COMMON FUND FOR COMMODITIES

CFC Technical Paper No. 34

Alternative Uses of Sorghum and Pearl Millet in Asia

Proceedings of the Expert Meeting ICRISAT, Patancheru , 1-4 July 2003

ICRISAT Citation. CFC and ICRISAT. 2004. Alternative Uses of Sorghum and Pearl Millet in Asia: proceedings of the Expert Meeting, ICRISAT, Patancheru, Andhra Pradesh, India, 1-4 July 2003. CFC Technical Paper No. 34. P.O. Box 74656, 1070 BR Amsterdam, The Netherlands: Common Fund for Commodities; and Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 364 pp. ISBN 92-9066-471-1. Order code CPE 151.

Abstract Both sorghum and pearl millet are staple food crops for the poor people in the semi-arid tropics (SAT). However, during the last two decades both crops are becoming less important as staple foods in SAT countries. Demand for coarse cereals (such as sorghum and pearl millet) as human food is decreasing in many countries, due to increased production and availability of preferred cereals (such as rice and wheat) at subsidized prices. The poor farmers in rainfed SAT cannot grow other crops, and are economically impacted negatively, as they do not get reasonable price for their produce. However, possibilities of alternative uses of sorghum and pearl millet are creating new opportunities that have potential to increase market demand and income to farmers. An Expert Meeting on "Alternative Uses of Sorghum and Pearl Millet in Asia" was organized to: (i) synthesize the available information and assess the future outlook for increasing the demand and expanding market opportunities for alternative uses of sorghum and pearl millet with special reference to alternative novel food products, livestock feed, starch and brewing/distilling industries; (ii) assess existing and improved sorghum and pearl millet cultivars for suitability of alternative uses mentioned above; and (iii) identify potential players and opportunities for stimulating the institutional alliances among public, private, industry and N G O sectors to enhance alternative uses and market demand. Sixty participants from China, India, Indonesia, Pakistan, Thailand, USA and ICRISAT discussed the various aspects (mentioned above) to enhance the utilization of sorghum and pearl millet that would lead to sustained market demand for these crops. This, in turn, would ensure increased income and better livelihoods for the resource-poor sorghum and pearl millet farmers in the SAT countries. The proceedings document the 22 papers presented at the expert meeting to serve as a valuable reference book on alternative uses of sorghum and pearl millet.

COMMON FUND FOR COMMODITIES

Stadhouderskade 55,1072 AB Amsterdam, The Netherlands Postal Address: PO. Box 74656, 1070 BR Amsterdam, The Netherlands

Tel: (31 20)575 4949 • Fax:(3120)676 0231 Telex 12331 cfc nl • e-mail:Managing.Director@ common-fund.org Website:www.common-fund.org

Copyright © Common Fund for Commodities 2004 The contents of this report may not be reproduced, stored in a data retrieval system or transmitted in any form or by any means without prior written permission of the Common Fund for Commodities, except that reasonable extracts may be made for the purpose of comment or review provided the Common Fund for Commodities is acknowledged as the source.

ii Alternative Uses of Sorghum and Pearl Millet in Asia

Proceedings of the Expert Meeting

ICRISAT, Patancheru Andhra Pradesh, India 1-4 July 2003

Contents

F o r e w o r d v i i

A c k n o w l e d g m e n t s a n d D i s c l a i m e r i x

W e l c o m e A d d r e s s 1 WD Bar

O p e n i n g R e m a r k s b y t h e C F C 4 A Kuleshov

Message f r o m F A O 6

O b j e c t i v e s o f t h e E x p e r t M e e t i n g o n A l t e r n a t i v e Uses o f S o r g h u m a n d Pearl M i l l e t i n A s i a 1 0 CLL Gowda

I m p o r t a n c e a n d E c o n o m i c s o f S o r g h u m a n d Pearl M i l l e t P r o d u c t i o n i n A s i a 1 4 B Dayakar Rao, BS Rana, S Hyma Jyothi, K Karthikeyan, KA Bharath Kumar and N Seetharama

S o r g h u m a n d Pearl M i l l e t : H e a l t h Foods a n d I n d u s t r i a l P r o d u c t s i n D e v e l o p e d C o u n t r i e s 4 2 JA Dahlberg, JP Wilson and T Snyder

R e c e n t Technologies i n Pearl M i l l e t a n d S o r g h u m Processing a n d F o o d P r o d u c t D e v e l o p m e n t 6 0 S Sehgal, A Kawatra and G Singh

Dynamics of Utilization, Markets, Trade and Coalitions : S o r g h u m a n d M i l l e t s i n A s i a 9 3 P Parthasarathy Rao, AJ Hall and MGS Bantilan

iii Demand-driven Sorghum and Millet Utilization: Failures, Successes a n d Lessons L e a r n e d 113 LW Rooney

Effects of Mycotoxins on Cereals Grain Feed and Fodder Quality 128 F Waliyar, SV Reddy and RP Thakur

Cereal Grain Procurement, Storage and Handling Systems f o r C o m m e r c i a l U s e 1 4 1 S Sivakumar

S o r g h u m : A P o t e n t i a l S o u r c e o f R a w M a t e r i a l f o r A g r o - i n d ustries 146 RB Somani and JRN Taylor

Processing of Sorghum and Pearl Millet for Promoting Wi d e r U t i l i z a t i o n f o r F o o d 1 6 9 SZ Ali, MS Meera and NG Malleshi

Alternative Uses of Sorghum - Methods and Feasibility: I n d i a n Perspective 1 8 8 CV Ratnavathi, PK Biswas, M Pallavi, M Maheswari, BS Vijay Kumar and N Seetharama

Alternative Uses of Sorghum - Methods and Feasibility: C h i n e s e Perspective 2 0 1 Li Guiying, Lu Qingshan and Zou Jianqiu

Alternative Uses of Cereals - Methods and Feasibility: Pakistani Perspective 2 1 0 SR Chughtai, J Fateh, MH Munawwar, M Aslam and HN Malik

Alternative Uses of Cereals - Methods and Feasibility: T h a i l a n d Perspective 2 2 1 Prosit Jaisil

Strategy f o r C o m m e r c i a l i z a t i o n o f S o r g h u m 2 2 8 lR Nagaraj

The Commercialization of Sorghum and Pearl Millet in A f r i c a : Traditional and Alternative Foods, Products and Indust r i a l Uses i n Perspective 2 3 3 DD Rohrbach and AB Obilana

S o r g h u m a n d Pearl M i l l e t f o r P o u l t r y F e e d 2 6 4 A Rajashekher Reddy, VLK Prasad, CLN Rao and D Sudhakar iv P o t e n t i a l o f S o r g h u m f o r Feed I n d u s t r y i n T h a i l a n d a n d Indonesia 2 7 8 B Boonsue

P o t e n t i a l f o r S o r g h u m D e v e l o p m e n t i n I n d o n e s i a 2 8 6 M D a h l a n a n d S S i n g g i h

Forage P o t e n t i a l o f S o r g h u m a n d Pearl M i l l e t 2 9 2 G Harinarayana, NP Melkania, BVS Reddy, SK Gupta, K N R a i a n d P Sateesh K u m a r

U t i l i z a t i o n o f F e r m e n t e d M o l d y S o r g h u m a s C a t t l e Feed 3 2 2 R V Sudershan, S Vasanthi a n d R V B h a t

Cereals i n A l c o h o l I n d u s t r y : A n I n d u s t r y Perspective 3 2 6 A D M a n d k e a n d M u k e s h K a p o o r

A T r i a l w i t h S w e e t S o r g h u m 3 3 3 R V H u i l g o l , R a m k r i s h n a a n d G o v i n d M i s a l e

G r o u p P h o t o g r a p h 3 3 8

Participants 3 3 9

P r o g r a m 3 4 9

v

Foreword

I n a j o i n t u n d e r t a k i n g b y t h e C o m m o n F u n d f o r C o m m o d i t i e s , F A O a n d I C R I S A T , a n " E x p e r t M e e t i n g o n A l t e r n a t i v e U s e s o f S o r g h u m a n d Pearl M i l l e t i n A s i a " w a s h e l d i n P a t a n c h e r u , I n d i a , f r o m 1 t o 4 J u l y 2 0 0 3 , f i n a n c e d b y t h e C o m m o n F u n d f o r C o m m o d i t i e s .

T h e m e e t i n g b r o u g h t t o g e t h e r i n t e r n a t i o n a l e x p e r t s o n s o r g h u m a n d p e a r l m i l l e t p r o c e s s i n g , f o o d , f e e d , a l c o h o l a n d b r e w i n g a n d o t h e r i n d u s t r i a l a n d alternative uses. The experts analyzed current and fut ure demand and i d e n t i f i e d c o n s t r a i n t s t o v a r i o u s uses o f s o r g h u m a n d p e a r l m i l l e t , i n c l u d i n g h i g h q u a l i t y g r a i n a n d f o d d e r , f o o d a n d f e e d p r o c e s s i n g , a s w e l l a s n e w p r o d u c t d e v e l o p m e n t s a n d m a r k e t i n g .

A b o u t 5 0 r e p r e s e n t a t i v e s f r o m g o v e r n m e n t s , i n d u s t r y a n d research institutes f r o m C h i n a , I n d i a , I n d o n e s i a , P a k is t a n , t h e P h i l i p p i n e s , Thailand, the United K i n g d o m , t h e U n i t e d States o f A m e r i c a a n d i n t e r n a t i o n a l organizations attended the meeting, which concentrated on: (i) t h e i d e n t i f i c a t i o n o f d e v e l o p m e n t issues f o r s o r g h u m a n d p e a r l m i l l e t ; (ii) t h e p r i o r i t i e s f o r t h e d e v e l o p m e n t o f s o r g h u m a n d p earl millet; and (iii) t h e f o r m a t i o n o f p r o p o s a l s f o r i n t e r v e n t i o n s o n t h e basis o f t h e identified development priorities. T h e m e e t i n g n o t e d t h a t s o r g h u m a n d p e a r l m i l l e t o f f e r e d c onsiderable o p p o r t u n i t i e s i n t h e c o n t e x t o f p o v e r t y r e d u c t i o n a n d f o o d s e c u r i t y i n A s i a . However, sorghum and pearl millet were facing increas ing competition from other industrially produced grain crops from temperate regions, which could lead to marginalization of producers in semi-arid trop i c areas. T h e d e v e l o p m e n t o f a l t e r n a t i v e uses a n d n e w p r o d u c t s f r o m s o r g h u m a n d p e a r l m i l l e t w o u l d b e a m o n g t h e m o s t e f f e c t i v e m e c h a n i s m s t o m aintain and improve the economic base of farmers in the semi-arid t r o p i c s o f A s i a . T h e e x p e r t m e e t i n g i s a n e x a m p l e o f t h e C o m m o n F u n d ' s c o mmitment to assist c o m m o d i t y p r o d u c e r s i n m a r g i n a l areas i n d e v e l o p i n g c o u n t r i e s t o maintain their source of income and to successfully par ticipate in an increasingly integrated world economy. It is hoped th at the meeting and its proceedings will contribute to the sustainable develo pment of the semi-arid t r o p i c regions i n A s i a .

Dr. Rolf W.Boehnke Managing Director Common Fund for Commodities

vii

Acknowledgments and Disclaimer

T h e C o m m o n F u n d f o r C o m m o d i t i e s ( C F C ) a n d t h e I n t e r g o v e r n m e n t a l G r o u p o n G r a i n s o f t h e F o o d a n d A g r i c u l t u r e O r g a n i z a t i o n ( F A O ) w o u l d l i k e t o a c k n o w l e d g e t h e h o s p i t a l i t y o f t h e G o v e r n m e n t o f I n d i a a n d t h e assistance a n d logistical s u p p o r t o f t h e I n t e r n a t i o n a l C r o p s Research I n s t i t u t e f o r t h e Semi-Arid Tropics (ICRISAT) to the organization of this E x p e r t M e e t i n g .

Special t h a n k s g o t o all those w h o p r e p a r e d presentations and chaired sessions o f t h e E x p e r t M e e t i n g . T h e k i n d s u p p o r t p r o v i d e d b y E f f e m I n d i a Private L i m i t e d a n d some seed c o m p a n i e s based at H y d e r a b a d , I n d i a is also g r a t e f u l l y acknowledged. The Meeting benefited from the organizational support p r o v i d e d b y D r s C L L G o w d a , F a r i d W a l i y a r , B e l u m V S Reddy, K N Rai o f I C R I S A T a n d P S D r a v i d o f J K A g r i - G e n e t i c s ; a n d a c k n o w l e d g e s t h e t e c h n i c a l e d i t i n g b y D r s C L L G o w d a , B e l u m V S Reddy, K N Rai, P Parthasarathy Rao a n d F a r i d W a l i y a r .

Special t h a n k s g o t o M r P Rama K r i s h n a f o r his considerable assistance i n coordinating the review process between the authors and editors. Several individuals from ICRISAT's support services also contr ibuted to the success of t h e w o r k s h o p . M s Sheila V i j a y a k u m a r has p r o v i d e d invaluable assistance b y e d i t i n g t h e proceedings. Special t h a n k s go also to M / s P R a m a K r i s h n a , SR V e n k a t e s w a r l u , SB Stanley a n d Ms K Sai L a k s h m i f o r t h e i r valuable secretarial a n d organizational s u p p o r t .

T h e v i e w s a n d conclusions p r e s e n t e d i n t h i s r e p o r t are t h o s e o f t h e a u t h o r s a n d n o t necessarily those o f t h e C F C , t h e I n t e r g o v e r n m e n t a l G r o u p o n G r a i n s o f t h e F A O o r I C R I S A T

ix

Welcome Address WD Dar1

E x p l o r i n g a l t e r n a t i v e uses o f s o r g h u m a n d p e a r l m i l l e t i n Asia

Guests and colleagues from ICRISAT, good morning. Allo w m e t o welcome all of you to this "Expert Meeting on Alternati v e Uses o f S o r g h u m and Pearl M i l l e t i n A s i a " . T h i s w i l l g o o n f r o m today (1 July) u n t i l 4 J u l y 2 0 0 3 . First o f a l l , I w o u l d l i k e t o t h a n k t h e C o m m o n F u n d f o r C o m m o d i t i e s ( C F C ) f o r its f i n a n c i a l s u p p o r t a n d f o r j o i n tly organizing t h i s w o r k s h o p w i t h I C R I S A T . T h e same t h a n k s also g o t o t h e Intergovernmental Group on Grains, FAO, Rome, for its support. My special thanks are also due to Mr Andrey Kuleshov of C F C a n d M r M y l e s M i e l k e o f F A O f o r all t h e i r w h o l e - h e a r t e d s u p p o r t t o t h i s i n i t i a t i v e . I w o u l d also l i k e t o t h a n k D r G u y Spielberger, M a n a g i n g D i rector of Effem I n d i a f o r t h e i r f i n a n c i a l s u p p o r t . E f f e m I n d i a i s a n o t h e r n e w p a r t n e r o f ICRISAT, further broadening our partnership with the p rivate sector. T h i s i s j u s t one aspect o f I C R I S A T ' s t o t a l research p r o g r am, which is g u i d e d b y o u r n e w v i s i o n : " i m p r o v e d w e l l b e i n g o f t h e p o o r o f t h e s e m i - a r i d t r o p i c s t h r o u g h a g r i c u l t u r a l research f o r i m p a c t . " To attain this, we are c o m m i t t e d w i t h o u r m i s s i o n " t o h e l p t h e p o o r o f t h e semi-arid tropics through science with a human face and partnership-base d research and development to increase agricultural productivity and food security, r e d u c e p o v e r t y a n d p r o t e c t t h e e n v i r o n m e n t i n S A T p r o d u c tion systems." ICRISAT's vision is guided by the seven planks of th e n e w C G I A R vision and strategy. This is also anchored on our core competencies and thematic comparative advantages, strategic analysis of opportunities in the semi-arid tropics and potential impacts on the livelih o o d s o f t h e poor. I n o r d e r t o p u r s u e o u r v i s i o n a n d m i s s i o n , w e have m a p p e d o u t six global research themes which form the core of our research strategy. These are: 1 . H a r n e s s i n g b i o t e c h n o l o g y f o r t h e p o o r 2 . C r o p i m p r o v e m e n t , m a n a g e m e n t a n d u t i l i z a t i o n f o r f o o d security and h e a l t h

1. ICRISAT, Patancheru 502 324, Andhra Pradesh, India.

1 3 . W a t e r , soil a n d a g r o - d i v e r s i t y m a n a g e m e n t f o r e c o s y s t e m h e a l t h 4 . Sustainable seed s u p p l y systems f o r p r o d u c t i v i t y 5 . E n h a n c i n g c r o p - l i v e s t o c k p r o d u c t i v i t y a n d systems d i v e rsification 6 . S A T f u t u r e s a n d d e v e l o p m e n t p a t h w a y s A s y o u c a n see f r o m t h e f o r e g o i n g , w e are v e r y m u c h i n v o l v e d i n i m p r o v i n g crops a n d m a n a g i n g n a t u r a l resources. T h e G l o b a l T h e m e - 2 ( G T - 2 ) o n C r o p i m p r o v e m e n t , m a n a g e m e n t a n d u t i l i z a t i o n f o r f o o d s e c u r i t y a n d h e a l t h i s o n e o f t h e m a j o r t h e m e s d e a l i n g w i t h o u r m a n d a t e crops. These are sorghum, pearl millet, chickpea, pigeonpea a n d g r o u n d n u t . T h e s e crops are g r o w n b y t h e p o o r f a r m e r s i n t h e s e m i - a r i d t r o p i c s o f t h e w o r l d . G T - 2 has r e g i o n a l p r o j e c t s i n A s i a a n d A f r i c a . B u t f o r t h e p u r p o s e o f t h i s m e e t i n g w h i c h i s f o c u s e d o n A s i a , I w o u l d l i k e t o m e n t i o n t h a t t h i s t h e m e has t w o m a j o r p r o j e c t s i n t h i s r e g i o n : one d e a l i n g w i t h c r o p i m p r o v e m e n t a n d m a n a g e m e n t a n d t h e o t h e r d e a l i n g w i t h c r o p u t i l i z a t i o n including alternative uses a n d n o v e l foods. T h i s m e e t i n g w i l l focus m a i n l y o n a l t e r n a t i v e u t i l i z a t i o n strategies, w h i c h can o p e n u p access t o d i v e r s i f i e d h i g h q u a l i t y p r o d u c t s , n o v e l foods a n d f e e d f o r m u l a t i o n s a n d s h o u l d u l t i m a t e l y l o o k a t t h e m a r k e t issues. I a m h a p p y t o i n f o r m y o u t h a t since January 2 0 0 3 , I C R I S A T , along w i t h o t h e r partners has already i n i t i a t e d a D F I D - f u n d e d p r o j e c t . T h i s i s t i t l e d " E x p l o r i n g m a r k e t i n g o p p o r t u n i t i e s t h r o u g h a research i n d u s t r y a n d users c o a l i t i o n : S o r g h u m p o u l t r y f e e d " . W e h o p e t h a t t h i s p r o j e c t w i l l l e a d t o t h e e s t a b l i s h m e n t o f m a r k e t l i n k s b e t w e e n s o r g h u m f a r m e r a n d p o u l t r y f e e d m a n u f a c t u r e r . T h i s i s a p i l o t p r o j e c t t o e x p l o r e t h e a l t e r n a t i v e uses o f t h e c r o p l e a d i n g t o c o m m e r c i a l i z a t i o n . I a m v e r y h a p p y t o see a w i d e range o f p a r t i c i p a n t s f r o m a n u m b e r o f c o u n t r i e s f r o m A s i a , a n d also f r o m U S A ; a n d a range o f p a r t n e r s - research i n s t i t u t i o n s , p r i v a t e sector seed c o m p a n i e s , N G O s , f e e d manufacturers, alcohol and beverage industry, sugar industry, snack an d f o o d processors, market specialists, farmers' organizations and farmers. I a m t h e r e f o r e c o n f i d e n t t h a t t h e results o f t h i s m e e t i n g w i l l s i g n i f i c a n t l y b o o s t o u r i n i t i a t i v e s i n a l t e r n a t i v e uses o f s o r g h u m a n d pearl m i l l e t i n A s i a . B u t m o s t o f a l l , o u r w o r k s h o u l d r e a c h t h e m o s t m a r g i n a l i z e d , disadvantaged a n d h u n g r y . W e m u s t t h e r e f o r e t a i l o r o u r research e f f o r t s t o m e e t real h u m a n needs: reducing poverty, hunger, environmental degrada t i o n a n d social i n e q u i t y . T h i s i s t h e h e a r t o f d o i n g science w i t h a h u m a n face.

