that are differentially expressed in relation to diapause have now been identified(Denlinger,2002),mostofthisworkhasstoppedatthemRNAlevel.

Weusuallyassumethatthepresenceoftranscriptsimpliesthatisalso occurring,butclearlythatisnotalwaysthecase(Gygietal.,1999;Renautetal.,

30 2006). In this study, using a proteomic analysis, we augment our genomic database with information on the proteins that are present in association with diapause.Ourexaminationofthebrainproteinsnotonlyallowsustoverifywhat proteins are present during diapause, but this approach can also suggest the possibilitythatcertainofthoseproteinsmaybeposttranslationallymodified.We report the presence of a preponderance of heat shock proteins (Hsps) during diapause,anobservationthatsupportsourpreviousmRNAresults(Yocumetal.,

1998,Rinehartetal.,2000),yetgoesfarbeyondourpreviousresultsbyrevealing thepresenceofmanyadditionalHspsthatareextremelyabundantduringdiapause.

In addition, we identify a number of downregulated proteins not previously associatedwithdiapause.

2.2. Material and methods

2.2.1 Fly rearing

The colony of S. crassipalpis was maintained as previously described

(Denlinger, 1972). Nondiapausing pupae were produced by rearing the adults underlongdayconditions(15hlight:9hdark)at25°Candthelarvaeandpupaeat

20°Cunderthesamelongdaylength.Diapausingpupaewereproducedbyrearing the adults under short day conditions (12h light: 12h dark) at 25°C and their progenyat20°Cunderthesameshortdaylength.

31

2.2.2 Protein preparation

Twentypupalbrainsweredissected5daysafterpupariationfornondiapause samples or 20 days after pupariation for diapause samples. On day 5, the nondiapausing pupae are at a developmental stage equivalent to diapause. The brains were directly placed in a cell lysis buffer consisting of 50 mM TrisCl pH7.5,100mMNaCl,1%(v/v)TritonX100,1mMEDTA,1mMEGTAand50 mMβglycerophosphate.Fresh1mMdithiothertol(DTT)andaproteaseinhibitor mixture containing 1 mM PMSF, 2 mM sodium orthovanadate, 10 g/ml leupeptin,10g/mlpepstatinA,and10g/mlaprotinin(Sigma,St.Louis)were addedtoallbufferspriortouse.Sampleswerehomogenizedfor2minusinga motordriven pestle, cleaned using a ReadyPrepTM 2D cleanup kit, and rehydratedinReadyPrep2Dstarterkitrehydration/samplebuffer(8Murea,2%

CHAPS, 50mM DTT, 0.2% BioLyte 3/10 ampholyte, 0.001% Bromophenol

Blue). Protein concentrations in the samples were determined by a RC/DC TM proteinassayafterrehydration.AllchemicalsandkitsweresuppliedbyBioRad

(Hercules,CA)unlessotherwisespecified.

2.2.3 Two dimensional gel electrophoresis

Themanufacturer’srecommendedvolume(185l,containingapproximately

32 400gprotiens)ofrecoveredproteinswasappliedto11cmIPGstrips(BioRad), pH310,forpassiveovernightrehydration.TheIPGstripswerethensubjectedto isoelectricfocusingusingaProteanIEFCell. Focusingwasperformedas follows:400Vfor20min,8,000Vfor2.5handthenupto20,000Vhrfor approximately3h.Currentdidnotexceed50Aperstrip.

Afterisoelectricfocusing,theIPGstripswereequilibratedfor15minin equilibrationbufferI(6Murea,2%(w/v)SDS,0.375MTrisHCl(pH8.8),20%

(v/v)glyceroland2%(w/v)1,4dithiothreitol(DTT))followedby15minin6M ureainbufferII(sameasbufferIbutcontaining2.5%iodacetamideinsteadof

DTT).

Fortheseconddimension,IPGstripswereplacedacrossaCriterionPrecast

Gel,overlayedwithagarose.Electrophoresiswasrunwithaconstantvoltage,

200V,for1hrinTrisglycinebuffer(25mMTris,192mMglycine,0.1%SDS.pH

8.3).

Gelswerefixedovernightinasolutionof50%(v/v)ethanoland10%(v/v) aceticacid,stainedwithBiosafeCoomassiebluestain(BioRad)foratleastone hourandwashedinwater.

Atleastthreeindependentsampleswereanalyzedforeachtreatment.

Gel images were scanned with a BioRad VersaDoc model 1000 imaging systemandanalyzedwithPDQuestsoftwareaccordingtotheprotocolsprovided

33 by BioRad. Protein spots were matched automatically using three gels from nondiapausingbrainsandthreegelsfromdiapausingbrains.Spotintensitieswere normalizedtomakethetotaldensityineachgelimage equal, and analysis was performedusingquantitativeandqualitativemodes.Aspotwasdetectedwhenits intensitywas10foldormoreabovebackground.Followingreproducibilitytests forupanddownregulationofproteinsinsamples from diapausing pupae, the confidencethresholdwassetat2foldbeloworabovethespotintensityobserved innondiapausesamples.

2.2.5 In Gel Digestion

Gels were digested with sequencing grade trypsin from Promega (Madison

WI), using the Montage InGel Digestion Kit from Millipore (Bedford, MA) following the manufacturer’s recommended protocols. Briefly, bands were trimmed as close as possible to minimize background polyacrylamide material.

Thegelswerewashedin50%methanol/5%aceticacidforseveralhours.Thegel bandsweredriedwithacetonitrileandreconstitutedwithDTTsolutiontoreduce thecysteines.Iodoacetamidewasaddedtoalkylatethecysteines,andthegelwas washedagainwithcyclesofacetonitrileandammoniumbicarbonate.Trypsinwas addedanddigestedatroomtemperatureovernight.Thepeptides were extracted from the polyacrylamide with 50% (v/v) acetonitrile and 5% (v/v) formic acid

34 severaltimes,andtheextractedpoolswereconcentratedinaSpeedVac(Savant) to~25L.

2.2.6 Protein Identification

Capillaryliquid chromatographynanospray tandem mass spectrometry

(NanoLC/MS/MS)wasperformedonaThermoFinniganLTQmassspectrometer equippedwithananospraysourceoperatedinapositivemode.TheLCsystem wasanUltiMate™PlussystemfromLCPackingsADionexCo(Sunnyvale,CA) withaFamosautosamplerandSwitchoscolumnswitcher. Solvent A was water containing50mMaceticacid,andsolventBwasacetonitrile.Fivemicrolitersof eachsamplewerefirstinjectedintothetrappingcolumn(LCPackingsADionex

Co, Sunnyvale, CA) and washed with 50 mM acetic acid. The peptides were elutedoffthetrapontothecolumn.A5cm75mIDProteoPepIIC18column

(NewObjective,Inc.Woburn,MA)packeddirectlyinthenanospraytipwasused forchromatographicseparations.Peptideswereeluteddirectlyoffthecolumninto theLTQsystemusingagradientof280%solventBover30min,withaflowrate of300nl/minandatotalruntimeof58min.Thescan sequence of the mass spectrometer was based on the TriplePlay™ method; briefly the analysis was programmedforafullscan,azoomscantodeterminethechargeofthepeptide and a MS/MS scan to generate product ion spectra to determine amino acid

35 sequence in consecutive instrument scans of the most abundant peak in the spectrum.DynamicexclusionwasusedtoexcludemultipleMS/MSofthesame peptide.

2.2.7 Database Search

SequenceinformationfromtheMS/MSdatawasprocessed using a Turbo

SEQUESTalgorithminBioWorks3.1Software.Dataprocessingwasperformed followingtheguidelinesbyCarretal.(2004).Assignedpeakshaveaminimumof

10counts(S/Nof3).Themassaccuracyoftheprecursorwassetto1.5Dato accommodateaccidentalselectionoftheC13ion,andthefragmentmassaccuracy wassetto0.5Da.Consideredmodificationsweremethionineoxidation(variable) andcarbamidomethylcysteine(fixed).

2.3. Results

2.3.1 Protein maps of brains from diapausing and nondiapausing pupae

Approximately 440 individual spots (ND 449 and D 434) with molecular massesfrom15180kDaweredetectedinboththediapausingandnondiapausing brains with 2DE separations using Coomassie stain (Figs. 2.1A and 2.1B). To confirmtheproteinexpressionprofiles,asecondsetofgelsloadedwith100gof proteinswasstainedwithSyproRuby(BioRad).TheSyproRubystainingyielded

36 approximately1.5Xmorespotsduetoitshighersensitivity,andnearlyallofthe spots evident with Coomassie staining were also observed in the Sypro

Rubystainedgels(datanotshown).

2.3.2 Protein differences between diapausing and nondiapausing brains

Qualitative and quantitative comparisons were made between the brain proteins from diapausing and nondiapausing flies using PDQuest software. A comparisonofthelocationandvolumesofeachspotshowedthatthemajorityof brain proteins remained virtually unchanged between diapausing and nondiapausing flies (Fig.2.1). Eighty spots out of 449 total spots in

Coomassiestainedsamplesshowed2foldorhigherdifferencesbetweenthetwo samples. Samples of diapausing brains contained 3 unique and 34 upregulated proteinspots,and5missingand38downregulatedproteinspots.

Only the relatively abundant proteins, those stained with Coomassie and havingatleasta2folddifferencebetweendiapauseandnondiapauseinallthree replicates,wereselectedforidentification.Thesespots,14fromdiapauseand4 fromnondiapause,areindicatedinFigures2.1Aand2.1B.

2.3.3 Identification of regulated proteins

RegulatedspotsfromCoomassiestainedgelswereexcisedandanalyzed bymassspectrometry.Spotvolumecomparisonsoftheselectedspots(Fig.2.2)

37 indicatedpronounceddifferencesintheamountsofspecificproteinspresentinthe brains of diapausing and nondiapausing pupae. All of the diapauseupregulated proteins that have been identified show highest identity to heat shock proteins: twoshowhighestidentitytotheHsp70familyandsixshowhighestidentitiesto the small Hsp family (Table 2.1). Five (spot 1014) of the diapause unique or upregulatedproteinsshowednoidentitytootherknownproteins,andoneprotein, identified as keratin (spot 9), is assumed to be a contaminant. The diapause downregulatedproteins showhighestidentitytophosphoenolpyruvate synthase, fattyacidbindingprotein,EG:EG0003.7andanendonuclease(Table2.1).

2.4. Discussion

Theappealofaproteomicsanalysisis,ofcourse,thatitisonestepcloser tofunctionalitythanastudybasedonmRNA. While mRNAbased studies are enormouslyuseful,onecannotbecertainthatthetranscriptsareactuallytranslated unless the work is complemented with protein studies (e.g., Gygi et al., 1999;

Renautetal.,2006). Byworkingattheproteinlevelitisalsopossibletodetect multipleformsofaproteinthatmaybetheconsequence of families of closely relatedproteinsorposttranslationalmodifications.

Thoughwepreviouslyreportedthepresenceofdiapausespecificproteins present in the brains of flesh fly pupae (Joplin et al., 1990), at that time the technologydidnotallowustoidentifytheproteinsofinterest.Wereportslightly

38 differentnumbersofdiapauseuniqueorupregulatedproteinsinthesetwostudies,

14inJoplinetal.(1990)and37inthecurrentpaper,butthetwostudiesarenot identical. Thepreviouspaperusedradiolabeledmethioninetoidentifyproteins thatwerecurrentlybeingmadebythebrain,whileinthecurrentstudyweused

Coomassiestainingtoidentifyproteinsthatarepresent,notsimplythosethatare being made currently. Our earlier study that used radiolabeling demonstrated thatfarfewerproteinsarebeingsynthesizedinthebrainduringdiapause,butin this study we detected nearly the same number of proteins in the brains of diapausingandnondiapausingpupae. Acomparisonoftheresultsofthesetwo protocols suggests that many of the proteins present in the brain may be synthesizedbeforetheonsetofdiapauseormaybesynthesizedonlyperiodically.

Both are likely. There is indeed evidence that at least some proteins are synthesized periodically during pupal diapause in flesh flies; peak periods of protein synthesis coincide with peaks in the infradian cycles of oxygen consumptionthatarecharacteristicofthisdiapause(JoplinandDenlinger,1989).

Theproteindatabasefor S. crassipalpis andotherfleshfliesispoor,thusthe taskofidentifyingtheproteinswithcertaintyremainsachallenge.Inthisstudy,2

(spot 10 and 11) of the diapauseunique and 3 (spot 1214) of the diapauseupregulated proteins that were quite abundant could not be identified.

Eightofthediapauseabundantproteinscouldbeidentified with a fair level of confidence,andallshowedhighestidentitytoheatshockproteins. Twoofthese

39 showedhighestidentitiestoHsp70andtheother6weremostidenticaltoHsp23, oneofthesmallheatshockproteinspreviouslyidentifiedin S. crassipalpis . The twospotsidentifiedasHsp70s(spot1and2)aredirectlybesideeachotheronthe gel, suggesting that they represent one protein with different posttranslational modificationssuchasphosphorylationorglycosylation,butwecannoteliminate thepossibilitythattheyaretwodistinctproteins.Bycontrast,thespotswithhigh identitytoHsp23(spot38)arenotpresentin“chains”thattypicallyrepresentone proteinbutarewidelydistributedacrossthegel,suggestingitismorelikelythat theyaredistinctmembersofthesmallHspfamily. ThoughHsp23istheonly smallHsppreviouslyreportedin S. crassipalpis (Yocumetal.,1998), wehave unpublished evidence that additional small Hsp transcripts are present in this species,asiswellknownforotherorganisms(TaylorandBenjamin,2005;Sun andMacRae,2005).

ThepresenceoftheHspsinthebrainsofdiapausingpupaenicelysupports our previous evidence that the mRNAs encoding Hsp70 (Rinehart et al., 2000;

Haywardetal.,2005)andHsp23(Yocumetal.,1998;Haywardetal.,2005)are highlyupregulatedduringdiapause.Thisisourfirstevidencethatthesetranscripts are indeed translated. The Hsps are upregulated in several other diapausing insects as well (Denlinger et al., 2001), and in dormant stages of some other organisms such as the brine shrimp Artemia franciscana (MacRae, 2003). We haveproposedthattheupregulatedHspsserveadualfunctionduringdiapause,

40 bothconferringcoldtoleranceandhelpingtosuppressdevelopment(Denlingeret al.,2001).OurunpublishedresultsusingRNAinterference(RNAi)demonstratea significantlossofcoldtolerancewhenRNAiisusedtoknockdownexpressionof

Hsp70.WethusspeculatethatHsp70,andpossiblyotherHsps,playanessential role in enabling the diapausing fly pupae to survive for long periods at low temperature.ThedevelopmentalupregulationofHspsduringthemanymonthsof diapause is an unusual pattern of expression that contrasts to the betterknown rapid response of these chaperone molecules to heat stress and other environmentalinsults(FederandHoffman,1999).Thefactthattheexpressionof

Hspsisincompatiblewiththeprogressionofdevelopment(KrebsandFeder,1997) suggeststhatthepresenceofHspsduringdiapausemayalsofunctioninarresting development.Whatisclearfromthepresentstudyis that there are many more

HspsorposttranslationallymodifiedHspspresentduringdiapausethanwehad anticipated. WhetherthesedifferentHspsareplayingdistinctrolesindiapause orsimplyrepresentredundancyinfunctionisanintriguingquestion,butwhatis clear is that this result portends an unexpected complexity in the diapause response.

Three of the identified proteins shown to be less abundant in brains of diapausing pupae , i.e. more abundant in brains from nondiapausing pupae, are related to metabolic processes that are most likely less active during diapause.

These include phosphoenolpyruvate (PEP)synthase, an involved in

41 gluconeogenesis, a fatty acid binding protein, and an endonuclease. Another downregulated protein has high identity to a protein known from Drosophila melanogaster (EG: EG0003.7) but the function of this protein is unknown.

Diapauseischaracterizedbyamajorshutdowninmetabolismandthusitisnot surprisingthatproteinsassociatedwithmetabolicactivitywouldbelessabundant.

Proteinsthatarelessabundantindiapausecouldpotentiallybejustasimportant asproteinsthatareuniquetodiapauseoraremoreabundantindiapause. Atthe transcript level, for example, the downregulation of the cell cycle regulator,

ProliferatingCellNuclearAntigen,appearstobeakeyfeatureshuttingdownthe cellcycleduringdiapausein S. crassipalpis (TammarielloandDenlinger,1998;

Haywardetal.,2005). But,noneoftheproteinsidentifiedinthisstudyarelikely toexertaregulatoryrole.

Weassumethepresenceofkeratininoursamplesis a contaminant, as is common in proteomic studies, but we are intrigued with the fact that it consistentlywasmoreabundantinourdiapausingsamples,anditsclosestidentity was to a type I microfibrillar 48 kDa keratin from sheep, rather than humans.

Thefactthattherearereportsofakeratinlikeproteininthetaenidiaofinsect trachea(Baccettietal.,1984a)andspermatozoa(Baccettietal.,1984b)suggests thatperhapsweshouldnotsummarilydismissthepossibilitythatsuchaproteinis presentinthediapausingbrain.

Althoughtheproteinsobservedinthisstudyrepresentonlythemostabundant

42 proteins,weassumethatthenumberofdiapauseupregulatedoruniqueproteins observed in this study (37 out of 449 total proteins, 8.2%) is indicative of the proportion of upregulated proteins that would be present in a more complete profile of brain proteins. This estimate is slightly higher than a previous calculation suggesting that approximately 4% of the transcripts are diapause upregulated(Flannaganetal.,1998). Whatisperhapsremarkableisthatsofew differences are evident between these two developmental states that are so profoundlydifferent.

Acknowledgements

TheauthorsthankDavidMandichofthePlantMicrobeGenomicsFacilityfor assistancewithimageanalysisandKariGreenChurchoftheCampusChemical

Instrument Center for MS protein identification. This project was supported in partbyNSFgrantIOB0416720.

43 References Baccetti, B., Burrini, A.G., Gabbiani, G., Leoncini, P., 1984a. Insect tracheal taenidiacontainakeratinlikeprotein.PhysiologicalEntomology9,239245. Baccetti,B.,Burrini,A.G.,Gabbiani,G.,Leoncini,P.,Runggerbrandle,E.,1984b. Filamentous structures containing a keratinlike protein in spermatozoa of an insect, Bacillus rossius .JournalofUltrastructureResearch86,8692. Carr,S.,Aebersold,R.,Baldwin,M.,Burlingame,A.,Clauser,K.,Nesvizhskii,A., 2004.Theneedforguidelinesinpublicationofpeptideandproteinidentification data.MolecularandCellularProteomics3,531533. Denlinger, D.L., 1972. Induction and termination of pupal diapause in Sarcophaga (Diptera: Sarcophagidae). Biological Bulletin, Woods Hole 142, 1124. Denlinger,D.L.,2002.Regulationofdiapause.AnnualReviewofEntomology47, 93122. Denlinger, D.L., Rinehart, J.P., Yocum, G.D., 2001. Stress proteins: a role in insectdiapause?In:Denlinger,D.L.,Giebultowicz,J.M.,Saunders,D.S.(Eds.), Insect Timing: Circadian Rhythmicity to Seasonality. Elsevier Science, Amsterdam,pp.155171. Denlinger,D.L.,Yocum,G.D.,Rinehart,J.P.,2005.Hormonalcontrolofdiapause. In: Gilbert, L. I., Iatrou, K., Gill, S. (Eds.), Comprehensive Molecular Insect Science,Vol.3.Elsevier,Amsterdam,pp.615650. Feder,M.E.,Hoffmann,G.E.,1999.Heatshockproteins,molecularchaperones, andthestressresponse:evolutionaryandecologicalphysiology.AnnualReview ofPhysiology61,243282. Flannagan, R.D., Tammariello, S.P., Joplin, K.H., CikraIreland, R.A., Yocum, G.D., Denlinger, D.L., 1998. Diapausespecific gene expression inpupae of the flesh fly Sarcophaga crassipalpis. Proceedings of the National Academy of SciencesoftheUnitedStatesofAmerica95,56165620. Giebultowicz, J.M. Denlinger, D.L., 1986. Role of the brain and ring gland in relation to pupal diapause in the flesh fly, Sarcophaga crassipalpis . Journal of InsectPhysiology32,161166.

44 Gygi,S.P.,Rochon,Y.,Franza,B.R.,Aebersold,R.,1999.Correlationbetween protein and mRNA abundance in yeast. Moleculae and Cellulae Biology 19, 17201730. Hayward, S.A.L., Pavlides, S.C., Tammariello, S.P., Rinehart, J.P., Denlinger, D.L., 2005. Temporal expression patterns of diapauseassociated genes in the flesh fly pupae from the onset of diapause through postdiapause quiescence. JournalofInsectPhysiology51,631640. Joplin, K.H., Denlinger, D.L., 1989. Cycles of protein synthesis during pupal diapause in the flesh fly, Sarcophaga crassipalpis . Archives of Insect BiochemistryandPhysiology12,111122. Joplin, K.H., Yocum, G.D., Denlinger, D.L., 1990. Diapause specific proteins expressed by the brain during the pupal diapause of the flesh fly, Sarcophaga crassipalpis .JournalofInsectPhysiology36,775783. Krebs, R.A., Feder, M. E., 1997. Deleterious consequences of Hsp70 overexpressionin Drosophila melanogaster larvae. CellStress&Chaperones2, 6071. MacRae,T.H.,2003.Molecularchaperones,stressresistanceanddevelopmentin Artemia franciscana .SeminarsinCellandDevelopmentBiology14,251258. Renaut, J., Hausman, J.F., Wisniewski, M.E., 2006. Proteomics and lowtemperature studies: bridging the gap between gene expression and metabolism.PhysiologiaPlantarum.126,97109. Rinehart,J.P.,Yocum,G.D.,Denlinger,D.L.,2000.Developmentalupregulation ofinduciblehsp70transcripts,butnotthecognateform,duringpupaldiapausein the flesh fly, Sarcophaga crassipalpis . Insect Biochemistry and Molecular Biology30,515521. Sun,Y.,MacRae,T.H.,2005.Smallheatshockproteins:molecularstructureand chaperonefunction.CellularandMolecularLifeSciences62,24602476. Tammariello,S.P.,Denlinger,D.L.,1998.G0/G1cellcyclearrestinthebrainof Sarcophaga crassipalpis duringpupaldiapauseandtheexpressionpatternofthe cell cycle regulator, proliferating cell nuclear antigen. Insect Biochemistry and MolecularBiology28,8389. Taylor,R.P.,Benjamin,I.V.,2005.Smallheatshockproteins:anewclassification

45 schemeinmammals.JournalofMolecularandCellularCardiology38,433444. Yocum, G.D., Joplin, K.H., Denlinger, D.L., 1998. Upregulation of a 23 kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis . Insect Biochemistry and Molecular Biology 28, 677682.

46

Fig. 2.1. Two dimensional electrophoresis maps of brain proteins from (A) diapausing and (B) nondiapausing pupae of S. crassipalpis . Proteins were separatedbyIEFinthefirstdimension,pH310,11cm,thenbysize(15180kDa) intheseconddimensionandstainedwithCoomassieBlue.Mapswereanalyzed withPDQuestsoftware.Selectedspotswerenumbered118.

47 Fig.2.2.Selectedareaoftwodimensionalgelsandcorrespondingspotvolumes forselectedspotsidentifiedinthenondiapausing(ND)anddiapausing(D)flesh flies. Protein spot migration patterns were detected in Coomassiestained gels usingBioRadVersaDocmodel1000imagingsystem.Imagepairsanddetectionof proteinspotswithrelativespotvolumeswereachievedusingPDQuestsoftware (BioRad).2DE,twodimensionalgelelectrophoresis.

48 Predicted Mowse SpotNo. AccessionNo. Species ProteinID mass(kDa)/PI Score* Diapause up-regulated proteins

1 13560880 Drosophila melanogaster heatshockproteinHsp70Bc 70.1/5.5 192 1037174 Eimeria maxima immunoglobulinheavychainbindingprotein 38.1/5.4 91 2 13560880 Drosophila melanogaster heatshockproteinHsp70Bc 70.1/5.5 130 5570 Aplysia californica BiP/GRP78 73.7/4.8 90 1037174 Eimeria maxima immunoglobulinheavychainbindingprotein 38.1/5.4 90 3 2058737 Sarcophaga crassipalpis 23kDaheatshockproteinScHSP23 22.9/6.0 553 4 2058737 Sarcophaga crassipalpis 23kDaheatshockproteinScHSP23 23.0/6.0 435

49 5 2058737 Sarcophaga crassipalpis 23kDaheatshockproteinScHSP23 23.0/6.0 142 66548185 Apis mellifera PREDICTED:similartothiolperoxiredoxin 18.1/5.6 114 67083335 Ixodes scapularis thioredoxindependentperoxidereductase 25.8/9.1 98 6 2058737 Sarcophaga crassipalpis 23kDaheatshockproteinScHSP23 23.0/6.0 517 7 2058737 Sarcophaga crassipalpis 23kDaheatshockproteinScHSP23 23.0/6.0 817 8 2058737 Sarcophaga crassipalpis 23kDaheatshockproteinScHSP23 23.0/6.0 134 Table2.1(continued) Table2.1.Identificationofdiapauseregulatedbrainproteinsinpupae of S. crassipalpis . *Mowsescore>54indicatesidentityorextensivehomology(P<0.05);higherscoresindicatehigherconfidenceofidentity.

49 Table2.1(continued) Predicted Mowse SpotNo. AccessionNo. Species ProteinID mass(kDa)/PI Score* 9 125090 Ovis aries Keratin,typeImicrofibrillar48kDa, 48.1/4.77 285 component8C1(assumed:contaminant) 1014 Unknowns Diapause down-regulated proteins

15 1591246 Methanocaldococcus Phosphoenolpyruvatesynthase 134.6/6.2 59 jannaschii DSM2661

50 16 160843 Schistocerca gregaria Fattyacidbindingprotein 15.0/6.2 179 17 3757564 Drosophila melanogaster EG:EG00037 24.3/4.4 214 18 74310551 Epidermophyton floccosum Endonuclease 34.2/9.53 74

50

CHAPTER3

NEUROPEPTIDE LIKE PRECURSOR 4 IS UNIQUELY EXPRESSED

DURINGPUPALDIAPAUSEINTHEFLESHFLY

AiqingLi,JosephP.RinehartandDavid.L.Denlinger *

DepartmentofEntomology,OhioStateUniversity,318W.12 th Avenue,Columbus,

OH43210,USA.