2 Y o u are g o i n g t o discuss a subject o f f u t u r i s t i c i m p o r t a n c e d u r i n g t h e n e x t 4 days. I C R I S A T r e m a i n s f u l l y c o m m i t t e d t o t h i s i n i t i a t i v e o f C F C a n d s u p p o r t e d b y m a n y o t h e r p a r t n e r s o n a l t e r n a t i v e uses o f s o r g h u m a n d p e a r l m i l l e t i n A s i a . I w i s h y o u a l l success i n t h i s w o r k s h o p a n d h o p e y o u w i l l enjoy y o u r b r i e f stay a t I C R I S A T . T h a n k y o u .

3 Opening Remarks by the CFC A Kuleshov1

D i s t i n g u i s h e d D i r e c t o r G e n e r a l , D r W i l l i a m D a r D i s t i n g u i s h e d r e p r e s e n t a t i v e o f t h e F A O D r G o w d a , G l o b a l T h e m e L e a d e r Colleagues, Ladies and Gentlemen I t i s a pleasure f o r m e t o greet y o u o n b e h a l f o f t h e M a n a g i n g D i r e c t o r o f t h e C o m m o n F u n d f o r C o m m o d i t i e s ( C F C ) , D r R o l f W B o e h n k e i n t h i s E x p e r t M e e t i n g o n u t i l i z a t i o n o f s o r g h u m a n d m i l l e t i n A s i a . F i rs t o f a l l , I w o u l d l i k e t o t h a n k I C R I S A T , w h o s e k i n d assistance t o t h i s p r o j e c t has m a d e t h i s m e e t i n g possible. I w o u l d also l i k e t o say h o w pleased I a m t o v i s i t t h e state o f A n d h r a Pradesh o n t h i s occasion. I w a n t t o express m y g r a t i t u d e t o t h e p e o p l e o f A n d h r a Pradesh f o r w e l c o m i n g t h e participants of this international meeting. Finally, I w o u l d l i k e t o t h a n k a l l i n t e r n a t i o n a l p a r t i c i p a n t s f o r t a k i n g t i m e t o j o i n t h e m e e t i n g . T h e c u r r e n t m e e t i n g stems f r o m t w o p r o j e c t proposals s u b m i t t e d t o t h e C F C some 4 years ago c o n c e r n i n g t h e r e a l i z a t i o n o f t h e d e v e l o p m e n t p o t e n t i a l o f s o r g h u m a n d m i l l e t i n t h e s e m i - a r i d t r o p i c s ( SAT). While the C F C r e c o g n i z e d t h e i m p o r t a n c e o f s o r g h u m a n d m i l l e t f o r p r o d u c e r s ' l i v e l i h o o d s a n d f o r general f o o d s e c u r i t y i n t h e SAT, t h e C onsultative C o m m i t t e e o f t h e C F C also n o t e d t h e c o m p l e x i t y o f t h e issues i n v o l v e d . I n particular, t h e m a n y p r o g r a m s c u r r e n t l y b e i n g i m p l e m e n t e d i n t h i s f i e l d m a k e p r i o r i t i z a t i o n essential i n o r d e r t o j u s t i f y c o n t i n u e d d o n o r s u p p o r t f o r t h i s u n d o u b t e d l y w o r t h y cause. Fi rs t a n d f o r e m o s t , I see t h e m e e t i n g ' s p u r p o s e as to i d e n t i f y a n d p r i o r i t i z e t h e p r o b l e m s o f s o r g h u m a n d m i l l e t d e v e l o p m e n t i n A s i a a n d t o w o r k o u t a c t i o n a b l e r e c o m m e n d a t i o n s addressed t o t h e b r o a d d e v e l o p m e n t c o m m u n i t y . A s y s t e m a t i c a p p r o a c h t o t h e subject w o u l d a v o i d d u p l i c a t i o n a n d w o u l d h e l p alleviate p o v e r t y a n d deal w i t h t h e p r o b l e m s o f n u t r i t i o n i n t h e s u b - r e g i o n . I n particular, I h o p e t h a t t h i s E x p e r t M e e t i n g w i l l : • I d e n t i f y and prioritize t h e d e v e l o p m e n t issues in respect of sorghum and m i l l e t • W o r k o u t a set o f i n t e r v e n t i o n s o n t h e basis o f t h e d e v e l o p m ent priorities

1. C o m m o n Fund for C o m m o d i t i e s , E O . Box 7 4 6 5 6 , 1 0 7 0 B R A m s t e r dam, The Netherlands.

4 • E x p l a i n t h e n a t u r e o f p r o b l e m s a n d d e v e l o p m e n t p r i o r i t i e s o f t h e t w o commodities • P r o v i d e such k n o w l e d g e to d o n o r agencies as a basis f o r joint action. This meeting follows a similar meeting in West Africa a n d i t i s f i n a n c e d a s a p r o j e c t u n d e r t h e C F C Fast T r a c k Project facility. T h i s i n itself is an indication of the attention given to the d evelopment of sorghum a n d m i l l e t i n t h e S A T T h e C o m m o n F u n d M e m b e r c o u n t r i e s w o u l d l i s t e n w i t h a t t e n t i o n t o t h e p r a c t i c a l r e c o m m e n d a t i o n s e m e r g i n g f r o m e x p e r t discussions here in the next few days, and the decisions m a d e a f t e r w a r d s w i l l d e p e n d o n t h e c l a r i t y and relevance of these recommendations to the o v e r a l l d e v e l o p m e n t o f t h e r e g i o n . Ladies and Gentlemen, I wish you a successful meeting .

5 Message from FAO

The Food and Agriculture Organization of the United Nat i o n s ( F A O ) i s g l a d t o k n o w t h a t t h e I n t e r n a t i o n a l C r o p s Research I n s t i t u te for the Semi- Arid Tropics (ICRISAT) and Common Fund for Commodities ( C F C ) are organizing a n E x p e r t M e e t i n g o n A l t e r n a t i v e Uses o f S o r g h u m a n d Pearl M i l l e t i n A s i a . H o w e v e r , t h e F A O regrets n o t b e i n g able to attend this i m p o r t a n t e v e n t b u t w a n t s t o express its sincere t h a n k s f o r t h e i n v i t a t i o n . B y a w a y o f c o n t r i b u t i n g t o t h e discussions, F A O i s p r o v i d i n g t h i s b r i e f statement, reflecting on developments in Asian pearl m i l l e t a n d s o r g h u m m a r k e t s a n d p r o v i d i n g its latest assessment o f t h e global cereal m a r k e t s i t u a t i o n . It may be important to draw attention to a collaborative s t u d y c o n d u c t e d b y F A O a n d I C R I S A T o n w o r l d s o r g h u m a n d m i l l e t m a r k e t s (Source: F A O a n d I C R I S A T 1 9 9 6 . T h e w o r l d s o r g h u m a n d m i l l e t economies: Facts, trends and outlook). Reflecting on th e m a i n findings o f t h a t study, i t c o u l d b e said t h a t l i t t l e has changed i n s orghum and millet economies, b o t h in global as w e l l as regional t e r m s , since the publication of t h e results i n 1996. S o r g h u m a n d m i l l e t r e m a i n i m p o r t a n t cereals i n Asia, a l t h o u g h w e l l b e h i n d r i c e , w h e a t , maize a n d barley. Nonetheless, nearly 8 0 % o f t h e s o r g h u m c r o p a n d over 8 5 % o f t h e m i l l e t c r o p are consumed as food in Asia. Food consumption of sorghum and millet has been d e c l i n i n g gradually over the past decade across most Asian countries. In In di a , t h e largest sorghum consumer, the per caput food consumptio n o f s o r g h u m has d e c l i n e d f r o m over 1 1 k g i n t h e 1990s t o a r o u n d 7 k g i n recent years; for m i l l e t , t h e per caput f o o d c o n s u m p t i o n has fallen f r o m a r ound 10 kg to less t h a n 9 k g . These declines are m o s t l y d r i v e n by a c o n t i n u ing decrease in production during the past two decades, of sorghum in particular. Total sorghum production in Asia has dropped by almost 50% since the mid- 1980s, t o a r o u n d 1 1 m i l l i o n t , d u e m o s t l y t o smaller o u t p u t s i n I n d i a a s w e l l a s i n C h i n a , t h e second largest s o r g h u m m a r k e t i n Asia. Although planted area has also d e c l i n e d in C h i n a , r e d u c t i o n in yields is t h e factor f o r smaller s o r g h u m p r o d u c t i o n i n b o t h countries. I n fact, a s i t was also stated in the j o i n t F A O a n d I C R I S A T study, s l o w p r o d u c t i v i t y g r o w t h a n d l o w e r p r o d u c e r prices have r e d u c e d t h e competitiveness o f m i l l e t a n d s o r g h u m , resulting in crop substitution in many areas.

6 Trade p a t t e r n s i n these cereals have also changed l i t t l e i n t h e past decade. I n t h e global c o n t e x t , t r a d e i n m i l l e t i s v e r y s m a l l a n d t h e A s i a n share i s a b o u t 2 0 % a n d generally stable. For s o r g h u m , o u t o f t h e e s t i m a t e d w o r l d t r a d e v o l u m e o f 7 - 8 m i l l i o n t , A s i a n c o u n t r i e s represent r o u g h l y 3 0 % b u t nearly all o f those i m p o r t s are m a d e b y one c o u n t r y - Japan. W i t h t r a d e largely n e u t r a l t o d o m e s t i c m a r k e t d e v e l o p m e n t s o f s o r g h u m a n d m i l l e t i n m o s t A s i a n countries, t h e d e c l i n i n g t r e n d i n t h e i r p r o d u c t i o n c o u l d r e f l e c t a c o n t i n u i n g c o n t r a c t i o n i n overall d e m a n d f o r these cereals. T h i s c o u l d b e a n i m p o r t a n t issue f o r discussions i n t h i s E x p e r t M e e t i n g . A t t h i s p o i n t , i t m a y b e o p p o r t u n e t o d r a w t h e G r o u p ' s a t t e n t i o n t o F A O ' s latest v i e w s o n t h e c u r r e n t m a r k e t s i t u a t i o n for cereals. A c c o r d i n g t o t h e i n f o r m a t i o n r e p o r t e d i n F o o d O u t l o o k , June 2 0 0 3 , global cereal output in 2 0 0 3 is e s t i m a t e d at 1 9 1 4 m i l l i o n t ( i n c l u d i n g rice in m i l l e d equivalent), u p some 4 % above f r o m t h e previous year's below-average level. W o r l d w h e a t p r o d u c t i o n i n 2 0 0 3 i s forecast a t 5 8 4 m i l l i o n t , u p 2 % above t h e previous year's p o o r c r o p , a l t h o u g h b e l o w t h e average of t h e past five years. A t t h e regional level, o u t p u t i s forecast t o r e b o u n d strongest i n N o r t h A m e r i c a , Oceania and i n N o r t h A f r i c a . I n Asia, o u t p u t c o u l d decline b y 2 % a n d t h i s largely due t o C h i n a , I n d i a a n d Pakistan, w h e r e d r y c o n d i t i o n s have caused area reductions. W o r l d coarse grains o u t p u t in 2 0 0 3 is seen to increase b y 6 % t o 9 3 4 m i l l i o n t . A s i n t h e case o f w h e a t , t h e year-on-year increase w o u l d b e largely d u e t o a n e x p e c t e d recovery i n p r o d u c t i o n i n N o r t h A m e r i c a and Oceania f o l l o w i n g 2 0 0 2 d r o u g h t - r e d u c e d crops. H o w e v e r , o u t p u t is also set to rise sharply in S o u t h A m e r i c a , where Brazil has gathered a b u m p e r maize c r o p . Elsewhere, in Asia, A f r i c a a n d C e n t r a l A m e r i c a t h e coarse grains o u t p u t is forecast to r e m a i n relatively unchanged i n 2 0 0 3 . W o r l d p r o d u c t i o n o f s o r g h u m i n 2 0 0 3 i s forecast a t 5 9 m i l l i o n t , u p 5 m i l l i o n t f r o m 2 0 0 2 w i t h m o s t o f t h e expansions i n t h e U n i t e d States. W o r l d p r o d u c t i o n o f m i l l e t i s forecast t o e x p a n d b y nearly 3 m i l l i o n t i n 2 0 0 3 t o nearly 2 7 m i l l i o n t , w i t h a large increase e x p e c t e d i n I n d i a . A s f o r rice p r o d u c t i o n , based o n t h e harvest results i n t h e s o u t h e r n h e m i s p h e r e s o far, a n d t h e early i n d i c a t i o n s o f p l a n t i n g i n t e n t i o n s i n t h e n o r t h e r n h e m i s p h e r e , o v e r a l l g l o b a l o u t p u t i n 2 0 0 3 i s forecast a t 3 9 6 m i l l i o n t ( 5 9 2 m i l l i o n t i n p a d d y t e r m s ) , 2 % higher t h a n t h e previous year's r e d u c e d l e v e l . H o w e v e r , t h i s f i g u r e i s s t i l l h i g h ly tentative, since the f i n a l o u t c o m e w i l l d e p e n d largely o n t h e t i m i n g , e x t e n t a n d d i s t r i b u t i o n o f t h e A s i a n m o n s o o n r a i n f a l l .

7 Preliminary indications for world cereal utilization i n 2 0 0 3 / 0 4 m a r k e t i n g season p o i n t t o a possible increase o f a r o u n d 1.3% t o 1 9 8 1 m i l l i o n t . C e r e a l f o o d c o n s u m p t i o n i s l i k e l y t o k e e p pace w i t h p o p u l a t i o n g r o w t h a n d cereal f e e d use i s e x p e c t e d t o s h o w a n increase o f a r o u n d 1.6%, m a i n l y o n e x p e c t a t i o n o f a s t r o n g p r o d u c t i o n r e b o u n d i n several developed countries. Early indications for global cereal stocks b y t h e e n d o f seasons i n 2 0 0 4 p o i n t t o a significant d r a w d o w n f o r t h e f o u r t h consecutive season. W o r l d cereal stocks a t t h e e n d o f c o u n t r i e s ' m a r k e t i n g seasons i n 2 0 0 4 are t e n t a t i v e l y p u t a t 3 9 9 m i l l i o n t , some 6 9 m i l l i o n t o r 1 5 % b e l o w t h e i r o p e n i n g levels. A l t h o u g h a bigger global p r o d u c t i o n is e x p e c t e d i n 2 0 0 3 , t h e p r o j e c t e d t o t a l cereal u t i l i z a t i o n i n 2 0 0 3 / 0 4 w o u l d s t i l l e x c e e d t h e a n t i c i p a t e d p r o d u c t i o n , t h u s necessitating a n o t h e r significant release o f stocks. A s i n t h e p r e v i o u s seasons, C h i n a w o u l d a c c o u n t f o r t h e b u l k o f t h e r e d u c t i o n i n w o r l d stocks. F A O ' s f i r s t forecast o f t h e global t r a d e i n cereals i n 2 0 0 3 / 0 4 m a r k e t i n g seasons stands a t 2 3 1 m i l l i o n t , w h i c h w o u l d represent a 3.5% c o n t r a c t i o n c o m p a r e d t o 2 0 0 2 / 0 3 . I t i s e x p e c t e d t h a t t r a d e i n nearly all m a j o r cereals w i l l decrease i n t h e n e w season w i t h the most significant d e c l i n e p r o j e c t e d f o r w h e a t . I n t e r n a t i o n a l w h e a t t r a d e i n 2 0 0 3 / 0 4 c o u l d f a l l t o a five-year l o w o f j u s t 100 m i l l i o n t , w i t h i m p o r ts down 6 million t f r o m t h e r e d u c e d 2 0 0 2 / 0 3 e s t i m a t e d l e v e l . M o s t o f t h e a n t i c i p a t e d d e c l i n e i s e x p e c t e d i n t h e E u r o p e a n U n i o n , w h e r e i m p o r t s are forecast t o b e c u t sharply f o l l o w i n g t h e r e c e n t i m p o s i t i o n o f a n i m p o r t q u o t a s y s t e m t h a t w o u l d p r e v e n t large i m p o r t s o f cheap w h e a t , especially f r o m U k r a i n e a n d t h e Russian F e d e r a t i o n . G l o b a l t r a d e i n coarse grains i n 2 0 0 3 / 0 4 c o u l d b e 105 m i l l i o n t , a b o u t 1.5 m i l l i o n t l o w e r t h a n i n 2 0 0 2 / 0 3 . A g a i n , m o s t o f t h e decrease w o u l d b e c o n c e n t r a t e d i n d e v e l o p e d c o u n t r i e s , w h e r e t o t a l i m p o r t s are forecast t o reach a five-year l o w o f a r o u n d 3 3 m i l l i o n t , d o w n 3 m i l l i o n t f r o m 2 0 0 2 / 0 3 , m a i n l y o n a c c o u n t o f smaller m a i z e purchases b y Canada. A m o n g t h e i n d i v i d u a l coarse grains, r e d u c e d m a i z e a n d barley t r a d e w o u l d a c c o u n t f o r m o s t o f t h e a n t i c i p a t e d d e c l i n e i n w o r l d t r a d e . W o r l d t r a d e i n s o r g h u m i s forecast t o r e m a i n stable a t a r o u n d 7 m i l l i o n t i n 2 0 0 3 / 0 4 w h i l e t r a d e i n m i l l e t c o u l d c o n t r a c t s l i g h t l y t o a b o u t 1 6 0 t h o u s a n d t . I n t e r n a t i o n a l t r a d e i n r i c e i n 2 0 0 3 i s forecast t o reach 2 7 . 1 m i l l i o n t , p o i n t i n g t o a c o n t r a c t i o n o f 1 m i l l i o n t f r o m t h e p r e v i o u s year. The year-to-year drop mainly reflects expectations of a sharp d e c l i n e i n e x p o r t s b y I n d i a a n d A u s t r a l i a , f o l l o w i n g p r o d u c t i o n setbacks i n these t w o

8 c o u n t r i e s , w h i l e o n t h e i m p o r t side, i t results f r o m smaller deliveries t o s o m e o f t h e m a j o r rice m a r k e t s , i n c l u d i n g t h e P h i l i p p i n e s , Indonesia, the I s l a m i c R e p u b l i c o f I r a n a n d I r a q . I n t e r n a t i o n a l prices o f m o s t cereals r e m a i n e d generally f i r m since A p r i l b u t t h e o u t l o o k f o r t h e c o m i n g m o n t h s i s m i x e d . For w h e a t , exportable availabilities among non-traditional export e r s are forecast t o d r o p . H o w e v e r , favorable c r o p prospects a m o n g m a j o r e x p o r ters, coupled w i t h t h e forecast c o n t r a c t i o n i n w o r l d i m p o r t d e m a n d i n 2 0 0 3 / 0 4 , c o u l d p u t prices u n d e r d o w n w a r d pressure i n t h e c o m i n g m o n t h s . For coarse grains, w i t h a n a n t i c i p a t e d sharp d e c l i n e i n m a i z e e x p o r t s a n d stocks i n C h i n a a n d m u c h smaller f e e d w h e a t supplies i n w o r l d m a r k e t s , t h e 2 0 0 3 / 0 4 g l o b a l s u p p l y a n d d e m a n d seems f a i r l y balanced, a n d i n t e r n a t i o n a l prices are e x p e c t e d t o r e m a i n close t o t h i s year's levels. Prospects for i n t e r n a t i o n a l rice prices over t h e c o m i n g m o n t h s p o i n t t o some increases, since supplies available f o r e x p o r t have c o m e u n d e r pressure i n t h e face o f a resurgence i n i n t e r n a t i o n a l d e m a n d , particularly b y B r a z i l a n d s o m e c o u n t r i e s i n A f r i c a . H o w e v e r , b e y o n d t h i s p e r i o d , t h e p r i c e o u t l o o k w i l l be i n f l u e n c e d b y t h e status o f p a d d y crops i n n o r t h e r n hemisphere countries. U n d e r t h e scenarios m e n t i o n e d above, t h e e x p e r t m e e t i n g o n a l t e r n a t i v e uses o f s o r g h u m a n d p e a r l m i l l e t i s e x t r e m e l y t o e x p l o r e w a y s t o enhance p r o d u c t i o n a n d u t i l i z a t i o n s o t h a t p o o r farmers i n t h e s e m i - a r i d t r o p i c s can b e n e f i t . F A O wishes all p a r t i c i p a n t s a successful m e e t i n g d u r i n g t h e n e x t f o u r days.

9 Objectives of the Expert Meeting on Alternative Uses of Sorghum and Pearl Millet in Asia CLL Gowda1

O n b e h a l f o f t h e O r g a n i z i n g C o m m i t t e e , 1 w o u l d l i k e t o w e l c o m e all t h e participants t o t h i s E x p e r t M e e t i n g o n A l t e r n a t i v e Uses o f S o r g h u m a n d Pearl M i l l e t i n Asia. A special w e l c o m e a n d thanks t o M r A n d r e y Kuleshov f r o m t h e C o m m o n F u n d for C o m m o d i t i e s ( C F C ) , a n d delegates f r o m C h i n a , I n d i a , Indonesia, Pakistan, T h a i l a n d a n d U S A ; a n d o f course m y colleagues f r o m I C R I S A T , i n c l u d i n g D r A B O b i l a n a w h o has t r a v e l e d f r o m N a i r o b i . Special thanks t o M r M y l e s M i e l k e , Secretary o f F A O ' s I n t e r g o v e r n m e n t a l G r o u p o n G r a i n s for his s u p p o r t t o h o l d i n g t h e m e e t i n g . Sorghum (Sorghum bicolor) and pearl millet (Pennisetum g l a u c u m ) are t h e t w o m o s t i m p o r t a n t cereal crops g r o w n largely u n d e r r a i n f e d c o n d i t i o n s i n t h e s e m i - a r i d t r o p i c s ( S A T ) o f Asia, A f r i c a a n d t h e A m e r i c a s . S o r g h u m i s g r o w n over 9 0 countries i n t h e w o r l d ; Asia accounts 2 9 % a n d A f r i c a 5 2 % o f 4 2 . 8 m i l l i o n h a o f t o t a l w o r l d area. I n Asia, I n d i a accounts 84%, China 8% a n d T h a i l a n d 1.4% o f t h e t o t a l 12.5 m i l l i o n h a area. T h e w o r l d e s t i m a t e d s o r g h u m p r o d u c t i o n is 59 m i l l i o n t, w i t h a p r o d u c t i v i t y of 1.4 t ha-1. India's t o t a l p r o d u c t i o n i s e s t i m a t e d t o b e 9.5 m i l l i o n t , 7 4 % o f Asia, f r o m a t o t a l o f 10.5 m i l l i o n ha g r o w n . P r o d u c t i v i t y in I n d i a is low, w i t h 1.0 t ha- 1 in rainy season and 0.8 t ha"1 in postrainy season. On t h e o t h e r hand, China's p r o d u c t i v i t y is e s t i m a t e d to be 2.8 t ha- 1 w i t h a t o t a l p r o d u c t i o n of 2.7 m i l l i o n t accounting 2 1 % o f Asia's p r o d u c t i o n . T h a i l a n d produces 0.17 m i l l i o n t ( 1 . 3 % of Asia) f r o m 0 . 1 1 ha w i t h a p r o d u c t i v i t y of 1.57 t ha-1. Pearl m i l l e t is a c r o p a d a p t e d to d r o u g h t - p r o n e , l o w f e r t i l i t y , saline a n d a c i d soils a n d i s r e p o r t e d t o b e c u l t i v a t e d i n 3 0 c o u n t r i e s o f A s i a a n d A f r i c a over 2 6 m i l l i o n ha, o f w h i c h 4 6 % i s i n A s i a ( 1 1 . 5 m ha), w i t h I n d i a a c c o u n t i n g f o r 4 3 % ( 1 0 . 7 m ha) o f t h e t o t a l w o r l d area. Its productivity ranges f r o m 0.6 to 0.7 t ha- 1 b o t h in A s i a a n d A f r i c a . I n d i a p r o d u c e s 9 million t with a productivity of 0.75 t ha-1, C h i n a 1.94 m i l l i o n t w i t h a p r o d u c t i v i t y o f 1.43 t ha-1. Thailand has potential to cultivate pearl millet i n m a r g i n a l soils.

1. I C R I S A T , Patancheru 5 0 2 3 2 4 , A n d h r a Pradesh, I n d i a .

10 I n m o s t o f t h e d e v e l o p i n g c o u n t r i e s o f these c o n t i n e n t s b o t h s o r g h u m a n d p e a r l m i l l e t c o n t r i b u t e s i g n i f i c a n t l y t o f o o d a n d n u t r i t i o n a l s e c u r i t y o f t h e r u r a l a n d u r b a n p o o r p e o p l e . C u r r e n t l y , I n d i a , C h i n a a n d T h a i l a n d i n A s i a are p l a y i n g a m a j o r r o l e i n t h e d e v e l o p m e n t o f s o r g h u m a n d p e a rl m i l l e t c u l t i v a r s i n p u b l i c a n d p r i v a t e sectors i n p a r t n e r s h i p w i t h I C R I S A T . T h e a d o p t i o n o f i m p r o v e d a n d h i g h - y i e l d i n g cultivars i s variable b e t w e e n crops a n d c o u n t r i e s especially i n I n d i a h a v i n g > 6 5 % o f t h e area i n s o r g h u m , a n d 8 0 % i n p e a r l m i l l e t . H o w e v e r , farmers d o n o t get r e m u n e r a t i v e prices. O n e o f t h e reasons f o r t h e l o w farm-gate prices i s t h e several layers o f traders b e t w e e n f a r m e r s a n d c o n s u m e r s . I n t h e rainy season, s o r g h u m is a f f e c t e d by g r a i n m o l d s , a disease caused by a c o m p l e x of f u n g i , m o s t l y i n c l u d i n g Fusarium spp a n d Curvularia spp, which p r o d u c e f u m o n i s i n , a m y c o t o x i n t h a t i s r e p o r t e d t o b e carcinogenic a n d immunosuppressive agent. B o t h s o r g h u m a n d p e a r l m i l l e t w e r e staple cereals f o r t h e p o o r p e o p l e i n t h e S A T w h e n I C R I S A T was established 3 1 years ago. H o w e v e r , b o t h crops are b e c o m i n g less i m p o r t a n t i n t h e e c on om ie s o f t h e S A T c o u n t r i e s , a n d t h e d e m a n d f o r these grains as h u m a n f o o d has been d e c l i n i n g i n t h e past 3 0 years (Source: Ryan a n d Spencer 2 0 0 1 . F u t u r e challenges a n d o p p o r t u n i t i e s f o r a g r i c u l t u r a l R & D i n t h e s e m i - a r i d t r o p i c s ) . T h i s i s m o r e e v i d e n t i n A s i a (especially i n S o u t h A sia), where t h e i r share o f f o o d budgets o f p o o r i n S A T i n d e x f e l l f r o m 1 7 % i n early 1970s t o a r o u n d 6 % i n early 1990s. T h e i m p l i c a t i o n i s t h a t p r o d u c t i v i t y i m p r o v e m e n t o f these cereals has also l e d to p r i c e r e d u c t i o n . T h i s is m a d e w o r s e by t h e g o v e r n m e n t policies f a v o r i n g rice (Oryza sativa) a n d w h e a t ( T r i t i c u m aestivum), at t h e cost of s o r g h u m a n d pearl m i l l e t . For e x a m p l e , i n I n d i a t h e subsidized rice a n d w h e a t available u n d e r t h e P u b l i c D i s t r i b u t i o n S y s t e m , a t prices l o w e r t h a n t h e p r i c e o f s o r g h u m a n d pearl m i l l e t have adversely a f f e c t e d t h e m a r k e t p r i c e o f t h e latter. Naturally, the p o o r farmers o f r a i n f e d S A T w h o c a n n o t g r o w crops o t h e r t h a n s o r g h u m a n d p e a r l m i l l e t are e c o n o m i c a l l y i m p a c t e d negatively, as t h e y c a n n o t get reasonable p r i c e f o r t h e p r o d u c e a n d t h e r e b y are f o r c e d i n t o t h e vicious cycle o f p o v e r t y a n d indebtedness. H o w e v e r , t h e r e i s h o p e . Recent g r o w t h a n d f u t u r e p r o j e c t i o n s o f aggregate d e m a n d p a t t e r n s suggest t h a t t h e r e w i l l be substantial increase i n t h e d e m a n d f o r a n i m a l p r o d u c t s ( m e a t , m i l k a n d eggs) i n d e v e l o p i n g c o u n t r i e s b y 2 0 2 0 (Source: Ryan a n d Spencer 2 0 0 1 . F u t u r e challenges and

11 opportunities for agricultural R & D in the semi-arid tro pics). In addition to t h i s , t h e r e are possibilities o f o t h e r a l t e r n a t i v e uses o f s o r g h u m a n d p e a r l m i l l e t such as n o v e l foods, processed foods a n d i n d u s t r i a l uses - starch, beverages a n d e t h a n o l . Sorghum and pearl millet improvement research at ICRI S A T m a k e s great success stories, especially in the context of In dia, which is the largest producer of both crops in Asia. More than 50 hybrids of sorghum and m o r e t h a n 7 0 h y b r i d s o f p e a r l m i l l e t are g r o w n o n 6 0 - 6 5 % of the total area u n d e r these t w o crops i n I n d i a . A b o u t 7 0 - 8 0 % o f these h y b r i d s are based on ICRISAT-bred male-sterile lines, or on proprietary parental lines d e v e l o p e d f r o m I C R I S A T - b r e d g e r m p l a s m . V e r y l i t t l e o f t h e above w o u l d have o c c u r r e d h a d i t n o t b e e n f o r productive public-private sector partnerships with diverse sectors in both crops. ICRISAT firmly believes in the power of partnerships, which brings together their complementary skills and resources to generate the synergy required to enhance the pace of technology development a n d dissemination. Commercialization of alternative food, feed and ind ustrial products i s one o f t h e w a y s t o increase m a r k e t d e m a n d f o r s o r g h u m a n d pearl millet. This, however, would require innovative instit utional alliances. I am convinced that this meeting will be able to identify commercializable f o o d , f e e d a n d i n d i r e c t p r o d u c t s , i d e n t i f y research a n d development priorities, and also identify potential partners to dev elop innovative institutional alliances. There is urgent need to develop and strengthen new linkages a n d relationships between commodity producers (the small- holder farmers), commodity-based science, and commodity markets, inclu ding industrial users. Innovations, both technical and institutional, need to be promoted through a broader and more iterative set of relationships t h a n t h o s e embodied in conventional research-extension-farmer mod e l o f agricultural innovation. Giving context and urgency t o t h i s i s t h e increasing evidence t h a t lack of access to m a r k e t s is a greater constraint to the diversified livelihood strategy of contemporary po or rural households, t h a n t h e lack o f access t o f o o d p e r se. I n t h e case o f coarse cereals, private sector industrial utilization has created market oppor tunities and there is potential for expansion both in terms of scope and volu m e . H o w e v e r , t h e institutional arrangements (rules and norms) and relationships

12 (partnerships and alliances) linking science, produce r s a n d m a r k e t s n e e d t o operate i n a m u c h m o r e effective fashion t h a n t h e y d o n o w . A m a j o r i t y o f t h e papers a t t h i s m e e t i n g discuss t h e various aspects o f these e x i s t i n g a n d p o t e n t i a l a l t e r n a t i v e uses o f t h e crops. T h e r e f o r e , t h e three major objectives of the meeting are to: • Synthesize the available information and assess the f uture outlook for increasing the demand and expanding market opportunit i e s for alternative uses of sorghum and pearl millet with special reference to alternative novel food products, livestock feed, starch and brewing/ distilling industries. • Assess e x i s t i n g a n d i m p r o v e d s o r g h u m a n d p e a rl m i l l e t cultivars for suitability of alternative uses mentioned above. • I d e n t i f y p o t e n t i a l players a n d o p p o r t u n i t i e s f o r s t i m u l a t i n g t h e institutional alliances among public, private, industr y a n d N G O sectors to enhance alternative uses (including industrial utili z a t i o n ) a n d m a r k e t d e m a n d . I sincerely h o p e t h a t t o g e t h e r w e can m a p o u t t h e strategy f o r diversified alternative uses and nurture the necessary institutional alliances. I w i s h y o u all t h e best f o r a successful m e e t i n g .

13 Importance and Economics of Sorghum and Pearl Millet Production in Asia B Dayakar Rao, BS Rana, S Hyma Jyothi, K Karthikeyan, KA Bharath Kumar and N Seetharama1

Abstract

The relative importance of sorghum and pearl millet as food grains in Asia is decreasing in terms of cultivated area and production. The same trend is in India except that the productivity of pearl millet is increasing. Generally the above changes can be explained in terms of increasing incomes, change in consumers' preferences and tastes, subsidized supply of wheat and rice through Public Distribution System (PDS), etc. Despite the decline in their consumption, food use still accounts for major share, especially of pearl millet. Sorghum is passing a transition stage from mere food and fodder crop to a valued industrial raw material such as feed (in India), sweet sorghum alcohol (in China and Thailand) and forage (in Pakistan). Cotton, groundnut, pulses and castor are the major crops replacing sorghum in many areas. Soybean is the competing crop, especially in central and western India replacing sorghum. Cotton, sunflower, maize, groundnut, pulses and soybean are replacing pearl millet. Some factors responsible for replacement of sorghum and pearl millet by these competing crops are low productivity and profitability of sorghum and pearl millet vis-a-vis competing crops, increased irrigation availability and price support to other cash crops. The net returns from irrigated sorghum are up to five times that of dryland sorghum in India, making a pathway for its future commercialization. The investment in R&D and outcome of research from private sector is growing at a faster rate than the public sector. Industrial uses such as animal feed, alcohol production (grain and sweet sorghum), jaggery and syrup (sweet sorghum), processed foods, malt/brewing and red sorghum exports will be the driving forces for commercialization of sorghum and pearl millet. Productivity enhancement (maximization of yields) is the alternative in the absence of prospects of any increase in real prices of output. This will result in lowering per unit cost of production. Thus, yield improvements and value-addition through industrial utilization may enhance the profitability and alleviate rural poverty. Marketing, contract farming and farmer-industry linkages are the niches for commercialization of these crops.