*Correspondingauthor.Tel.:6142926425;fax:6142922180.

Email:[email protected] (D.L.Denlinger).

51 Abstract

Suppression subtractive hybridization comparing brains from diapausing andnondiapausingpupaeofthefleshfly, Sarcophaga crassipalpis, suggestedthat thegeneencodingneuropeptidelikeprecursor4(Nplp4)wasuniquelyexpressed duringdiapause.WehavesequencedthefulllengthcDNA encodingNplp4 and used northern blots to further evaluate linkage to diapause. The open reading frameofthiscDNAencodesa61aminoacidresidueprecursorproteincontaining apredicted18residuesignalpeptide,one22amino acid and one 2amino acid propeptides,anda19aminoacidneuropeptide.Theaminoacidsequenceofthe precursor protein shows 64% identity to Drosophila melanogaster Nplp4; homologuesofthisprecursorproteinarenotknownfromspeciesotherthanthese two flies. Nplp4 mRNA levels were quite low in nondiapausing (long day) pupae,butincontrastthegenewashighlyupregulatedindiapausing(shortday) pupae.Expressionincreasedattheonsetofdiapause,remainedhighthroughout diapause,andthendecreased2daysafterdiapausewasterminated.Althoughthe functionofthisprecursorproteinandtheneuropeptideityieldsremainunknown, this close association with diapause suggests a potential role for Nplp4 in initiatingandmaintainingdiapauseinthefleshfly.

Key words: Diapause;overwintering;neuropeptidelikeprecursor4; Sarcophaga crassipalpis

52 Introduction

Neuropeptide like precursor 4 (Nplp4) has no known function. A peptidomics study of the larval central nervous system in Drosophila melanogaster firstidentifiedthenovelYSYpeptidethatisacomponentofNPLP4

(Baggermanetal.,2002).TherearenootherreportsofNplp4asfarasweknow.

Threeothernovelpeptideprecursors,designatedasneuropeptidelikeprecursors1,

2 and 3, respectively, were also identified in D. melanogaster central nervous system(Baggermanetal.,2002),butthesepeptide precursors appear to be not related. Regulatory neuropeptides are synthesized as components of larger precursorproteinsthataresubsequentlycleavedintothesmalleractivemolecules.

Signalpeptidespresentwithintheseprecursorproteinsdirectthecleavageofthe peptides from their precursors (Canaff et al., 1999). Thewellknown rolesof neuropeptides in influencing a wide range of functions including behavior, development, immunity, and indeed most physiological processes (Liu et al.,

2006), highlights the importance of linking unknown peptides to potential functionsordevelopmentalstages.

Throughtheuseofsuppressivesubtractivehybridization(SSH)toidentify diapausespecific genes in the flesh fly Sarcophaga crassipalpis we isolated a potentiallydiapauseupregulatedclonewithhighidentitytoNplp4.Thisprompted ustofurtherinvestigatethisclonebyobtainingitsfulllengthsequenceandtouse

Northernblothybridizationtoverifytheassociationwiththeoverwinteringpupal diapauseofthefleshfly.

Diapause, a form of developmental arrest used by most temperate zone insects, is characterized by a major shutdown of many genes but also by the

53 upregulation of a select set of genes (Denlinger, 2002). Among the diapauseupregulated genes known from S. crassipalpis are genes that encode severalheatshockproteins(Rinehartetal.,2007),acystatin(GotoandDenlinger,

2002) and an AP endonuclease (Craig and Denlinger, 2000). Genes that are specifically upregulated during diapause are also known from several other species(e.g.Yocum,2001;Leeetal.,2002;Robichetal.,2007).

Inthisstudy,weprovideevidencethatthegeneencodingNplp4isanother genewithanexpressionpatternfinelylinkedtodiapause.Thefactthatpeptides play much important roles as regulatory molecules suggests that Nplp4 may deserve close attention as a potential regulator of developmental arrest in S. crassipalpis .

2. Material and methods

2.1. Insects

The colony of S. crassipalpis Macquart was maintained as decribed

(Denlinger,1972). Nondiapausingadultflieswereheldatlongdaylength(15h light:9hdark),25°C,andtheresultantnondiapausedestinedlarvaeandpupae wererearedat20°Cunderthesamelongdayconditions.Diapausingflieswere rearedatshortdaylengths(12hlight:12hdark,25°Cforadultsand20°Cfor larvaeandpupae). Terminationof20dayolddiapausingpupaewasachieved bydirectlyapplying5lhexanetotheheadsofthepupae(Denlingeretal.,1980).

2.2 Suppressive subtractive hybridization

TotalRNAfrom20diapauseand20nondiapausepupaewasisolatedusing

54 Trizolreagent(ChomczynskiandSacchi,1987),eachofwhichwasthenpooled for use in suppressive subtractive hybridization (SSH) following a protocol previously described (Robich et al, 2007). First, the pools of total RNA were usedastemplatesforcDNAsynthesisusingtheBDSMARTPCRSynthesisKit

(BD Biosciences). SSH was performed using the Clontech PCRSelect cDNA

Subtraction Kit, with the diapause sample as the tester and the nondiapause sample as the driver. Finally, subtracted libraries were constructed using the

TOPOTACloningKit(Invitrogen),andrandomlyselectedclonesweresequenced at the Ohio State University PlantMicrobe Genomics Facility using a Applied

Biosystems 3730 DNA Analyzer with BigDye Terminator Cycle Sequencing

(AppliedBiosystems).

2.3 Cloning

TheinitialNplp4clone(449bp)includingthe3′endwasobtainedbySSH.

For 5′ RACE, the adaptoradded firststrand cDNA wassynthesizedusing1g

RNAfromdiapausingpupae,with5'CDSPrimerA(5'–(T)25VN–3', N=A,C,

G, or T; V = A, G, or C) and SMART II™ A Oligonucleotide (5'–AAG CAG

TGG TAT CAA CGC AGA GTA CGC GGG–3') from SMART RACE cDNA amplification kits (Clontech, BD). The 5' sequence was amplified using the specific reverseprimer (5'TGG CAG GCA CACACA TCA CAC TA 3'), and

UniversalPrimerAMix(5'CTAATACGACTCACTATAGGGCAAGCAGTG

GTA TCA CGC AGA GT3'). Thermal cycling was run with the following program:(i)94°Cfor5min,(ii)94°Cfor30s,(iii)65°Cfor30s,(iv)72°Cfor3 min,(v)repetitionofstepsiitoivfor35cycles,and(vi)70°Cfor7min.The

55 amplifiedcDNAproduct,separatedina1%(w/v)lowmeltingpointagarosegel wasisolatedfromthegelandclonedintoapCR2.1TOPOTAvector(Invitrogen).

TheTOPOclonesweretransformedintoTOP10competentcells(Invitrogen)and grownovernightonLuriaBertaniplatessupplementedwithXGalandampicillin.

Bacterial colonies were picked and purified using Qiaprep Spin Minipreps

(QIAGEN).ThepurifiedDNAwasthensequencedwiththeM13reverseprimer at the Ohio State University PlantMicrobe Genomics Facility on an Applied

Biosystems 3730 DNA Analyzer using BigDyes Terminator Cycle Sequencing chemistry(AppliedBiosystems)accordingtothemanufacturer’sinstructions.

2.4 Northern blot hybridization

ForNorthernblotanalysis,10gtotalRNAwasseparatedona1.4%(w/v) agarose gel containing 0.41 M formaldehyde and ethidium bromide. The RNA was subsequently transferred onto a Hybond nylon positive membrane

(Amersham Biosciences) by downward capillary action using a Schleicher and

SchullTurboblottersystemandalkalinetransferbuffer.Thenylonmembranewas neutralized in 0.2 M phosphate buffer and RNA was immobilized using a UV crosslinker (Fisher Scientific). The membrane was stored at 20 °C for later prehybridization.

TheNplp4fragmentwasamplifiedbyrtPCRfrom5'RACEcDNA.The primerswereNPF1(5'TTATTGCTGCCTTGTTCGCTGTCA3')andNPR1

(5'CAT CAG TTG TTG TTG GGG GAC AGA3'). Amplication was achieved withapreheatingstepat94°Cfor3minand35cyclesof30sat94°C,30sat62

°Cand30sat72°C,followedbya7minextensionat72°C.IdentityofthePCR

56 productwasconfirmedbyDNAsequencing.Theproductwaselectrophoredona

1% agarose TAE gel, the band was excised and purified using a QIAquick gel

Extraction kit (QIAGEN, USA) and used as a template for the probe. Probe labeling,hybridizationanddetectionwereperformedusingtheDigHighPrime

DNA LabelingandDetectionStarterKit II (RocheAppliedSciences)following the manufacturer’s instructions. Briefly, the membrane was prehybridized in hybridizationbufferfor30min.Afterovernighthybridizationat37°Cwiththe

DIGlabeledprobe,theblotwassubjectedtostringencywashes,immunological detection and exposure to chemilluminescence film (Kodak Biomax).

DIGlabeled 28S cDNA was used as a control for Northern hybridization to confirmequalloadingoftotalRNA.

3. Results

3.1 Clone identification

ThefulllengthcDNAofNplp4obtainedbyRACEisa533bpsequence

(GenBank accession no. EU526381 ) that encodes 61 amino acid residues (Fig.

3.1).Theopenreadingframe(ORF)ofNplp4,terminatedbyaTAAstopcodon,is

183bp,fromnucleotides64to249.The5'untranslatedregionis63bpandthe

3'untranslated region, including the polyA tail, is 284 bp. The putative polyadenylationsignal(ATTAAA)wasidentifiedatnucleotidepositions444449.

A sequence alignment of the deduced Nplp4 amino acid sequence with the sequenceofNplp4from Drosophila melanogaster isshowninFig.3.2.TheORF ofNplp4from S. crassipalpis shares64%identityand76%positiveswithNplp4 from D. melanogaster . No homologues of this precursor protein have thus far

57 beenfoundinotherorganisms.

Both precursor proteins contain a predicted 18 residue signal peptide, according to Nielsen et al. (1997). While the coded neuropeptide in D. melanogaster ,YSYpeptide,is22aminoacidresidues(Baggermanetal.,2002), theputativeneuropeptidein S. crassipalpis ,aYSYpeptide,consistsof19amino acidresidues(Fig.3.2).

3.2 Transcription of Nplp4 associated with diapause

To generate a DIGlabeled probe for Northern blot hybridization, we cloned a partial Nplp4 cDNA that produced a 273 bp band. Northern blot hybridization confirmed a diapausespecific expression pattern for Nplp4 (Fig.

3.3). Nplp4 was expressed at a low level in nondiapausedestined wandering larvaeandwasnearlyundetectableinnondiapausingpupae(5dafterpupariation at20°C). Expressionwaslikewisedisplayedatalowlevelinwanderinglarvae programmedforpupaldiapause,butexpressionofNplp4washighlyupregulated attheveryonsetofpupaldiapause, i.e. ,5dafterpupariationat20°C(Fig.3.3).

Expressionremainedatahighlevelinearlydiapause,declinesabitinmidand latediapauseandthendroppedsharply2dafterdiapausewasterminatedwitha topical application of hexane, a chemical tool that readily breaks diapause

(Denlinger et al., 1980). In all three replicates of the experiment, Nplp4 was highlyexpressedfromthebeginningtotheendofpupaldiapause(shortdaylength) butwasnotpresentinnondiapausing(longdaylength)pupaerearedatthesame temperature.

58 4. Discussion

Inthisstudy,wehaveidentifiedthegenethatencodesNplp4intheflesh flyanddeterminedthatitsexpressionisdevelopmentallyupregulateduponentry intopupaldiapause.NPLP4encodesasignalpeptide,accordingtoNielsenetal.

(1997),andaYSYneuropeptideasseenin D. melanogaster (Baggermanetal.,

2002).Thusfar,NPLP4andtheYSYpeptideitcontainshavenotbeenreported fromotherinsects.

Although a peptidomics study showed the presence of NPLP4 peptide fragments in the fly’s central nervous systems (Baggerman et al., 2002), no additionalinformationaboutNPLP4hasbeenobtained(Baggermanetal.,2005;

Taraszka et al., 2005). To further investigate whether NPLP4 is present in central nervous system, we investigated the tissuespecific expression of Nplp4 mRNA by Northern blot hybridization (data not shown). Intriguingly, no expression was detected in the brain, thoraxabdomen ganglion, midgut, malpighiantubulesorinfatbody,andlowerabundancedetectedinepidermisthan inwholebodyofdiapausingpupae. TheabsenceofNplp4transcriptinthenerve tissuesbrainandthoraxabdomenganglioncanbeexplainedintwoways.Oneis that,Nplp4,asaneuropeptidehormone,islikelytobesynthesizedinthebrain and released into haemolymph upon entry into diapause, similar to Nplp2 as suggestedbyVerleyenetal.(2006).Theotheristhat,Nplp4mightbepresentin other tissues such as subesophageal ganglion and imaginal discs of central nervoussystem.Thus,thetissuedistributionofNplp4needsfurtherinvestigation.

OurresultsshowacloserelationshipbetweentheexpressionofNplp4and pupal diapause in S. crassipalpis . While longday nondiapausing pupae at a

59 developmentalstageequivalenttodiapause(youngphanerocephalicpupae,5days afterpupariationat20°C)failtoexpressNplp4,shortday(diapauseprogrammed) pupaeofthesameage(5dafterpupariationat20°C)highlyexpressthisgene.

Expression remains high throughout pupal diapause and then expression drops sharply 2 d after diapause is artificially terminated. Thus tight linkage with diapausesuggestsapotentialroleforNplp4indiapause regulation, but exactly whatthisrolemayberemainstobedetermined.TheNplp4diapauseexpression pattern does differ slightly from that of the heat shock proteins which are also upregulatedthroughoutdiapause(Haywardetal.,2005;Rinehartetal.,2007).The differenceisinthedeclineinexpressionattheendofdiapause.WhileHsp70and

Hsp23 are shut off within 612 h after diapause is artificially terminated with hexane (Hayward et al., 2005; Rinehart et al., 2007), Nplp4 continues to be expressedforanadditional1218h.Thisslightdifferenceintemporalpatternof expression implies that different components of the diapause program may be turnedoffatdifferenttime,hencesuggestingafinelytunedorchestrationofthe genesregulatinginsectdiapause.

Acknowledgements

WethankGiancarloLopezMartinezforhelpfuladviceduringthecourseof thisstudy.ThisworkwassupportedinpartbyNSFgrantIOB0416720.

60 References

Baggerman,G.,Cerstiaens,A.,DeLoof,A.,Schoofs,L.,2002.Peptidomicsofthe larval Drosophila melanogaster central nervous system. Journal of Biological Chemistry277,40368–40374. Baggerman, G., Boonen, K., Verleyen, P., De Loof, A., Schoofs, L., 2005. Peptidomicanalysisofthelarval Drosophila melanogaster centralnervoussystem by twodimensional capillary liquid chromatography quadrupole timeofflight massspectrometry.JournalofMassSpectrometry40,250–260. Canaff, L., Bennett, H. P. J., Hendy, G. N., 1999. Peptide hormone precursor processing:gettingsorted?MolecularandCellularEndocrinology156,1–6. Chomczynski,P.,Sacchi,N.,1987.SinglestepmethodofRNAisolationbyacid guanidinium thiocyanatephenolchloroform extraction. Analytical Biochemistry 162,156–159. Craig, T.L., Denlinger, D.L., 2000. Sequence and transcription patterns of 60S ribosomal protein P0, a diapauseregulated AP endonuclease in the flesh fly, Sarcophaga crassipalpis .Gene255,381–388. Denlinger,D.L.,1972.Inductionandterminationofpupaldiapausein Sarcophaga (Diptera:Sarcophagidae).BiologicalBulletin,WoodsHole142,11–24. Denlinger, D.L., Campbell, J.J., Bradfield, J.Y., 1980. Stimulatory effect of organicsolventsoninitiatingdevelopmentindiapausingpupaeofthefleshfly, Sarcophaga crassipalpis , and the tobacco hornworm Manduca sexta . PhysiologicalEntomology5,7–15. Denlinger,D.L.,2002.Regulationofdiapause.AnnualReviewofEntomology47, 93–122. Goto,S.G.,Denlinger,D.L.,2002.Genesencodingtwocystatinsinthefleshfly Sarcophaga crassipalpis andtheirdistinctexpressionpatternsinrelationtopupal diapause.Gene292,121–127. Hayward,S.A.L.,Pavlides,S.C.,Tammariello,S.P.,Rinehart,J.P.,Denlinger, D.L.,2005.Temporalexpressionpatternsofdiapauseassociated genes in flesh flypupaefromtheonsetofdiapausethroughpostdiapausequiescence.Journalof InsectPhysiology51,631–640. Lee, K. Y., Horodyski, F.M., Valaitis, A.P., Denlinger, D.L., 2002. Molecular characterization of the insect immune protein hemolin and its high induction during embryonic diapause in the gypsy moth, Lymantria dispar . Insect BiochemistryandMolecularBiology32,1457–1467.

61 Liu,F.,Baggerman,G.,D'Hertog,W.,Verleyen,P.,Schoofs,L.,Wets,G.,2006. In Silico identificationofnewsecretorypeptidegenesin Drosophila melanogaster . Molecular&CellularProteomics5, 510–522. Nielsen,H.,Engelbrecht,J.,Brunak,S.,vonHeijne, G., 1997. Identification of prokaryoticandeukaryoticsignalpeptidesandpredictionoftheircleavagesites. ProteinEngineering10,1–6. Robich, R.M., Rinehart, J.P., Kitchen, L.J., Denlinger, D.L., 2007. Diapausespecific gene expression in the northern mosquito, Culex pipiens L. , identifiedbysuppressivesubstractivehybridization.JournalofInsectPhysiology 53,235–245 Taraszka, J.A., Kurulugama, R., Sowell, R.A., Valentine, S.J., Koeniger, S.L., Arnold, R.J., Miller, D.F., Kaufman, T.C., Clemmer, D.E., 2005. Mapping the proteome of Drosophila melanogaster : analysis of embryos and adult heads by LCIMSMSmethods.JournalofProteomeResearch4,1223–1237. Verleyen,P.,Baggerman,G.,D'Hertog,W.,Vierstraete,E.,Husson,S.J.,Schoofs, L.,2006.Identificationofnewimmuneinducedmoleculesinthehaemolymphof Drosophila melanogaster by2DnanoLCMS/MS.JournalofInsectPhysiology52, 379–388. Yocum,G.D.,2001.DifferentialexpressionoftwoHSP70transcriptsinresponse to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. JournalofInsectPhysiology47,1139–1145.

62

Fig.3.1 Nucleotideanddeducedaminoacidsequence of Nplp4 in Sarcophaga crassipalpis . The nucleotide sequence of the 5' and 3'UTR flanking ORF was determinedby5'and3'RACE. Thenucleotidesequenceisnumberedfromthe5' to3'direction.KeyfeaturesofthegeneincludethesuggestedstartATGandstop TAAcodons,indicatedinboxes,andtheputativepolyadenylationsignalshownin boldletters.ThededucedaminoacidsequenceoftheORFisshownbelowthe nucleotidesequence.

63

Fig. 3.2 Alignment of amino acid sequences of S. crassipalpis and D. melanogaster (CG15361PA)neuropeptidelikeprecursor4byClustalWmultiple alignment (http://www.cbs.dtu.dk/clustalw2). The signal peptide predicted by software analysis (SignalP 3.0 Server, http://www.cbs.dtu.dk/services/SignalP/, usingneuralnetworks)isshowninitalics.Predictedneuropeptidelike4isinbold, andthepropeptideisboxed.*=identicalaminoacids,and:=conservedamino acids.

64

Fig.3.3ExpressionprofilesofNplp4indiapausingandnondiapausingpupaeof S. crassipalpis .RNAsampleswereextractedfromwholelarvaeorpupaeand10g was loaded onto each lane. wl=wandering larvae. Numbers refer to days after pupariumformationorafterdiapausetermination.28sRNAexpressionwasused asaloadingcontrol.Theexperimentwasreplicated3times,andarepresentative blotisshown.

65

CHAPTER4

RAPID ELEVATION OF INOS AND DECREASES IN ABUNDANCE OF

OTHER PROTEINS AT PUPAL DIAPAUSE TERMINATION IN THE

FLESH FLY SARCOPHAGA CRASSIPALPIS

AiqingLi,M.RobertMichaudandDavidL.Denlinger*

Department of Entomology, The Ohio State University, Columbus, OH 43210,

USA

*Correspondingauthor:

Tel:+16142928209

Fax:+16142927865

Email:[email protected]

66 Abstract

We analyzed changes in brain proteins following pupal diapause termination in Sarcophaga crassipalpis by a combination of 2dimensional gel electrophoresisandmassspectrometry.Theproteomeanalysisrevealedsignificant changesin20proteins,11ofwhichrepresented2.5foldchanges.Threeproteins werepresentonlyinthebrainsofdiapausingpupae.Amongthemostabundant proteinsthatshowedachange,1wasmoreabundant,7werelessabundant,and2 were absent following diapause termination. The protein that increased in abundance following diapause termination showed highest identity to myoinositol1phosphate synthase (Inos). Proteins that decreased at diapause terminationincludethoseshowinghighestidentitytofattyacidbindingprotein,

CG2331PA, twinstar, catalase, and a histone. Proteins absent at diapause terminationincludedribosomalproteinL17Aandoneunnamedprotein.Attempts toterminatediapausebyinjectionofseveralInosrelatedmetabolitesfailed,thus suggestingthattheelevationofInosatdiapauseterminationisdownstreamofthe physiologicalregulationthatinitiatesdevelopment.

Key words: proteomics; diapause; diapause termination; brain proteins;

Sarcophaga crassipalpis

67 4.1. Introduction

Changes in brain proteins that occur at diapause termination may prove useful for understanding critical events involved in transition from the arrested stateofdiapausetotheinitiationofdevelopment.Inapreviousproteomicsstudy, we compared proteins in the brains of diapausing pupae of the flesh fly

Sarcophaga crassipalpis withproteinspresentinthebrainsofpupaethatdidnot enter diapause (Li et al., 2007), but in this study we compare brains from diapausingpupaewithbrainsfrompupaethatweretriggeredtoartificiallybreak diapause with an application of hexane 24 h earlier. Though several previous studies have monitored mRNA expression associated with diapause (e.g.

Flannaganetal.,1998;Haywardetal.,2005;Robich et al., 2007), few studies haveexaminedchangesinproteins.Proteomicshasprovedtobeapowerfultool for understanding physiological changes and cellular processes and can detect posttranslationalmodificationsaswell(Elricketal.,2006).However,tothebest of our knowledge, this approach has not previously been used to examine diapause termination, with the exception of a recent study reporting protein changes in response to diapause termination in the brine shrimp Artemia franciscana (O'Connelletal.,2006).Diapauseterminationinthebrineshrimpwas linked to shifts in several proteins involved with metabolism (fructose 1,

6bisphosphate aldolase and glyceraldehyde 3phosphate dehydrogenase), molecularchaperones(heatshockprotein70,smallheatshockproteinprecursor), protein synthesis (40S ribosomal protein S12), and structure (betatubulin)

(O'Connelletal.,2006).

Inthispaperweusetwodimensionalgelelectrophoresis(2DE)andmass

68 spectrometrytoanalyzetheproteomeofbrainsin S. crassipalpis duringdiapause and24hafterdiapausehasbeenterminatedwithhexane.Withinthistimeframe wereportamajorincreaseintheabundanceofoneidentifiedprotein,Inos,anda declineinabundanceofseveralothers.Inaddition,wetestthepossibilitythatInos metabolitesmaybeinvolvedasregulatorsofdiapausetermination.

4.2. Materials and methods

4.2.1 Flies

Ourcolonyof S. crassipalpis wasmaintainedat25°Cwith15hlightand

9hdarkaspreviouslydescribed(Denlinger,1972).Toinducepupaldiapause,the adultswererearedundershortdayconditionswith12hlightand12hdarkat25

°C,andthelarvaeandpupaewererearedat20°Cunderthesameshortdaylength.

Toterminatediapause,5lhexanewasapplieddirectlytotheheadsofdiapausing pupae,20daysafterpupariation;thistreatmentimmediatelyinitiatesdevelopment indiapausingpupaeofthefleshfly(Denlingeretal.,1980).

4.2.2 Sample preparation of brains for two-dimensional gel electrophoresis

Diapausesamplesconsistedof30pupalbrainsdissected20daysafter pupariation.Brainsatdiapauseterminationwerecollected24hafterhexanewas appliedto20dayolddiapausingpupae.Brainswerehomogenizedintriplicatein acelllysisbufferconsistingof50mMTrisClpH7.5,100mMNaCl,1%Triton

X100,1mMEDTA,1mMEGTA,50mMβglycerophosphate,1mM dithiothertol,andproteaseinhibitorsincluding1mMPMSF,2mMsodium orthovanadate,10g/mlleupeptin,10g/mlpepstatinA,and10g/mlaprotinin

69 (Sigma,St.Louis).ProteinswereextractedusingtheReadyPrepTM2Dcleanup kitaccordingtothemanufacturer’sinstructions.Allchemicalsandkitswere suppliedbyBioRad(Hercules,CA)unlessotherwisespecified.

4.2.3 Two dimensional gel electrophoresis

The protein extracts (200 l containing 300500 g proteins) were used to rehydrate 11 cm IPG strips (pH 310 NL from BioRad) overnight at room temperature.Isoelectricfocusing(IEF)wasperformedat400Vfor20min,8,000

Vfor2.5handthenupto30,000Vhforapproximately6hat20°CinaProtean

IEFCell(BioRad).Themaximumcurrentwassetas50Aperstrip.AfterIEF, theIPGstripswereequilibratedfor20mininequilibrationbufferI[6Murea,2%

(w/v) SDS, 0.375 M TrisHCl (pH 8.8), 20% (v/v) glycerol and 2% (w/v)

1,4dithiothreitol(DTT)]followedby20mininbufferII(sameasbufferIexcept thatDTTwasreplacedwith2.5%iodacetamide).Fortheseconddimension,IPG stripswereoverlayedwith0.5%agaroseatthetopof816%CriterionTrisHCl gels.Trisglycinebuffer(25mMTris,192mMglycine,0.1%SDS.pH8.3)was usedandaconstantvoltagefor2dimensionalelectrophoresiswassetat200Vfor approximately1h.Thegelswerethenfixedinamixtureof50%ethanol,10% acetic acid and 40% water overnight and stained with Biosafe Coomassie blue stain (BioRad). Protein concentrations were estimatedusingtheBioRadprotein assay.