1. National Research Centre for Sorghum, Rajendranagar, Hyderabad 500 030, A n d h r a Pradesh, India.

14 S o r g h u m (Sorghum bicolor) is cultivated over 42 million ha in the semi-arid regions of Asia, Americas, Australia and Africa. World production of sorghum trails b e h i n d rice (Oryza sativa), maize (Zea mays), w h e a t (Triticum aestivum) and barley (Hordeum vulgare). The developing countries in Asia and Africa contribute 90% of total sorghum area and 70% of total sorghum p r o d u c t i o n . A s i a alone c o n t r i b u t e s 3 0 % o f w o r l d s o r g h u m p roduction. The s o r g h u m area to t o t a l cereals area is a meager 3.69%; h o w e v e r , it is t h e f i f t h i m p o r t a n t cereal i n A s i a . S o r g h u m p r o d u c t i o n i n A s i a i s concentrated mainly i n I n d i a a n d C h i n a , w h i c h t o g e t h e r c o n t r i b u t e 8 6 % o f Asia's t o t a l s o r g h u m production. Other Asian countries like Myanmar, Thailan d , Pakistan a n d Y e m e n have r e l a t i v e l y a smaller share. O f t h e t w o m a j o r p r o d u c e r s o f Asia, I n d i a alone c o n t r i b u t e s 6 7 % o f Asia's t o t a l s o r g h u m p r o d u c t i o n . A r e a a n d production of sorghum in India, China and Asia exhibit a downward trend d u r i n g t h e last decade (Figs. 1 a n d 2 ) . S o r g h u m is generally grown for food and f o d d e r b y t h e resource-poor farmers i n t h e d r y l a n d regions o f t h e s e m i - a r i d tropics offering food and fodder security to them. The relative importance of s o r g h u m area to t h e t o t a l cereal area is s h o w n in Table 1. The area under s o r g h u m as a percentage of t o t a l area u n d e r cereals is r e l a t i v e l y l o w , ie, about 1 0 % i n I n d i a a n d 1 % i n C h i n a . B u t i n c o u n t r i e s l i k e Y e m e n and Saudi Arabia, sorghum area contributes significantly to the extent o f 5 8 % a n d 2 6 % , r e s p e c t i v e l y t o t h e t o t a l cereal area.

18. China India Asia 16.

14.

12.

10.

8.

6.

4 .

2.

0. 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Figure 1. Recent trends in sorghum area in India, China and Asia.

15 20 • China India Asia 18

16

14

12

10

8

6

4 2

0 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Figure 2. Recent trends in sorghum production in India, China and Asia.

Pearl millet (Pennisetum glaucum) accounts for almost half of the global millet production and is the most important millet species b o t h i n t e r m s o f c r o p p e d area a n d its r o l e i n p r o v i d i n g f o o d security i n a r i d regions of Africa a n d Asia. I t i s h i g h l y resistant t o d r o u g h t a n d h i g h t e m p e r atures, adaptable to p o o r soils, l o w v u l n e r a b i l i t y t o diseases a n d insect pests a n d has g o o d n u t r i t i v e values, i n c l u d i n g a s u p e r i o r p r o t e i n q u a l i t y a n d highest fat content (6%) among cereals. Pearl millet grows well where other crops generally fail

Table 1. Relative proportion of s o r g h u m area to total cereals area in A s i a in t r i e n n i u m e n d i n g 2 0 0 2 . Total cereals area Sorghum area Sorghum area to total Country (million ha) (million ha) cereals area (%) China 83.01 0.81 0.97 India 97.95 Korea (DPR) 1.24 0.01 0.80 Pakistan 12.29 0.37 3.00 Saudi Arabia 0.61 0.16 26.47 Thailand 11.25 0.11 0.98 Yemen 0.65 0.37 58.03 Asia 314.16 11.62 3.69 Source: FAO (2003).

16 c o m p l e t e l y . I n Asia, i t i s m a i n l y g r o w n i n I n d i a , Pakistan a n d Y e m e n . I n t h e N e a r East A s i a n c o u n t r i e s t h e area and p r o d u c t i o n o f pearl m i l l e t has increased d u r i n g t h e past decade (Figs. 3 a n d 4 ) . I n d i a c o u l d be p r o b a b l y t h e single country which is witnessing the largest decrease in area u n d e r pearl m i l l e t . I n t h i s paper w e discuss t h e I n d i a n c o n t e x t only, d u e t o t h e n o n - availability o f separate statistics o n pearl m i l l e t i n o t h e r A s i a n countries, w h i c h i s actually p o o l e d u n d e r broader g r o u p o f m i l l e t s . Pearl m i l l e t i n I n d i a f o r m s 6 7 % o f Asia's t o t a l m i l l e t area c o n t r i b u t i n g 5 7 % o f t o t a l millets production. T h u s , any change in India's production perspective w i l l have a m a j o r i m p a c t o n A s i a n m i l l e t scenario.

25 TE 1990 TE 1994 TE 2002 20

15

10

5

0 India China Asia Near East Far East

Figure 3. Changes in millet area in Asia.

18 TE 1990 TE 1994 TE 2002 16 14 12 10 8 6 4 2 0 India China Asia Near East Far East

Figure 4. Changes in millet production in Asia.

17 Trends in production

Changes in area, production and productivity of sorghum

S o r g h u m i s c u r r e n t l y g r o w n o n 11.2 m i l l i o n h a i n Asia. T h e area has d e c l i n e d i n all t h e A s i a n c o u n t r i e s , e x c e p t Saudi A r a b i a . I n I n d i a alone, about 4.83 m i l l i o n ha s o r g h u m area was r e p l a c e d by o t h e r crops. A l t h o u g h I n d i a is t h e m a j o r s o r g h u m - g r o w i n g c o u n t r y i n Asia, t h e change i n s o r g h u m area b e t w e e n t r i e n n i u m e n d i n g ( T E ) 1 9 9 0 a n d T E 2 0 0 2 i s a b o u t - 3 3 % (Table 2 a n d Fig. 5 ) . S o m e o f t h e plausible reasons for t h i s are: c u l t i v a t i o n o n m a r g i n a l lands, l o w i n p u t use, adverse a g r o c l i m a t i c c o n d i t i o n s and u n f a v o r a b l e g o v e r n m e n t policies. I n all o t h e r A s i a n countries, a l t h o u g h t h e percentage change i n area under sorghum is significant, the absolute area under s o r g h u m is l o w . As a consequence o f r e d u c t i o n i n l a n d area, t h e t o t a l p r o d u c t i o n also d r o p p e d i n a l m o s t all A s i a n c o u n t r i e s e x c e p t Saudi A r a b i a . S o r g h u m p r o d u c t i o n i n Asia d e c l i n e d steeply b y 5.22% per a n n u m b e t w e e n 1 9 9 4 a n d 2 0 0 2 (Fig. 5 ) . T h o u g h s o r g h u m p r o d u c t i o n declined, India ranks f i r s t i n area a n d p r o d u c t i o n , b u t ranks seventh i n p r o d u c t i v i t y w h i c h i s v e r y l o w w h e n c o m p a r e d w i t h o t h e r A s i a n c o u n t r i e s (Fig. 6 ) . I n I n d i a , t h e p r o d u c t i v i t y o f s o r g h u m differs b e t w e e n t h e regions w i t h v a r y i n g r a i n f a l l a n d soil t y p e a n d also b e t w e e n seasons. For e x a m p l e , t h e r a i n y season s o r g h u m yields an average of 2 - 2 . 2 5 t ha- 1 in areas w i t h favorable soil a n d r a i n f a l l , w h i l e t h e p o s t r a i n y season s o r g h u m g r o w n u n d e r unfavorable c o n d i t i o n s yields

Area Production 20 20

15 15

10 10

5 5

0 0 TE 1990 TE 2002 TE 1990 TE 2002

China India Asia

Figure 5. Changes in area and production of sorghum in India, China and Asia. (Note: Data are for TE 1990 for China and India and TE 1994 for Asia.)

18 19 3500 TE 1990 TE 1994 TE 2002 3000

2500

2000

1500

1000

500

0 China India Asia

Figure 6. Changes in sorghum productivity in India, China and Asia. a r o u n d 5 0 0 kg ha-1; thus t h e t o t a l p r o d u c t i o n and p r o d u c t i v i t y are considerably low. I t appears t h a t t h e higher p r o d u c t i v i t y achieved t i l l t h e 1990s m i g h t have plateaued; hence this staggered p r o d u c t i v i t y was unable to tide over the steep decline in s o r g h u m area to o t h e r c o m p e t i n g crops and r e s u l t e d in negative g r o w t h rate in p r o d u c t i o n . T h i s was also t r u e in o t h e r major sorghum-growing countries in Asia. T h u s , in In d i a , t h e l o w average p r o d u c t i v i t y levels are m a i n l y d u e t o l o w y i e l d levels o f postrainy season s o r g h u m w h o s e p r o p o r t i o n i n t h e t o t a l area is on t h e increase. Latest data revealed t h a t postrainy season s o r g h u m c o n t r i b u t e s 5 8 % o f t o t a l s o r g h u m area i n t h e country. I n C h i n a , t h e d e c l i n e i n p r o d u c t i o n can b e e x p l a i n e d i n t e r m s o f sharp d e c l i n e b o t h i n area [ c u m u l a t i y e g r o w t h rate ( C G R ) - 5 . 6 % ] a n d y i e l d ( C G R - 7 . 5 % ) , w h i l e i n I n d i a i t i s m a i n l y d u e t o d e c l i n e i n area ( C G R - 3 . 2 % ) rather t h a n t h e y i e l d ( C G R - 0 . 0 6 % ) . T h e highest y i e l d levels i n A s i a are r e c o r d e d i n C h i n a . W i t h c u r r e n t y i e l d levels over 3 t ha- 1 it appears t h a t t h e r e are no f u r t h e r p r o d u c t i v i t y i m p r o v e m e n t s possible i n s o r g h u m i n C h i n a , t h u s e r o d i n g its c o m p e t i t i v e n e s s . T h a i l a n d and Saudi A r a b i a r e c o r d e d second and t h i r d higher y i e l d levels i n A s i a . I n T h a i l a n d , t h e g r o w t h rate i n y i e l d i s t h e highest ( 2 . 6 % ) ; however, t h i s f a c t o r c o u l d n o t k e e p s o r g h u m c o m p e t i t i v e d u e t o shift i n area t o o t h e r crops. Saudi A r a b i a i s t h e o n l y m a j o r s o r g h u m - g r o w i n g c o u n t r y i n Asia, w h e r e s o r g h u m r e m a i n e d c o m p e t i t i v e w i t h positive area g r o w t h o f 2 . 7 % per a n n u m i n spite o f l o w p r o d u c t i v i t y g r o w t h rate o f 0 . 6 % per a n n u m . C o n s e q u e n t l y , p r o d u c t i o n g r o w t h rate r e m a i n e d p o s i t i v e a n d r e l a t i v e l y h i g h ( 3 . 8 % ) .

20 Crop distribution and utilization of sorghum in Asia

Present vs future O v e r a l l i n A s i a s o r g h u m i s p r i m a r i l y used f o r f o o d c o m p r i s i n g 66% o f t o t a l u t i l i z a t i o n , w h i l e t h e rest i s u t i l i z e d f o r feed a n d i n d u s t r i a l uses. I n I n d i a , i t i s m o s t l y used f o r f o o d , w h i l e i n C h i n a i t i s u s e d f o r f o o d , f e e d a n d b r e w i n g . T h e d e c l i n i n g t r e n d i n u t i l i z a t i o n can b e a t t r i b u t e d t o t w o m a j o r factors: (1) t h e o v e r a l l r e d u c t i o n i n s o r g h u m p r o d u c t i o n d u r i n g t h e reference p e r i o d ; a n d ( 2 ) t h e p o p u l a t i o n g r o w t h rate surpassed t h e g r o w t h i n s o r g h um production (Asia c o m p r i s i n g C h i n a a n d I n d i a , t h e m o s t p o p u l o u s c o u n t r i e s ) . T h e per capita u t i l i z a t i o n o f s o r g h u m decreased m a i n l y d u e t o t h e r e d u c t i o n in f o o d use, a n d factors such as changing c o n s u m e r tastes and preferences, rapid urbanization, social status attache d t o w h e a t a n d rice c o n s u m p t i o n a n d u n f a v o r a b l e g o v e r n m e n t policies t o w a r d s s o r g h u m c u l t i v a t i o n . Previous studies have s h o w n t h a t t h e increased f e e d usage o f coarse grains offsets t h e decrease i n f o o d use o f these crops ( S w a m i n a t h a n a n d Sinha 1 9 8 6 ) . T h e b r e a k u p o f u t i l i z a t i o n o f s o r g h u m f o r various e n d uses i n s o m e A s i a n c o u n t r i e s shows n o t a b l e t r e n d s (Table 3 ) . A l l t h e c o u n t r i e s i n A s i a r e g i s t e r e d a negative g r o w t h i n f o o d , f e e d a n d o t h e r uses d u r i n g t h e r e f e r e n c e p e r i o d . S o r g h u m g r a i n i s p r i m a r i l y u s e d a s f o o d a n d f e e d w h i l e t h e stalk is u s e d as forage; t h e stalk of s w e e t s o r g h u m is u s e d f o r a l c o h o l p r o d u c t i o n (Table 4 ) .

China I n C h i n a , d e c l i n i n g f o o d use o f s o r g h u m a t a h i g h e r r a t e ( - 6 . 5 % ) t h a n t h e f e e d use ( - 0 . 2 % ) r e v e a l e d i t s i m p o r t a n c e f o r l i v e s t o c k f e e d . I t i s m a i n l y cultivated in Liaoning, Shanxi, Julin, Heilongiang, H e b e i a n d S i c h u a n p r o v i n c e s . T h e r a p i d e c o n o m i c d e v e l o p m e n t w i t n e s s e d i n C h i n a also c h a n g e d t h e r o l e o f s o r g h u m f r o m f o o d a n d f e e d c r o p t o a h i g h value i n d u s t r i a l r a w m a t e r i a l f o r b r e w i n g i n d u s t r y . T h e change o f r o l e m a y b e d u e t o i m p r o v e m e n t i n t h e a g r i c u l t u r a l p r o d u c t i o n c o n d i t i o n s , s h i f t i n c o n s u m e r preferences f r o m s o r g h u m t o r i c e a n d w h e a t , increase i n h o u s e h o l d i n c o m e o v e r t h e p e r i o d , r e d u c t i o n i n p r o d u c t i o n a n d increased i m p o r t a n c e o f o t h e r uses o f s o r g h u m ( o t h e r t h a n f o o d ) . H o w e v e r , d u r i n g m i d 1990s t h e r e was a c o n s i d e r a b l e decrease i n s o r g h u m area f o r f o o d p u r p o s e d u e t o d e c l i n e i n its consumption.

21 22 Table 4. Utilization of s o r g h u m grain a n d stalk in A s i a .

Country Grain Stalk

Rainy season sorghum India Food, feed, alcohol Dry fodder (livestock), forage (livestock), alcohol (industrial) Myanmar Food Fodder Pakistan Feed (less emphasis) Dry fodder (livestock), forage (livestock - dairy) Thailand Feed (livestock) Dry fodder (livestock)

Postrainy season (winter) sorghum India Food Dry fodder (livestock)

Summer sorghum India (limited) Food Dry fodder (livestock) Iran Feed (livestock), syrup, Forage (livestock - dairy) particle board (industrial)

Cool temperature sorghum China Feed (livestock), alcohol, Sweet sorghum (alcohol) minor alternative uses CIS Feed (livestock)

Rice fallow sorghum Philippines Feed (livestock) Indonesia Feed (livestock)

Source: Gowda and Stenhouse (1993).

India

I n I n d i a , w h i c h i s t h e largest p r o d u c e r o f s o r g h u m , b o t h f o o d a n d f e e d use i s d e c l i n i n g a t 3 % ( F A O 2 0 0 3 ) . H o w e v e r , s o m e f a r m - l e v e l studies clearly i n d i c a t e t h e t r a n s f o r m i n g roles o f f o o d and f o d d e r i n I n d i a , t h e l a t t e r e m e r g i n g a s b e i n g o f p r i m a r y i m p o r t a n c e . T h e r e c e n t l y c o n d u c t e d exhaustive i n d u s t r i a l surveys i n I n d i a p o i n t e d t h a t s o r g h u m was u t i l i z e d n o t o n l y i n a n i m a l f e e d i n d u s t r y ( 0 . 5 7 t o 0 . 8 6 m i l l i o n t ) b u t also i n a l c o h o l i n d u s t r y ( 0 . 0 9 t o 0 . 1 0 m i l l i o n t ) a n d p r o j e c t e d t h a t t h e u t i l i z a t i o n o f s o r g h u m f o r a n i m a l f e e d w o u l d g o u p t o 2 . 1 1 t o 3.7 m i l l i o n t i n 2 0 1 0 A D . W i t h t h e p r o j e c t i o n o f p o s i t i v e g r o w t h i n l i v e s t o c k i n d u s t r y , t h e r e w o u l d b e a huge d e m a n d for s o r g h u m g r a i n i n f u t u r e . K u m a r ( 1 9 9 8 ) p r o j e c t e d t h a t b y 2 0 2 0 t h e d e m a n d o f f e e d grain w i l l

23 g r o w t o 1 4 . 5 - 2 3 . 0 m i l l i o n t c o m p r i s i n g 9 - 1 4 m i l l i o n t o f coarse g r a i n a n d t h e r e m a i n i n g f r o m o t h e r c r o p sources. I n f u t u r e , s o r g h u m i n l i v e s t o c k f e e d u t i l i z a t i o n , especially p o u l t r y f e e d i n d u s t r y d e p e n d s u p o n such factors a s a v a i l a b i l i t y o f m a i z e ( s o r g h u m ' s p o t e n t i a l c o m p e t i t o r ) , relative price with m a i z e a n d p r o v i d i n g k n o w l e d g e and r e m o v i n g apprehensions a b o u t f e e d usage o f s o r g h u m a m o n g its users. A c c o r d i n g t o t h e above m e n t i o n e d surveys, c u r r e n t l y r a i n y season s o r g h u m g r a i n was f o u n d t o have established a l t e r n a t i v e uses in I n d i a , as a r a w m a t e r i a l in p o t a b l e a l c o h o l p r o d u c t i o n a n d to a lesser e x t e n t i n s t a r c h i n d u s t r y , w h i c h m a y increase s o r g h u m u t i l i z a t i o n especially w h e n t h e c r o p i s facing challenges d u e t o decrease i n h o u s e h o l d c o n s u m p t i o n f o r f o o d .

Myanmar

I n M y a n m a r , s o r g h u m i s g r o w n o n l y u n d e r r a i n f e d c o n d i t i o n s a n d occupies t h e s e c o n d largest area o n l y after r i c e a m o n g cereals. It is m a i n l y g r o w n as a f o o d a n d f o d d e r c r o p i n M a g w a y , M a n d a l a y a n d Sagaing divisions (states) i n s e m i - a r i d t r o p i c s f o l l o w e d b y C h i n a n d K a y a h states i n s u b - t r o p i c s .