4.2.4 Protein visualization and image analysis

The gels were scanned using a BioRad VersaDoc imaging system. Spot

70 detection and evaluation were carried out using the computerassisted image analysis software PDQuest (BioRad). 2D gel processing procedures included image creating and Gaussian modeling, spot detection, normalization, gel matching,anddataanalysis.Amatchsetof3diapauseand3nondiapausesample imageswascreatedtocompareandanalyzeallthespotsineachgel.Thematchset containedtheraw2Dscan,Gaussianandfilteredimagesofthe6gels.Duringthe matchingprocess, commonlandmarkspotswerechosen from each of the gels, and manual matching was used. Quantitative and statistical analyses were performedontheGaussianimagebycomparingtheaveragevolumeofresolved spots.

4.2.5 Mass spectrometric protein identification

Proteinspotswerecoredautomaticallybyaspotcutterwithroboticarmand hollowdrillbit(BioRad).Excisedspotsweresubjectedtoingeldigestionwith sequencinggradetrypsinfromPromega(MadisonWI),usingtheMontageInGel

Digestion Kit from Millipore (Bedford, MA) according to the manufacturer’s protocols.Gelpieceswerewashedinamixtureof50%(v/v)methanoland5%

(v/v)aceticacidforseveralhours.Thegelbandsweredriedwithacetonitrileand reducedwithDTTsolution. Iodoacetamidewasadded to alkylate the cysteines, thegelwaswashedagainwithcyclesofacetonitrileandammoniumbicarbonate, trypsinwasadded,andthesampleswereincubatedatroomtemperatureovernight.

Subsequently,thepeptideswereextractedfromthepolyacrylamidewith50%(v/v) acetonitrile and 5% (v/v) formic acid several times and pooled. The extracted poolswereconcentratedinaspeedvactoapproximately25L.

71 Capillaryliquid chromatographynanospray tandem mass spectrometry was performed on a Micromass hybrid quadrupole timeofflight QTof(tm) II

(Micromass,Wythenshawe,UK)massspectrometerequippedwithanorthogonal nanospray source fromNew Objective, Inc. (Woburn,MA)operatedinpositive ion mode. The liquid chromatography (LC) system was an UltiMateTM Plus system from LCPackings with a Famos autosampler and Switchos column switcher.SolventAwaswatercontaining50mMaceticacidandsolventBwas acetonitrile.Asamplevolumeof2.5lwasfirstinjectedontothetrappingcolumn, andthenwashedwith50mMaceticacid.Theinjectorportwasswitchedtoinject, andthepeptideswereelutedoffofthetrapontothecolumn.A5cm75mMID

ProteoPep C18 column packed directly in the nanospray tip was used for chromatographicseparations.Peptideswereeluteddirectlyoffthecolumnintothe

QTOFsystemusingagradientof280%Bover30minutes,withaflowrateof

40l/minwithaprecolumnsplittoapproximately500nl/min.Totalruntimewas

55min.Thenanospraycapillaryvoltagewassetat3.0kVandtheconevoltageat

55 V. The source temperature was maintained at 100°C. Mass spectra were recordedusingMassLynx4.0withautomaticswitching functions. Mass spectra wereacquiredfrommass4002,000daltonsevery1sec.witharesolutionof

8,000(FWHM:fullwidthathalfmaximum).Whenthedesiredpeakwasdetected ataminimumof15ioncounts,themassspectrometerautomaticallyswitchedto acquireCIDMS/MSspectrumoftheindividualpeptide.Collisionenergywasset dependentonchargestaterecognitionproperties.

72 4.2.6 Database search

Sequence information from the MS/MS data was processed using Mascot

DistillerfromMatrixSciencetoformapeaklist(mgffile).Dataprocessingwas performed followingtheguidelinesspecifiedin Carr et al. (2004). Briefly, data wereminimallyprocessed,a3pointsmoothwasapplied, and the centroid was calculated from the top 80% of the peak height. The charge state of each ion selected for MS/MS was calculated, however the peaks were not deisotoped.

Assigned peaks have a minimum of 5 counts (S/N of 3) and must show the correspondingC13iontobeconsideredvalid.Themassaccuracyoftheprecursor ionswassetto1.2DatoaccommodateaccidentalselectionoftheC13ion,and fragmentmassaccuracywassetto0.3Da.Considered modifications (variable) weremethionineoxidationandcarbamidomethylcysteine.Thedatawasacquired severaltimestoensurereproducibility.

4.2.7 Injection of myo-inositol and other metabolites

To determine if Inos metabolites such as myoinositol, myoinositol 1, 4,

5trisphosphate, or phosphatidylinositol could terminate diapause, solutions of thesecompoundwereinjectedinto20dayolddiapausingpupae. Thechemicals

(SigmaAldrich,St.Louis,MO)weredissolvedinsaline,and1lvolumeswere injectedusingafinelydrawnglasscapillary.Dosesinjectedincluded10,25,50,

75,100,125and150gmyoinositol,0.001,0.01,0.1,1,5gmyoinositol1,4,

5trisphosphate,and0.1,1,5,10gphosphatidylinositol.Theinjectedpupaewere thenheldat20°Cundershortdayconditionsfor2months,andcheckeddailyfor development, as indicated by migration and elongation of the antennal discs

73 (FraenkelandHsiao,1968).

4.3. Results

4.3.1 Differences in abundance of specific proteins

Anaverageof523spots(range461to595spots)withmolecularmassesof

10250 kDa were detected in the Coomassiestained gels by computerassisted imageanalysis.The2Dmapsofbrainsfromdiapauseanddiapausetermination showedgoodreproducibility,andarepresentativeofbothgroupsisshowninFig.

4.1. Quantitative and statistical comparisons, using PDQuest software, revealed severaldistinctdifferencesinthetwotypesofbrainsamples.Quantitativeanalysis indicatedstatisticallysignificantchanges(≥98%confidence)in20proteinsatthe terminationofdiapause;thechangesin11proteins were 2.5 fold or greater. In addition,3proteinswerepresentonlyinthebrainsofdiapausingpupae.

Themostabundantproteins,thoseshowingatleast2.5foldchangesor significantchangeswith98%statisticalconfidencewereselectedforMS identification.ThosespotsareindicatedinFig.4.1AandB:Spot1wasmore abundantinthebrains24hafterdiapausetermination,whilespots210decreased inabundanceatdiapausetermination.

Spotvolumecomparisonsofthesenumberedspots(Fig.4.2)showpronounced differences in the amounts of specific brain proteins in the two samples.

Quantificationofspotsrevealedthatspot1increased4.3foldfollowingdiapause termination,whilespots27and9deceased3.0,4.5,2.6,2.0,2.5,2.9,and

3.6fold,respectively.Spots8and10wereuniquetodiapause(Fig.4.2).

74 4.3.2 Protein identification

Theselectedregulatedspotswereexcisedandidentifiedbymassspectrometry asindicatedinTable4.1.Severalofthespotscontainedmixturesofcomigrating proteins. Some proteins were present in more than one spot, ( e.g. the protein similarto Drosophila melanogaster tsrwaspresentinspots5and6).Theprotein that increased in abundance at diapause termination (spot 1) showed highest identity to myoinositol1phosphate synthase (Inos CG11143PA). Proteins that decreasedinabundanceatdiapauseterminationincludedproteinsshowinghighest identity to fatty acid binding protein, protein CG2331PA, twinstar, catalase

CG6871PA, and histone HIST2H3C. Proteins unique to diapause included ribosomalproteinL17Aandoneunnamedprotein.

4.3.3 Can an injection of myo-inositol or its metabolites terminate diapause?

TheproteinInosthatincreasedinabundanceatdiapauseterminationhas myoinositol1phosphate synthase activity and is also associated with biosynthesisofmyoinositolandtheturnoverofphosphoinositides. To evaluate the possibility that myoinositol or its metabolites might elicit diapause termination,weinjectedarangeofdoses,indicatedinMaterialsandMethods,of myoinositol, myoinositol 1, 4, 5trisphosphate, and phosphatidylinositol into diapausingpupae.Noneofthe3compoundshadasignificanteffectondiapause termination(datanotshown).

4.4. Discussion

We previously presented proteome maps of diapausing and nondiapausing

75 brain of S. crassipalpis (Li et al., 2007), but this study yielded slightly more proteinsduetomodificationsofsamplepreparationandhandling.Inourprevious studywecomparedthebrainsofdiapausingpupaewithbrainsofpupaethathad never entered diapause. By contrast, this study examines the changes in the proteinprofilesofbrainfromdiapausingpupaeandthoseinwhichdiapausewas terminatedbyhexane24hearlier.

Our previous work revealed 8 diapauseabundant proteins with highest identitiestoheatshockproteins(Hsp)andasmallheatshockproteinprecursor which declines 12 h postdiapause in the brine shrimp Artemia franciscana

(O'Connelletal.,2006). AlthoughthetranscriptsencodingHsp23(Yocumetal.,

1998) and Hsp70 (Rinehart et al., 2000) begin to decline 6 h after diapause terminationin S. crassipalpis ,nodecreaseoftheHspproteinswasnotedinthis study.Presumably,this24hpostdiapauseterminationperiodissimplytooshort todetectthedeclineinpresenceoftheheatshockproteins.Theapproachwehave taken here is most effective for revealing early changes in proteins that are promptedbydiapausetermination.

Inthepresentstudy,aphosphoinositidesynthase,InosCG11143PA(spot1), was the only upregulated protein we observed in the pupal brains of S. crassipalpis following diapause termination. This protein catalyzes the ratelimiting step of inositol biosynthesis (Ju and Greenberg, 2004). Inositol is ratelimiting for the synthesis of phosphatidylinositol 4, 5bisphosphate (PIP2).

In the WntCa 2+ cGMP signaling pathway (Wang and Malbon, 2003), Wnt5A bindsandactivatesRfz2,thusactivatingGproteinβ/γsubunits(Gβ/γ)whichthen activatesphospholipaseC,PLC.PLChydrolyzedmembranePIP2intotwosecond

76 messengers, inositol 1, 4, 5triphosphate (IP3) and diacylglycerol (DAG).

IP3catalyzes release from its intracellular stores, activating the

Ca 2+ sensitiveproteinphosphatasecalcineurin. DAGreleasedfromPIP2isthe physiologicalactivatorofproteinkinaseC.BothcalcineurinandproteinkinaseC caninfluencetheactivity ofvarioustranscription factors, thus influencing gene expression.Therefore,theelevationofInoscanleadtoenhancedactivityofIP3 andDAGanddirectageneexpression.ThisimportantfunctionofInosinsignal transduction pathways is compatible with its rapid upregulation within 24 h of diapausetermination,suggestingthatInosmayfunctionininitiatingdevelopment.

However, injection of Inosrelated metabolites including myoinositol, myoinositol1,4,5trisphosphate,andphosphatidylinositolhavethusfarfailedto supportthishypothesis,butexperimentswithadditionalderivativeswouldappear tobemerited.Theotherpossibilityisthattheinjectionofthesemoleculesinto hemalymphdoesnotensuretheycanbedeliveredtopropersitesandboundby receptors.Ofcourse,thereisalsoapossibilitythatelevationweseerepresents, notasignalingevent,butanearlydownstreamresponsetodiapausetermination.

Among the nine proteins that are less abundant following the break of diapause,two(spots5and6)matchtheproteintwinstar (tsr) from Drosophila melanogaster . Twinstar, which encodes a Cofilin/ADF (actin depolymerization factor) homolog, is a component of the cytoskeleton and regulator of actin dynamics (Bamburg, 1999; Blair et al., 2006). Structural features show that twinstar retains the conserved domains of actin binding and depolymerizing

(Gunsalusetal.,1995).Invivostudiesofthetwinstarproteinsuggestthatitis involvedincentrosomemigrationandseparation,aswellascytokinesis(Gunsalus

77 etal.,1995).Thepolymerizationstateofactincontrolsprocessesinvolvedinthe determination of cell shape, oogenesis, hair and bristle formation, growth cone morphology, and lamellipodial extension (Rogers et al., 2005). Twinstar’s involvement in depolymerizing actin may contribute to the shutdown of key cellularanddevelopmentaleventsduringdiapause.Previousstudiesinmosquitoes indicateimportantshiftsinpolymerizedactinduringdiapause(Kimetal.,2006).

TwoproteinssimilartohistoneHIST2H3C(spots8and9)alsodecreased followingdiapausetermination.HistonesareinvolvedinDNAbindingcontrol processessuchaschromosomeorganization,biogenesis,andnucleosome assembly.Histonescontrolgeneexpressionbymodulatingthestructureof chromatinandtheaccessibilityofregulatoryDNAsequencestotranscriptional activatorsandrepressors(BacksandOlson,2006).Thedropinhistoneabundance islikelycriticalforthisdevelopmentalswitchthatallowstheonsetof development.

Anothertwoidentifiedproteinsexpressedlessabundantlyinbrainsfollowing diapause termination have highest identities to Drosophila erecta protein

CG2331PA, a protein with high similarity to the known valosincontaining protein (VCP/TER94/Cdc48p) ATPase sequences, members of the AAA

(ATPase associated with various cellular activities) ATPase family. TER 94 displaysanapoptosisinducingactivityandplaysakeyroleasacelldeatheffector moleculeinpolyglutamineinducedneurodegeneration(Higashiyamaetal.,2002).

RNAi of VCP indicates the effect of VCP on knocking down function of the ubiquitinproteasome system (UPS) and thereby inhibiting UPSdependent proteolysis(Wojciketal.,2004).Thus,highabundanceofVCPduringdiapause

78 may result in a depressed rate of proteolysis. This is consistent with the suppression of protein degradation noted during hypometabolic states such as diapause(StoreyandStorey,2004).

Anotherproteinthatislessabundantatdiapausetermination shows highest identity to catalase from Drosophila melanogaster . Catalase is an important antioxidant enzyme, and several other defensivetype proteins are known to be elevatedduringdiapause(Denlinger,2002;Robichetal.,2007).Catalaseactivity is higher in nondiapausing than diapausing larvae of the European corn borer,

Ostrinia nubilalis (Jovanovic´Galovic´ et al., 2004), thus there are previous results suggesting catalase is associated with diapause, although it remains unknownhowcatalase activityisrelateditsabundance and whether catalase is moreabundantduringdiapausein O. nubilalis .

Twoproteinspresentonlyinthebrainsofdiapausingpupaewereribosomal protein L17A and an unnamed protein. As yet, we canproposeno functionfor thesepotentiallyinterestingproteins.

Acknowledgements

ThisworkwassupportedbyNSFgrantIOB0416720.WethankDavidMandich,

Ohio State University’s Plant Microbe Genomics Facility, for assistance with imageanalysisandDr.KariGreenChurch,OSU’sCampusChemicalInstrument

Center,forassistancewithMSproteinidentification.

79 References

Backs,J.,Olson,andE.N.,2006.Controlofcardiacgrowthbyhistone acetylation/deacetylation.CirculationResearch98,1524. Bamburg,J.R.,1999.ProteinsoftheADF/Cofilinfamily:essentialregulatorsof actindynamics.AnnualReviewofCellandDevelopmentalBiology 15,185230. Blair, A., Tomlinson A, Pham H, Gunsalus KC, Goldberg, ML, and Laski FA, 2006.Twinstar,theDrosophilahomologofcofilin/ADF,isrequiredforplanarcell polaritypatterning.Development133,17891797. Carr,S.,Aebersold,R.,Baldwin,M.,Burlingame,A.,Clauser,K.,andNesvizhskii, A., 2004. The need for guidelines in publication of peptide and protein identificationdata.MolecularandCellularProteomics3,531533. Denlinger, D. L., 1972. Induction and termination of pupal diapause in Sarcophaga (Diptera: Sarcophagidae ). Biological Bulletin, Woods Hole 142, 1124. Denlinger,D.L.,2002.Regulationofdiapause.AnnualReviewofEntomology47, 93122. Denlinger,D.L.,Campbell,J.J.,andBradfield,J.Y.,1980.Stimulatoryeffectof organicsolvents on initiating development in diapausing pupae of the flesh fly, Sarcophaga crassipalpis, and the tobacco hornworm, Manduca sexta . PhysiologicalEntomology5,715. Denlinger,D.L.,Yocum,G.D.,andRinehart,J.P.,2005.Hormonalcontrolof diapause.In:Gilbert,L.I.,Iatrou,K.,Gill,S.(Eds.),ComprehensiveMolecular InsectScience,Vol.3.Elsevier,Amsterdam,pp.615650. Elrick, M. M., Walgren, J. L., Mitchell, M. D., and Thompson, D. C., 2006. Proteomics : Recent applications and new technologies. Basic & Clinical Pharmacology&Toxicology98,432441. Flannagan,R.D.,Tammariello,S.P.,Joplin,K.H.,CikraIreland,R.A.,Yocum, G.D.,andDenlinger,D.L.,1998.Diapausespecificgeneexpressioninpupaeof the flesh fly Sarcophaga crassipalpis .ProceedingsoftheNationalAcademyof SciencesoftheUnitedStatesofAmerica95,56165620. Fraenkel, G., Hsiao, C., 1968. Morphological and endocrinological aspects of pupal diapause in a flesh. fly, Sarcophaga argyrostorna . (RobineauDesvoidy). JournalofInsectPhysiology14,707718. Gunsalus,K.C.,Bonaccorsi,S.,Williams,E.,Verni,F.,Gatti,M.,andGoldberg, M. L., 1995. Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF

80 homologue,resultindefectsincertrosomemigrationandcytokinesis.Journalof CellBiology131,12431259. Hayward,S.A.L.,Pavlides,S.C.,Tammariello,S.P.,Rinehart,J.P.,and Denlinger,D.L.,2005.Temporalexpressionpatternsofdiapauseassociated genesinfleshflypupaefromtheonsetofdiapausethroughpostdiapause quiescence.JournalofInsectPhysiology51,631640. Higashiyama,H,Hirose,F.,Yamaguchi,M.,Inoue,Y.H.,Fujikake,N.,Matsukage, A., and Kakizuka, A., 2002. Identification of ter94, Drosophila VCP, as a modulator of polyglutamineinduced neurodegeneration. Cell Death and Differentiation9,264273. Joplin, K. H., Yocum, G. D., and Denlinger, D. L., 1990. Diapause specific proteins expressed by the brain during the pupal diapause of the flesh fly, Sarcophaga crassipalpis .JournalofInsectPhysiology36,775783. Jovanovic´Galovic´,A., Blagojevic´,D.P.,GruborLajšic´,G.,Worland,R.,and Spasic´, M.B., 2004. Role of antioxidant defense during different stages of preadult life cycle in European corn borer ( Ostrinia nubilalis , Hubn.): diapause andmetamorphosis.Archivesof InsectBiochemistryandPhysiology55,7989. Ju, S., and Greenberg, M. L., 2004. 1Dmyo inositol 3phosphate synthase:conservation,regulation,andputativetargetofmoodstabilizers.Clinical NeuroscienceResearch4,181187. Kim,M.,RobichR.M.,Rinehart,J.P.,Denlinger,D.L.,2006.Upregulationof twoactingenesandredistributionofactinduringdiapauseandcoldstressinthe northern house mosquito, Culex pipiens . Journal of Insect Physiology 53, 12261233. Li,A.Q.,PopovaButler,A.,Dean,D.H.,andDenlinger,D.L.,2007.Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins duringpupaldiapause.JournalofInsectPhysiology53,385391. O'Connell, P. A., Pinto, D. M., Chisholm, K. A., and MacRae, T. H., 2006. Characterizationofthemicrotubuleproteomeduringpostdiapausedevelopment of Artemia franciscana .BiochimicaEtBiophysicaActaProteinsandProteomics 1764,920928. Rinehart, J. P., Yocum, G. D., and Denlinger, D. L., 2000. Developmental upregulationofinduciblehsp70transcripts,butnotthecognateform,duringpupal diapause in the flesh fly, Sarcophaga crassipalpis . Insect Biochemistry and MolecularBiology30,515521. Robich,R.M.,andDenlinger,D.L.,2005.Diapauseinthemosquito Culex pipiens evokesametabolicswitchfrombloodfeedingtosugargluttony.

81 ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica 102,1591215917. Robich,R.M.,Rinehart,J.P.,Ketchen,L.J.,andDenlinger,D.L.,2007. Diapausespecificgeneexpressioninthenorthernhousemosquito,Culexpipiens L.,identifiedbysuppressivesubtractivehybridization.JournalofInsect Physiology53,235245. Rogers,E.M.,Hsiung,F.,Rodrigues,A.B.,andRoses,K.,2005.Slingshotcofilin phosphataselocalizationisregulatedbyReceptorTyrosineKinasesandregulates cytoskeletal structure in the developing Drosophila eye. Mechanisms of Development122,11941205. Storey, K. B., and Storey, J. M., 2004. Metabolic rate depression in animals: transcriptionalandtranslationalcontrols.BiologicalReviews79,207233. Wang, H. and Malbon C. C., 2003. Wnt Signaling, Ca2_, and Cyclic GMP: VisualizingFrizzledFunctions.Science300,15291530. Wójcik, C., Yano, M., and DeMartino, G.N., 2004. RNA interference of valosincontaining protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasomedependent proteolysis. Journal of Cell Science 117, 281292. Yocum,G.D.,Joplin,K.H.,andDenlinger,D.L.,1998.Upregulationofa23kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis . Insect Biochemistry and Molecular Biology 28, 677682.

82 Fig.4.1.Twodimensionalelectrophoresismasterimagesofpupalbrainproteins in S. crassipalpis (A)duringdiapauseand(B)24hafterdiapausewasterminated bytheapplicationofhexane.Theproteinswereseparatedbyisoelectricfocusing, pH range 310, in the first dimension and by molecular weight in the second dimension.GelswerestainedwithCoomassieblueandproteinspotsidentifiedby MSarenumbered.

83 Fig. 4.2. Enlarged gel images, corresponding 3D profiles and fold change in abundance of selected proteins identified in brains of S. crassipalpis during diapause(D)and 24hfollowingdiapausetermination(DT). Imagespairing relative spot volumes were generated from PDQuest software (BioRad). 2DE, twodimensionalelectrophoresis.

84

Predicted Spot Accession Mowse Sequence Species ProteinID mass No. No. Score* coverage (kDa)/PI More abundant following diapause termination 1 17137626 Drosophila melanogaster InosCG11143PA 62.5/5.82 225 6% Less abundant or absent following diapause termination 2 160843 Schistocerca gregaria fattyacidbindingprotein 15.0/6.19 144 9% 3 27374245 Drosophila erecta CG2331PA 89.5/5.20 1049 30% 85 55238432 Anopheles gambiae ENSANGP00000022801 89.9/5.15 889 22% 83423461 Bombyx mori transitionalendoplasmicreticulumATPaseTER94 89.8/5.30 261 20% 4 27374245 Drosophila erecta CG2331PA 89.5/5.20 211 7% 3869204 Drosophila melanogaster Cortactin 61.1/5.03 137 4% 5 38047865 Drosophila yakuba similarto Drosophila melanogaster tsr 17.4/6.74 1370 70% 6 38047865 Drosophila yakuba similarto Drosophila melanogaster tsr 17.4/6.74 555 68% 7 17981717 Drosophila melanogaster catalaseCG6871PA 57.6/8.39 210 7% Table4.1(continued) Table4.1.Identificationofbrainproteinsthatchangeinabundanceswithin24hofpupaldiapauseterminationin S. crassipalpis . *Mowsescore>54indicatesidentityorextensivehomology(P<0.05);higherscoresindicatehigherconfidenceofidentity.

85 Table4.1(continued) Predicted Spot Accession Mowse Sequence Species ProteinID mass No. No. Score* coverage (kDa)/PI 8 7442 Drosophila hydei unnamedprotein 13.7/10/34 304 42% 9 55626038 Pan troglodytes PREDICTED:similartoHIST2H3Cprotein 61.0/10.50 360 12% 10 158330 Drosophila melanogaster ribosomalproteinL17A 15.0/10.83 135 17% 86

86

CHAPTER5

RAPID COLD HARDENING ELECITS CHANGES IN BRAIN PROTEIN

PROFILESOFTHEFLESHFLY

AiqingLiandDavidL.Denlinger *

DepartmentofEntomology,TheOhioStateUniversity,318West12 th Avenue,

Columbus,OH43210,USA.

*Correspondingauthor.Tel.:6142926245;fax:6142922180.

Email:[email protected] (D.L.Denlinger).

Runningtitle:Proteomicsofrapidcoldhardening

87 Abstract

Rapidcoldhardening(RCH)referstotheenhancedcoldtoleranceacquiredbya briefexposuretoamoderatelylowtemperature.Althoughecologicalaspectsof this response have been well documented in insects less is known about the physiologicalandbiochemicalmechanismselicitedbyRCH. Inthisstudywe used twodimensional electrophoresis to detect potential difference in brain proteinabundanceinresponsetoa2hRCHexposureat0°C.Fourteenproteins showing the greatest differences were selected for mass spectrometric identification.ThreeproteinsthatincreasedinabundanceduringRCHincluded

ATP synthase subunit alpha, a small heat shock protein (smHsp), and tropomyosin1isoforms33/34.Elevenproteinsthatdecreasedinabundanceor were missing following RCH included several proteins involved in energy metabolism,proteindegradation,transcription,actinbinding,andcytoskeleton organization. That several proteins increased in abundance during RCH underscores the dynamics of the RCH mechanism and points to several physiological responses that likely contribute to RCH. The increase in ATP synthase suggests an elevation of ATP during RCH, and the smHsp increase suggeststhatatleastoneoftheHspsisactuallymobilizedduringRCH,rather thatafterRCHaspreviouslyassumed.

Key words: Proteomics, Rapid cold hardening, Heat shock proteins, ATP synthase, Sarcophaga crassipalpis .

88 Introduction

Insectshavearemarkableabilitytoadjusttheirphysiologyinresponsetodaily cycles of temperature change. Brief exposure to a moderately low temperature promotessurvivalatanevenlowertemperature,aresponsereferredtoasrapid coldhardening(RCH)byLeeetal.(1987). RCHisdistinctfromthelongterm cold acclimation commonly associated with an overwintering diapause

(Denlinger,1991)andcanoccuratanydevelopmentalstage.Thephysiological adjustmentsassociatedwithRCHtakeplacewithinminutesorhoursandenable aninsecttoquicklyrespondtodropsintemperaturethatmayoccuronadaily basis.