Pakistan

I n Pakistan s o r g h u m i s c u l t i v a t e d f o r b o t h f o o d g r a i n a n d a s forage c r o p , a n d 9 0 % of p r o d u c t i o n is c o n s u m e d o n - f a r m as f o o d a n d seed. S o r g h u m area is e q u a l l y d i v i d e d b e t w e e n r a i n f e d a n d i r r i g a t e d c u l t i v a t i o n a n d a t least one q u a r t e r o f r a i n f e d a n d h a l f o f i r r i g a t e d c r o p i s g r o w n m a i n l y f o r forage use. S o r g h u m i s c u l t i v a t e d f o r green f o d d e r d u r i n g w i n t e r a n d t h e feed usage o f s o r g h u m grain is increasing.

Thailand

S o r g h u m i n T h a i l a n d occupies t h i r d p o s i t i o n after rice a n d maize. But the increasing d e m a n d f o r a n i m a l f e e d ( t h u s t h e d e r i v e d d e m a n d for sorghum grain) c o m p e n s a t e s t h e decrease i n e x p o r t d e m a n d , t h u s m a i n t a i n i n g t h e area of its c u l t i v a t i o n . T h a i l a n d also foresees a considerable demand for sorghum as t h e r e i s n o s u f f i c i e n t p r o d u c t i o n o f m a i z e t o b e u s e d i n a n i m al feed. In T h a i l a n d a l t e r n a t i v e uses o f s o r g h u m such a s o r n a m e n t a l usage o f s o r g h u m spikes/spikelets a n d s u p p l e m e n t i n g t h e f o d d e r f o r m i l c h c o w s w i t h fresh stalks are p r a c t i c e d extensively. A l s o , research i s g o i n g o n f o r e x p l o r i n g e t h a n o l p r o d u c t i o n f r o m s w e e t s o r g h u m .

24 Changes in area, production and productivity of pearl millet in India

In In d i a , pearl m i l l e t alone accounts for 9.4 m i l l i o n ha of t o t a l cereals area a n d 6.9 m i l l i o n t o f t o t a l cereals p r o d u c t i o n (Table 5 ) . T h o u g h I n d i a r e c o r d e d t h e highest decrease in area d u r i n g t h e past decade, it s h o w e d increase in production and p r o d u c t i v i t y (Fig. 7 ) . A l t h o u g h pearl m i l l e t i s g r o w n u nder highly unfavorable rainfed conditions, the ever increasing com p e t i t i o n f r o m crops such as maize, c o t t o n (Gossypium sp), groundnut (Arachis hypogaea) and s u n f l o w e r ( H e l i a n t h u s annuus) is also affecting its p r o d u c t i o n . In Indi a , t h e w e s t e r n states (Rajasthan, G u j a r a t and Maharashtra) have m o r e share in pearl m i l l e t area a n d production than the rest of the country. India, the largest m i l l e t p r o d u c e r i n t h e w o r l d , accounts for about 4 0 % o f t h e w o r l d ' s o u t p u t whereas pearl m i l l e t alone c o n t r i b u t e s t o t w o - t h i r d o f this t o t a l w o r l d m i l l e t p r o d u c t i o n . I n some parts o f I n d i a , especially in Gujarat, pearl m i l l e t p r o d u c t i o n involves a h i g h degree of c o m m e r c i a l i z a t i o n as t h e c r o p residue is a v a l u e d f o d d e r for milch animals. Also, in areas w h e r e d o u b l e c r o p p i n g is p r a c t i c e d , it involves h i g h value c r o p c u l t i v a t i o n . D e s p i t e t h e harsh e n v i r o n m e n t s i n w h i c h i t i s c u l t i v a t e d t h e g r o w t h i n pearl m i l l e t p r o d u c t i v i t y i s t h e r e w a r d for t h e a d o p t i o n o f i m p r o v e d cultivars especially in some favorable environments. Most of the c r o p i m p r o v e m e n t i n I n d i a was b y d e v e l o p m e n t o f h i g h - y i e l d i n g varieties ( H Y V s ) and m a t c h i n g production-protection technologies which are specially a d o p t e d t o favorable environments.

14 1000 APY 900 12 800 10 700 600 8 500 6 400

4 300 200 2 100 0 0

Figure 7. Area (A), production (?) and yield (Y) of pearl millet in India.

25 26 Utilization of pearl millet in Asia: present vs future

O v e r 9 5 % o f pe a rl m i l l e t g r a i n p r o d u c t i o n i n A s i a i s u t i l ized for food use and t h e rest i s u s e d i n f e e d i n d u s t r y . I t i s p r i m a r i l y g r o w n for grain, stover, a n d s o m e t i m e s as a green f o d d e r in I n d i a , Pakistan a n d Y e m e n . It is also u s e d as green forage in Thailand and the Republic of Korea (Go w d a a n d R a m a k r i s h n a 1 9 9 6 ) . Previous studies s h o w t h a t t h e f o o d usage o f pe a rl m i l l e t i s d e c l i n i n g over the study period in India at a lower rate (-0.76% ) . T h o u g h i t i s n u t r i t i o n a l l y equal or e v e n s u p e r i o r to o t h e r cereals, its c o n s u m p t i o n has decreased due to rising incomes, changing food preferences a n d s u p p l y o f w h e a t a n d rice a t subsidized prices ( i n I n d i a ) . H o w e v e r , its c u l t i v a t i o n w i l l continue under subsistence farming, where other crops c a n n o t b e g r o w n . I n m o r e favorable areas of Asia, g r a i n is p r o d u c e d , a n d it is often used in rations f o r d r a f t a n d m i l c h animals, a n d f o r p o u l t r y . Stover i s used during the dry season t o m a i n t a i n rations f o r c a t t l e i n areas w h e r e s o r g h u m stover i s n o t readily available (Hash 1996). The usage of pearl mille t for forage purpose and a s a cover c r o p o r m u l c h c r o p f o r i n t e n s i v e l e g u m e p r o d u c t ion on tropical arid soils is becoming increasingly important.

Causes of changes in area and replacement crops

Sorghum S o r g h u m c r o p p e d area was r e p l a c e d b y a host o f c o m p e t i n g crops g r o w n u n d e r t h e same ecology across A s i a . I n I n d i a , various studies based on on-farm surveys r e p o r t e d t h a t c o t t o n , g r o u n d n u t a n d pulse crops r eplaced rainy season s o r g h u m t i l l 1980s, w h i l e in 1990s it was replaced by crops such as soybean ( G l y c i n e max) (Madhya Pradesh and Maharashtra), castor (Ricinus communis) ( A n d h r a Pradesh), m o t h bean (Vigna aconitifolia) (Rajasthan and Gujarat) and other pulse crops. Postrainy season sorghu m was r e l a t i v e l y stable d u e t o absence o f any a l t e r n a t i v e crops t h a t can b e g r o w n u n d e r s i m i l a r situations, ie, r e c e d i n g soil m o i s t u r e a n d d r o u g h t . H o w e v e r , w h e n e v e r i r r i g a t i o n was possible, crops such as w h e a t , m a i z e a n d s u n f l o w e r w e r e g r o w n i n s t e a d o f s o r g h u m . I n t e r e s t i n g l y , i n t h e rainy season, crops like cotton were also increasingly replaced by a commercial crop like soybean. In central India ( M a d h y a Pradesh), i t appears t h a t s o r g h u m i s again b e c o m i n g p o p u l a r d u e t o the climatic conditions and need for fodder in the regi on (Dayakar Rao et al. 2 0 0 3 ) . I n C h i n a , i t was r e p o r t e d t h a t s o r g h u m area was m a i n ly replaced by maize a n d its c u l t i v a t i o n has m o v e d f r o m f e r t i l e s e m i - h u m i d regions t o

27 s e m i - a r i d regions w i t h p o o r soil f e r t i l i t y . T h e c r o p p i n g pattern here also changed from monocropping to intercropping with potat o [Solarium tuberosum) or wheat and sequential planting after wheat. In I n d i a , area changes u n d e r rainy season s o r g h u m are m o re conspicuous than postrainy season sorghum. One of the earliest studies b y K e l l e y a n d Parthasarathy Rao ( 1 9 9 3 ) p o i n t e d t h a t s o r g h u m p r o d u c t i v i ty growth at national level has lagged b e h i n d o t h e r c o m p e t i n g cereal crops such as w h e a t , rice a n d maize. Sorghum prices have also failed to keep pace wi th competing crops such as w h e a t , rice, pulses a n d oilseeds. Together, these t w o factors have weakened the competitiveness of the crop over time, translating into reduced area under s o r g h u m c u l t i v a t i o n . T h e l o w competitiveness a t f a r m level and the factors such as lack of consumption demand at household level and lo w profitability of sorghum vis-a-vis competing crops were responsible for the loss of competitiveness of sorghum. The Government of India's p olicy to supply subsidized rice and wheat in sorghum-growing regions le d to a shift in consumption in favor of the former. Another study by H all and Yoganand (2000) listed that better irrigation facilities, improv ed transport and marketing facilities and government policies favoring oilseed crops t h r o u g h price s u p p o r t also l e d t o s u b s t i t u t i o n o f s o r g h u m b y o t h e r crops. A recent study by Dayakar Rao e t al. ( 2 0 0 3 ) c o n f i r m e d earlier findings t h a t a d o p t i on of HYVs facilitated h i g h p r o d u c t i v i t y levels o f s o r g h u m u n d e r constant o r decreasing consumption r e g i m e ( d u e t o changes i n tastes and preferences), w h i c h in turn led to a situation where sorghum area was spared for other comme rcial crops. Kaur and Kaur (2002) analyzed the changes in area, prod u c t i o n a n d p r o d u c t i v i t y o f coarse cereals ( w h i c h i n c l u d e s o r g h u m a n d pe arl m i l l e t ) i n I n d i a d u r i n g 1 9 4 9 - 5 0 t o 2 0 0 0 - 0 1 . I t was f o u n d t h a t d u r i n g 1966-67 to 1997- 9 8 , t h e gross c r o p p e d area u n d e r coarse cereals d r o p p e d f r o m 2 8 t o 1 6 % o w i n g t o absence o f e f f e c t i v e p r i c e s u p p o r t , p r o c u r e m e n t p r o g r a m s a n d inadequate technological improvements. The sorghum area in Thailand is declining due to lack o f e x p o r t d e m a n d a n d c o m p e t i t i o n f r o m o t h e r crops such a s s u n f l o w e r a n d m a i z e .

Pearl millet T h e area u n d e r p e a r l m i l l e t i s r e l a t i v e l y c o n s t a n t d u e t o its a d a p t a b i l i t y t o harsh habitat. However, in better ecological regimes an d with protective irrigation cotton, sunflower, maize, groundnut, rapeseed (Brassica napus) and m u s t a r d (Brassica sp), pulses a n d s o r g h u m have r e p l a c e d p earl millet in India. T h e e x t e n t o f r e p l a c e m e n t b y these crops varies across states in India.

28 The changes in the cropped area of pearl millet are in both directions. It i s usually r e p l a c e d b y o t h e r crops w h e r e p e r m a n e n t l a n d i m p r o v e m e n t s are m a d e , e i t h e r i n t e r m s o f soil h e a l t h o r i r r i g a t i o n facilities. T h u s t h e c u l t i v a t i o n o f p e a r l m i l l e t i s relegated t o m a r g i n a l lands. W h e n pearl millet cultivation is c o n t i n u e d in a region, its area has a c t u a l l y increased m a inly due to three factors: (1) availability of only few other crop (parti cularly cereal) alternatives; (2) strong preference for millet as the m ajor staple in the region; a n d ( 3 ) p r e f e r e n c e f o r m i l l e t s t r a w as a h i g h l y v a l u e d l i vestock feed. T h e results o f r e c e n t f a r m surveys ( D a y a k a r Rao e t al. 2 0 0 3 ) revealed t h a t t h e lack o f c r o p alternatives a n d c o n t i n u e d p r e f e r e n ce as staple diet and fodder for livestock have attracted farmers to continue p ea r l m i l l e t cultivation, especially in states like Rajasthan. Howe ver, in Maharashtra and f e w o t h e r states p e a r l m i l l e t lost its c o m p e t i t i v e n e s s , because o f increasing availability of crop alternatives with remunerative out p u t prices. A s i n s o r g h u m , t h e a d o p t i o n o f H Y V s has also r e s u l t e d i n r e d u c t i o n o f p e ar l m i l l e t area without any significant reduction in total product i o n , t h u s sparing l a n d f o r o t h e r c o m m e r c i a l c r o p alternatives. Besides, t h e r e is a significant d e c l i n e in h o u s e h o l d d e m a n d for f o o d . Pearl millet is often grown under highly unfavorable co n d i t i o n s a n d hence has low productivity. Government policies on inpu t subsidies a n d o u t p u t prices are l o p s i d e d t o w a r d s w h e a t a n d rice. T h e m a r k e t i n t e r v e n t i o n s also d o n o t a d e q u a t e l y s u p p o r t t h i s c r o p . T h e b u l k p r o c u r e m e n t o f pearl millet for supply through Public Distribution System (P D S ) m a y b e necessary t o increase its d e m a n d i n I n d i a .

Food and nutritional security

As discussed earlier, sorghum and pearl millet are mai nly produced and consumed as m a i n staple f o o d by t h e rural poor in developing countries of Asia and Africa, p r o v i d i n g 8 0 % of t h e i r energy r e q u i r e m e n t and n u t r i e n t s except v i t a m i n A and v i t a m i n C . A study b y t h e N a t i o n a l I n s t i t u t e o f N u t r i t i o n (NIN), Hyderabad, I n d i a in 1 9 9 6 has s h o w n t h a t a balanced d i e t containing at least 4 6 0 g of cereals besides pulses, vegetables, milk, etc should be consum ed to attain a minimum daily per capita energy r e q u i r e m e n t of 2 7 3 8 k cal. A c c o r dingly the per capita requirement of cereals should be around 165.6 kg yr1 . The average per capita energy requirement of around 273 8 k cal day- 1 i s m a i n l y s u p p l i e d b y cereal c o n s u m p t i o n . I n I n d i a t h e r equired energy s u p p l y m a i n l y c o m e s f r o m r i c e a n d w h e a t , e x c e p t f o r t h e m a j o r s o r g h u m -

29 growing states like Maharashtra and Karnataka where ne a r l y 1 9 % o f d a i l y energy requirement is supplied through sorghum and the rest f r o m o t h e r cereals. Sorghum and millets also supply the needed nut r i e n t s t o t h e p o o r people who cannot afford other expensive sources of these essential n u t r i e n t s , a n d t h u s can b e a n e f f e c t i v e s h i e l d against f o od and nutritional insecurity. Sorghum and millets are nutritionally superior to othe r cereals, b u t t h e i r downward demand in cereal basket may be caused by factors l i k e rising i n c o m e s , social status a t t a c h e d t o f i n e grains, subsidized supply of fine grains, low productivity of coarse cereals, short shelf life of flour and more effort needed in making chapati (unleavened bread). Efforts are t o b e m a d e b y t h e government (especially in India) to include sorghum in PDS.

Sorghum and pearl millet for improved livelihood

S o r g h u m i s also c u l t i v a t e d f o r feed i n m a n y c o u n t r i e s i n Asia. In India, it is perceived as a crop meant for human consumption largely by t h e r u r a l p o o r a n d t o a lesser e x t e n t b y t h e u r b a n p o o r a n d t h e r u r a l r i c h. In India, sorghum is considered an important staple food after rice and whea t , d e s p i t e a c o n t i n u o u s decline in its consumption. The relevance of sorghum to the livelihood of the p o o r i s established i n t h e c o n t e x t o f f o o d , fodder, i n c o m e generation and source of employment. Dayakar Rao (2000) concluded tha t majority of the sample households pursued mixed livelihood strategies (across w e a l t h groups). In postrainy season sorghum-growing districts , sorghum constituted 5 5 % o f t o t a l cereal c o n s u m p t i o n w h i l e i t was 5 8 % i n rainy season sorghum- g r o w i n g d i s t r i c t s . F o o d habits o f t h e r i c h f a m i l i e s i s largely determined by taste a n d preferences a n d crops t h e y grow, w h i l e i n case o f t h e poor it is determined b y p r i c e , k i n d o f p a y m e n t ( f o r l a b o r ) a n d crops t h e y grow. I n r a i n y season sorghum areas, quality of rainy season sorghum and subsidized supply of w h e a t a n d rice m o t i v a t e p e o p l e t o c o n s u m e t h e p r e f e r r e d cereals. When both r i c h a n d p o o r h o u s e h o l d c o n s u m p t i o n p a t t e r n s are e x a m i n e d together, sorghum contributes over half of the total cereal con s u m p t i o n . A s t u d y b y Azam-Ali and Start (1999) revealed that sorghum continu e s t o b e a n i m p o r t a n t staple f o r t h e u r b a n p o o r w h e r e t h e r e i s a s u f f icient supply to meet t h e d e m a n d a n d also p r i c e i s t h e m a j o r d e t e r m i n a n t . The National Sample Survey Organisation (NSSO) data on per capita consumption of sorghum for major rainy season sorghum- g r o w i n g d i s t r i c t s i n

30 selected I n d i a n states s h o w e d t h a t o u t o f 2 4 d i s t r i c t s t h e c o n s u m p t i o n r e m a i n e d stable in 13 d i s t r i c t s w h i l e a m a j o r d e c l i n e (greater t h a n 2 0 % ) was w i t n e s s e d i n d i s t r i c t s w h e r e i n t r o d u c t i o n o f i r r i g a t i o n r e n d e r e d changes i n c r o p p i n g p a t t e r n s . S o r g h u m a n d p e a rl m i l l e t are also t h e p r e f e r r e d cereal c r o p residues f o r m i l c h a n d d r a f t animals i n I n d i a a n d t h e i r i m p o r t a n c e has increased m a n i f o l d d u e t o increase i n d e m a n d f o r m i l k p r o d u c t s a n d realized f o d d e r scarcities d u r i n g d r o u g h t periods. S o r g h u m a s f o d d e r i s q u a n t i f i e d a r o u n d 2 0 - 5 0 % o f t o t a l value o f s o r g h u m c r o p . D a y a k a r Rao ( 2 0 0 0 ) revealed t h a t 9 6 % o f t o t a l stover f e d t o l i v e s t o c k i n p o s t r a i n y season s o r g h u m areas a n d 8 8 % i n rainy season s o r g h u m areas is s o r g h u m . N e a r l y 3 8 % households in p o s t r a i n y season s o r g h u m area a l l o c a t e d t h e i r l a n d based o n f o d d e r d e m a n d , w h i l e o n l y 2 8 % h o u s e h o l d s a l l o c a t e d l a n d i n rainy season s o r g h u m area. T h u s , one o f t h e k e y d e t e r m i n a n t s f o r s o r g h u m area i s t h e h o u s e h o l d d e m a n d f o r fodder.