Although the ecological basis for this response is clear, the physiological mechanismsinvolvedinRCHarelesswellunderstood.Theinitialdescriptionof

RCH,basedonpharateadultsof Sarcophaga crassipalpis (Chenetal.,1987,Lee etal.,1987),documentedamodestelevationofglycerolassociatedwithRCH, but it was clear even then that other adjustments were likely. More recently, changes in membrane composition that lead to increased fluidity were documentedduringRCH(Overgaardetal.,2005;MichaudandDenlinger,2006), and metabolomic profiling points to major shifts in pools of carbohydrates, polyols and amino acids (Michaud and Denlinger, 2007). These results thus suggestthatRCHisnotasimpleresponsethatreliesonasingledeterminant,but instead is a complex response involving several metabolic pathways and

89 alterationsinthechemicalcompositionofthehemolymph,cellmetabolism,and cellmembranes.

In this study we further probe mechanisms involved in RCH by using proteomicprofilingtoidentifychangesinbrainproteinsthatmaybeassociated withRCH.Thisstudyusespharateadultsoftheflesh fly, S. crassipalpis, and seeks to identify changes in protein abundance that occur during RCH (2 h exposureto0°C).Suchanexposureat0°Cwaspreviouslyshowntoenablethis speciestosurvivea2hexposureto10°C,alowtemperaturestressitcouldnot survivewithoutpriorexposureto0°C(Chenetal.,1987).Proteinprofilesthat comparebrainproteinsinfliesheldat20°Cwiththoseexposedto0°Cfor2h reveal three proteins that increased in abundance during RCH and 11 proteins thatdecreasedinabundanceorwereabsentafterRCH.

Results

Comparison of proteomic patterns

Arepresentative2Dgelimageofbrainproteinsfrom a control group of flies

heldat20°CisshowninFig.5.1.BoththecontrolgelsandthosefromtheRCH

treatmentcontainedapproximately370dominantspots,andthemajority(330)

could be matched between the two groups.A correlationanalysisofthegels

indicatedaspottospotcorrelationcoefficientof0.94.Mostproteinsshowedno

differences between the control and RCH gels, but 68 proteins showed a

90 ≥1.5fold difference and 38 of the proteins were significantly different in abundance (Student’s ttest, p<0.05). The 14 proteins showing the greatest differences were selected for mass spectrometric identification. 2DE images demonstrateddifferencesinabundanceofthe14selectedproteins(Fig.5.2),and

PDQuestsoftwarewasusedtodefinestatisticallysignificantdifferencesbased on3gelreplicates(Fig.5.3).InresponsetoRCH,3ofthe14proteinsincreased inabundance,10decreased,and1wastotallymissing.

LC-MS/MS and protein identification

Positiveidentificationswereobtainedforall14proteins(Table5.1).Thethree proteinsthatincreasedinabundanceduringRCHincludedATPsynthasesubunit alpha,asmallheatshockprotein,andtropomyosin1isoforms33/34.Theten proteinsthatdecreasedinabundanceincludedheatshockprotein90,Tcomplex protein1subunitgamma,Factincappingproteinsubunitalpha,tropomyosin1 isoforms 9A/A/B, 1433 protein epsilon, 26S protease regulatory subunit 7, isocitratedehydrogenasesubunitalpha,aldehydedehydrogenase2B7,cysteine desulfurase, and transactivator protein BZLF1. A protein that was absent followingRCHwasidentifiedaszincfingerproteinonecdysonepuffs.

Discussion

Weidentified14brainproteinsfrom S. crassipalpis thatchangedinabundance

91 inresponsetoa2hRCHexposureto0°C.Threeoftheseproteinsincreasedin abundance,whiletheother11wereeitherlessabundantordisappearedentirely.

Weemphasizethatthechangeswenoteherefocusstrictlyonproteinchanges that occur during RCH, rather than changes that may occur during a later recoveryperiod.

Of particular note was an increase in abundance of a small heat shock proteinhavinghighidentitytoHsp26from Drosophila melanogaster. Although there was previous evidence that several Hsps, including Hsp70, increase in abundance when a coldshocked insect is returned to a more moderate temperature(Petersenetal.,1990;Joplinetal.,1990),therewaslittleevidence tosuggestthatanyoftheHspsareactually expressedduringlowtemperature exposure. Infact,Hsp70antibodiesfailedtodetect Hsp70 during RCH in D. melanogaster (Keltyand Lee,2001),leadingtotheassumptionthat Hsps are involved only in recovery from cold stress. But, there are many different membersofthemajorHspfamilies,anditisbecomingmoreclearthattheycan havediversefunctionsinchaperoning,maintainingtheintegrityofproteinsin thecell,andsignalingselectproteinsforremoval(FederandHoffmann,1999;

Sun and MacRae, 2005). Our RCH experiments also failed to show elevated abundanceforHsp70,buttheobservedincreaseinasmHsppointstoapotential roleforthisstressproteinduringRCH.Thisobservationisconsistentwithour unpublished observations (Michaud and Denlinger) demonstrating that RNAi

92 directedagainstHsp70hasnoeffectonRCH,butRNAidirectedagainstoneof the smHsps, Hsp23, blocks RCH. Several small Hsps and Hsp70 are highly upregulated during pupal diapause in S. crassipalpis (Yocum et al., 1998,

Rinehartetal.,2000,Rinehartetal.,2007,Liet al., 2007), and knockdown experiments indicate a role for Hsps in generating cold tolerance in this overwintering stage (Rinehart et al., 2007). These results thus suggest that S. crassipalpis usesasuiteofHspstocounterlowtemperaturestress during its overwinteringdiapausebutusesonlyalimitednumberofHsps,perhapsonlya singlesmHsp,toparticipateinRCH.

TheotherHspthatchangedinabundanceduringRCHwasHsp90,butin thiscaseabundanceoftheproteindecreased.Hsp90isalsotheoneHspthatis downregulated during pupal diapause in S. crassipalpis (Rinehart and

Denlinger,2000,Rinehartetal.,2007),thusinbothRCHanddiapause,asmHsp isupregulatedwhileHsp90isdownregulated,suggestingthatthisspeciesmay exploit similar mechanisms to increase cold hardiness during RCH and diapause.

The increased abundance of ATP synthase subunit alpha suggests an importantroleforgeneratingandmobilizingATP(Talamilloetal.,2004)during

RCH. ATP synthase subunits also increased in a parasitic wasp during fluctuating thermal regimes and at constant low temperatures (Colinet et al.,

2007). Likewise, in fish, an increase in transcription and translation of

93 mitochondrial ATP synthase subunits was observed during cold acclimation

(Kikuchietal.,1999,Itoietal.,2003).Lowtemperature reducesthecatalytic activity of ATP synthase, and the animal thus compensates by increasing the concentrationoftheenzyme(Itoietal.,2003),ascenariothatisalsoquitelikely duringRCHininsects.

Levels of two different tropomyosins changed in response to RCH: tropomyosin1, isoforms 33/34 was elevated, while tropomyosin1, isoforms

9A/9Bdecreasedinabundance.Tropomyosin1,amajorisoformoftropomyosin, binds to and stabilizes actin cables and filaments. Its downregulation has previously beenlinkedtothereorganizationof microfilaments in mammalian cellcultures(e.g.Boydetal.,1995),andtheaffinityoftropomyosinforactin microfilaments is know to result in alterations in actin (Lazarides, 1976;

Matsumura et al. 1983; Bretscher 1986) that can lead to loss of cytoplasmic actin cables and perturbations of cellular growth (Liu and Bretshcer, 1989).

Gunning (2008) has nicely documented that tropomyosin regulates actin filamentdynamicsandorganization.

SeveralotherproteinsthatwerelessabundantinresponsetoRCHarealso linked to cytoskeletal functions. Tcomplex protein (TCP) contributes to microtubuleelongation(UrsicandCulbertson,1991;Ursicetal.,1994,Liang and MacRae, 1997). In the onion maggot, Delia antiqua, the gene encoding

TCP1 is upregulated in response to cold (Kayukawa et al., 2005), and in S.

94 crassipalpis , TCP1 is also modestly upregulated during pupal diapause

(Rinehartetal.,2007),butinresponsetoRCH,wenotethatthisproteinisless abundant. CappingproteinwasalsolessabundantduringRCH.Cappingprotein bindstothebarbedendsofactinfilamentsandregulatesdepolymerizationofthe actin(Amatrudaetal.,1990;NakanoandMabuchi,2006).Thegeneencoding this protein is also altered in expression by fluctuating thermal regimes in a parasiticwasp(Colinetetal.,2007). Redistributionofpolymerizedactinis triggeredbylowtemperature(anddiapause)inmosquitoes(Kimetal.,2006), thus there is growing evidence that a number of low temperature responses evokechangesintheorganizationofthecytoskeleton.

Mostoftheotherproteinchangeswenotedcanlikelybeattributedtothe decreased metabolic activity associated with low temperature exposure.

Isocitratedehydrogenase,forexample,isanimportantenzymeintheTCAcycle andisoneofthethreecontrolpointsinthecycle.Adecreaseinthisenzymemay reflect the lower metabolism expected at low temperature. Cysteine desulfurase,theenzymethatprovidessulfurforFeSclustersynthesis,wasalso less abundant during RCH, as was protease. The decreases in both of these enzymes during RCH likely reflect an overall decreaseinproteinsynthesisat lowtemperature.

Aldehydedehydrogenase,anotherproteinthatdecreasedduringRCH,isa member of a superfamily that converts aldehydes by oxidation to their

95 corresponding carboxylic acids (Kirch et al., 2004). mRNAs encoding this proteinareinducedbycoldin Arabidopsis (Kursteineretal.,2003),butduring

RCHin S. crassipalpis theproteindeclinedinabundance.

1433 proteins are involved in the RAS1 signaling cascade and bind to several criticalmoleculesthatregulatethecellcycle and control cell growth, differentiation, apoptosis and migration (Aitken, 1995;Mhawech,2004). A decreaseinthisproteinisconsistentwithacoldinducedhaltindevelopment.In

D. melanogaster , Zincfingerproteinonecdysonepuffsappearstocommunicate between the hormonally activated transcription complexes and the RNA packaging and processing machinery, possibly contributing to early and late gene activation or possibly to RNA processing (Amero et al., 1990).

SuppressionofthisproteininRCHpossiblyreducestherateofgeneactivation orRNAprocessing,consequentlyleadingtothedecreasedproteinsynthesisand slowdevelopmentatlowtemperatures. Zincfingerproteinonecdysonepuffs wascompletelyabsentinallofourRCHgels,suggestingamajorshutdownin theproductionofthisprotein.

In summary, this proteomics approach points to several physiological responses that may be important components of the RCH mechanism. Our resultsimplythatatleastoneofthesHspsisupregulatedduringRCHandthata mechanism to generate ATP is likely to be an essential component of RCH.

Likewise,atleastoneofthemanytropomyosinsisimplicatedinrespondingto

96 low temperature by increasing in abundance, thus suggesting a role for cytoskeletalmodificationduringRCH.

Experimental procedures

Insect rearing

The colony of S. crassipalpis was maintained in our laboratory as described

(Denlinger, 1972). The flies were kept under longday conditions (15:9; light/dark)at25°Cuntillarviposition,thenmaintainedunderthesamelongday conditionsat20°Cuntiltheydevelopedtotheredeyepharateadultstage, at whichtimetheywereusedforexperiments.Undertheseconditions,noneofthe fliesentereddiapause.

Rapid cold hardening

Groupsof20redeyepharateadultfliesthathadbeenmaintainedat20°C wereplacedinthinwalled,13x100mmcottonpluggedPyrextesttubes,and thetubeswereheldat0°CinaLaudamodelRM20glycerolbathfor2h,after whichthebrainswereimmediatelydissectedforproteinextraction.

Protein extraction

Brains were homogenized in 20mM Tris buffer (pH 8.0) supplemented with complete protease inhibitor cocktail tablets (Roche, Mannheim, Germany),

97 usingaPowerGenhomogenizer(FisherScientific)inanicebath.Theresulting homogenates were sonicated using a microtip followed by 60 min of centrifugation at 16000 g at 4°C. Supernatants were collected and processed using the ReadyPrepTM 2D cleanup kit (BioRad) according to the manufacturer’s instructions. Protein concentrations were assayed using an

RC/DC TM proteinassay(BioRad)priortotwodimensionalgelelectrophoresis.

Two-dimensional gel electrophoresis

Protein samples were subjected to twodimensional gel electrophoresis (2DE) andCoomassiebluestaining.Inbrief,thefirstdimensionalisoelectricfocusing was performed using IPG strips (pH 310 nonlinear, 11 cm) in the Protean system(BioRad).Focusingconditionswere20minat400V,2.5hat8000V, andthenat8000Vuntilatotalofatleast30000Vhwasreachedat20°C.After isoelectricfocusing,thefocusedIPGstripwasequilibratedandsubjectedtothe second dimension using an 816% polyacrylamide SDS gel (BioRad). Each samplewasrunintriplicate.GelswerestainedwithBiosafeCoomassieblue andscannedusingaBioRadVersaDocimagingsystem.

In-gel digestion

Coomassie bluestained 2D gels were analyzed using BioRad software

PDQuest. Relatively abundant differentially displayed protein spots were

98 automaticallyexcisedfromthe2Dgelsbyaspotcutter(BioRad).Theexcised gels were subjected to ingel digestion with sequencing grade trypsin from

Promega(Madison,WI)accordingtostandardprotocolsprovidedbyMillipore

(Bedford,MA).Gelpieceswerewashedin50%methanol/5%aceticacidfor1h.

The wash step was repeated once, and then gel pieces were dehydrated in acetonitrile. The gel bands were rehydrated and incubated with dithiothreitol

(DTT)solution(5mg/mlin100mMammoniumbicarbonate)for30minprior totheadditionof15mg/mliodoacetamidein100mMammoniumbicarbonate solution.Iodoacetamidewasincubatedwiththegelbandsindarknessfor30min before being removed. The gel bands were washed again with cycles of acetonitrileandammoniumbicarbonate(100mM)in5 min increments. After thegelsweredriedinaspeedvac,theproteasewasdrivenintothegelpiecesby rehydratingthemin50lsequencinggrademodifiedtrypsinorchymotrypsinat

20g/mLin50mMammoniumbicarbonatefor10min.Twentymicrolitersof

50mMammoniumbicarbonatewereaddedtothegelbands, andthemixture wasincubatedatroomtemperatureovernight.Peptideswereextractedfromthe polyacrylamide with 50% (v/v) acetonitrile and 5% (v/v) formic acid several times,pooledandconcentratedinaspeedvacto25l.

Mass spectrometric identification of proteins

Capillaryliquid chromatographynanospray tandem mass spectrometry

99 (NanoLC/MS/MS) was performed on a Micromass Hybrid Quadrupole timeofflightQTof(tm)IImassspectrometer(Micromass,Wythenshawe,UK) equippedwithanorthogonalnanospraysourcefromNew Objective (Woburn,

MA)operatedinapositiveionmode.TheLCsystemwasanUltiMate TM Plus system from LCPackings with a Famos autosampler and Switchos column switcher.SolventAwaswatercontaining50mMaceticacid,andsolventBwas acetonitrile.Fivemicrolitersofeachsamplewasfirstinjectedontothetrapping column and then washed with 50 mM acetic acid. The injector port was switchedtoinjectandthepeptideswereelutedfromthetrapontothecolumn.A

10cm50mMIDBioBasicC18columnpackeddirectly in the nanospray tip wasusedforchromatographicseparations.Peptideswereeluteddirectlyoffthe columnintotheQTOFsystemusingagradientof2–80%Bover30min,witha flowrateof300nl/minusingaprecolumnsplittoapproximately500nl/min.

Totalruntimewas55min.Thenanospraycapillaryvoltagewassetat2.8kV and the cone at 55 V. Source temperature was maintained at 100 °C. Mass spectrawererecordedusingMassLynx4.0withautomaticswitchingfunctions.

Mass spectra were acquired from mass 400–2,000 Da/s with a resolution of

8,000 (FWHM: full width at half maximum). When the desired peak was detected at a minimumof 8 ion counts, the mass spectrometer automatically switched to acquire the CID MS/MS spectrum of the individual peptide.

Collisionenergywassetdependentonchargestaterecognitionproperties.

100 Sequence information from the MS/MS data was processed using Mascot

Distillertoformapeaklist(.mgffile)andbyusingtheMASCOTMS/MSsearch engine and Turbo SEQUEST algorithm in BioWorks 3.1 Software. Data processing was performed following the guidelines of Carr et al. (2004).

Assignedpeakshadaminimumof10counts(S/Nof3).Themassaccuracyof theprecursorionsweresetto1.5Datoaccommodateaccidentalselectionofthe

C13 ion, and the fragment mass accuracy was set to 0.5 Da. Considered modifications (variables) were methionine oxidation and carbamidomethyl cysteine.

Acknowledgments

We thank M. Robert Michaud, Ohio State University, for his helpful comments, David Mandich, OSU PlantMicrobe Genomics Facility, for technicalassistancewithimageanalysis,andKariGreenChurch,OSUCampus

Chemical Instrument Center, for assistance with mass spectrometric identificationofproteins.ThisworkwassupportedNSFgrantIOB0416720.

101 References

Aitken,A.(1995)1433proteinsontheMAP. Trends Biochem Sci 20 :95–97 Amatruda,J.F.,Cannon,J.F.,Tatchell,K.,Hug,C.andCooper,J.A.(1990) Disruption of the actincytoskeleton in yeast capping protein mutants. Nature 344 :352–354.

Amero,S.A.,Elgin,S.C.andBeyer,A.L.(1991)Auniquezincfingerprotein isassociatedpreferentiallywithactiveecdysoneresponsivelociin Drosophila . Genes & Development 5:188–200. Bretscher,A.(1986)Thinfilamentregulatoryproteinsofsmoothandnonmuscle cells. Nature 321: 726–727. Boyd,J., Risinger,J.I., Wiseman,R.W., Merrick,B.A., Selkirk,J.K. and Barrett,J.C. (1995) Regulation of microfilament organization and anchorageindependentgrowthbytropomyosin1. Proc Natl Acad Sci USA , 92 : 11534−11538. Carr, S., Aebersold, R., Baldwin, M., Burlingame, A., Clauser, K. and Nesvizhskii,A.(2004) Theneedfor guidelinesinpublication of peptide and proteinidentificationdata. Mol and Cell Proteomics 3: 531–533. Chen,C.P.,Denlinger,D.L.andLeeJr.,R.E.(1987)Coldshockinjuryandrapid cold hardening in the flesh fly Sarcophaga crassipalpis . Physiol Zool 60 : 297–304. Colinet, H., Nguyen, T.T.A., Cloutier, C., Michaud, D. and Hance, T. (2007) Proteomicprofilingofaparasiticwaspexposedtoconstantandfluctuatingcold exposure. Insect Biochem Mol Biol 37 :1177–1188. Denlinger, D.L. (1972) Induction and termination of pupal diapause in Sarcophaga (Diptera: Sarcophagidae ). Biol Bull ,WoodsHole 142 :11–24. Denlinger,D.L.(1991)Relationshipbetweencoldhardinessanddiapause.In, Insects at low temperature (Lee, R. E. and Denlinger, D. L., eds), pp. 174–198.ChapmanandHall,NewYork/London. Feder, M.E. and Hoffmann, G.E. (1999) Heatshock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 61 :243–282.

102 Gunning,P.,O'Neill,G.andHardeman,E.(2008)Tropomyosinbasedregulation oftheactincytoskeletonintimeandspace. Physiol Rev 88 :1–35. Itoi, S., Kinoshita, S., Kikuchi, K. and Watabe, S. (2003) Changes of carp FoF1ATPaseinassociationwithtemperatureacclimation. Am J Physiol Regul Integr Comp Physiol 284: R153–R163. Joplin, K.H., Yocum, G.D. and Denlinger, D.L. (1990) Cold shock elicits expression of heatshock proteins in the flesh fly, Sarcophaga crassipalpis . J Insect Physiol 36 :825–834. Kayukawa,T.,Chen,B.,Miyazaki,S.,Itoyama,K.,Shinoda,T.andIshikawa,Y. (2005) Expression of mRNA for the tcomplex polypeptide1, a subunit of chaperoninCCT,isupregulatedinassociationwithincreasedcoldhardinessin Delia antiqua . Cell Stress Chaperones 10 :204–210. Kelty, J.D. and Lee Jr., R.E. (2001) Rapid coldhardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodiccycles. J Exp Biol 204 :1659–1666. Kikuchi, K., Itoi, S. and Watabe, S. (1999) Increased levels of mitochondrial ATP synthase αsubunit in fast skeletal muscle of carp acclimated to cold temperature. Fish Sci 65 :629–636. Kim,M.,Robich,R.M.,Rinehart,J.P.andDenlinger,D.L.(2006)Upregulation oftwoactingenesandredistributionofactinduringdiapauseandcoldstressin thenorthernhousemosquito, Culex pipiens . J Insect Physiol 52 :1226–1233. Kirch,H.H.,Bartels,D.,Wei,Y.L.,Schnable,P.S.,andWood,A.J.(2004)The ALDHgenesuperfamilyofArabidopsis. Trends Plant Sci 9: 371–377. Kursteiner, O., Dupuis I. and Kuhlemeier, C. (2003) The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmentalstresses. Plant Physiol 132: 968–978. Lazarides, E. (1976) Actin, aactinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells. J Cell Biol 68 : 202–219. Lee, R. E., Chen, C.P. and Denlinger, D. L. (1987) A rapid coldhardening processininsects. Science 238 :1415–1417.

103 Li,A.Q.,PopovaButler,A.,Dean,D.H.andDenlinger,D.L.(2007)Proteomics ofthefleshflybrainrevealsanabundanceofupregulatedheatshockproteins duringpupaldiapause. J Insect Physiol 53 :385–391. Liang,P.andMacRae,T.H.(1997)Molecularchaperonesandthecytoskeleton. J Cell Sci 110: 1431–1440. Liu,H.andBretscher,A.(1989)Disruptionofthesingletropomyosingenein yeastresultsinthedisappearanceofactincablesfromthecytoskeleton. Cell 57 : 233–242. Matsumura, F., YamashiroMatsumura, S. and Lin, J.J. (1983) Isolation and characterizationoftropomyosincontainingmicrofilamentsfromculturedcells. J Biol Chem 258 :6636–6644. Mhawech,P.(2005)1433proteinsanupdate. Cell Res 15 :228–236. Michaud, M.R. and Denlinger, D.L. (2006) Oleic acid is elevated in cell membranes during rapid coldhardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis . J Insect Physiol 52 :1073–1082. MichaudM.R.andDenlingerD.L.(2007)Shiftsinthecarbohydrate,polyol, and amino acid pools during rapid coldhardening and diapauseassociated coldhardening in flesh flies ( Sarcophaga crassipalpis ): a metabolomic comparison. J Comp Physiol B 177 :753–763. Nakano, K. and Mabuchi, I. (2006) Actincapping protein is involved in controllingorganizationofactincytoskeletontogetherwithADF/cofilin,profilin andFactincrosslinkingproteinsinfissionyeast. Genes Cells 11 :893–905. Overgaard,J.,Sorensen,J.G.,Petersen,S.O.,Loeschcke,V.andHolmstrup,M. (2005)Changesinmembranelipidcompositionfollowingrapidcoldhardening in Drosphila melanogaster . J Insect Physiol 51 :1173–1182. Petersen,N.S., Young, P.andBurton, V.(1990)Heatshock messengerRNA accumulation during recovery from cold shock in Drosophila melanogaster . Insect Biochem 20 :679–684. Rinehart, J. P. and Denlinger, D. L. (2000) Heat shock protein 90 is downregulatedduringpupaldiapauseinthefleshfly, Sarcophaga crassipalpis , butremainsresponsivetothermalstress. Insect Mol Biol 9:641–645

104 Rinehart, J. P., Yocum, G. D. and Denlinger, D. L. (2000) Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis . Insect Biochem Mol Biol 30 :515–521. Rinehart, J. P., Li,A., Yocum, G. D., Robich, R. M., Hayward, S.A. L. and Denlinger,D.L.(2007) Upregulationofheatshockproteinsisessentialforcold survivalduringinsectdiapause. Proc Natl Acad Sci USA 104 :11130–11137. Sun,Y.andMacRae,T.H.(2005)Smallheatshockproteins:molecularstructure andchaperonefunction. Cell Mol Life Sci 62 :2460–2476. Talamillo, A., FernandesMoreno, M. A., MartinezAzorin, F., Bornstein, B., Ochoa,P.andGaresse,R.(2004)Expressionofthe Drosophila melanogaster ATP synthase alpha subunit gene is regulated by a transcriptional element containingGAFandAdf1bindingsites. Eur J Biochem 271 :4003–4013. Ursic, D. and Culbertson, M. R. (1991) The yeast homolog to mouse Tcp-1 affectsmicrotubulemediatedprocesses. Mol Cell Biol 11 :2629–2640. Ursic,D.,Sedbrook,J.C.,Himmel,K.L.andCulbertson,M.R.(1994)The essential yeast Tcp1 protein affects actin and microtubules. Mol Cell Biol 5: 1065–1080. Yocum,G.D.,Joplin,K.H.andDenlinger,D.L.(1998)Upregulationofa23 kDasmallheatshockproteintranscriptduringpupaldiapauseinthefleshfly, Sarcophaga crassipalpis . Insect Biochem Mol Biol 28 :677–682.

105 Fig. 5.1 A 2dimensional electrophoresis map of brain proteins from redeye pharate adults of the flesh fly Sarcophaga crassipalpis . Numbers refer to proteinsthatareidentifiedinTable5.1. pI=isoelectricpoint,MM=molecular markers.

106

Fig.5.2Selected2DEimagesdemonstratingchangesinabundanceofidentified proteinsfollowingrapidcoldhardening(RCH)for2hat0°C.Controls(CNT) were held continuously at 20 °C. Arrows indicate corresponding spots with significant differences. See Table 5.1 for further information on protein identification.

107

1.2 CNT RCH 1

0.8

0.6

0.4 RelativeRelative volume volume RelativeRelative volume volume 0.2

0 1 2 3 4 5 6 7 8 9 1011121314 Spot No.

Fig.5.3Statisticallysignificantdifferencesinproteinabundanceinresponseto RCH. PDQuest software 8.0.1 (BioRad) was used for spot detection, quantificationandstatisticalanalysis.SeeFig.5.2forproteinidentificationand experimentaltreatments.

108 Calculated Mowse SpotNo. Entryname Species ProteinID mass(kDa)/PI score a Upregulated proteins in response to rapid cold hardening ATPsynthasesubunitalpha, 1 ATPA_DROME Drosophila melanogaster 59.6/9.09 480 mitochondrialprecursor 10 HSP26_DROME Drosophila melanogaster Heatshockprotein26 23.2/7.12 58 12 TPM4_DROME Drosophila melanogaster Tropomyosin1,isoforms33/34 54.7/4.39 1359 Downregulated proteins in response to rapid cold hardening 2 BZLF1_EBV Epstein-Barr virus TransactivatorproteinBZLF1 27.1/5.25 86 Probablecysteinedesulfurase, 3 NFS1_DROME Drosophila melanogaster 51.4/8.40 84 mitochondrialprecursor 4 Aldehydedehydrogenase2B7,

109 AL2B7_ARATH Arabidopsis thaliana 58.5/6.88 61 mitochondrialprecursor 5 TCPG_DROME Drosophila melanogaster Tcomplexprotein1subunitgamma 59.9/6.38 362 Probableisocitratedehydrogenase 6 IDH3A_DROME Drosophila melanogaster subunitalpha,mitochondrial 41.2/6.96 433 precursor 7 PRS7_XENLA Xenopus laevis 26Sproteaseregulatorysubunit7 49.0/5.72 123 9 CAPZA_DROME Drosophila melanogaster Factincappingproteinsubunitalpha 32.9/5.61 108 11 TPM1_DROME Drosophila melanogaster Tropomyosin1,isoforms9A/A/B 39.4/4.93 482 13 1433E_DROME Drosophila melanogaster 1433proteinepsilon 30.0/4.68 721 Heatshockprotein83 14 HSP83_DROAV Drosophila auraria 82.0/4.89 418 (=Hsp90in S. crassipalpis ) Proteins missing after rapid cold hardening 8 PEP_DROME Drosophila melanogaster Zincfingerproteinonecdysonepuffs 78.6/5.46 90 Table5.1Identificationofdifferentiallyregulatedbrainproteinsinpharateadultsof S. crassipalpis aMowsescore >54indicatesidentityorextensivehomology(P <0.05);higherscoresindicatehigherconfidenceofidentity.

109

CHAPTER6

DISTINCTCONTRACTILEANDCYTOSKELETALPROTEINPATTERNSIN

THEANTARCTICMIDGEAREELICITEDBYDESICCATIONAND

REHYDRATION

AiqingLi 1,JoshuaB.Benoit 1,GiancarloLopezMartinez 1,MichaelA.Elnitsky 2,

RichardE.LeeJr 2,andDavidL.Denlinger 1*

1DepartmentofEntomology,TheOhioStateUniversity,Columbus,OH43210

2 DepartmentofZoology,MiamiUniversity,Oxford,OH45056

*Correspondingauthor.Tel.:6142926245;fax:6142922180.

Email:[email protected] (D.L.Denlinger).

110 ABSTRACT

Desiccation is well recognized as a major challenge for the Antarctic midge,

Belgica antarctica ,butthisstressisalsoexploitedbythemidgeasastrategyto enhance freeze tolerance. In this study, midge larvae were desiccated at 75% relativehumidity(RH)for12htoobtainabodywaterlossof35%,approximately half of the water that can be lost before the larvae succumb to dehydration.

Rehydraton was performed at 100% RH for 6 h and in water for 6 h after desiccation,yieldingfullyhydratedlarvae.Proteinswereextractedfromcontrols held at 100% RH, desiccated, and rehydrated larvae. Protein analysis was performed using 2dimensional electrophoresis and nanoscale capillary

LC/MS/MS. Among the 26 identified proteins that changed in abundance in responsetodesiccation,18wereupregulatedand8weredownregulated.Twenty ofthe26proteins(76%)werecontractileandcytoskeletalproteins,including6 actins,10myosinheavychains,1myosinlightchain,and3tropomyosins.Atotal of 13 rehydrationregulated proteins were identified: 8 were upregulated and 5 were downregulated. Interestingly, nine of the 13 proteins (69%) were also contractileandcytoskeletalproteins,including1actin,2myosinheavychainsand

6 tropomyosins. Additional proteins responsive to desiccation and rehydration werefunctionallyinvolvedwithavarietyofresponsesincludingstressresponses, energymetabolism,proteinsynthesis,glucogenesisandmembranetransport.We conclude that the major responses to both desiccation and rehydration elicit synthesis of a distinct pattern of contractile and cytoskeletal proteins that are likelytobeinvolvedinbodycontractionandcytoskeletonrearrangements.

111 INTRODUCTION

TheAntarcticmidge Belgica Antarctica (around1.1mgat4 th instarlarvae) isthe largestfreelivingterrestrialanimalthatlives yearroundinAntarctica,anditis thesouthernmostfreelivingholometabolousinsect(Suggetal.,1983;Usherand

Edwards, 1984). During its twoyear life cycle, larvae feed on moss, terrestrial algae,plantandanimaldebrisandmicroorganisms,andoverwinterinanyofthe fourlarvalinstars(ConveyandBlock,1996;Suggetal.,1983).Winglessadults emerge,mateinaggregations,layeggsanddiewithinashorttwoweekperiod.

Desiccationstressiscommonly encounteredby B. antarctica larvae. On onehand,itshabitat,theAntarcticacontinent,isfrozenandiseffectivelyadesert withwaterbiologically unavailableintheform of ice (Campbell and Claridge,

1987).Ontheotherhand,the larvae are highly permeable, with relatively high hemolymphosmolality,andlosewateratanextremelyhighrate(Haywardetal.,

2007; Benoit et al., 2007a). To suppress desiccation, multiple mechanisms are exploited(Benoitetal.,2007a,2007b).Behaviorally,waterconservation canbe achieved by clustering. Physiologically, the midges significantly increase their overallpolysaccharidelevelsandaccumulatetrehaloseandglycerolinresponseto slowdehydration(Haywardetal.,2007;Benoitetal.,2007a).Otherphysiological changesincludeashiftfromshorttolongcuticularhydrocarbons,adecreasein oxygenconsumption,elevatedmetabolitesfrompathwaysofcentralcarbohydrate metabolism,andashiftinthefreeaminoacidpool(Benoitetal.,2007a;Michaud etal.,2008).Waterstorescanbereplenishedonlybyintakeofliquid water. A novelformofdehydration,cryoprotectivedehydration,appearstobecriticalfor wintersurvival(Elnitskyetal.,2008),thusboutsofdehydrationandrehydration

112 appeartobeanormalcomponentofthemidge’sseasonalcycle.

Proteomics, the comprehensive study of all proteins encoded by the genomeofanorganism,isapowerfultechniqueforstudyingchangesinprotein abundanceinresponsetovariousstresses.However,onlyafewstudieshaveused proteomics to examine desiccation and rehydration responses of animals

(nematodesbyChenet al.,2006;ratsby Gouraudet al., 2007). In the present study, a comparative proteome analysis was performed on B. antarctica larvae underhydratedconditionsandinresponsetodesiccationandrehydrationstressto gain insights into the molecular mechanisms that control osmotic stress. Our results indicate that the pattern of contractile and cytoskeletal proteins changes dramatically in response to both desiccation as well as rehydration, thus suggesting that elements involved in body contraction and cytoskeleton rearrangementsareamongthefunctionsmostsignificantlyalteredbydesiccation andrecovery.

EXPERIMENTALMATERIALSANDMETHODS

Insects Thirdandfourthinstarlarvaeof Belgica antarctica Jacobsusedinthese experimentswerecollectedonCormorantIsland,TorgersenIslandandBonaparte

Point,nearPalmerStationonAnversIsland(64°46'S,64°40'W)ontheAntarctic

PeninsulainJanuary2006and2007.Substratecontainingthelarvaewasbrought intothePalmerStationlaboratoryandheldat4°C.Larvaewerehandpickedfrom thesubstrateinicecoldwaterandstoredat4°Cfor1–2dayspriortoexperimental use.

The experimental procedures are illustrated as a flow chart presented in

113 Fig.6.1.

Desiccation and Rehydration Relativehumidities(%RH)weregeneratedinglass desiccators as described by Benoit et al. (2007a). Control larvae were held at

100%RHfor12h.Forthedesiccationtreatment,larvaeweremaintainedat75%

RHfor12h.Fortherehydrationtreatment,larvaewerefirstdesiccated at75%

RHfor12handthentransferredto100%RHfor6handthentowaterfor6h.All experimentswereperformedat4°C.

Extraction of Proteins Wholelarvaewerehomogenizedin20mMTrisHClatpH

8.0, with complete protease inhibitor cocktail tablets (Roche, Mannheim,

Germany).Thehomogenatesweresonicatedusingamicrotip,centrifuged(16,000 gfor60minat4°C),andfractionatedintosoluble(supernatants)andinsoluble

(pellets)proteins.

ProteininthesupernatantswereprecipitatedusingtheReadyPrepTM2D cleanupkit(BioRad)accordingtothemanufacturer’sinstructionsandresolvedin generalpurpose rehydration buffer [8 M urea, 2% (w/v) CHAPS. The protein solutioninrehydrationbufferwassupplementedwith0.2%(w/v)BioLyte3/10 ampholyte,0.002%(w/v)bromophenolblue,and50mM dithiothreitol (DTT)], that formed soluble fractions for twodimensional polyacrylamide gel electrophoresis(2DPAGE).

The protein pellets obtained from centrifugation of the homogenates were sequentiallywashedthreetimesinTrisHClbuffer(20mM,pH8.0)containing proteaseinhibitors,andcentrifuged(13,000gfor30minat4°C)aftereachwash.

114 The supernatants were removed after each spin. The pellets were taken up in strongly chaotropic 2D rehydration buffer [7 M urea, 2 M thiourea, 4% (w/v)

CHAPS.Theproteinsolutioninrehydrationbufferwassupplementedwith0.2%

(w/v) BioLyte 3/10 ampholyte, 0.002% (w/v) bromphenol blue, 2% (w/v) SB

310(NdecylN,Ndimethyl3ammonio1propanesulfonate), and50mMDTT] and kept for 1 h at room temperature. These samples were then centrifuged

(16,000 g for 60 min at 25°C) and supernatants containing the proteins were definedasinsolublefractionsusedfor2DPAGE.Concentrationsofsolubleand insoluble proteins were determined using an RC/DC TM protein assay (BioRad) priorto2DPAGE.

2D-PAGE TheresultingproteinsampleswereelectrofocusedonIPGstrips(pH

310 nonlinear, 11 cm, BioRad) in a PROTEAN IEF Cell (BioRad). The IPG stripswererehydratedfor12hatroomtemperature. TheIEFrunningconditions were:400Vfor20min, 8,000Vfor2.5h and8,000 V for 35,000 Vh for comparison of hydrated and desiccation soluble fractions with a pH range of

310; 250Vfor1h,500Vfor1h, 8,000Vfor2.5hand8,000Vfor40,000

VhforcomparisonofhydratedanddesiccationinsolublefractionswithpHranges of310and36; 400Vfor20min, 8,000Vfor2.5hand8,000Vfor35,000

Vhforcomparisonof desiccationandrehydrationsolublefractionswithapH rangeof310;250Vfor20min,8,000Vfor1hand8,000Vfor45,000Vhfor separation of desiccation and rehydration insolublefractionswithpHrangesof

310and36at20°C,respectively.FiftyAcurrentwasusedperstrip.TheIPG stripswereincubatedfor20mininequilibrationbuffer[6Murea,1.5MTrisHCl,

115 pH8.8,30%(v/v)glycerol,2%(w/v)SDS]containing2%(w/v)DTT,followed by 20 min incubation in equilibration buffer containing 2.5% (w/v) iodoacetamide.

Seconddimension electrophoresis was performed on an 816% polyacrylamideSDSgelintheBioRad CriterionCell.Electrophoresiswascarried outfor60minatasteadyvoltageof200V.Foreachcondition,namelynormal hydration,desiccationandrehydration,atleast32Dgelswererun.

Staining of 2D-PAGE and Image Analysis Gelswerefixedin100ml40%ethanol and10%aceticacidovernight.Thefixedgelswerethenwashed3timeswith200 mldistilledwaterfor5min.Proteinsseparatedby2Dgelswerevisualizedafter stainingwithBiosafeCoomassieblue.Thestained2Dgelswerescannedusinga

BioRadVersaDocimagingsystem.Imagesofthescanned2Dgelswereprocessed byPDQuest(version7.4foranalysisbetweennormalanddesiccation,version8.0 foranalysisbetweendesiccationandrehydration).Thecomputeranalysisincluded automaticdetection,normalization,quantificationofproteinspots,andmatching betweencontrolandtreatmentgels.Thequantitativeandstatisticalanalyseswere performed using suitable functions within the PDQuest software. The relative changeinproteinabundanceforeachproteinspotwascalculatedbyquantitative comparisonsoftheaveragednormalizedspotquantitybetweentwoconditions.A twotailed nonpaired Student’s ttest wasperformed to determine if the relative change was statistically significant. Protein spots of interest were subjected to

LCMS/MS.

116 In-gel Trypsin Digestion Proteinspotsofinterestwereautomaticallyexcisedfrom the2Dgelsbyaspotcutter(BioRad)andingeldigestedwithsequencinggrade trypsinfromPromega(Madison,WI)accordingtostandardprotocolsprovidedby

Millipore (Bedford, MA). Gel pieces were twice washed in 50% methanol/5% acetic acid for 1 h and then dehydrated in acetonitrile. The gel bands were rehydrated and incubated with DTT solution (5mg/ml in 100 mM ammonium bicarbonate)for30minpriortotheadditionof15mg/ml iodoacetamide in 100 mMammoniumbicarbonatesolution.Iodoacetamidewasincubatedwiththegel bandsindarknessfor30minbeforebeingremoved.Thegelbandswerewashed againwithcyclesofacetonitrileandammoniumbicarbonate(100mM)in5min increments. The gels were then dried in a speed vacand reconstitutedin50l sequencing grade modified trypsin or chymotrypsin at 20 g/mL in 50 mM ammonium bicarbonate for 10 min. Twenty microliters of 50 mM ammonium bicarbonatewereaddedtothegelbands,andthemixturewasincubatedatroom temperatureovernight.Peptideswereextractedfromthepolyacrylamidewith50% acetonitrileand5%formicacidseveraltimes,combinedanddriedinaspeedvac to25l.

Nano-LC-MS/MS Capillaryliquid chromatographynanospray tandem mass spectrometry(NanoLC/MS/MS)wasperformedbycouplinganUltiMate TM Plus system (LCPackings) to a Micromass Hybrid Quadrupole timeofflight QTof

(tm)IImassspectrometer(Micromass,Wythenshawe,UK),operatinginapositive ionmodeandequippedwithanorthogonalnanospraysourcefromNewObjective

(Woburn, MA). The LC system was equipped with a Famos autosampler and

117 Switchoscolumnswitcher.SolventAwaswatercontaining50mMaceticacid, andsolventBwasacetonitrile.Fivemicrolitersofeachsamplewasfirstinjected ontothetrappingcolumnandthenwashedwith50mMaceticacid.Theinjector portwasswitchedtoinjectandthepeptideswereelutedfromthetrapontothe column. A BioBasic C18 column (10 cm 50 M ID) packed directly in the nanospray tip was used for chromatographic separations. Peptides were eluted directlyoffthecolumnintotheQTOFsystemusingagradientof2–80%Bover

30min,withaflowrateof300nl/minusingaprecolumnsplittoapproximately

500nl/min.Totalruntimewas55min.Thenanospraycapillaryvoltagewassetat

2.8kVandtheconeat55V.Sourcetemperaturewasmaintainedat100°C.Mass spectra were recorded using MassLynx 4.0 with automatic switching functions.

Massspectrawereacquiredfrommass400–2,000Da/switharesolutionof8,000

(FWHM:fullwidthathalfmaximum).Whenthedesiredpeakwasdetectedata minimum of 8 ion counts, the mass spectrometer automatically switched to acquiretheCIDMS/MSspectrumoftheindividualpeptide.Collisionenergywas setdependentonchargestaterecognitionproperties.

Protein Identification SequenceinformationfromtheMS/MSdatawasprocessed usingMascotDistillertoformapeaklist(.mgffile)andbyusingtheMASCOT

MS/MSsearchengineandTurboSEQUESTalgorithminBioWorks3.1Software.

Data processing was performed following the guidelines of Carr et al. (2004).

Assignedpeakshadaminimumof10counts(S/Nof3).Themassaccuracyofthe precursorionsweresetto1.5DatoaccommodateaccidentalselectionoftheC13 ion,andthefragmentmassaccuracywassetto0.5Da.Methionineoxidationand

118 carbamidomethylcysteinewerevariablemodifications.

RESULTS

2D-PAGE Analysis of Desiccated Larvae

To identify desiccationresponsive proteins, total proteins were extracted from controllarvaeheldat100%RHfor12handlarvaedesiccatedat75%RHfor12h.

Toenhancetherelativeabundanceoflowsolubilityproteins,wefractionatedthe proteinsintosolubleandinsolubleproteins.Bothsolubleandinsolubleproteins were run on replicate 2D gels (816%, pH 310 nonlinear) and representative images are shown in Fig. 6.2 A and B, respectively. When insoluble proteins, regardless of whether they were extracted from hydrated or desiccated larvae, were subjected to IEF in a 310 pH gradient, a nonrandom distribution was observed because many spots clustered in the 36 pH range. Therefore, in subsequent experiments, we fractionated insoluble proteins from the two conditionsona36pHgradientinthefirstdimension(Fig.6.2C).

QuantitativeanalysisbasedonPDQuestrevealedthat107proteinswere regulatedbyasleast1.5foldinresponsetodesiccation, including 30 from the solublefractionand48fromtheinsolublefractionona310pHgradientand29 fromtheinsolublefractionona36pHgradient. Analysis by Student’s ttest showed that the proteins with significant differences in abundance included 21 fromthesolublefraction,25fromtheinsolublefractionona310pHgradient, and 6 from the insoluble fraction on a 36 pH gradient (Table 6.1). Relatively abundant protein spots with an average ratio value greater than 1.5fold and a ttest pvalue<0.05wereselectedformassspectrometricidentification.Atotalof

119 27selectedproteins(13soluble,and14insoluble)areshowninFig.6.2,andtheir correspondingidentitiesaresummarizedinTable6.2.

Identification of Proteins that Changed in Response to Desiccation

The relative abundance of 27 differentially expressed proteins in control and desiccated larvae was determined based on PDQuest (Fig. 6.4 A): 18 were upregulated and 9 were downregulated upon desiccation. Quantities of the 27 proteinswerenormalizedanddividedbythequantityofthemostabundantspot

(spot5).Changesinabundanceoftheseproteinsrangedfrom1.5fold(spot19)to

2.2fold(spot13).

Twentysixofthe27proteinsweresuccessfullyidentified and could be functionally classified as cytoskeletal and contractile proteins (76%), proteins involved in energy metabolism (12%), stress responses (8%) and membrane transport(4%)(Fig.6.5A).Themajorityofproteinsthatshoweddifferences(20 proteins) were contractile and cytoskeletal proteins, including 6 actins, myosin light chain, 10 myosin heavy chains and 3 tropomyosins. Among these 20 cytoskeletalandcontractileprotein,2isoformsofactinsand5isoformsofmyosin heavy chains were less abundant, but the remainder were more abundant followingdesiccation.Thethreeproteinsinvolvedinenergymetabolism(arginine kinase, glyceraldehydephosphate dehydrogenase, enolase) were all more abundantfollowingdesiccation.Thetwostressrelatedproteinsincludedcatalase, whichwasmoreabundant,andubiquitinlikeprotein, which was less abundant after desiccation. Porin, a protein functionally involved in membrane transport, increasedinabundancewhenthelarvaeweredesiccated.

120

2D-PAGE Analysis of Larvae that were Desiccated, then Rehydrated

To investigate changes in protein abundance during larval recovery from desiccation,totalproteinswereextractedfromlarvaedesiccatedat75%RHfor12 handthenrehydratedat100%RHfor6handinwaterfor6additionalhours following desiccation. As above, proteins were separated into soluble and insoluble fractions, and run on 2D gels (816%, pH 310 nonlinear).

RepresentativeimagesforthesolubleandinsolublefractionsareshowninFig.6.3

AandB,respectively. Insolubleproteinsfromboth desiccation and rehydration treatmentswerealsofocusedona36pHgradientinthefirstdimensionbecause clusteredproteinswereobservedinthe36pHrange(Fig6.3C).

Based on quantitative analysis, 176 proteins were regulated by as least

1.5foldduetorehydration,including76fromthesolublefractionand57fromthe insolublefractionona310pHgradientand43fromtheinsolublefractionona

36 pH gradient. Statistical analysis using Student’s ttest showed that proteins withsignificantdifferencesbetweenthe2treatmentsincluded23fromthesoluble fraction, 26 from the insoluble fraction on a 310 pH gradient and 6 from the insolublefractionona36pHgradient(Table6.1).Relativelyabundantprotein spotswithanaverageratiovaluegreaterthan1.5foldanda ttest pvalue<0.05 were selected for identification (Fig. 6.3) and their corresponding identities are displayedinTable6.3.

Identification of Proteins that Changed in Response to Rehydration

PDQuestbasedimageanalyseswereusedtoquantifytherelativeabundanceofall

121 25desiccationandrehydrationregulatedproteins(Fig.6.4B).Thequantityofthe spotswerenormalizedanddividedbythatofthemostabundantspot(spot8).The extentofdifferentialabundanceoftheseproteinsrangedfrom1.5fold(spot9)to

4.4fold(spot24).

Thirteen of the 25 proteins were successfully identified by LCMS/MS

(Table 6.3). These 13proteins were classified accordingtotheirfunctions(Fig.

6.5B). Nineproteins(69%ofthetotal)werecontractileorcytoskeletalproteins: actin, 3 tropomyosins and 2 myosin heavy chains were more abundant and 3 tropomyosins were less abundant. Two proteins were stress related: heatshock proteinHsp70,whichincreasedinabundanceandanteriorfatbodyproteinlike, which was less abundant after rehydration. One protein that was more abundant, elongation factor 1 alpha, is involved in the regulation of protein synthesis. Malate dehydrogenase, which is involved in glucogenesis, was less abundantfollowingrehydration.

DISCUSSION

We compared the proteomic profiles of larval B. antarctica during their normalhydratedstate,followingdesiccation,andafterrehydration. Onemight anticipate that rehydration would simply be the reverse of desiccation, and for someproteins,thiswasthecase.Forexample,oneoftheactinsandtwomyosin heavy chains that decreased in abundance during desiccation increased again during rehydration, and by contrast, three tropomyosins that increased during desiccation declined again after rehydration. But such reversals were not consistently observed, indicating that rehydration is not simply the reverse of

122 desiccation but elicits distinct changes in many contractile and cytoskeletal proteins.

Tropomoysin plays a central role in regulating muscle contraction in skeletalmuscle.Innonmusclecells,itisassociatedwithcontractileactomyosin structures as well (Lin et al., 1997). Actin, tropomyosin and myosin are functionallylinkedinthemyofibrils(CorsiandPerry,1958).Musclecontraction isdrivenbyinteractionsoftheactinmyosincrossbridge,wherethebindingof myosintoactinisregulatedby acomplexofthinfilament associated proteins, tropomyosinandtroponin(Sliwinskaetal.,2008). Ourresults,showingthat11 myosin proteins change during desiccation and 2 myosins during recovery, suggeststhatcontractionmodulatesmyosinsynthesis,assuggestedbyprevious research(McDermottandMorgan,1989;Qietal.,1997). Tropomyosin, a core component of the actinlinked regulatory system for contraction, stabilizes the actin filament and modulates muscle contraction (Yu and Ono, 2006). The isoformsperformuniquefunctionsandarenotredundant(Gunningetal.,2008).

Animals contract when external water decreases. Thus, the contracted animals decrease their surfacetovolume ratio as they lose internal water loss during desiccation (Ricci et al., 2003). Changes of many different contractile proteins

(actins, tropomyosins and myosins, including light chains and heavy chains) supporttheideathatactivecontractionhelpspreventmechanicaldamageduring desiccation (Ricci et al., 2003; Alpert, 2005). During contraction, the actin skeletonisdynamicandactinremodelingoccurs(Gerthoffer,2005).Tropomyosin regulatesactinmyosininteractionsinthecytoskeletonaswellasinmuscle,and the isoforms differ in their ability both to interact with myosin and to inhibit

123 translocationofactinfilamentsbymyosin(Gunningetal.,2008).

Body contraction may be a key feature for recovery from desiccation

(Riccietal.,2003).Thecytoskeletonplaysasignificantroleinthedesiccation responseandrecoveryinmoss(Proctoretal.,2007).The cytoskeletonismore complexthanthecontractilesystemsintermsofcomposition and function: the contractilesystemsuse4actinsand5tropomyosins,whilethecytoskeletonuses2 actinsandover40tropomyosins(Gunningetal.,2008).But,howthedifferent isoformscontributetobodycontractionandthecytoskeleton dynamics remains unknown.

Another group of proteins that increased in response to desiccation is involved in energy metabolism.Arginine kinaseplays a role in maintenance of

ATP levels by producing phosphoarginine, which can rapidly replenish ATP.

Two other proteins upregulated in response to desiccation are glyceraldehyde3phosphatedehydrogenaseandenolase,enzymesinvolvedinthe energyyielding phase of the glycolysis pathway. An increase in abundance of allthreeoftheseenzymessuggestsanincreaseinATPproductionandenhanced abilityofmaintainingATPlevelsduringdesiccation.

Catalase also increased in response to desiccation stress. This protein responseisconsistentwiththeelevationofmRNAencodingcatalasethatwasalso notedinresponsetodesiccation(LopezMartinezetal.,2008).Asimilarelevation incatalasewasobservedinresponsetodehydrationinyeast(Francaetal.,2005).

An increase in catalase is frequently linked to oxidative stress, and desiccation possiblycontributestooxidativestressinthemidgelarvae.