Source of employment

S o r g h u m is gaining i m p o r t a n c e as a source of e m p l o y m e n t in p o s t r a i n y season s o r g h u m areas w h e r e c r o p alternatives are absent or l i m i t e d , b u t is less i m p o r t a n t i n r a i n y season s o r g h u m areas ( D a y a k a r Rao 2 0 0 0 ) . I n s o r g h u m - based c r o p p i n g p a t t e r n , m o s t l y f a m i l y labor is engaged in various operations.

Source of income

T h e c o n t r i b u t i o n o f s o r g h u m t o t h e gross i n c o m e was very low, ie, about 2% ( D a y a k a r Rao 2 0 0 0 ) . I t i s m a i n l y d u e t o r e l a t i v e l y l o w p r i c e f o r s o r g h u m a n d lesser share o f s o r g h u m i n t o t a l c r o p p i n g p a t t e r n . For t h e p oor farmers, s o r g h u m offers b u f f e r cash at t i m e s of distress or u r g e n t cash needs. T h e grain set apart for f o o d i s generally s o l d t o m e e t such situations. However, when g r a i n i s i n s h o r t supply, i t i s usually b o u g h t f r o m o p e n m a r k e t . I n I n d i a , t r a d i t i o n a l l y s o r g h u m grain i s o f f e r e d a s p a y m e n t f o r wages t o a g r i c u l t u r a l laborers. H o w e v e r , i n g o o d r a i n f a l l years r e s u l t i n g i n b u m p e r c r o p , laborers o p t e d f o r a m i x o f cash a n d grain, b u t preference i s m o r e t o w a r d s cash. I n b a d years o f c r o p p r o d u c t i o n , laborers o p t e d m o r e grains t h a n cash because o f h i g h prices o f g r a i n a s t h e y can sell i t t o b u y cheaper foods. A s n e w t e c h n o l o g i e s a n d m a r k e t access o f f e r e d diverse l i v e l i h o o d opportunities to farmers, s o r g h u m b e c a m e less a t t r a c t i v e because o f its l o w p r i c e a n d l o w p r o f i t a b i l i t y c o m p a r e d t o o t h e r cash crops.

31 Dual-purpose roles of sorghum and pearl millet

I n t h e s e m i - a r i d t r o p i c s o f A s i a , s o r g h u m a n d p e a r l m i l l e t are widely seen as dual-purpose crops (grain and fodder) where the crop-l ivestock (mixed) f a r m i n g s y s t e m i s w i d e l y p r a c t i c e d . N e a r l y 7 0 % o f r a i n y season sorghum g r o w n was for d u a l p u r p o s e w i t h less i m p o r t a n c e a t t a c h e d to grain yield ( N R C S 1 9 9 8 ) . In r a i n y season s o r g h u m areas, g r a i n is c o n s i d e r e d as a b o n u s a n d s o r g h u m stalk a s m a i n p r o d u c t b y r i c h f a r m e r s ( D a y a k a r Rao 2000). The importance of sorghum is more pronounced in areas where l i v e s t o c k e n t e r p r i s e i s one o f t h e i m p o r t a n t l i v e l i h o o d strategies o f p e o p l e . I n t h e states of Rajasthan, Punjab, Haryana, Gujarat, Uttar Pradesh, Andhra Pradesh and M a d h y a Pradesh w h e r e c a t t l e p o p u l a t i o n i s m o r e , s o r g h u m c u l t i v a t i o n i s k e y for supplying fodder, while in states like Maharashtra and Karnataka sorghum is grown over a large area with equal importance for bo th grain and fodder. In Maharashtra and Karnataka, the large area under sorgh u m compensates f o r fodder demand and thus dual-purpose plant type maximize s grain y i e l d . I n o t h e r states w i t h less area u n d e r s o r g h u m , t a l l f o d d e r t y pes are cultivated to m e e t t h e f o d d e r d e m a n d . D a y a k a r Rao e t al. ( 2 0 0 0 ) also p o inted that 40% of sample farmers in selected postrainy season sorghum dis t r i c t s o f K a r n a t a k a and Maharashtra and 33% in rainy season sorghum distri c t s o f M a h a r a s h t r a cultivated sorghum mainly for green fodder. Also, 31% o f r e s p o n d e n t s i n postrainy season districts and 48% in rainy season di s t r i c t s g r o w s o r g h u m w i t h e q u a l i m p o r t a n c e t o grain a n d f o d d e r usage. Dual-purpose sorghum in Myanmar is usually taken up as a second c r o p after early s o r g h u m o r legumes i n t h e m i d - m o n s o o n season. For green fodder, s o r g h u m is s o w n at t h e onset of m o n s o o n , as a sole c r o p . Dual-purpose sorghum is either sole cropped or intercropped with pigeonpea (Cajanus cajan), m u n g bean (Vigna radiata), groundnut or sunflower.

Private sector investment in sorghum and pearl millet research

Since 1985, public sector investment in agricultural research in India is g r o w i n g a t a s l o w e r rate c o m p a r e d t o p r i v a t e sector i n v e stments in plant breeding research which has recently doubled between th e period 1995 and 2 0 0 2 . D u r i n g 1 9 8 7 - 9 5 t h e p r i v a t e sector i n v e s t m e n t s i n R & D increased from R s 5 5 m i l l i o n ( U S $ 1 . 2 m i l l i o n ) t o R s 2 0 0 m i l l i o n ( U S $ 5 . 8 m i l l i o n ) t h r o u g h

32 increased n u m b e r o f p r i v a t e f i r m s f r o m 1 7 t o 3 8 . A m e d i u m - s i z e d p r i v a t e seed c o m p a n y o p e r a t i n g i n five states w i t h a n annual sales t u r n o v e r o f R s 1 5 0 - 2 0 0 m i l l i o n , spends 7 - 1 0 % o f i t o n R & D , w h i l e large seed c o m p a n i e s l i m i t t h e i r R & D e x p e n d i t u r e t o 3 - 5 % o f t h e i r annual sales t u r n o v e r . Private research i s g r o w i n g m o r e r a p i d l y t h a n p u b l i c research, b u t the total R&D e x p e n d i t u r e s i n t h e p r i v a t e sector s t i l l a m o u n t e d t o o n l y 1 6 % o f t h e t o t a l f u n d i n g o f I n d i a n a g r i c u l t u r a l research i n 1 9 9 8 . T h e r e are v e r y f e w c o r p o r a t e players i n t h e a n i m a l f e e d i n d u s t r y . T h e b u l k o f a n i m a l f e e d i s p r o d u c e d b y t h e s m a l l scale o r c o o p e r a t i v e sector u n i t s . Besides, m a n y f a r m e r s p r e p a r e t h e i r o w n a n i m a l f e e d m i x e s . T h e share o f t h e c o r p o r a t e sector i n t h e a n i m a l f e e d i n d u s t r y i s nearly 3 3 % a n d i s r i s i n g . T h e research a r m s o f a n i m a l f e e d f i r m s essentially test n e w i n g r e d i e n t s , r e d u c i n g a n t i - n u t r i t i o n a l factors a n d t e s t new additives p r o v i d e d b y o t h e r f i r m s . T h e w i d e s p r e a d use o f h y b r i d s i n A s i a i s a t t r a c t i n g p r i v a t e i n v e s t m e n t s i n b r e e d i n g a n d seed p r o d u c t i o n . A c c o r d i n g t o t h e seed i n d u s t r y sources, a t present p r i v a t e sector i n v e s t m e n t s i n I n d i a i n p r o d u c t d e v e l o p m e n t a n d m a r k e t i n g o f s o r g h u m a n d p e a rl m i l l e t are R s 2 8 0 m i l l i o n a n d R s 2 1 9 m i l l i o n , respectively. T h i s m a y b e d u e t o strong R & D o f p u b l i c sector spread across t h e c o u n t r y . T h e I n t e r n a t i o n a l C r o p s Research I n s t i t u t e f o r t h e S e m i - A r i d T r o p i c s ( I C R I S A T ) , Patancheru, I n d i a i s engaged i n d e v e l o p i n g h y b r i d p a r e n t a l lines a n d p r i v a t e f i r m s m a k e use o f t h e m f o r d e v e l o p m e n t o f h y b r i d s. Thus, it appears t h a t p r i v a t e sector i n t h e past was n o t c o n s t r a i n e d t o invest m u c h o n R & D i n these t w o crops. T h e m a r k e t share of p r i v a t e sector s o r g h u m h y b r i d s is also steadily increasing d u e t o lack o f s u p p o r t o f seed p r o d u c t i o n t o p u b l i c sector n o t i f i e d h y b r i d s . I n A n d h r a Pradesh ( s o r g h u m ) a n d Karnataka (pearl m i l l e t a n d s o r g h u m ) p r i v a t e sector h y b r i d s have significantly c o n t r i b u t e d t o t h e y i e l d o f these crops. I n case o f s o r g h u m , i n Karnataka b o t h private and p u b l i c sector H Y V s have s h o w n positive significant effect o n y i e l d w h i l e i n case o f pearl m i l l e t , p r i v a t e sector H Y V s o f Karnataka and p u b l i c sector H Y V s o f Maharashtra have e x e r t e d a positive and significant influence on y i e l d (Table 6 ) . I n s o r g h u m , seed q u a n t i t i e s p r o d u c e d b y p r i v a t e companies d i d n o t increase substantially a n d o n l y increased f r o m 6 0 0 0 t i n 1 9 9 0 - 9 1 t o 6 0 5 0 t i n 1 9 9 8 - 9 9 , b u t i n t e r m s o f p r i v a t e h y b r i d s a s percentage o f t o t a l h y b r i d s , t h e increase was f r o m 2 0 % t o 5 0 % . I n p e a r l m i l l e t d u e t o r e d u c t i o n i n seed s u p p l y o f p u b l i c sector h y b r i d s , t h e m a r k e t share o f p r i v a t e c o m p a n i e s increased

33 Table 6. Effect of private and public sector sorghum and pearl millet high-yielding varieties (HYVs) on yield in India during 19981 .

Crop/state Private HYVs Public HYVs Estimation technique Sorghum Andhra Pradesh 0.0027* (1.92) -0.09(1.54) Random effect Karnataka 0.0083** (2.34) 0.44** (2.99) Random effect Maharashtra 0.008(1.54) 0.23* (1.88) Fixed effect Pearl millet Andhra Pradesh 0.007 (0.27) -0.84(1.1) Fixed effect Karnataka 0.01* (1.91) 0.02 (0.32) Fixed effect Maharashtra -0.002(0.11) 0.39** (3.2) Random effect

1. * = Estimates significant at 10% level; ** = Estimates significant at 5% level; figures in parentheses are respective t-values. Source: Ramaswami et al. (1999). f r o m 5 0 % t o 6 3 % d u r i n g t h e same p e r i o d . S u c h a s i t u a t i o n could not be e n c o u n t e r e d i n pearl m i l l e t w h e r e t o t a l seed s u p p l y r e m a i n e d same f o r t h e p e r i o d s 1 9 9 0 - 9 1 a n d 1 9 9 8 - 9 9 w i t h n o t i c e a b l e increase i n p r i v a t e sector seed s u p p l y u p t o 6 3 % . Private seed c o m p a n i e s a p p e a r e d m o r e e f f i c i e n t i n maintaining seed quality of their proprietary hybrids a nd supplying in time to t h e f a r m e r in a c o s t - e f f e c t i v e m a n n e r .

Relative economics of irrigated and dry sorghum and pearl millet

Besides C h i n a , I n d i a i s t h e m a j o r s o r g h u m a n d p e a rl m i l l e t g r o w i n g c o u n t r y i n A s i a . H e n c e , e c o n o m i c s o f these crops have b e e n d e a l t w i t h o n l y i n t h e I n d i a n c o n t e x t . A l m o s t e n t i r e rainy season s o r g h u m i n I n d i a i s r a infed, while s c a t t e r e d areas are i r r i g a t e d i n p o s t r a i n y season. I t i s c e r t a i n t h a t m o s t o f t h e irrigated area accounted belongs to summer sorghum especially in certain belts o f M a h a r a s h t r a , K a r n a t a k a a n d T a m i l N a d u . W i t h area u n d e r rainy season sorghum being eroded, irrigated summer sorghum was envisaged to mitigate peak f o d d e r shortages d u r i n g s u m m e r i n these regions. S u m m e r s o r g h u m i s m a i n l y a n early h y b r i d p r o d u c i n g clean g r a i n f o r c o n s u m p tion as food and f o d d e r p r i m a r i l y f o r f a r m e r s ' o w n l i v e s t o c k ; a b o u t 1 0 - 2 0 % surplus f o d d e r i s s o l d i n t h e m a r k e t . T h e economics o f s o r g h u m p r o d u c t i o n i n India was s t u d i e d u n d e r t h r e e situations: (1) rainy season sorghum; (2) postrainy season sorghum; and

34 (3) irrigated s u m m e r sorghum. T h e economics o f pearl m i l l e t p r o d u c t i o n was e x a m i n e d only u n d e r d r y l a n d conditions due t o lack o f available related literature. I n M a h a r a s h t r a s o r g h u m y i e l d s u n d e r i r r i g a t e d s i t u a t i o n s w e r e a b o u t five t i m e s a s t h a t o f d r y l a n d y i e l d s ( r a i n y a n d p o s t r a i n y s i t u a t i ons). The irrigated s u m m e r s o r g h u m y i e l d e d s u b s t a n t i a l l y h i g h n e t r e t u r n s m a i n l y d u e t o h i g h g r a i n a n d f o d d e r y i e l d s w h i c h u s u a l l y f e t c h h i g h e r prices. I n p o s t r a i n y season s o r g h u m , t h o u g h t h e g r a i n fetches h i g h p ri c es t h e y i e l d s are generally v e r y l o w . P o s t r a i n y season s o r g h u m i s t y p i f i e d b y t h e absence o f h i g h - y i e l d i n g c u l t i v a r s u n d e r m o i s t u r e stress. T h e y i e l d o f r a i n f e d p o s t r a i n y season s o r g h u m i s h a l f t h a t o f i r r i g a t e d s u m m e r s o r g h u m . T h o u g h t h e r a i n y season s o r g h u m y i e l d s r e l a t i v e l y h i g h e r o u t p u t t h a n p o s t r a i n y season s o r g h u m , its p e r u n i t g r a i n p r i c e i s q u i t e l o w t o m a k e i t c o m p e t i t i v e over its r e p l a c e m e n t c r o p s . I n case o f e c o n o m i c s o f p e a r l m i l l e t i n A h m e d n a g a r , M a h a r ashtra, the n e t r e t u r n s are p o s i t i v e (Rs 1 7 2 0 ha-1), w i t h o u t p u t - i n p u t r a t i o o f 1.2:1 (Table 7 ) , because o f its c u l t i v a t i o n i n lands w i t h b e t t e r soil a n d w a t e r e n v i r o n m e n t s . I n t h e states l i k e Rajasthan u s u a l l y n e t r e t u r n s are negative w h e n f i x e d costs are a c c o u n t e d . I n t h e latter, o u t p u t i s q u i t e l o w a n d prices are also n o t s o r e m u n e r a t i v e . H o w e v e r , its c u l t i v a t i o n i s n o t d i s c o n t i n u e d because o f l a c k o f o t h e r c r o p a l t e r n a t i v e s . I n M a h a r a s h t r a , d u e t o a d o p t i o n o f H Y V s t h e y i e l d s are b e t t e r . H o w e v e r , its area i s d e c l i n i n g w i t h d e c l i n e i n c o n s u m p t i o n levels.

Table 7. Economics of sorghum and pearl millet producti on in Maharashtra, India. Sorghum Pearl millet Rainy Postrainy Summer (Rainy) Particulars (2000/01) (2000/01) (2002/03) (2000/01)

Crop yield (t ha-1) Main crop 1.93 1.06 2.61 1.18 Byproduct 3.76 3.30 5.50 2.47 Total cost (Rs ha1 ) 9720 8259 12198 7168 Cost of production (Rs t-1) 3669 6951 4659 6036 Price received (Rs t-1) Grain 4347 6700 5000 6003 Fodder 695 704 1000 711 Net returns (Rs ha1 ) 1313 1200 6392 1720 Output-input ratio 1.1 1.1 1.5 1.2

35 Future thrust: commercialization and potential new niches

A s a consequence o f c o m m e r c i a l i z a t i o n o f a g r i c u l t u r e , n o t o n l y i n d e v e l o p e d w o r l d b u t also i n t h e d e v e l o p i n g w o r l d , t h e t r a d i t i o n a l subsistence crops l i k e s o r g h u m a n d p e a r l m i l l e t have also e n t e r e d i n t o c o m m e r c i a l c ultivation. In Asia, these crops are t r a n s f o r m i n g f r o m subsistence level t o semi-subsistence a n d h e a d i n g f o r c o m m e r c i a l l e v e l o f c u l t i v a t i o n . I n I n d i a , various f a r m - l e v e l studies c o n f i r m e d t h a t t h e m a r k e t e d surplus o f s o r g h u m c o u l d b e u p t o 3 0 % o f t o t a l p r o d u c t i o n o f f a r m s , w h i c h i s m a i n l y m a r k e t e d t h r o u g h village-level n o n - r e g u l a t e d m a r k e t s ( M a r s l a n d a n d Parthasarathy Rao 1 9 9 9 ) . C o m m e r c i a l i z a t i o n can b e p r o m o t e d t h r o u g h m a x i m i z a t i o n o f g r a i n / s t a l k yields, w h e r e t h e emphasis s h o u l d b e o n p r o d u c t i v i t y e n h a n c e m e n t . T h e c u r r e n t l o w p r o d u c t i v i t y levels r e n d e r s o r g h u m n o n - c o m p e t i t i v e w i t h o t h e r crops b o t h a t f a r m level a n d a t u t i l i z a t i o n l e v e l w i t h p r e s e n t l y u s e d r a w m a t e r i a l i n its a l t e r n a t i v e uses. Contract farming a n d p r o m o t i o n o f i n d u s t r i a l uses w i l l enhance t h e d e m a n d . A c c o r d i n g t o K u m a r ( 1 9 9 8 ) , t h e average y i e l d o f coarse cereals i n I n d i a s h o u l d b e i m p r o v e d b y 1 6 % b y 2 0 1 0 and 3 6 % b y 2 0 2 0 i n o r d e r t o m e e t t h e d o m e s t i c d e m a n d . For c o m m e r c i a l i z a t i o n o f these crops, p o t e n t i a l niches n e e d t o b e i d e n t i f i e d w h e r e these can b e c o m m e r c i a l l y e x p l o i t e d f o r i n c o m e g e n e r a t i o n .