Porinisanonspecificchannelthatispermeabletohydrophilicsolutesand

124 isinvolvedinmaintenanceofcellsurfacestructureinbacteria(NikaidoandVaara,

1985).In B. antarctica ,anincreaseinporinduringdesiccationmaybeinvolvedin theeffluxofwaterorothersolutesduringthistime.Ubiquitiniswellknownto play a role in controlling protein turnover, and it appears to play a role in combating dehydrationinduced stresses in a eubacterium (Durner and Boger,

1995).But,duringdesiccationin B. antarctica thisproteindeclinedinabundance.

Heat shock proteins play an important chaperone role in a variety of cellularstressresponses(FederandHofmann,1999).Inthissystemwefoundthat

Hsp70 was not present in increased abundance during desiccation, but it did increase during recovery from desiccation, i.e., rehydraton. This result is consistent with the observation that Hsp transcripts remained unchanged in responsetodesiccationstress(Haywardetal.,2007).DistinctHspresponseswere alsonotedinresponsetodesiccationandrehydrationinfleshflypupae(Hayward et al ., 2004), but in the fly pupae Hsp23 and Hsp70 were upregulated by desiccationandHsp90andHsc70wereupregulatedbyrehydration.Thissuggests importantrolesforHspsintheseresponsesbutalsosuggeststhatdifferentspecies mayresponddifferently.

Anterior fat body proteinlike protein decreases during rehydration. This protein,whichpreviouslyhasbeenassociatedwithstressresponses, isrestricted totheanteriorfatbody(NakajimaandNatori,2000)andisinvolvedinregulation ofendocytosisofhexamerinbyfatbodycells(Hansenetal.,2002). Itisnotat allclearwhatroleitmayplayinassociationwithdesiccationandrehydration.

Another protein that is less abundant during rehydration is malate dehydrogenase,anenzymeinvolvedincarbohydratemetabolism.Thedecreaseof

125 this protein during rehydration may be associated with depression of the gluconeogenesispathway,apathwaythatishighlyactivatedduringosmoticstress

(Dihazietal.,2005),butswitchesoffastheinsectreactstoitsnormalhydrated state.

Elongation factor 1 alpha is a key factor in the elongation process of protein synthesis. Besides its role in translation, it is also implicated in cytoskeletal remodeling (Condeelis, 1995). The increase of elongation factor 1 alpha during rehydration suggests increasedproteinsynthesis.Theregulationof this protein together with the cytoskeletal proteins described earlier further illustratethatreorganizationofthecytoskeletonisessentialtodesiccationstress toleranceandrecovery.

Our results clearly show that both desiccation and rehydration elicit dramaticchangesinproteinabundancewithinashortperiodoftime.Themajority of proteins that are altered in abundance are associated with contraction of the body and cytoskeleton rearrangements. It is also clear from this study that rehydration is not simply the reverse of dehydration, but instead generates a distinctproteinprofile.

Acknowledgments We thank the support staff at Palmer Station for their assistanceinAntarctica,DavidMandichofPlantMicrobe Genomics Facility at

TheOhioStateUniversity,fortechnicalassistancewithimagescanning,andKari

GreenChurch, OSU Campus Chemical Instrument Center, for assistance with massspectrometricidentificationofproteins.ThisresearchwassupportedbyNSF grantsOPP0337656andOPP0413786.

126 REFERENCES

Alpert, P. (2005) The Limits and Frontiers of DesiccationTolerant Life. Interg. Comp. Biol. 45 ,685–695 Benoit,J.B.,LopezMartinez,G.,Michaud,M.R.,Elnitsky,M.A.,Lee,R.E.,and Denlinger,D.L.(2007a)Mechanismstoreducedehydrationstressinlarvaeofthe Antarcticmidge, Belgica antarctica . J. Insect Physiol. 53 ,656–667 Benoit,J.B.,LopezMartineza,G.,Elnitsky,M.A.,LeeJr,R.E.,Denlinger,D.L. (2007b)Moisthabitatsareessentialforadultsof the Antarctic midge, Belgica antarctica (Diptera:Chironomidae),toavoiddehydration. Eur. J. Entomol. 104 , 9–14 Campbell, I. B., and Claridge, G. G. C. (1987) Antarctica: Soils, Weathering Processes and Environment .Amsterdam:Elsevier. Carr,S.,Aebersold,R.,Baldwin,M.,Burlingame,A.,Clauser,K.andNesvizhskii, A. (2004) The need for guidelines in publication of peptide and protein identificationdata. Mol and Cell Proteomics 3, 531–533 Chen , S., Glazer, I., Gollop, N., Cash, P., Argo, E., Innes, A., Stewart, E., Davidson, I., Wilson, M. J. (2006) Proteomic analysis of the entomopathogenic nematode Steinernema feltiae IS6 IJs under evaporative and osmoticstresses. Mol. Biochem. Parasitol. 145 ,195–204 Condeelis,J.(1995)Elongationfactor1a,translationandthecytoskeleton. Trends Biochem. Sci. 20 ,169–170 Convey, P., and Block, W. (1996) Antarctic Diptera: ecology, physiology and distribution. Eur. J. Entomol. 93 ,1–13 Corsi,A.,andPerry,S.V.(1958)Someobservationsonthelocalizationofmyosin, actinandtropomyosinintherabbitmyofibril. Biochem J 68 ,12–17 Dihazi,H.,Asif,A.R.,Agarwal,N.K.,Doncheva,Y.,andMuller,G.A.(2005) Proteomicanalysisofcellularresponsetoosmoticstressinthickascendinglimb ofHenle’sloop(TALH)Cells. Mol Cell Proteomic 4,1445–1458 Durner,J.andBoger,P.(1995)Ubiquitinintheprokaryote Anabaena variabilis. J. Biol. Chem 270 ,3720–3725 Elnitsky, M.A.,Hayward,S.A.L.,Rinehart,J.P.,Denlinger,D.L.,andLee,R. E.(2008)Cryoprotectivedehydrationandtheresistancetoinoculativefreezingin theAntarcticmidge, Belgica antarctica . J. Exp. Biol. 211 ,524–530

127 Franca, M. B., Panek, A. D., and Eleutherio, E. C. A. 92005) The role of cytoplasmic catalasein dehydrationtoleranceof Saccharomyces cerevisiae . Cell Stress Chaperones 10 ,167–170 Gerthoffer, W. T. (2005) Actin cytoskeletal dynamics in smooth muscle contraction.Can. J. Physiol. Pharmacol. 83 ,851–856 Gouraud,S.S.,Yao,S.T.,Heesom,K.J.,Paton,J.F.R.,andMurphy,D.(2007) 1433 proteins within the hypothalamicneurohypophyseal system of the osmoticallystressedrat:transcriptomicandproteomicstudies. J Neuroendocrinol 19 ,913–922 Gunning, P., Schevzov, G., Kee, A., and Hardeman, E. (2005) Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol. 15 , 333–341 Gunning,P.,O'Neill,G.,Hardeman,E. (2008)Tropomyosinbasedregulationof theactincytoskeletonintimeandspace. Physiol. Rev. 88 ,1–35 Hansen,I.A.,Meyer,S.R.,Schafer,I.,andScheller,K.(2002)Interactionofthe anterior fatbodyprotein with the hexamerin receptor in theblowfly Calliphora vicina. Eur. J. Biochem. 269 ,954–960 Hayward,S.A.L.,Rinehart,J.P.,andDenlinger,D.L.(2004)Desiccationand rehydrationelicitdistinctheatshockproteintranscriptresponsesinfleshflypupae. J. Exp. Biol. 207 ,963–971 Hayward,S.A.L.,Rinehart,J.P.,Sandro,L.H.,Lee,Jr,R.E.,andDenlinger,D. L. (2007) Slow dehydration promotes desiccation and freeze tolerance in the Antarcticmidge Belgica antarctica . J. Exp. Biol. 210 ,836–844 Lin, J. J., Warren, K. S., Wamboldt, D. D., Wang, T., and Lin, J. L. (1997) Tropomyosinisoformsinnonmusclecells. Int. Rev. Cytol. 170 ,1–38 McDermott,P.J.,andMorgan,H.E.(1989)Contractionmodulatesthecapacityfor proteinsynthesisduringgrowthofneonatalheartcellsinculture. Circ. Res. 64 , 542–553 Michaud,M.R.,Benoit,J.B.,LopezMartinez,G.,Elnitsky,M.A.,Lee,R.E., andDenlinger,D.L.(2008)Metabolomicsrevealsuniqueandsharedmetabolic changes in response to heat shock, freezing, and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 54 ,653–663 Nakajima, Y., and Natori, S. (2000) Identification and characterization of an anteriorfatbodyproteininaninsect. J. Biochem. 127 ,901–908 Proctor,M.C.F.,Ligrone,R.,andDuckett,J.G.(2007)Desiccationtolerancein

128 themoss Polytrichum formosum :physiologicalandfinestructuralchangesduring desiccationandrecovery. Ann. Bot. 99, 75–93 Qi,M.,Puglisi,J.L.,Byron,K.L.,Ojamaa,K.,Klein,L.,Bers,D.M.,andSamarel, A.M. (1997) Myosin heavy chain gene expression in neonatal rat heart cells: effectsof[Ca2+]iandcontractileactivity. Am. J. Physiol. 273 ,C394–C403. Ricci, C., Melone, G., Santo, N., and Caprioli., M. (2003) Morphological responseofabdelloidrotifertodesiccation. J. Morphol. 257 ,246–253 Sinclair,B.J.,Gibbs,A.G.,andRoberts,S.P.(2007)Genetranscriptionduring exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster .Insect Mol. Biol. 16 ,435–443 Sliwinska, M., Skorzewski, R., and Moraczewska, J. (2008) Role of actin Cterminus in regulation of striated muscle thin filament. Biophys. J. 94 , 1341–1347 Sugg,P.,Edwards,J.S.,andBaust,J.(1983)Phenologyandlifehistoryof Belgica antarctica , an Antarctic midge (Diptera: Chironomidae). Ecol. Entomol. 8, 105–113 Usher,M.B.,Edwards,M.,(1984)AdipteranfromsouthoftheAntarcticCircle: Belgica antarctica (Chironomidae),withadescriptionofitslarva. Biol. J. Linn. Soc. 23 ,19–31 Yu,R.andOno,S.(2006)DualrolesoftropomyosinasanFactinstabilizeranda regulatorofmusclecontractionin Caenorhabditis elegans bodywallmuscle. Cell Motil. Cytoskeleton 63 ,659–672

129

Fig.6.1Flowchartofproteomicanalysisofhydrated,desiccatedandrehydrated B. antarctica larvae.

130

Fig.6.2Representative2DEmapsofproteinsfrom Belgica antarctica larvaeafter desiccationat75%RHfor12hat4°C.(A)Solubleproteinswereresolvedonto IPG310 strips (nonlinear); (B) insoluble proteins resolved onto IPG310 strips (nonlinear) and (C) IPG36 strips in the first dimension, and 816% polyacrylamideSDSPAGEgelsintheseconddimension.Proteinspotswerethen visualized by Biosafe Coomassie staining. Maps were analyzed with PDQuest software.TheidentifiedspotsareannotatedbynumbersaccordingtoTable6.2.

131

Fig.6.3Representative2DEmapsofproteinsfrom Belgica antarctica larvaeafter rehydrationat100%RHfor6handtheninwaterfor6h followingdesiccation at75%RHfor12hat4°C.(A)SolubleproteinswereresolvedontoIPG310 strips(nonlinear);(B)insolubleproteinsresolvedontoIPG310strips(nonlinear) and (C) IPG36 strips in the first dimension, and 816% polyacrylamide SDSPAGEgelsintheseconddimension.Proteinspotswerethenvisualizedby Biosafe Coomassie staining. Maps were analyzed with PDQuest software. The identifiedspotsareannotatedbynumbersaccordingtoTable6.3.

132 1.2 A Hydratedstate Desiccation 1

0.8

0.6

0.4 Relativevolume. 0.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Spotnumber

1.2 B Desiccation Rehydration 1

0.8

0.6

0.4 Relativevolume. 0.2

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425 Spotnumber

Fig. 6.4 Quantification of proteins that changed in abundance (A) after desiccationat75%RHfor12h and(B)rehydrationat100%RHfor6hand theninwaterfor6hfollowingdesiccationat75%RHfor12h.Allproteinspots were quantified by scanning Coomassiestained images by PDQuest image analysissoftware.Thenumbersdenotingvariousproteinsonthexaxisarethe sameasshowninTables6.23andFigs.6.23.

133 B. Proteins responding to rehydration A. Proteins responding to desiccation

Membranetransport Proteinsynthesis 4% Stressresponses 8% 8% Glucogenesis 8%

Energymetabolism 12%

Stressresponses 15%

Cytoskeletalandcontractile Contractileandcytoskeletal protein protein 76% 69%

Fig. 6.5 Functional classification of the identified proteins that changed in abundanceinresponseto(A)desiccationand(B)rehydration.

134 No.Respondingtodesiccation No.Respondingtorehydration Analysis Soluble Insoluble Insoluble Soluble Insoluble Insoluble pH310 pH310 pH36 pH310 pH310 pH36 Proteins≥1.5 30 48 29 76 57 43 foldchange Significant change 21 25 6 23 26 6 (ttest) Significant and≥1.5fold 14 10 4 10 18 3 change Table 6. 1Numberofproteinsthatrespondedtodesiccation(75%RHfor12hat4°C)and rehydration (100% RH for 6 h and then in water for 6 h at 4 °C, following desiccation). SignifiancebasedonStudent’sttest( p<0.05).

135 Predicted Spot Accession Mowse Species ProteinID mass(kDa)/ No. No. Score* PI Desiccation upregulated proteins 2 46909285 Enallagma aspersum catalase 32.2/7.26 184 PREDICTED:similarto 3 66521459 Apis mellifera 30.6/8.25 108 porin glyceraldehydephosphate 4 62616 Coturnix coturnix 35.9/8.71 87 dehydrogenase

136 5 86450230 Blattella germanica enolase 47.4/5.91 245 6 551380 Marsupenaeus japonicus argininekinase 40.3/6.36 306 7 7321108 Chironomus kiiensis tropomyosin 32.6/4.74 1059 PREDICTED:similarto 8 66522386 Apis mellifera 32.3/4.73 674 tropomyosin1 Table6.2(continued) Table6.2IdentificationoflarvalproteinsinBelgica antarctica thatrespondedtodesiccation. *Mowsescore>54indicatesidentityorextensivehomology(P<0.05);higherscoresindicatehigherconfidenceofidentity.

136 Table6.2(continued) Spot Predicted Accession Mowse No. Species ProteinID mass(kDa)/ No. Score* PI PREDICTED:similarto 9 66522386 Apis mellifera 32.3/4.73 730 tropomyosin1 10 797290 Molgula citrina muscleactin 41.9/5.31 379 11 72256864 Culex pipiens pallens putativemyosinlightchain2 22.9/4.65 243 137 12 71616 Bos taurus actin,aorticsmoothmuscle 42.1/5.24 172 13 15553463 Oryctolagus cuniculus betaactin 8.5/5.50 307 18 157891 Drosophila melanogaster myosinheavychain 225.4/5.86 554 21 2546937 Drosophila melanogaster musclemyosinheavychain 135.6/5.46 2022 22 2546937 Drosophila melanogaster musclemyosinheavychain 135.6/5.46 1382 24 2546937 Drosophila melanogaster musclemyosinheavychain 135.6/5.46 1185 25 2546937 Drosophila melanogaster musclemyosinheavychain 135.6/5.46 810

137 Table6.2(continued) Predicted Spot Accession Mowse Species ProteinID mass(kDa)/ No. No. Score* PI 27 156765 Drosophila melanogaster actin 42.2/5.45 1022 Desiccation downregulated proteins 1 Autographa californica 332489 ubiquitinlikeprotein 8.7/5.76 90 nucleopolyhedrovirus 138 14 17975540 Drosophila melanogaster Actin79BCG7478PA 42.2/5.30 236 15 2546936 Drosophila melanogaster musclemyosinheavychain 135.8/5.49 92 17 157891 Drosophila melanogaster myosinheavychain 225.4/5.86 106 19 17975540 Drosophila melanogaster Actin79BCG7478PA 42.2/5.30 134 20 2546936 Drosophila melanogaster musclemyosinheavychain 135.8/5.49 361 23 2546936 Drosophila melanogaster musclemyosinheavychain 135.8/5.49 253 26 2546936 Drosophila melanogaster musclemyosinheavychain 135.8/5.49 379 16 - unknown

138 Predicted Accession Mowse SpotNo. Species ProteinID mass(kDa)/ No. Score* PI Rehydration upregulated proteins 7 157131813 Aedes aegypti tropomyosininvertebrate 32.6/4.83 300 10 2921217 Beroe ovata heatshockproteinHsp70 51.8/ 121 19 157110721 Aedes aegypti myosinheavychain 222.4/5.76 132 20 46909337 Stylochus sp. elongationfactor1alpha 45.7/ 76 139 21 157110721 Aedes aegypti myosinheavychain 222.4/5.76 215 Strongylocentrotus 22 47551039 cytoskeletalactinIIIa 42.0/5.46 317 purpuratus similartotropomyosin2 24 66522386 Apis mellifera 32.2/4.73 390 CG4843PB,isoformB similartotropomyosin1 25 48094441 Apis mellifera CG4898PD,isoformD 33.0/4.74 490 isoform1 8,9,23 - unknown Table6.3(continued) Table6.3IdentificationoflarvalproteinsinBelgica antarctica thatrespondedtorehydrationafterdesiccation.

139 Table6.3(continued) Predicted Accession Mowse SpotNo. Species ProteinID mass(kDa)/ No. Score* PI Rehydraton downregulated proteins similartomitochondrial 1 91085015 Tribolium castaneum malatedehydrogenase 35.5/9.42 319 precursor 32.8/4.72 4 51979106 Myzus persicae tropomyosin 532 140 tropomyosin2CG4843PB, 5 24647095 Drosophila melanogaster 32.9/4.74 454 isoformB 6 53148459 Plutella xylostella tropomyosinI 32.6/4.74 282 11 104531117 Belgica antarctica anteriorfatbodyproteinlike 150.0/5.23 210 2,3,1218 - unknown *Mowsescore>54indicatesidentityorextensivehomology(P<0.05);higherscoresindicatehigherconfidenceofidentity.

140

CONCLUSIONS

Thisdissertationreportsoninsectdiapauseandstressresponsesattheprotein level.Thefleshfly, S. crassipalpi s,andtheAntarcticamidge, B. antarctica ,were chosenasmodelorganisms.Usingtwodimensionalgelelectrophoresisandmass spectrometry, we have identified proteins upregulated, downregulated, missing and uniquely present during diapause, rapid cold hardening, desiccation and rehydration. When possible, we have assigned functions to these proteins. In addition,adiapauseassociatedgeneencodingneuropeptidelikeprecursor4in S. crassipalpis wasclonedandcharacterized.

Ⅰ.Proteomicsofthefleshflybrain revealsanabundance of upregulated heat shockproteinsduringpupaldiapause

1. We detected 37 diapauseunique or upregulated (≥2x) proteins, and 43

proteinsthatweredownregulatedornotpresentindiapause.

2. Hsps(Hsp70andseveralsmallHsps)wereamongthemostconspicuous

brainproteinspresentinhigheramountsduringdiapause.Thepresenceof

141 theHspsinthebrainsofdiapausingpupaenicelysupportsourprevious

evidence that the mRNAs encoding Hsp70 and Hsp23 are highly

upregulated during diapause. We speculate that Hsps play an essential

roleinenablingthediapausingflypupaetosurviveforlongperiodsat

lowtemperature.

3. Threeoftheidentifiedproteinsshowntobelessabundant in brains of

diapausingpupae arerelatedtometabolicprocessesthataremostlikely

lessactiveduringdiapause.Theseincludephosphoenolpyruvatesynthase,

anenzymeinvolvedingluconeogenesis,afattyacidbindingprotein,and

anendonuclease.

4. While the mRNAs encoding some of these proteins (e.g.Hsps) were

previouslyknowntobeassociatedwithdiapause,theotherproteinswere

notknowntobelinkedtodiapause,thussuggestingthattheproteomic

approachnicelysupplementsworkdoneatthetranscriptlevel.

Ⅱ. Neuropeptide like precursor 4 (Nplp4) is uniquely expressed during pupal diapauseinthefleshfly

1. Suppressivesubtractivehybridizationcomparingbrainsfromdiapausing

142 andnondiapausingpupaeofthefleshfly, S. crassipalpis, suggestedthat

the gene encoding Nplp4 was uniquely expressed during diapause. We

havesequencedthefulllengthcDNAencodingNplp4andusednorthern

blotstofurtherevaluatelinkagetodiapause.

2. TheopenreadingframeofthiscDNAencodesa61aminoacidresidue

precursor protein containing a predicted 18 residue signal peptide, two

22amino acid and 2amino acid propeptides, and a 19amino acid

neuropeptide. The amino acid sequence of the precursor protein shows

64%identityto Drosophila melanogaster Nplp4.

3. Nplp4mRNAlevelswerequitelowinnondiapausing(longday)pupae,

butincontrastthegenewashighlyupregulatedindiapausing(shortday)

pupae. Expression increased at the onset of diapause, remained high

throughout diapause, and then decreased 2 days after diapause was

terminated.Thiscloseassociationwithdiapausesuggestsapotentialrole

forNplp4ininitiatingandmaintainingdiapauseinthefleshfly.

Ⅲ.RapidelevationofInosanddecreasesinabundanceofotherbrainproteinsat pupaldiapauseterminationinthefleshfly Sarcophaga crassipalpis

143 1. Theproteomeanalysisofbrainsfollowingpupaldiapauseterminationin

S. crassipalpis showed that among the most abundant proteins that

showedasignificantchange,1wasmoreabundant,7werelessabundant,

and2wereabsentfollowingdiapausetermination.

2. Theproteinthatincreasedinabundancefollowingdiapausetermination

showedhighestidentitytomyoinositol1phosphatesynthase(Inos).

3. Proteins that decreased at diapause termination include those showing

highest identity to fatty acid binding protein, CG2331PA, twinstar,

catalase,andahistone.Proteinsabsentatdiapauseterminationincluded

ribosomalproteinL17Aandoneunnamedprotein.

4. Attempts to terminate diapause by injection of several Inosrelated

metabolitesfailed,thussuggestingthattheelevationofInosatdiapause

termination is downstream of the physiological regulation that initiates

development.

Ⅳ.Rapidcoldhardeningelicitschangesinbrainproteinprofilesofthefleshfly

1. Fourteen proteins showing the greatest differences in response to rapid

144 coldhardening(RCH)wereselectedformassspectrometricidentification.

Three proteins that increased in abundance during RCH included ATP

synthase subunit alpha, a small heat shock protein (smHsp), and

tropomyosin1 isoforms 33/34. Eleven proteins that decreased in

abundance or were missing following RCH included several proteins

involvedinenergymetabolism,proteindegradation,transcription,actin

binding,andcytoskeletonorganization.

2. That several proteins increased in abundance during RCH underscores

thedynamicsoftheRCHmechanismandpointstoseveralphysiological

responsesthatlikelycontributetoRCH.

3. Our results imply that at least one of the sHsps is upregulated during

RCHandthatamechanismtogenerateATPislikelytobeanessential

componentofRCH.

4. Atleastoneofthemanytropomyosinsisimplicatedinrespondingtolow

temperature by increasing in abundance, thus suggesting a role for

cytoskeletalmodificationduringRCH.

Ⅴ.DistinctcontractileandcytoskeletalproteinpatternsintheAntarcticmidgeare

145 elicitedbydesiccationandrehydration

1. Proteins from controls held at 100% RH, desiccated, and rehydrated

larvaewereanalyzedusing2dimensionalelectrophoresisandnanoscale

capillaryLC/MS/MS.

2. Amongthe26identifiedproteinsthatchangedinabundanceinresponse

todesiccation,18wereupregulatedand8weredownregulated.Atotalof

13rehydrationregulatedproteinswereidentified:8wereupregulatedand

5weredownregulated.

3. Themajorresponsestobothdesiccationandrehydrationelicitsynthesis

ofadistinctpatternofcontractileandcytoskeletalproteinsthatarelikely

tobeinvolvedinbodycontractionandcytoskeletonrearrangements.

4. Additional proteins responsive to desiccation and rehydration were

functionally involved with a variety of responses including stress

responses, energy metabolism, protein synthesis, glucogenesis and

membranetransport.

5. Our results clearly show that both desiccation and rehydration elicit

146 dramaticchangesinproteinabundancewithinashortperiodoftime.Itis

alsoclear fromthisstudy thatrehydrationisnot simply the reverse of

dehydration,butinsteadgeneratesadistinctproteinprofile.

147

APPENDICES

APPENDIXA

DIAPAUSEASSOCIATEDPROTEINSINTHEHEADOFTHEMOSQUITO,

CULEX PIPIENS PIPIENS

Mosquitoes,including Culex pipiens, haveattractedmuchattentionbecause they play important roles as vectors of disease transmission. Many mosquito vectorsenteranoverwinterdormancy,diapause.Thediapausingstageiscritical forsuccessfuldiseasetransmissionsincepathologicalagents,suchasWestNile

Virus,cansurvivecoldwinterindiapausingmosquitoesandreinitiatediseasethe followingspring.Thus,studyingthediapausingstageisextremelyimportantfor understandingtheseasonaloccurrenceofinsectbornediseasesandregulationof pathogens.Someaspectsofthemolecularbasisfordiapausein C. pipiens have been documented by our laboratory (Robich, et al., 2007). Most of the work focused on identification and characterization of genes involved in the programmingandexpressionofdiapause.Diapauseinthisspecieshasnotbeen studied at the protein level. Some proteomics work has been done with other

148 mosquitoes including Anopheles gambiae ( Francischetti et al., 2002 ) and Aedes aegypt (Bironetal,2005), butnosuchworkhasbeendoneinassociationwith diapause.

Ananautogenouscolonyof C. pipiens wasmaintainedat25°C,75%RH

(relativehumidity),withadailycycleof15hlight:9hdark.Eggsandfirstinstar larvaewerekeptunderthesameconditionsasthecolony.Fromthesecondinstar, larvaeweretransferredto18°C,75%RH,and15L:9Dfornondiapauseor9L:

15Dunderthesametemperatureandhumidityfordiapause.Larvaewerefeda dietofgroundfishfood,andadultswereprovidedwithwaterandhoney.