Forage sorghum

In areas w i t h need for dual-purpose varieties t h e major researchable concern s h o u l d focus to i n t r o d u c e such dual-purpose s o r g h u m w h i c h can also be g r o w n for q u a l i t y green forage p r o d u c t i o n elsewhere in other states of I n d i a to sustain t h e i r dairy i n d u s t r y and o t h e r livestock. Sweet stalk s o r g h u m w i t h high p h o t o s y n t h e t i c rate and biomass p r o d u c t i o n p o t e n t i a l m a y add to higher animal p r o d u c t i v i t y .

Development of dwarf short-duration hybrids for rainy season

D e m a n d f o r labor i s v e r y h i g h d u r i n g harvest o f r a i n y season crops. T h e r e f o r e , l i m i t e d labor ( f a m i l y / h i r e d l a b o r ) i s d e p l o y e d f o r harvest o f h i g h - v a l u e crops. S o r g h u m r e m a i n s i n t h e f i e l d f o r longer t i m e even after m a t u r i t y a n d i s p r o n e t o grain m o l d a s c o n d i t i o n s b e c o m e m o r e favorable. T h e r e f o re, development o f e a r l y - m a t u r i n g d w a r f g e n o t y p e s w h i c h are a m e n a b l e f o r c o m b i n e d harvesting are necessary to get clean g r a i n w h e n t h e r e is a p e a k d e m a n d f o r labor. T h e e c o n o m y i n harvest o p e r a t i o n a n d m o l d - f r e e , clean-grain harvest

36 w i l l ensure b e t t e r f o o d and market prices. Such early-maturing d w a r f c u l t i v a r s w i l l also f i t i n i n t e r c r o p p i n g systems based o n l o w c a n o p y crops such as soybean and groundnut which replaced sorghum in the past.

Sorghum production in rice fallows for market surplus

Introduction of sorghum in rice fallows, especially in non-conventional areas appears to be potentially promising. Planting of sorghu m i n late D e c e m b e r t o January ensures high fodder yield to meet the stover de m a n d o f these areas.

Red sorghum for feed and exports

T o m e e t t h e feed d e m a n d i n h i g h r a i n f a l l regions, r e d grain s o r g h u m ( i m p a r t s r i c h y e l l o w n e s s t o y o l k o f egg) m a y b e t a r g e t e d a s p o t e n t i a l r a w m a t e r i a l for p o u l t r y . T h e r e d grain t y p e s have g o o d d e m a n d i n m a n y c o u n t r i e s f o r feed. I n Japan, s o r g h u m is c o n s i d e r e d as a v a l u e d c o n s t i t u e n t in livestock feed rather t h a n m a i z e ( i m p a r t s m o r e y e l l o w c o l o r t o t h e m e a t ) a s c o n s u m e r s p r e f e r w h i t e colored meat. Hence, Indian sorghums may be exploited f o r t h i s p u r p o s e .

Industrial alternative uses

Animal feed S o r g h u m grain is p e r c e i v e d to be u t i l i z e d as a r a w m a t e r ial in animal feed, especially poultry feed. At present in India about 1.5-1.7 million t of sorghum grain i s b e i n g u s e d f o r a n i m a l feed. G e n e t i c e n h a n c e m e n t in digestibility of grain w i l l ensure b e t t e r nutrition. The poultry feed industries w i l l c o n t i n u e t o b e t h e m a j o r user o f s o r g h u m i n t h e f u t u r e ( F i g . 8 ) .

Figure 8. Relative contribution of alternate uses of sorghum in India.

37 Potable alcohol from grain Another important potential niche could be utilization o f s o r g h u m grain f o r alcohol production. At least ten manufacturing units in I n d i a are already u t i l i z i n g grain f o r t h e p r o d u c t i o n o f p o t a b l e a l c o h o l . W ith the implementation o f G o v e r n m e n t o f India's n e w p o l i c y t o b l e n d e t h a n o l w i t h petrol, initially up t o 5 % a n d increase u p t o 1 0 % , huge d e m a n d i s c r e a t e d f o r e t h anol production. It is l i k e l y t h a t sugarcane (Saccharum officinarum) molasses can be used as raw material for bio-fuel production, while sorghum grain may be used in potable alcohol sector owing to its better quality and gap created by diversion o f molasses.

Sweet sorghum as bio-energy source S w e e t s o r g h u m i s a n e x c e l l e n t source f o r b i o - f u e l p r o d u c t i o n . T h e stalks which are rich in sugar can be used for ethanol product i o n o r jaggery production. Sweet sorghum is similar to grain sorghum i n t e r m s o f w i d e adaptability. It can produce up to 5,000-7,000 L ethano l ha- 1 w h i c h makes i t h i g h l y a t t r a c t i v e t o s u p p l e m e n t p e t r o l e u m reserves. S w e e t sorghum, with one-third water requirement of sugarcane, supplements later in the lean p e r i o d a n d increases t h e capacity o f u t i l i z a t i o n o f t h e sugar plant. A techno- economic feasibility study undertaken by the National Research Centre for Sorghum (NRCS), Hyderabad with M/s Renuka Sugars Ltd, B e l g a u m , Karnataka, India indicated that the cost of production of ethanol from sweet s o r g h u m stalks w o r k e d o u t t o b e R s 13.11 L- 1 in comparison with sugarcane molasses f r o m Rs 9.25 L- 1 (own molasses generated in sugar factory) to Rs 12.55 L - 1 (from purchased molasses).

Malt A n o t h e r p o t e n t i a l area c o u l d b e t h e use o f s o r g h u m m a l t a n d a s a n a d j u n c t i n brewing industry. Malted sorghum is used for brewing beer i n G h a n a a n d Nigeria. Sorghum's comparative advantage would be its low output price, especially i n p r o d u c t i o n regions o f r a i n y season s o r g h u m i n I n d i a over t h a t o f e x i s t i n g r a w m a t e r i a l .

Processing for other food uses Apart from these industrial uses many traditional value -added products can be prepared from sorghum and millets owing to their nutrit i v e value. T h e s e

38 include diabetic foods with high fiber content (antioxi dants) and in various bakery products like bun, bread, cakes, cookies and biscuits w h i c h s h o u l d target t h e u r b a n consumers.

Pearl millet feed and food products More recently pearl millet is being used as a low-cost substitute for maize in p o u l t r y a n d d a i r y feed, w h i c h i s gaining m o m e n t u m . I n a d dition, there are o t h e r niches f o r pearl m i l l e t : • D u e t o its r i c h p r o t e i n c o n t e n t , t h e grain can b e used for p r e p a r a t i o n o f p r o t e i n - r i c h foods. • T h e b r a n i s r i c h i n o i l ; h e n c e i t can c o m p l e m e n t r i c e b r a n i n o i l extraction. • Pearl m i l l e t can also be used f o r b r e w i n g in those favorable areas w i t h marketed surplus where the factories are located. • The high fiber content in the grain can be exploited to prepare health foods. Diabetic food products can also be prepared. Increasing the productivity through improved technolo g i e s a n d q u a l i t y o f p r o d u c t w o u l d r e s u l t i n r e d u c e d cost o f p r o d u c t i o n p e r u n i t o r increased profitability per unit area. Due to this reduced cost, s o r g h u m a n d p e arl millet may be extensively used in value-added and indu strial applications which may fetch high remuneration for poor farmers thu s a l l e v i a t i n g p o v e r t y . T o hasten t h i s process, aspects l i k e m a r k e t i n g , contract farming and farmer-industry linkages should be strengthened that may result in a fair degree of commercialization. To minimize competition w ith preferred cereals, improvements in shelf life of flour and stor ability are essential features.

Acknowledgments

The authors gratefully acknowledge the help rendered b y BVS Reddy, C L L G o w d a a n d K N Rai o f I C R I S A T W e also a c k n o w l e d g e Y Eswara Prasad, H e a d , D i v i s i o n o f A g r i c u l t u r a l E c o n o m i c s , A c h a r y a N G Ranga Agricultural University (ANGRAU) and S Aruna Reddy of NRCS, Hyder a b a d for going through the manuscript and offering their comments. Th e assistance rendered by S Narasimham, G Vinay Kumar, Adidela Samuel, K Ram M ohan and Ch Pragathi is also a c k n o w l e d g e d .

39 References

Azam-Ali S and Start DP. 2000. The role and importance of sorghum in the livelihoods of the urban poor. Pages 61-65 in Sorghum utilization and the livelihoods of the poor in India: summary proceedings of a workshop, 4-5 February 1999, ICRISAT, Patancheru, India ( H a l l AJ and Yoganand B, eds.). Patancheru 502 324, Andhra Pradesh, India: Socioeconomics and Policy Program, International Crops Research Institute for the Semi-Arid Tropics.

CMIE. 2002. Agriculture. M u m b a i , India: C M I E . pp. 2 3 - 3 5 .

Dayakar Rao B. 2000. Factors affecting the production and utilization of sorghum at the farm level. Pages 49-55 in Sorghum utilization and the livelihoods of the poor in India: summary proceedings of a workshop, 4-5 February 1999, ICRISAT, Patancheru, India ( H a l l AJ and Yoganand B, eds.). Patancheru 502 324, Andhra Pradesh, India: Socioeconomics and Policy Program, International Crops Research Institute for the S e m i - A r i d Tropics.

Dayakar Rao B, Ravishankar A, Radha T M , Raju Solomon and H a l l AJ. 2000. The role of importance of sorghum to the livelihoods of the poor: Implications for improved utilization - findings of rural quantitative farm survey. Report of N R C S - NRI-NCAP-ICRISAT collaborative project on 'Factors affecting the utilization of sorghum in India'. Hyderabad, India: National Research Centre for Sorghum. 98 pp.

Dayakar Rao B, Suryaprakash S, Usha Rani A and Patil SJ. 2003. Development of national database on rainfed sorghum, pearl millet and finger millet for research planning and policy making. N A T P project RNPS-6. Terminal report. Hyderabad, India: National Research Centre for Sorghum. 214 pp.

FAO. 2003. C r o p production statistics, (www.faostat.org) Rome, Italy: FAO.

Government of India. 2002. Agricultural statistics at a glance. N e w D e l h i , India: M i n i s t r y of Agriculture, Government of India. G o w d a C L L and Ramakrishna A. (eds.) 1996. Collaborative research in Asia: needs and opportunities. Summary proceedings of the C L A N Country Coordinators' Steering C o m m i t t e e Meeting, 4 - 6 Dec 1995, I C R I S A T Asia Center, India. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 128 pp. Gowda C L L and Stenhouse JW. (eds.) 1993. Collaborative sorghum research in Asia: report of the Asian Sorghum Researchers' Consultative Meeting, 2 7 - 2 9 September 1993, I C R I S A T Center, India. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 76 pp.

Hall AJ and Yoganand B. (eds.) 2000. Sorghum utilization and the livelihoods of the poor in India: summary proceedings of a workshop, 4-5 February 1999, ICRISAT, Patancheru, India. Patancheru 502 324, Andhra Pradesh, India: Socioeconomics and Policy Program, International Crops Research Institute for the Semi-Arid Tropics. 92 pp.

40 Hash C T . 1996. ICRISAT's pearl millet research in Asia. Pages 73-74 in Collaborative research in Asia: needs and opportunities. Summary proceedings of the C L A N Country Coordinators' Steering C o m m i t t e e Meeting, 4-6 Dec 1995, ICR1SAT Asia Center, India ( G o w d a C L L and Ramakrishna A, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Kaur Gurpreet and Kaur Tejinder. 2002. A study on coarse cereals in India. Indian Journal of Agricultural Economics 59(3) :386.

Kelley TG and Parthasarathy Rao P. 1993. Production and research environment for sorghum and millet in Asia. Economics G r o u p Progress Report 114. Patancheru 502 324, Andhra Pradesh, India: Resource Management Program, International Crops Research Institute for the Semi-Arid Tropics. 17 pp.

Kumar P. 1998. Food demand and supply projection in India. Agricultural Economics Policy Paper 9 8 - 0 1 . N e w D e l h i , India: Indian Agricultural Research Institute.

Marsland N and Parthasarathy Rao P. 1999. Marketing of rainy- and postrainy-season sorghum in Andhra Pradesh, Karnataka and Maharashtra. Working Paper Series no. 1. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 44 pp.

NRCS. 1998. Vision 2020, Perspective Plan. Hyderabad, India: N R CS.

Swaminathan MS and Sinha SK. (eds.) 1986. Global aspects of food production. O x f o r d , U K : Tycooly International.

41 Sorghum and Pearl Millet: Health Foods and Industrial Products in Developed Countries

JA Dahlberg1, JP Wilson2 and T Snyder1

Abstract Sorghum and pearl millet are important staples to millions of people worldwide. The use of these cereals in the developed world has been primarily restricted to animal feed and little work has been done to evaluate them in industrial food systems. Recent work has suggested that these cereals possess unique characteristics that have both nutritional and functional properties that lend themselves to the development of healthy, nutritious foods. Both cereals are gluten- free, have unique phenolic compounds, which are being identified as having medicinal properties and contain proteins and starch characteristics that lend themselves to functional food uses that may impact health. In Africa and Asia, these cereals have been used in traditional food products, but now their use in industrial settings is being explored. Both developed and developing countries have similar problems in using these two crops for high-end food systems. These problems form the foundation that keeps the 'technology bridge' from collapsing as research is moved to market development. These foundations are stable, reliable sources of relatively inexpensive high quality grain and new market development in Africa and Asia. Without these basic requirements, development of new food markets for sorghum or pearl millet will be extremely difficult.

S o r g h u m (Sorghum bicolor) a n d p e a r l m i l l e t (Pennisetum glaucum) are t h e m a j o r cereal crops t h r o u g h o u t t h e w o r l d . I n 2 0 0 2 , 4 2 . 1 m i l l i o n h a o f s o r g h u m w e r e h a r v e s t e d w o r l d w i d e , w i t h a t o t a l p r o d u c t i o n o f 55.3 m i l l i o n t . A f r i c a , I n d i a a n d t h e U n i t e d States are t h e largest p r o d u c e r s o f s o r g h u m r e p r e s e n t i n g a p p r o x i m a t e l y 5 4 . 0 % , 2 3 . 5 % a n d 7.2%) o f t h e t o t a l h a r v e s t e d area a n d 3 7 . 8 % , 1 4 . 5 % a n d 1 7 . 5 % o f t h e t o t a l w o r l d p r o d u c t i o n , respectively. T h e average p r o d u c t i v i t y o f s o r g h u m i s a p p r o x i m a t e l y 3 , 1 8 1 k g h a - 1 i n t h e U n i t e d States, w h i l e i t i s 9 2 0 a n d 8 0 8 k g h a - 1 i n A f r i c a a n d I n d i a , respectively. Pearl m i l l e t i s p l a n t e d o n 3 6 . 9 m i l l i o n h a w o r l d w i d e w i t h a t o t a l p r o d u c t i o n o f 2 5 . 8 m i l l i o n t . A f r i c a represents 5 7 . 0 % o f t h e t o t a l w o r l d p r o d u c t i o n w h i l e I n d i a accounts f o r 3 2 . 5 % . V e r y l i t t l e m i l l e t i s g r o w n f o r grain i n t h e U n i t e d States. A f r i c a a n d I n d i a p r o d u c e 8 3 . 0 % o f t h e m i l l e t s c o n s u m e d w o r l d w i d e , w h i l e t h e U n i t e d States p r o d u c e s o n l y 0.3 m i l l i o n t ( F A O 2 0 0 3 ) .

1. National Grain Sorghum Producers, PO Box 5309, Lubbock, Texas 79408, USA. 2. USDA-ARS, Coastal Plain Experiment Station, PO Box 748, Tifton, Georgia 31793, USA.

42 In most developed countries, both sorghum and millet, p rimarily pearl m i l l e t , have been used as animal feed. Pearl m i l l e t is g r o wn primarily for forage in t h e U n i t e d States, t h o u g h it is beginning to be used as a component in poultry rations. Sorghum grain has traditionally been used in feed rations for beef and dairy cattle, poultry, pork and sheep, while sorghum forages are widely used in the beef and dairy industry. S o r g h u m grain can be pelleted, e xtruded, steam-flaked, rolled, cracked and f e d w h o l e ( D o g g e t t 1988, S m i t h and Frederiksen 2000). Sorghum and millets provide an important component to the diets o f m a n y people i n t h e w o r l d i n t h e f o r m o f unleavened breads, b o i led porridge or gruel, m a l t e d beverages, and specialty foods such as p o p p e d grain and beer. Syrup is made from sweet sorghum. Rooney and Waniska (2000] prov ide an excellent r e v i e w of sorghum use in f o o d and industrial utilization; however, these foods are primarily consumed in developing countries. Traditionally, s o r g h u m has been used in unfermented and fermented breads, porridges, couscous, rice (Oryza sativa)- like products, snacks, and malted alcoholic and nonalcoholic beverages. In many cases, the same is true for millet. Andrews and Kumar ( 1 9 9 2 ) , F A O (1995) a n d M u r t y and K u m a r ( 1 9 9 5 ) p r o v i d e excellent reviews o f pearl m i l l e t uses i n f o o d systems, but again these are primarily uses found withi n developing countries. Recently, interest in both sorghum and millet in high -end food products, especially i n h e a l t h f o o d m a r k e t s , has b e g u n i n regions o f the world that have traditionally not used these grains in human food systems. Japan has taken the lead i n d e v e l o p i n g snack-food p r o d u c t s using s o r g h u m , a n d interest in sorghum's 'gluten-free' properties has developed a dema nd for high quality f o o d s o r g h u m s w i t h i n t h e U n i t e d States. T h e pros a n d cons o f creating f o o d markets for sorghum and millet primarily in the United States a n d also i n o t h e r d e v e l o p e d c o u n t r i e s are discussed.

Grain characteristics of sorghum and pearl millet for use in food products

Sorghum and millets in the developed countries have bee n used for animal feed a n d t h e r e f o r e t h e r e has been l i t t l e b r e e d i n g w o r k t o develop these grains f o r h i g h - v a l u e f o o d uses. G e n e s have b e e n i n c o r p o r a t e d i n h y b r i d s and lines t h a t m a k e use o f l i g h t c o l o r e d grain a n d g l u m e s t h a t r e d u c e t h e a m o u n t o f staining and increase quality of the grain enabling th e development of acceptable food products. In 2003, approximately 8100 ha of food-grade sorghums were planted in the United States. Food-grade sorghums are defined as types having white grain with both tan plan t and glume

43 characteristics. The National Grain Sorghum Producers ( N G S P ) , Texas, U S A have d e v e l o p e d a p r o g r a m t o assist i n t h e i d e n t i t y p r e s e r v a t i o n o f these grains. Caryopses o f p e a r l m i l l e t a n d s o r g h u m consist o f t h r e e a n a t o m i c a l l y d i s t i n c t c o m p o n e n t s , t h e p e r i c a r p , e n d o s p e r m a n d g e r m . T h o u g h p e a r l m i l l e t tends t o b e a p p r o x i m a t e l y o n e - t h i r d t h e size o f s o r g h u m , t h e p r o p o r t i o n o f g e r m a n d b r a n t e n d t o b e greater (Table 1). C h e m i c a l a n d a m i n o a c i d c o m p o s i t i o n o f b o t h s o r g h u m a n d p e a r l m i l l e t are o u t l i n e d i n Table 2 .