Nondiapausingandearlydiapausingfemalemosquitoesheldat18°Cwere collected7daysafteradulteclosion.Middiapausingfemalemosquitoeswere collected30daysafteradulteclosion.

This work focuses on the head proteins that are differentially expressed duringtheadultdiapauseof C. pipiens .Headproteinswereextractedandusedfor

2D gel electrophoresis. Gels were stained with Biosafe Coomassie blue

(BioRad),imagedandanalyzedwithsoftwarePDQuest.Differentiallyexpressed proteinswithanaveragefoldchangegreaterthan3foldanda ttest pvalue<0.05 weresubsequentlysubjectedtoidentificationbymassspectrometrictechniques.

Arepresentative2dimentionalelectrophoresisimageofmosquitohead proteinswasshowninFig.A.1.Therelativeabundanceofatotalof13selected proteinswasdeterminedbasedonPDQuest(BioRad)(Fig.A.2)andtheir

149 correspondingidentitiesaresummarizedinTableA.1.Threeproteinsincreasedin abundanceduringearlydiapauseandthendeclinedduringmiddiapause,allof whichshowedhighidentitytopupalcuticleprotein(D2,E2andF2).Compared withthenondiapausecondition,3proteinsdecreasedinabundanceinonlyearly diapausebutnotmiddiapause:aspartateammonialyase(B1),venomallergen5

(F1)andheatshock70kDaproteincognate4(B2). Fourproteinsdecreasedin abundanceinbothearlydiapauseandmiddiapause:isocitratedehydrogenase

(C1),argininekinase(D1andE1),andmalicenzyme(G1).Threeotherproteins decreasedinabundanceduringmiddiapausebutnotearlydiapause:actin(H1), vacuolarATPsynthasealphasubunit(A2)andprofiling(C2).Howtheseproteins arefunctionallyassociatedwithdiapauseneedsfurtherstudy.

150 REFERENCES BironD.G,AgnewP,MarcheL,RenaultL,SidobreC,MichalakisY,2005. Proteorneof Aedes aegypti larvaeinresponsetoinfectionbytheintracellular parasite Vavraia culicis .InternationalJournalforParasitology35,13851397. FrancischettiI.M.B.,ValenzuelaJ.G.,PhamV.M.,GarfieldM.K.,RibeiroJ.M. C., 2002. Toward a catalog for the transcripts and proteins (sialome) from the salivaryglandofthemalariavector Anopheles gambiae .JournalofExperimental Biology205,24292451. RobichR.M.,RinehartJ.P.,KitchenL.J.,DenlingerD.L.,2007. Diapausespecificgeneexpressioninthenorthernhousemosquito, Culex pipiens L.,identifiedbysuppressivesubtractivehybridization.JournalofInsect Physiology53,235245.

151

Fig. A.1. A 2dimensional electrophoresis image of head proteins from female adultsof Culex pipiens .NumbersrefertoproteinsthatareidentifiedinTableA.1. pI=isoelectricpoint,MM=molecularmarkers.

152

b 1 ND7 D7 0.9 D30

0.8 b

0.7

0.6

0.5

Relativevolume 0.4 a

0.3 a b a a a a a a 0.2 a a a a b a a a a 0.1 b b b b b b b b b b b b b 0 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2 D2 E2 F2 Spotnumber

Fig.A.2.Relativeabundanceofmosquitoheadproteins. PDQuestsoftware8.0.1 (BioRad)wasusedforspotdetection,quantificationandstatisticalanalysis.ND7= proteinsfromnondiapausefemales7daysafteradulteclosion.D7=proteinsfrom early diapause females 7 days after adult eclosion. D30= proteins from middiapause females 30 days after adult eclosion. Abundances marked by the samelowercaseletterswerenotsignificantlydifferent.

153 Spot Calculated Mowse Entryname Species ProteinID No. mass(kDa)/PI score * More abundant proteins in early diapause than both nondiapause and mid-diapause D2 170056109 Culex pipiens quinquefasciatus pupalcuticleprotein 31.4/5.67 299 E2 170056109 Culex pipiens quinquefasciatus pupalcuticleprotein 31.4/5.67 431 F2 170056109 Culex pipiens quinquefasciatus pupalcuticleprotein 31.4/5.67 299 Less abundant proteins in early or mid-diapause than nondiapause B1 170044493 Culex pipiens quinquefasciatus aspartateammonialyase 60.0/8.72 1405 154 C1 170033046 Culex pipiens quinquefasciatus isocitratedehydrogenase 39.1/8.30 959 D1 170044007 Culex pipiens quinquefasciatus argininekinase 45.5/5.55 1476 E1 170044007 Culex pipiens quinquefasciatus argininekinase 45.5/5.55 1417 F1 170059015 Culex pipiens quinquefasciatus venomallergen5 29.6/6.15 581 G1 170046750 Culex pipiens quinquefasciatus malicenzyme 68.8/6.35 1317 H1 68270850 Culex pipiens pipiens actin 42.1/5.30 887 TableA.1(continued) TableA.1.Diapauseassociatedproteinsidentifiedinheadsof Culex pipiens *Mowsescore>54indicatesidentityorextensivehomology(P<0.05);higherscoresindicatehigherconfidenceofidentity. 154 TableA.1(continued) Spot Calculated Mowse Entryname Species ProteinID No. mass(kDa)/PI score * ATPsynthasealphasubunit A2 170043178 Culex pipiens quinquefasciatus 68.4/5.27 936 vacuolar heatshock70kDaprotein B2 170045895 Culex pipiens quinquefasciatus 71.8/5.36 1199 cognate4 C2 170030306 Culex pipiens quinquefasciatus profilin 13.9/5.63 439 155

155

APPENDIXB

OVARYPROTEINSINVOLVEDINADIAPAUSEMATERNALEFFECTIN

THEFLESHFLY, SARCOPHAGA BULLATA

Previousresearchindicatedamaternaleffectthatpreventspupaldiapausein progenyofthefleshfly, Sarcophaga bullata (Henrich&Denlinger,1982;Rockey etal.,1989).Inthisfly,themother’sphotoperiodichistorydetermineswhetherthe progenycanrespondtoshortdaylengthbyenteringdiapause.Diapausecannotbe induced in progeny whose mother has undergone pupal diapause, even if the progenyaremaintainedinshortday(diapauseinducingcondition).Diapausecan beinducedonlyintheprogenyofmothersrearedunderlongdaylength.Similarly, amaternalinfluencethatcontrolsembryonicdiapausein Bombyx mori hasbeen reported(Yamashita,1996).However,littleisknownabouthowmaternaleffects control diapause in insects and what proteins play critical roles. Ovarian transplantsdonebyRockeyetal(1989)suggestedthattheinformationregulating thematernaleffectistransferredtotheovarysometimebetweentheendoflarval lifeandthethirddayofadultlife.Therefore,thematernaleffecthasalreadybeen transferredtotheeggsbeforetheyarefertilizedtobecomeembryos.

We report that eggs from mothers reared in long daylength and short daylength synthesize different protein products or produce different levels of certainproteins.Twodimensionalelectrophoresiswasperformedtoseparatetotal

156 proteins from the ovaries 2 days and 5 days after adult eclosion from the two groups of mothers. The 5day eggs were fully formed but had not yet been ovulatedandfertilized.Nineteenproteinsthathaddifferentlevelsofabundance withanaveragefoldchangegreaterthan1.5foldanda ttest pvalue<0.05were identifiedusingNanoLC/MS/MS.

Representativeimagesfor2dayand5dayovaryproteinsareshowninFig.

B.1andB.2.Therelativeabundanceof19differentiallyexpressedinfliesexposed toalongdayhistoryandshortdayhistorywasdeterminedbasedonPDQuest(Fig.

B.3).TheidentifiedproteinsareshowninTableB.2.Sevenproteinsincreasedin abundancein2dayovariesdissectedfromfliesthathadbeen exposedtoshort dayhistory,while5proteinsdecreasedinabundance.In5dayovariesfromflies that were exposed to short day history, 6 proteins increased and 1 protein decreasedinabundance.

157 REFERENCES HenrichVC,DenlingerDL,1982.Amaternaleffectthateliminatespupaldiapause inprogenyofthefleshfly, Sarcophaga bullata .JournalofInsectPhysiology28, 881884. Rockey SJ, Miller BB, Denlinger DL, 1989. A diapause maternal effect in the flesh fly, Sarcophaga bullata : transfer of information from mother to progeny. JournalofInsectPhysiology35,553558.

YamashitaO,1996.Diapausehormoneofthesilkworm, Bombyx mori ,structure, geneexpressionandfunction.JournalofInsectPhysiology42,669679.

158 Fig. B.1. A 2dimensional electrophoresis map of 2day ovary proteins from Sarcophaga bullata exposedtoashortdayhistory.Numbersrefertoproteinsthat areidentifiedinTableB.1. pI=isoelectricpoint,MM=molecularmarkers.

159

Fig. B.2. A 2dimensional electrophoresis map of 5day ovary proteins from Sarcophaga bullata exposedtoashortdayhistory.Numbersrefertoproteinsthat areidentifiedinTableB.1. pI=isoelectricpoint,MM=molecularmarkers.

160

1 A d2CNT 0.9 d2SDH 0.8 0.7 0.6 0.5 0.4 0.3

Relative volume Relative 0.2 0.1 0 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2 D2 E2 Spotnumber

1 B d5CNT 0.9 d5SDH 0.8 0.7 0.6 0.5 0.4 0.3

Relative volume Relative 0.2 0.1 0 F2 G2 H2 A3 B3 C3 D3 Spotnumber Fig.B.3.Relativeabundanceofproteinsfrom(A)2dayand(B)5dayovariesin the flesh fly S. bullata . PDQuest software 8.0.1 (BioRad) was used for spot detection,quantificationandstatisticalanalysis.CNT=proteinsfrom fliesexposed toalongdayhistory .SDH=proteinsfrom flies exposedtoashortdayhistory

161 Calculated Mowse SpotNo. Entryname Species ProteinID mass(kDa)/PI score a Proteins more abundant in 2-day ovaries from short-day history female Anoplophora B1 67527227 muscleprotein20likeprotein 20.4/7.77 253 glabripennis Drosophila C1 125977990 GA13413PA 19.7/7.60 329 pseudoobscura Polysaccharidebiosynthesis D1 4100597 Campylobacter jejuni 76.0/8.14 91 proteinhomolog F1 17136986 Drosophila melanogaster twinstarCG4254PA 17.4/6.74 559 162 B2 24644504 Drosophila melanogaster GaspCG10287PA,isoformA 29.4/4.73 386 RibosomalproteinLP1 D2 17136320 Drosophila melanogaster 11.6/4.33 191 CG4087PA G1 - - Unknown Proteins less abundant in 2-day ovaries from short-day history female E1 28461261 Bos taurus fattyacidbindingprotein1 14.3/7.77 276 H1 287945 Drosophila melanogaster ATPsynthasebetasubunit 53.5/5.19 1087 TableB.1(continued) TableB.1.Differentiallyregulatedovaryproteinsin Sarcophaga bullata exposedtoashortdayhistorycomparedtofliesexposedtoalongdayhistory *Mowsescore>54indicatesidentityorextensivehomology(P<0.05);higherscoresindicatehigherconfidenceofidentity.

162 TableB.1(continued) Calculated Mowse SpotNo. Entryname Species ProteinID mass(kDa)/PI score a A2 464020 Drosophila melanogaster La/SSB 44.9/6.64 89 C2 157105484 Aedes aegypti fk506bindingprotein 23.5/4.70 201 E2 984655 Sarcophaga peregrina storageproteinbindingprotein 133.5/6.05 119 Proteins more abundant in 5-day ovaries from short-day history female F2 7726 Drosophila melanogaster chorionproteinS36 30.1/8.62 82 unculturedbacterium predicteddimethylallyltransferase G2 68304991 31.8/8.79 69 BAC13K9BAC FN1327

163 adventurousglidingmotility A3 27804872 Myxococcus xanthus 281.1/5.21 63 proteinK hypotheticalprotein C3 31432042 Oryza sativa 43.6/5.14 95 LOC_Os10g27180 D3 20126677 Sarcophaga crassipalpis sarcocystatinA 11.9/5.35 173 B3 - - Unknown Proteins less abundant in 5-day ovaries from short-day history female Methanococcoides proteinofunknownfunction H2 91773981 45.8/6.49 89 burtonii DSM6242 DUF651

163

BIBLIOGRAPHY Adedokun,T.A.,Denlinger,D.L.,1984.Coldhardiness:acomponentofthe diapausesyndromeinpupaeofthefleshflies, Sarcophaga crassipalpis and S. bullata .PhysiologicalEntomology9,361364. AguiN.,GrangerN.A.,GilbertL.I.,BollenbacherW.E.,1979.Cellular localizationofinsectprothoracicotropichormone.ProceedingsoftheNational AcademyofSciencesoftheUnitedStatesofAmerica76,56845690. Aitken,A.,1995.1433proteinsontheMAP.TrendsinBiochemicalSciences 20,9597. Alpert, P., 2005. The Limits and Frontiers of DesiccationTolerant Life. IntegrativeandComparativeBiology 45,685695. Amatruda,J.F.,Cannon,J.F.,Tatchell,K.,Hug,C.andCooper,J.A.,1990. Disruption of the actin cytoskeleton in yeast capping protein mutants. Nature 344,352–354. Amero,S.A.,Elgin,S.C.,Beyer,A.L.,1991.Auniquezincfingerproteinis associated preferentially with active ecdysoneresponsive loci in Drosophila . Genes&Development 5,188200. Baccetti, B., Burrini, A.G., Gabbiani, G., Leoncini, P., 1984a. Insect tracheal taenidiacontainakeratinlikeprotein.PhysiologicalEntomology9,239245. Baccetti, B., Burrini, A.G., Gabbiani, G., Leoncini, P., Runggerbrandle, E., 1984b.Filamentousstructurescontainingakeratinlikeproteininspermatozoa ofaninsect, Bacillus rossius .JournalofUltrastructureResearch86,8692. Backs,J.,Olson,andE.N.,2006.Controlofcardiacgrowthbyhistone acetylation/deacetylation.CirculationResearch98,1524.

164 Baggerman,G.,Cerstiaens,A.,DeLoof,A.,Schoofs,L.,2002.Peptidomicsof the larval Drosophila melanogaster central nervous system. Journal of BiologicalChemistry277,4036840374. Baggerman, G., Boonen, K., Verleyen, P., De Loof, A., Schoofs, L., 2005. Peptidomic analysis of the larval Drosophila melanogaster central nervous system by twodimensional capillary liquid chromatography quadrupole timeofflightmassspectrometry.JournalofMassSpectrometry40,250260. Bamburg,J.R.,1999.ProteinsoftheADF/Cofilinfamily:essentialregulatorsof actin dynamics. Annual Review of Cell and Developmental Biology 15, 185230. Baust, J. G., Lee, R. E., 1981. Environmental “homeothermy” in an Antarctic insect.AntarcticJournaloftheUnitedStates 15,170172. Baust,J.G.,Lee,R.E.,1987.MultiplestresstoleranceinanAntarcticterrestrial arthropod: Belgica antarctica .Cryobiology24,140147. Benoit,J.B.,LopezMartineza,G.,Michaud,M.R.,Elnitsky,M.A.,LeeJr,R.E., Denlinger,D.L.,2007a.Mechanismstoreducedehydrationstressinlarvaeofthe Antarcticmidge, Belgica antarctica .JournalofInsectPhysiology53,656–667. Benoit,J.B.,LopezMartineza,G.,Elnitsky,M.A.,LeeJr,R.E.,Denlinger,D.L., 2007b. Moist habitats are essential for adults of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae), to avoid dehydration. European Journal of Entomology104,914. Blair,A.,TomlinsonA,PhamH,GunsalusKC,Goldberg,ML,andLaskiFA, 2006.Twinstar,theDrosophilahomologofcofilin/ADF,isrequiredforplanar cellpolaritypatterning.Development133,17891797. Boyd,J., Risinger,J.I., Wiseman,R.W., Merrick,B.A., Selkirk,J.K. and Barrett,J.C., 1995. Regulation of microfilament organization and anchorageindependentgrowthbytropomyosin1.Proceedings of theNational AcademyofSciencesoftheUnitedStatesofAmerica92,1153411538. Bretscher,A.,1986.Thinfilamentregulatoryproteinsofsmoothandnonmuscle cells.Nature 321 ,726727. Broufas,G.D.,Koveos,D.S.,2001.Rapidcoldhardeninginthepredatorymite Euseius (Amblyseius) finlandicus (Acari: Phytoseiidae). Journal of Insect

165 Physiology47,699708. Burks,C.S.andHagstrum,D.W.,1999.Rapidcoldhardeningcapacityinfive speciesofcoleopteranpestsofstoredgrain.JournalofStoredProductsResearch 35,6575. Campbell,I.B.,Claridge,G.G.C.,1987. Antarctica: Soils, Weathering Processes and Environment .Amsterdam:Elsevier. Canaff, L., Bennett, H. P.J., Hendy, G. N., 1999. Peptide hormone precursor processing:gettingsorted?MolecularandCellularEndocrinology156,16. Carr,S.,Aebersold,R.,Baldwin,M.,Burlingame,A.,Clauser,K.,Nesvizhskii, A., 2004. The need for guidelines in publication of peptide and protein identificationdata.MolecularandCellularProteomics3,531533. Chen,C.P.,Denlinger,D.L.,LeeJr.,R.E.,1987.Coldshockinjuryandrapid coldhardeninginthefleshfly Sarcophaga crassipalpis .PhysiologicalZoology60, 297304. Chen,C.P.,Denlinger,D.L.,1990.Activationofphosphorylaseinresponseto coldandheatstressinthefleshfly, Sarcophaga crassipalpis .JournalofInsect Physiology36,549553. Chen , S., Glazer, I., Gollop, N., Cash, P., Argo, E., Innes, A., Stewart, E., Davidson,I.,Wilson,M.J.,2006.Proteomicanalysisoftheentomopathogenic nematode Steinernema feltiae IS6IJsunderevaporativeandosmoticstresses. MolecularandBiochemicalParasitology 145,195204. Chomczynski,P.,Sacchi,N.,1987.SinglestepmethodofRNAisolationbyacid guanidiniumthiocyanatephenolchloroformextraction.AnalyticalBiochemistry 162,156159. Colinet,H.,Nguyen,T.T.A.,Cloutier,C.,Michaud,D.andHance,T.,2007. Proteomicprofilingofaparasiticwaspexposedtoconstantandfluctuatingcold exposure.InsectBiochemistryandMolecularBiology37,11771188. Condeelis, J., 1995. Elongation factor 1a, translation and the cytoskeleton. TrendsinBiochemicalSciences20,169170. Convey,P.,1996.OverwinteringstrategiesofterrestrialinvertebratesinAntarctica

166 – the significance of flexibility in extremely seasonal environments. European JournalofEntomology93,489505. Convey, P., Block, W., 1996. Antarctic Diptera: ecology, physiology and distribution.EuropeanJournalofEntomology93,113. Corsi,A.,Perry,S.V.,1958.Someobservationsonthelocalizationofmyosin, actinandtropomyosinintherabbitmyofibril.BiochemicalJournal68,1217. Cossins, A. R., 1983. The adaptation of membrane structure and function to changes in temperature. In: Cossins, A.R., Sheterline, P. (Eds.), Cellular Acclimatisation to Environmental Change. Cambridge University Press, Cambridge,pp.331. Craig,T.L.,Denlinger, D.L.,2000.Sequenceandtranscriptionpatternsof60S ribosomalproteinPO,adiapauseregulatedAPendonucleaseinthefleshfly, Sarcophaga crassipalpis .Gene 255,38188. Czajka, M., Lee, R. E., 1990. A rapid coldhardening protection against cold shockinjuryin Drosophila melanogaster .JournalofExperimentalBiology148, 245254. Danks,H.V.,1987. Insect Dormancy: An Ecological Perspective .Ottawa:Biol. SurveyCan. Danks,H.V.,2005.KeythemesinthestudyofseasonaladaptationsininsectsI. Patternsofcoldhardiness.AppliedEntomologyandZoology40,199211. deKort,C.A.D.,1990.Thirtyfiveyearsofdiapauseresearchwiththe Coloradopotatobeetle.EntomologiaExperimentalisetApplicata56,113. Denlinger,D.L.,1971.Embryonicdeterminationofpupaldiapauseintheflesh fly Sarcophaga crassipalpis .JournalofInsectPhysiology17,18151822. Denlinger, D.L., 1972. Induction and termination of pupal diapause in Sarcophaga (Diptera: Sarcophagidae). Biological Bulletin, Woods Hole 142, 1124. Denlinger, D.L., Campbell, J.J., Bradfield, J.Y., 1980. Stimulatory effect of organicsolventsoninitiatingdevelopmentindiapausingpupaeofthefleshfly, Sarcophaga crassipalpis , and the tobacco hornworm Manduca sexta . PhysiologicalEntomology5,715.

167 Denlinger, D. L., 1981. The physiology of pupal diapause in flesh flies. In Current Topics in Insect Endocrinology and Nutrition, eds. G. Bhaskaran, S, FriedmanandJ.G.Rodriguez,pp.131160.Plenum,NewYork. Denlinger,D.L.,1991.Relationshipbetweencoldhardinessanddiapause.In:R. E.Lee&D.L.Denlinger, Insects at low temperature .ChapmanandHall,New York/London.Pp.174198. Denlinger,D.L.,Joplin,K.H.,Chen,C.P.,LeeJr.,R.E.,1991.Coldshockand heat shock. In: R. E. Lee & D. L. Denlinger, Insects at low temperature . ChapmanandHall,NewYork/London.Pp.131148. Denlinger,D.L.,Joplin,K.H.,Flannagan,R.D.,Tammariello,S.P.,Zhang,M. L.,Yocum,G.D.,Lee,K.Y.,1995.Diapausespecificgeneexpression.In: Molecularmechanismsofinsectmetamorphosisanddiapause.A.Suzuki,H. Kataoka,andS.Matsumoto,IndustrialPublishing&Consulting,Inc.,Tokyo, pp289297. Denlinger,D.L.,2000.Molecularregulationofinsectdiapause.In:Storey,K.B., Storey,J.M.(Eds.),EnvironmentalStressorsandGeneResponses.Elsevier, Amsterdam,pp.259275. Denlinger,D.L.,Rinehart,J.P.,Yocum,G.D.,2001.Stressproteins:arolein insect diapause? In: Denlinger, D. L., Giebultowicz, J. M., Saunders, D. S. (Eds.),InsectTiming:CircadianRhythmicitytoSeasonality.ElsevierScience, Amsterdam,pp.155171. Denlinger,D.L.,2002.Regulationofdiapause.AnnualReviewofEntomology 47,93122. Denlinger, D. L., Yocum, G. D., Rinehart, J. P., 2005. Hormonal control of diapause.In:Gilbert,L.I.,Iatrou,K.,Gill,S.(Eds.),ComprehensiveMolecular InsectScience,vol.3.Elsevier,Amsterdam,pp.615650. Denlinger,D.L.,2008.Whystudydiapause?EntomologicalResearch38,19. Dihazi, H., Asif, A. R., Agarwal, N. K., Doncheva, Y., Muller, G. A., 2005. Proteomicanalysisofcellularresponsetoosmoticstressinthickascendinglimb ofHenle’sloop(TALH)Cells. Molecular&CellularProteomics 4,14451458. Duman,J.G.,Bennett,V.,Sformo,T.,Hochstrasser,R.,Barnes,B.M.,2004.

168 AntifreezeproteinsinAlaskaninsectsandspiders.JournalofInsectPhysiology 50,259266. Durner, J., Boger, P., 1995. Ubiquitin in the prokaryote Anabaena variabilis. JournalofBiologicalChemistry270,37203725. Elnitsky,M.A.,Hayward,S.A.L.,Rinehart,J.P.,Denlinger,D.L.,Lee,R.E., 2008.Cryoprotectivedehydrationandtheresistancetoinoculativefreezingin theAntarcticmidge, Belgica antarctica .JournalofExperimentalBiology211, 524530. Elrick, M. M., Walgren, J. L., Mitchell, M. D., and Thompson, D. C., 2006. Proteomics : Recent applications and new technologies. Basic & Clinical Pharmacology&Toxicology98,432441. Flannagan,R.D.,Tammariello,S.P.,Joplin,K.H.,CikraIreland,R.A., Yocum,G.D.,Denlinger,D.L.,1998.Diapausespecificgeneexpressionin pupaeofthefleshfly Sarcophaga crassipalpis .ProceedingsoftheNational AcademyofSciencesoftheUnitedStatesofAmerica95,56165620. Feder, M. E., Hoffmann, G. E., 1999. Heatshock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. AnnualReviewofPhysiology61,243282.

Fraenkel, G., Hsiao, C., 1968. Morphological and endocrinological aspects of pupaldiapauseinaflesh.fly, Sarcophaga argyrostorna .(RobineauDesvoidy). JournalofInsectPhysiology14,707718. Franca,M.B.,Panek,A.D.,Eleutherio,E.C.A.,2005.Theroleofcytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae . Cell Stress & Chaperones10,167170. Fujiwara,Y.,Denlinger,D.L.,2007.p38MAPKinaseisalikelycomponentof thesignaltransductionpathwaytriggeringrapidcoldhardeninginthefleshfly, Sarcophaga crassipalpis .JournalofExperimentalBiology210,32953300. Gerthoffer, W. T., 2005. Actin cytoskeletal dynamics in smooth muscle contraction.CanadianJournalofPhysiologyandPharmacology83,851856. Giebultowicz,J.M.,Denlinger,D.L.,1986.Roleofthebrainandringglandin relationtopupaldiapauseinthefleshfly, Sarcophaga crassipalpis .Journalof InsectPhysiology32,161166.

169 Goto,S.G.,Denlinger,D.L.,2002a.Shortdayandlongdayexpressionpatterns ofgenesinvolvedinthefleshflyclockmechanism:period,timeless,cycleand cryptochrome.JournalofInsectPhysiology48,803816. Goto,S.G.,Denlinger,D.L.,2002b.Genesencodingtwocystatinsintheflesh fly Sarcophaga crassipalpis andtheirdistinctexpressionpatternsinrelationto pupaldiapause.Gene292,121127. Gouraud,S.S.,Yao,S.T.,Heesom,K.J.,Paton,J.F.R.,Murphy,D.,2007. 1433 proteins within the hypothalamicneurohypophyseal system of the osmotically stressed rat: transcriptomic and proteomic studies. Journal of Neuroendocrinology19,913922. Gygi, S. P., Rochon, Y., Franza, B. R., Aebersold, R., 1999. Correlation between protein and mRNA abundance in yeast. Moleculae and Cellulae Biology19,17201730. Gunning,P.,Schevzov,G.,Kee,A.,Hardeman,E.,2005.Tropomyosinisoforms: divining rods for actin cytoskeleton function. Trends in Cell Biology 15, 333341. Gunning,P.,O'Neill,G.,Hardeman,E.,2008.Tropomyosinbasedregulationof theactincytoskeletonintimeandspace.PhysiologicalReviews88,135. Gunsalus,K.C.,Bonaccorsi,S.,Williams,E.,Verni,F.,Gatti,M.,andGoldberg, M.L.,1995.Mutationsintwinstar,a Drosophila geneencodingacofilin/ADF homologue,resultindefectsincertrosomemigrationandcytokinesis.Journalof CellBiology131,12431259. Hansen,I.A.,Meyer,S.R.,Schafer,I.,Scheller,K.,2002. Interactionofthe anteriorfatbodyproteinwiththehexamerinreceptorintheblowfly Calliphora vicina. EuropeanJournalofBiochemistry269,954960. Hawes,T.C.,Couldridge,C.E.,Bale,J.S.,Worland,M.R.,andConvey,P., 2006.Habitattemperatureandthetemporalscalingofcoldhardeninginthehigh Arcticcollembolan, Hypogastrura tullbergi (Schaffer).EcologicalEntomology, 31,450459. HawesT.C.,BaleJ.S.,WorlandM.R. andConveyP.,2007.Plasticityand superplasticityintheacclimationpotentialoftheAntarcticmite Halozetes belgicae (Michael).JournalofExperimentalBiology210,593601.

170 Hayward, S. A. L., Rinehart, J. P., Denlinger, D. L.,, 2004. Desiccation and rehydration elicit distinct heat shock protein transcript responses in flesh fly pupae.JournalofExperimentalBiology207,963971. Hayward,S.A.L.,Pavlides,S.C.,Tammariello,S.P.,Rinehart,J.P.,Denlinger, D.L.,2005.Temporalexpressionpatternsofdiapauseassociated genesinthe flesh fly pupae from the onset of diapause through postdiapause quiescence. JournalofInsectPhysiology51,631640. Hayward,S.A.L.,Rinehart,J.P.,Sandro,L.H.,Lee,Jr,R.E.,Denlinger,D.L., 2007.SlowdehydrationpromotesdesiccationandfreezetoleranceintheAntarctic midge Belgica antarctica .JournalofExperimentalBiology210,836844. Hazel,J.R.,1995.Thermaladaptationinbiologicalmembranes:ishomeoviscous adaptationtheexplanation?AnnualReviewofPhysiology57,1942. Higashiyama,H.,Hirose,F.,Yamaguchi,M.,Inoue,Y.H.,Fujikake,N., Matsukage,A.,Kakizuka,A.,2002.Identificationofter94,DrosophilaVCP,asa modulatorofpolyglutamineinducedneurodegeneration.CellDeathand Differentiation9,264273. Itoi, S., Kinoshita, S., Kikuchi, K. and Watabe, S. (2003) Changes of carp FoF1ATPaseinassociationwithtemperatureacclimation. AmericanJournalof PhysiologyRegulatory Integrative and Comparative Physiology 284 , R153R163. Joplin,K.H.,Denlinger,D.L.,1989.Cyclesofproteinsynthesisduringpupal diapause in the flesh fly, Sarcophaga crassipalpis . Archives of Insect BiochemistryandPhysiology12,111122. Joplin,K.H.,Yocum,G.D.,Denlinger,D.L.,1990a.Diapausespecificproteins expressedbythebrainduringthepupaldiapauseofthefleshfly, Sarcophaga crassipalpis .JournalofInsectPhysiology36,775783. Joplin, K. H., Yocum, G. D., Denlinger, D. L., 1990b. Cold shock elicits expression of heatshock proteins in the flesh fly, Sarcophaga crassipalpis . JournalofInsectPhysiology36,825834. Jovanovic´Galovic´,A.,Blagojevic´,D.P.,GruborLajšic´,G.,Worland,R.,and Spasic´, M.B., 2004. Role of antioxidant defense during different stages of preadult life cycle in European corn borer ( Ostrinia nubilalis , Hubn.): diapause

171 andmetamorphosis.ArchivesofInsectBiochemistryandPhysiology55,7989. Ju, S., Greenberg, M. L., 2004. 1Dmyo inositol 3phosphate synthase:conservation, regulation, and putative target of mood stabilizers. ClinicalNeuroscienceResearch4,181187. Kayukawa,T.,Chen,B.,Miyazaki,S.,Itoyama,K.,Shinoda,T.,Ishikawa,Y., 2005. Expression of mRNA for the tcomplex polypeptide1, a subunit of chaperoninCCT,isupregulatedinassociationwithincreasedcoldhardinessin Delia antiqua .CellStress&Chaperones10,204210. Kelty,J.D.,LeeJr.,R.E.,1999.Inductionofrapidcoldhardeningbycoolingat ecologicallyrelevantratesin Drosophila melanogaster .JournalofInsect Physiology4,719726. Kelty,J.D.,LeeJr.,R.E.,2001.Rapidcoldhardeningof Drosophila melanogaster (Diptera:Drosophilidae)duringecologicallybasedthermoperiodic cycles.JournalofExperimentalBiology204,16591666. Kikuchi,K.,Itoi,S.,Watabe,S.,1999.IncreasedlevelsofmitochondrialATP synthaseαsubunitinfastskeletalmuscleofcarpacclimatedtocoldtemperature. FishScience65,629636. Kim,M.,RobichR.M.,Rinehart,J.P.,Denlinger,D.L.,2006.Upregulationof twoactingenesandredistributionofactinduringdiapauseandcoldstressinthe northern house mosquito, Culex pipiens . Journal of Insect Physiology 53, 12261233. Kirch,H.H.,Bartels,D.,Wei,Y.L.,Schnable,P.S.,Wood,A.J.,2004.The ALDHgenesuperfamilyofArabidopsis.TrendsinPlantScience9 ,371377. Kostal,V.,2006.Ecophysiologicalphasesofinsectdiapause.JournalofInsect Physiology52,113127. Koveos,D.S.,2001.Rapidcoldhardeningintheolivefruitfly Bactrocera oleae underlaboratoryandfieldconditions.EntomologiaExperimentaliset Applicata101,257263. Krebs,R.A.,Feder,M.E.,1997.DeleteriousconsequencesofHsp70 overexpressionin Drosophila melanogaster larvae.CellStress&Chaperones2, 6071.

172 Kursteiner,O.,DupuisI.,Kuhlemeier,C.,2003.The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses.PlantPhysiology132,968978. Lazarides, E., 1976. Actin, aactinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells. Journal of Cell Biology68,202219. Lee,R.E.,Jr.,Denlinger,D.L.,1985.Coldtoleranceindiapausingand nondiapausingstagesofthefleshfly, Sarcophaga crassipalpis .Physiological Entomology10,309315. Lee,R.E.,Chen,C.P.,Denlinger,D.L.,1987.Arapidcoldhardeningprocess ininsects.Science238,14151417. Lee,R.E.,DenlingerD.L.,Chen . C.P.,1988.Insectcoldhardinessand diapause:Regulatoryrelationships.In: Endocrinological Frontiers in Physiological Insect Ecology (eds.F.Sehnal,A.ZabzaandD.L.Denlinger),pp. 243262.WroclawTechnicalUniversityPress,Wroclaw,Poland. Lee,R.E.,1991.Principlesofinsectlowtemperaturetolerance.In:LeeRE, DenlingerDL,editors.Insectsatlowtemperature.NewYork:ChapmanandHall, pp.1746. Lee,K.Y.,Horodyski,F.M.,Valaitis,A.P.,Denlinger,D.L.,2002.Molecular characterizationoftheinsectimmuneproteinhemolinanditshighinduction duringembryonicdiapauseinthegypsymoth, Lymantria dispar .Insect BiochemistryandMolecularBiology32,14571467. Lee,R.E.,Elnitsky,M.A.,Rinehart,J.P.,Hayward,S.A.L.,Sandro,L.H., Denlinger,D.L.,2006.Rapidcoldhardeningincreasesthefreezingtoleranceof theAntarcticmidge Belgica antarctica .JournalofExperimentalBiology209, 399406. Li, A. Q., PopovaButler, A., Dean, D. H., and Denlinger, D. L., 2007. Proteomicsofthefleshflybrainrevealsanabundanceofupregulatedheatshock proteinsduringpupaldiapause.JournalofInsectPhysiology53,385391. LiY.P.,GongH.,ParkH.Y.,1999.Characterizationofrapidcoldhardening responselntheoverwinteringmaturelarvaeofpineneedlegallmidge, Thecodiplosis japonensis .CryoLetters20,383392.

173 Liang, P., MacRae, T. H., 1997. Molecular chaperones and the cytoskeleton. JournalofCellScience 110,14311440. Lin, J. J., Warren, K. S., Wamboldt, D. D., Wang, T., Lin, J. L., 1997. Tropomyosinisoformsinnonmusclecells.InternationalReviewofCytoloty170, 138. Liu,H.,Bretscher,A.,1989.Disruptionofthesingletropomyosingeneinyeast results in the disappearance of actin cables from the cytoskeleton. Cell 57, 233242. Liu,F.,Baggerman,G.,D'Hertog,W.,Verleyen,P.,Schoofs,L.,Wets,G.,2006. In Silico identification of new secretory peptide genes in Drosophila melanogaster . Molecular&CellularProteomics5, 510522. MacRae,T.H.,2003.Molecularchaperones,stressresistanceanddevelopment in Artemia franciscana . Seminars in Cell and Development Biology 14, 251258. Matsumura,F.,YamashiroMatsumura,S.,Lin,J.J.,1983.Isolationand characterizationoftropomyosincontainingmicrofilamentsfromculturedcells. JournalofBiologicalChemistry258,66366644. McDermott,P.J.,Morgan,H.E.,1989.Contractionmodulatesthecapacityfor protein synthesis during growth of neonatal heart cells in culture. Circulation Researh64,542553. McDonald,J.R.,BaleJ.S.andWaltersK.F.A.,1997.Rapidcoldhardeningin thewesternflowerthrips Frankliniella occidentalis .JournalofInsect Physiology 43,759766. Mhawech,P.,2005.1433proteinsanupdate.CellResearch 15,228236. Michaud,M.R.,Denlinger,D.L.,2004.Molecularmodalitiesofinsectcold survival:currentunderstandingandfuturetrends.In:AnimalsandEnvironments, Morris,S.,Vosloo,A,eds.Elsevier,Amsterdam.pp.3246. Michaud,M.R.,Denlinger,D.L.,2006.Oleicacidiselevatedincell membranesduringrapidcoldhardeningandpupaldiapauseinthefleshfly, Sarcophaga crassipalpis .JournalofInsectPhysiology52,10731082. Michaud,M.R.,Denlinger,D.L.,2007.Shiftsinthecarbohydrate,polyol,and

174 amino acid pools during rapid coldhardening and diapauseassociated coldhardening in flesh flies ( Sarcophaga crassipalpis ): a metabolomic comparison.JournalofComparativePhysiology BBiocheimicalSystemicand EnvironmentalPhysiology 177,753763. Michaud,M.R.,Benoit,J.B.,LopezMartinez,G.,Elnitsky,M.A.,Lee,R.E., andDenlinger,D.L.,2008.Metabolomicsrevealsuniqueandsharedmetabolic changes in response to heat shock, freezing, and desiccation in the Antarctic midge, Belgica antarctica. JournalofInsectPhysiology54,653663. Misener,S.R.,Chen,C.P.,Walker,V.K.,2001.Coldtoleranceandproline metabolicgeneexpressionin Drosophila melanogaster .JournalofInsect Physiology47,393400. Morris,G.J.,Coulson,G.,Meyer,M.A.,Mclellan,M.R.,Fuller,B.J.,Grout,B. W.W.,PritchardH.W.,andKnightS.C.,1983.Coldshockawidespresd cellularreaction.CryoLetter4,179192. Nakajima,Y.,Natori,S.,2000.Identificationandcharacterizationofananterior fatbodyproteininaninsect.JournalofBiochemistry 127,901908. Nakano,K.,Mabuchi,I.,2006.Actincappingproteinisinvolvedincontrolling organization of actin cytoskeleton together with ADF/cofilin, profilin and Factincrosslinkingproteinsinfissionyeast.GenestoCells11,893905. Nielsen,H.,Engelbrecht,J.,Brunak,S.,vonHeijne, G., 1997. Identification of prokaryoticandeukaryoticsignalpeptidesandpredictionoftheircleavagesites. ProteinEngineering10,16. O'Connell, P. A., Pinto, D. M., Chisholm, K. A., MacRae, T. H., 2006. Characterizationofthemicrotubuleproteomeduringpostdiapausedevelopment of Artemia franciscana . Biochimica Et Biophysica ActaProteins and Proteomics1764,920928. Ohtaki,T.,Takahashi,M.,1972.Inductionandterminationofpupaldiapausein relationtothechangeofecdysonetiterinthefleshfly, Sarcophaga peregrina . JapaneseJournalofMedicalSciencesandBiology25,369376. Overgaard, J., Sorensen, J.G., Petersen, S.O., Loeschcke, V., Holmstrup, M., 2005.Changesinmembranelipidcompositionfollowingrapidcoldhardening in Drosphila melanogaster .JournalofInsectPhysiology51,11731182.

175 Petersen, N. S., Young, P., Burton, V., 1990. Heatshock messengerRNA accumulation during recovery from cold shock in Drosophila melanogaster . InsectBiochemistry20,679684. Podrabsky,J.E.,Lopez,J.P.,Fan,T.W.M.,Higashi,R.,Somero,G.N.,2007. Extremeanoxiatoleranceinembryosoftheannualkillifish Austrofundulus limnaeus :insightsfromametabolomicsanalysis.JournalofExperimental Biology210,22532266. Powell,S.J.,Bale,J.S.,2004.Coldshockinjuryandecologicalcostsofrapid coldhardeninginthegrainaphid Sitobion avenae (Hemiptera:Aphididae) JournalofInsectPhysiology50,277284. Powell,S.J.,Bale,J.S.,2006.Effectoflongtermandrapidcoldhardeningon thecoldtorportemperatureofanaphid.PhysiologicalEntomology31,348352. Proctor,M.C.F.,Ligrone,R.,Duckett,J.G.,2007.Desiccationtoleranceinthe moss Polytrichum formosum : physiological and finestructural changes during desiccationandrecovery.AnnalsofBotany99,7593. Qi,M.,Puglisi,J.L.,Byron,K.L.,Ojamaa,K.,Klein,L.,Bers,D.M.,Samarel, A.M.,1997.Myosinheavychaingeneexpressionin neonatal rat heart cells: effectsof[Ca2+]iandcontractileactivity.AmericanJournalofPhysiology273, C394C403. Renaut, J., Hausman, J. F., Wisniewski, M. E., 2006. Proteomics and lowtemperature studies: bridging the gap between gene expression and metabolism.PhysiologiaPlantarum.126,97109. Ricci,C.,Melone,G.,Santo,N.,Caprioli.,M.,2003.Morphologicalresponseof abdelloidrotifertodesiccation.JournalofMorphology257,246253. Rinehart, J. P., Yocum, G. D., Denlinger, D. L., 2000. Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis . Insect Biochemistry andMolecularBiology30,515521. Rinehart,J.P.,Denlinger,D.L.,2000.Heatshockprotein90isdownregulated duringpupaldiapauseinthefleshfly, Sarcophaga crassipalpis ,butremains responsivetothermalstress.InsectMolecularBiology9,641645. Rinehart,J.P.,CikraIreland,R.A.,Flannagan,R.D.,Denlinger,D.L.,2001.

176 Expressionofecdysonereceptorisunaffectedbypupaldiapauseinthefleshfly, Sarcophaga crassipalpis ,whileitsdimerizationpartner,USP,isdownregulated. JournalofInsectPhysiology47,915.921. Rinehart,J.P.,Hayward,S.A.L.,Elnitsky,M.A.,Sandro,L.H,Lee,Jr.,R.E., Denlinger,D.L.,2006.Continuousupregulationofheatshockproteinsinlarvae, butnotadults,ofapolarinsect.ProceedingsoftheNationalAcademyofSciences oftheUnitedStatesofAmerica103,1422314227. Rinehart,J.P.,Li,A.,Yocum,G.D.,Robich,R.M.,Hayward,S.A.L., Denlinger,D.L.,2007. Upregulationofheatshockproteinsisessentailforcold survivalduringinsectdiapause.ProceedingsoftheNationalAcademyofSciences oftheUnitedStatesofAmerica104,1113011137. Robich,R.M.,Denlinger,D.L.,2005.Diapauseinthemosquito Culex pipiens evokesametabolicswitchfrombloodfeedingtosugargluttony.Proceedingsof theNationalAcademyofSciencesoftheUnitedStatesofAmerica102, 1591215917. Robich,R.M.,Rinehart,J.P.,Kitchen,L.J.,Denlinger,D.L.,2007. Diapausespecificgeneexpressioninthenorthernhousemosquito, Culex pipiens L.,identifiedbysuppressivesubtractivehybridization.JournalofInsect Physiology53,235–245. Rogers,E.M.,Hsiung,F.,Rodrigues,A.B.,Roses,K.,2005.Slingshotcofilin phosphatase localization is regulated by Receptor Tyrosine Kinases and regulatescytoskeletalstructureinthedevelopingDrosophilaeye.Mechanisms ofDevelopment122,11941205. Shreve,S.M.,Kelty,J.D.,LeeJr.,R.E.,2004.Preservationofreproductive behaviorsduringmodestcooling:rapidcoldhardeningfinetunesorganismal response.JournalofExperimentalBiology 207,17971802. Sinclair,B.J.,Chown,S.L.,2006.RapidcoldhardeninginaKaroobeetle, Afrinus sp.PhysiologicalEntomology31,98101. Sinclair, B. J., Gibbs, A. G., Roberts, S. P., 2007. Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster .InsectMolecularBiology16,435443. Sinensky,M.,1974.Homeoviscousadaptation—ahomeostaticprocessthat regulatestheviscosityofmembranelipidsin Escherichia coli.Proceedingsofthe

177 NationalAcademyofSciencesoftheUnitedStatesofAmerica71,522525. Sliwinska, M., Skorzewski, R., Moraczewska, J., 2008. Role of actin Cterminusinregulationofstriatedmusclethinfilament.BiophysicalJouranl 94, 13411347. StanewskyR.,KanekoM.,EmeryP.,BerettaB.,WagerSmith,K.,KayS.A., RosbashM.,HallJ.C.,1998.Thecry(b)mutationidentifiescryptochromeasa circadianphotoreceptorin Drosophila .Cell95,681692. Storey,K.B.,andStorey,J.M.,2004.Metabolicratedepressioninanimals: transcriptionalandtranslationalcontrols.BiologicalReviews79,207233. Sugg,P.,Edwards,J.S.,Baust,J.,1983.Phenologyandlifehistoryof Belgica antarctica ,anAntarcticmidge(Diptera:Chironomidae).EcologicalEntomology8, 105113.

Sun,Y.,MacRae,T.H.,2005.Smallheatshockproteins:molecularstructure andchaperonefunction.CellularandMolecularLifeSciences62,24602476. Talamillo, A., FernandesMoreno, M. A., MartinezAzorin, F., Bornstein, B., Ochoa,P.,Garesse,R.,2004.Expressionofthe Drosophila melanogaster ATP synthasealphasubunitgeneisregulatedbyatranscriptionalelementcontaining GAF and Adf1 binding sites. European Journal of Biochemistry 271, 40034013. Tammariello,S.P.,Denlinger,D.L.,1998.G0/G1cellcyclearrestinthebrainof Sarcophaga crassipalpis duringpupaldiapauseandtheexpressionpatternofthe cellcycleregulator,proliferatingcellnuclearantigen.InsectBiochemistryand MolecularBiology 28,8389. Tang,X.,Pikal,M.J.,2005.Theeffectsofstabilizersanddenaturantsonthecold denaturationtemperaturesofproteinsandimplicationsforfreezedrying. PharmaceuticalResearch(Dordrecht)22,11671175. Taraszka, J.A., Kurulugama, R., Sowell, R.A., Valentine, S.J., Koeniger, S.L., Arnold, R.J., Miller, D.F., Kaufman, T.C., Clemmer, D.E., 2005. Mapping the proteome of Drosophila melanogaster : analysis of embryos and adult heads by LCIMSMSmethods.JournalofProteomeResearch4,12231237. Tauber,M.J.,Tauber,C.A.,Masaki,S.,1986.Seasonal Adaptations of Insects (OxfordUniv.Press,NewYork).

178 Taylor, R.P., Benjamin, I.V., 2005. Small heat shock proteins: a new classification scheme in mammals. Journal of Molecular and Cellular Cardiology38,433444. Terblanche,J.S.,Sinclair,B.J.,Klok,C.J.,McFarlane,M.L.,Chown,S.L., 2005.Theeffectsofacclimationonthermaltolerance,desiccationresistanceand metabolicratein Chirodica chalcoptera (Coleoptera:Chrysomelidae).Journal ofInsectPhyiology51,10131023. Terblanche,J.S.,Marais,E.,Chown,S.L.,2007.Stagerelatedvariationin rapidcoldhardeningasatestoftheenvironmentalpredictabilityhypothesis. JournalofInsectPhyiology53,455462. Thompson,Jr.,G.A.,1983.Mechanismsofhomeoviscousadaptationin membranes.In:Cossins,A.R.,Sheterline,P.(Eds.),CellularAcclimatisationto EnvironmentalChange.CambridgeUniversityPress,Cambridge,pp.3354. Tomioka,K.,Agui,N.,Bollenbacher,W.E.,1995.Electricalpropertiesofthe cerebralprothoracicotropichormonecellsindiapausingandnondiapausing pupaeofthetobaccohornworm, Manduca sexta .ZoologicalScience12, 165173. Tsvetkova,N.M.,Quinn,P.J.,1994.Compatiblesolutesmodulatemembranelipid phasebehaviour.In:Cossins,A.R.(Ed.),TemperatureAdaptationofBiological Membranes.PortlandPress,London,pp.4962. Ursic,D.,Culbertson,M.R.,1991.Theyeasthomologtomouse Tcp-1 affects microtubulemediated processes. Molecular and Cellular Biology 11, 26292640. Ursic,D.,Sedbrook,J.C.,Himmel,K.L.andCulbertson,M.R.(1994)The essential yeast Tcp1 protein affects actin and microtubules. Mol Cell Biol 5: 1065–1080. Usher,M.B.,Edwards,M.,1984.AdipteranfromsouthoftheAntarcticCircle: Belgica antarctica (Chironomidae),withadescriptionofitslarva.Biological JournaloftheLinneanSociety 23,1931. Verleyen,P.,Baggerman,G.,D'Hertog,W.,Vierstraete,E.,Husson,S.J.,Schoofs, L.,2006.Identificationofnewimmuneinducedmoleculesinthehaemolymphof Drosophila melanogaster by2DnanoLCMS/MS.JournalofInsectPhysiology52,

179 379388. Walker,G.P.,Denlinger,D.L.,1980.Juvenilehormoneandmoultinghormone titresindiapauseandnondiapausedestinedfleshflies.JournalofInsect Physiology 26,661664. Wang, H., Malbon, C. C., 2003. Wnt Signaling, Ca2_, and Cyclic GMP: VisualizingFrizzledFunctions.Science300,15291530. WangX.H.,KangL.,2003.Rapidcoldhardeninginyounghoppersofthe migratorylocust Locusta migratoria L.(Orthoptera:Acridiidae).Cryoletters24, 331340. Wang,H.S.,Kang,L.,2005.Effectofcoolingratesonthecoldhardinessand cryoprotectantprofilesoflocusteggs.Cryobiology51,220229. Williams,J.A.,Sehgal,A.,2001.Molecularcomponentsofthecircadiansystem in Drosophila .AnnualReviewofPhysiology63,729755. Wójcik,C.,Yano,M.,DeMartino,G.N.,2004.RNAinterferenceof valosincontainingprotein(VCP/p97)revealsmultiplecellularroleslinkedto ubiquitin/proteasomedependentproteolysis.JournalofCellScience117, 281292. Worland,M.R.,2005.FactorsthatinfluencefreezinginthesubAntarctic springtail Tullbergia Antarctica .JournalofInsectPhyiology51,881894. Xu,W.H.,Denlinger,D.L.,2003.Molecularcharacterizationof prothoracicotropichormoneanddiapausehormoneinHeliothis virescens during diapause,andanewrolefordiapausehormone.InsectMolecularBiology12, 509516. Yocum,G.D.,Joplin,K.H.,Denlinger,D.L.,1998.Upregulationofa23kDa smallheatshockproteintranscriptduringpupaldiapauseinthefleshfly, Sarcophaga crassipalpis .InsectBiochemistryandMolecularBiology 28, 677682. Yocum,G.D.,2001.DifferentialexpressionoftwoHSP70transcriptsinresponse to cold shock, thermoperiod, and adult diapause in the Colorado potato beetle. JournalofInsectPhysiology47,11391145. Yoder,J.A.,Benoit,J.B.,Denlinger,D.L.,Rivers,D.B.,2006.Stressinduced

180 accumulationofglycerolinthefleshfly, Sarcophaga bullata :Evidence indicatingantidesiccantandcryoprotectantfunctionsofthispolyolandarole forthebrainincoordinatingtheresponse.JournalofInsectPhysiology52, 383392. Yu,R.,Ono,S.,2006.DualrolesoftropomyosinasanFactinstabilizeranda regulator of muscle contraction in Caenorhabditis elegans body wall muscle. CellMotilityandtheCytoskeleton63,659672. Zhang,T.Y.,Sun,J.S.,Zhang,L.B.,Shen,J.L.,Xu,W.H.,2004.Cloningand expressionofthecDNAencodingtheFXPRLfamilyofpeptidesanda functionalanalysisoftheireffectonbreakingpupaldiapausein Helicoverpa armigera .JournalofInsectPhysiology50,2533.

181