Table 1. Caryopsis makeup of sorghum and pearl millet.

Description Sorghum Pearl millet

Endosperm (%) 84.2 75.0 Germ (%) 9.4 17.0 Pericarp (%) 6.5 8.0

Source: Andrews and Kumar (1992), Waniska and Rooney (2000).

Table 2. Chemical composition and essential amino acid composition of sorghum and pearl millet.

Composition Sorghum Pearl millet

Chemical composition (%) Protein 11.0 14.5 (7.3-15.6)1 (8.6-19.4) Fiber 2.7 2.0 (1.2-6.6) (1.4-7.3) Lipid 3.2 5.1 (0.5-5.2) (1.5-6.8) A s h 1.8 2.0 (1.1-4.5) (1.6-3.6) Starch 70.8 71.6 (55.6-75.2) (63.1-78.5) Essential amino acids (%) Lysine 2.2 3.0 Threonine 3.3 3.6 Valine 5.4 3.9 Methionine 1.4 2.3 Isoleucine 4.1 4.6 Leucine 14.7 9.6 Phenylalanine 5.0 5.5

1. Range values are given in parentheses. Source: Andrews and Kumar (1992), Sema-Saldivar and Rooney (1995), Waniska and Rooney (2000).

44 Both grains develop in 'open' panicles and this enviro n m e n t i s m o r e favorable f o r f u n g i t h a t p r o d u c e l o w levels o f r e g u l a t e d and non-regulated mycotoxins (for a greater review of mycotoxins, see CA S T 2 0 0 3 ) . B o t h aflatoxin and fumonisin can be major issues in maize (Zea mays), b u t are typically not serious issues in either sorghum or in pea r l m i l l e t (Table 3 ) . Storage f u n g i can d e v e l o p i n grain t h a t i s i m p r o p e r l y h a ndled and storage practices are important in preventing the deterioration o f grain quality. S o r g h u m and p e a r l m i l l e t grains are small a n d t h i s has been perceived as a p r o b l e m f o r t h e i r use i n f o o d p r o d u c t s w i t h i n t h e U n i t e d States. However, extensive research has s h o w n t h a t b o t h cereals can be u s e d in a w i d e range of processing technologies that lends itself to food produ c t s . A n d r e w s and K u m a r ( 1 9 9 2 ) a n d Rooney a n d W a n i s k a ( 2 0 0 0 ) p r o v i d e e x c e l l e n t r e v i e w s o f the grain characteristics of sorghum and pearl millet and how they fit into processing technologies. Because b o t h cereals t e n d t o b e g r o w n u n d e r m a r g i n a l c o n ditions and w i t h l i t t l e i n p u t , v a r i a b i l i t y w i t h i n t h e crops d u e t o t h e environment leads to a w i d e range o f q u a l i t y o f t h e g r a i n . T h e d e f i n i t i o n o f ' high grain quality' depends upon the characteristics considered to be desirable. I n t h e A f r i c a n context, the subsistence crop, which provides food for t h e h o u s e h o l d can

Table 3. Results of a s s a y s for m y c o t o x i n s in pearl millet grain produced in the s o u t h e a s t e r n United States. Maximum Preharvest levels in crops Mycotoxin levels after preharvest grown side-by-side2 high moisture storage3 1 levels (PPb) (PPb) Mycotoxin (PPb) Maize Millet Initial Final Aflatoxin 290 0-564 0-21 290 1750 Fumonisin 240 0-80,000 0-250 0 0 Zearalenone 170 0 400 Deoxynivalenol 10 400 400 Nivalenol 420 400 400 Moniliformin 184 0 0-200 11 11 Beauvaricin 1044 0-118 0-1000 2190 2190

1. Data from 1990-93, 1996-98, 2000-01. 2. Evaluation conducted over 13 planting dates in 2000 and 2001. 3. Grain stored at approximately 22% moisture for 1 month. Common fungi in high moisture grain were Aspergillus glaucus, A. candidus, A, niger and A. flaws. Grain was stable for several months when treated with either propionic acid or ammonium propionate at 1 to 1.5%. Source: Wilson et al. (1993,1995, 2000, 2002), DM Wilson, University of Georgia, College of Agricultural and Environmental Sciences, Tifton, Georgia, USA (personal communication).

45 d i f f e r f r o m t h e cash c r o p s o l d t o i n d u s t r i a l processors. The small holder subsistence farmer often uses low-yielding 'traditiona l ' varieties w i t h preferred food and taste qualities. The grain is extrem ely hard and resists insects i n storage, a n d c a n s t o r e w e l l f o r years w h i l e m a i ntaining seed viability. Storage problems are more common when farm e r s a d o p t h i g h e r yielding varieties that tend to have softer endosperms , w h i c h are m o r e susceptible to insect and mold infestation (FAO 2002). Food-grade quality varieties that have hard, white, round grain would be s uitable for industrial processing. T h e l a c k o f a r e l i a b l e , c o n s i s t e n t s u p p l y o f g r a i n f o r c o m m e r c i a l a n d i n d u s t r i a l f o o d uses has b e e n t h e biggest obstacle t o greater use o f s o r g h u m a n d m i l l e t i n f o o d systems.

Health factors in sorghum and pearl millet food products

S o r g h u m a n d p e a r l m i l l e t c o u l d f i n d a s i g n i f i c a n t n i c h e i n t h e n u t r i t i o n a l foods market in developed countries. Unique health food s t h a t have h i g h levels o f i n s o l u b l e d i e t a r y fiber, p h y t a t e s a n d p h y t o c h e m i c a l s c o u l d b e m a d e from sorghums with high levels of catechins, flavonoid s, phytates and harder t o digest p r o t e i n s . T a n n i n s o r g h u m s c o n t a i n h i g h levels o f a n t i o x i d a n t s a n d may have anticancer properties (Chung et al. 1998). Phe n o l s i n s o m e sorghums range from 4.1 to 20.9 mg g- 1 (dry weight basis) while the condensed tannins (catechin equivalents) range from 0 t o 36.8 mg g-1. C o n v e r t e d t o a d r y w e i g h t basis, b l u e b e r r i e s (V a c c i n i u m spp) have 3.4 to 2 4 . 2 m g g- 1 of phenols (Heinonen et al. 1998). Thus, the concentr a t i o n o f p h e n o l s i n s o m e s o r g h u m s i s c o m p a r a b l e t o o r h i g h e r t h a n t h a t o f blueberries. Phenolic compounds, especially flavonoid s, have been found to inhibit tumor development (Huang and Ferraro 1992). S ome grain sorghums have been found to contain these useful compounds (Shah idi and Naczk 1992). Polyphenols and tannins are found in pearl mill e t ; h o w e v e r , l i t t l e w o r k has b e e n d o n e i n U S A t o e v a l u a t e t h e m . S r i p r i y a e t al. (1996) reported p h e n o l i c c o n t e n t s o f 5 1 . 4 a n d 4 3 . 1 m g 1 0 0 g - 1 dry weight of pearl millet and sorghum, respectively. Further research is needed, bu t g i v e n t h e values r e p o r t e d b y t h e s e a u t h o r s p e a r l m i l l e t w o u l d s e e m t o have e x c e l l e n t levels o f antioxidant compounds. T h e p h e n o l i c c o m p o u n d s , f l a v o n o i d s a n d t a n n i n s are c o n c e ntrated in the pericarp and testa, which can be abrasively milled to produce ingredients

46 providing health benefits. Dry milling using decortic ation separates the pericarp from the endosperm, which concentrates the phenols 4- t o 7-fold in the bran fractions. Brans of several tannin-containing sorghums decorticated 10-15% had 140-180 mg catechin equivalents g- 1 (tannin) and 53-72 gallic acid equivalents g - 1 (phenolic compounds). White sorghum bran and wheat b ran were less than 10% of these values (Awika 2000). LW Rooney and coworke rs, Texas A & M University, Texas, USA have identified and analyzed gallic, protocatechuic, p- hydroxybenzoic, vanillic, caffeic, p-coumaric, ferulic a n d c i n n a m i c acids in s o r g h u m ( H a h n e t al. 1 9 8 4 ) . Eight o t h e r p h e n o l i c acids w e r e u n i d e n t i f i e d . Oxygen radical absorbance capacity (ORAC) of bran fro m t h e b r o w n , tannin-containing sorghum was the highest [410 umol T rolox equivalents (TE) g -1] . O R A C values o f t h e b r o w n a n d b l a c k s o r g h u m brans w e r e h i g h e r t h a n t h o s e of b l u eb erries (Tables 4 a n d 5 ) . W h i t e s o r g h u m a n d w h e a t (Triticum aestivum) b r a n h a d t h e l o w e s t O R A C values d u e t o t h e i r l o w levels of phenols.

Table 4. L e v e l s of p h e n o l s a n d fiber in b r a n a n d o t h e r p r o d ucts (dry matter basis).

Dietary Phenols Tannins Anthocyanins ORAC1 fiber -1 1 -1 -1 1 Bran/Component (mg g ) (mg g- ) (abs g ml ) (umol TE g- ) (%) Red wheat 3 - - 31 48 White sorghum 4 - - 27 41 Brown sorghum 107 175 31 401 45 Black sorghum 22 10 520 114 43 Blueberries 26 20 50 - - Berries2 1-22 - - 63-282 -

1. ORAC = Oxygen radical absorbance capacity; TE = Trolox equivalents. 2. Source: Prior et al. (1998).

T a b l e 5 . P h e n o l i c c o m p o u n d s a n d dietary fiber a d d e d t o b r e a d .

Bran Phenols Tannins ORAC2 Bran1 (g 56 g-1) (mg 56g-1) (mg 56g-1) (umol TE 56g-1) Red wheat 5.4 14 149 White sorghum 5.4 18 123 Brown sorghum 5.4 504 828 1900 Black sorghum 5.4 106 47 539

1. Calculated from bran data; 15% bran loaf-1 of bread. 2. ORAC = Oxygen radical absorbance capacity; TE = Trolox equivalents.

47 Positive c o r r e l a t i o n s w e r e o b s e r v e d b e t w e e n t h e O R A C values a n d tannins (r = 0 . 8 9 ) a n d p h e n o l s (r = 0 . 9 4 ) in t h e s o r g h u m brans. T h e h i g h levels of d i e t a r y f i b e r i n these fractions c o u l d o f f e r a d d i t i o n a l b e nefits. Dietary fiber levels i n t h e b r a n fractions ranged b e t w e e n 3 6 . 1 a n d 4 2 . 9 % o n d r y w e i g h t basis. W h e a t b r a n h a d a d i e t a r y f i b e r value o f 4 7 . 6 % . S o r g h u m b r a n fractions have p r o d u c e d b r e a d w i t h e x c e l l e n t q u a l i t y c o n t a i n i n g h i g h levels o f p h e n o l s w i t h g o o d a n t i o x i d a n t values. S o r g h u m brans c o u l d be e x p l o i t e d as a source of p h y t o n u t r i e n t s in foods. S u b s t i t u t i n g 1 5 % o f each o f t h e f o u r brans f o r w h e a t f l o u r r e s u l t e d i n breads w i t h s i m i l a r physical p r o p e r t i e s : specific v o l u m e o f 4 . 2 - 4 . 6 c m3 g-1, s i m i l a r l o a f appearance (shape), c o m p r e s s i o n f o r c e of 3 . 8 - 5 . 1 N e w t o n s at 2 h, m o i s t u r e of 3 9 . 6 - 4 0 . 0 % a n d an a d d i t i o n a l 1.9-2.3 g d i e t a r y f i b e r p e r 56 g serving. T h e s e t r e a t m e n t s w e r e selected a s t h e o p t i m u m levels f o r a d d i t i o n o f t h e b r a n because o f t h e i r h i g h e r d i e t a r y f i b e r and p h e n o l i c c o n t e n t w h i l e s t i l l m a i n t a i n i n g desirable a t t r i b u t e s . A d d i n g 1 5 % b r o w n o r b l a c k s o r g h u m b r a n t o bread yields brownish, dark-colored loaves, without the a d d i t i o n o f c a r a m e l color, a n d adds significant levels o f p h e n o l i c c o m p o u n d s a n d d i e t a r y fiber. S u c h breads have a r i c h flavor a n d dense t e x t u r e l i k e m a n y c ommercially available specialty breads, i n c l u d i n g d a r k r y e (Secale cereale) a n d p u m p e r n i c k e l breads, a n d c o u l d b e m a r k e t e d a s n u t r a c e u t i c a l p r o d u c t s . Nutraceuticals is the fastest growing segment of the fo o d i n d u s t r y (Sloan 1 9 9 9 ) . T h e m a r k e t i s e x p e c t e d t o r e m a i n strong a n d stable. Clearly, w i t h t h e increasing d e m a n d for a n t i o x i d a n t r i c h foods a n d p r o d u c t s , n e w sources are b o u n d to play an i m p o r t a n t role in t h i s m a r k e t . Specialty s o r g h u m brans are a p r o m i s i n g source o f these c o m p o u n d s , given t h e i r excellent c o l o r i n g a b i l i t y a n d antioxidant activity. The brown, tannin sorghums are undesirable for a n i m a l feeds and h u m a n foods w h e r e t h e y reduce t h e n u t r i t i o n a l value b y 1 5 t o 3 0 % d e p e n d i n g u p o n a n i m a l species and feeding a n d processing m e thods (Rooney and Pflugfelder 1 9 8 6 ) . P h y t a t e a n d dietary fiber levels in s o r g h u m pericarp are h i g h a s w e l l ; t h u s i n a d d i t i o n t o antioxidants, t h e sorghums c o u l d reduce caloric value o f foods a n d a d d d i e t a r y fiber. Research c o n d u c t e d o n pearl m i l l e t w o u l d also suggest t h a t this grain w o u l d have similar properties as s o r g h u m a n d c o u l d b e f u r t h e r e x p l o i t e d i n these n e w m a r k e t s w i t h a d d i t i o n a l research. T h e starches i n s o r g h u m are released m o r e s l o w l y t h a n those i n o t h e r cereals ( K l o p f e n s t e i n a n d H o s e n e y 1 9 9 5 ) , a n d so it is considered beneficial to diabetics ( m o r e t h a n 3 0 % o f A m e r i c a n s have diabetic related p r o b l e m s ) . Pearl m i l l e t has a v e r y h i g h -amylase activity, about 10 times that of wheat. Malto s e

48 a n d D - r i b o s e are t h e p r e d o m i n a n t sugars i n t h e flour, w h i l e fructose a n d glucose levels are l o w ( O s h o d i e t al. 1 9 9 9 ) . Foods w i t h a l o w g l y c a e m i c i n d e x are useful t o manage m a t u r i t y - o n s e t diabetes, b y i m p r o v i n g m e t a b o l i c c o n t r o l o f b l o o d pressure a n d plasma l o w - d e n s i t y l i p o p r o t e i n c h o l e s t e r o l levels d u e t o t h e less p r o n o u n c e d i n s u l i n response ( A s p 1 9 9 6 ) . H a m a k e r et al. ( 1 9 8 7 ) r e p o r t e d t h a t s o r g h u m proteins are significantly less digestible t h a n o t h e r cereal proteins; however, this has t h e p o t e n t i a l of being a h e a l t h b e n e f i t for certain dietary groups. P r o t e i n q u a l i t y is p r i m a r i l y a f u n c t i o n o f its a m i n o a c i d c o m p o s i t i o n . G r a i n proteins are classified according t o t h e i r solubility characteristics: albumin (water soluble), g l o b u l i n (soluble in d i l u t e salt s o l u t i o n ) , p r o l a m i n (soluble i n alcohol) and g l u t e l i n (extractable i n d i l u t e alkali or acid solutions). A l b u m i n + g l o b u l i n levels are higher in pearl m i l l e t t h a n s o r g h u m . M i l l e t contains f e w e r cross-linked p r o l a m i n s , w h i c h m a y b e a n a d d i t i o n a l factor c o n t r i b u t i n g t o higher d i g e s t i b i l i t y o f pearl m i l l e t proteins. G l u t e n i n t o l e r a n t persons (celiacs) allergic to g l i a d i n , a p r o l a m i n specific t o w h e a t a n d some o t h e r c o m m o n grains, c o m p r i s e a p p r o x i m a t e l y 5 0 0 , 0 0 0 p e o p l e i n t h e U n i t e d States o r 1 i n every 5 4 1 p e o p l e (based o n U S Census B u r e a u r e s i d e n t p o p u l a t i o n e s t i m a t e , 1 9 9 8 ) . S o r g h u m a n d p e a r l m i l l e t are gluten-free; h o w e v e r , m o r e i n f o r m a t i o n i s r e q u i r e d t o d e m o n s t r a t e t h a t t h e y can b e used i n t h e diets o f celiacs. Celiac disease (CD) is a malabsorptive disorder, present in genetically p r e d i s p o s e d i n d i v i d u a l s , t h a t i s t h e result o f i n g e s t i o n o f g l u t e n p r o t e i n s i n w h e a t , o r r e l a t e d p r o t e i n s f r o m barley ( H o r d e u m v u l g a r e ) , rye, a n d possibly oats ( A v e n a s a t i v a ) (Trier 1 9 8 3 , M a r s h 1 9 9 2 , Feighery 1 9 9 9). Exposure to these p r o t e i n s i n C D patients causes damage t o t h e s m a l l i n t estine, thereby l i m i t i n g t h e a b i l i t y t o absorb n u t r i e n t s , ie, m a l a b s o r p t i o n . S y m p t o m s o f C D are variable i n i n t e n s i t y a n d all s y m p t o m s are n o t present i n all patients (Trier 1 9 8 3 , M a r s h 1 9 9 2 , M a k i a n d C o l l i n 1997, Feighery 1 9 9 9 ) . S y m p t o m s i n c l u d e , diarrhea, pale ( o f t e n gray c o l o r e d ) stools, enlarged abdomen, physical wasting, anorexia, vomiting, anemia, loss of appetite, fatigue, infertility, anxiety, depression, osteoporosis a n d weakness. T h e prevalence has b e e n e s t i m a t e d at ~ 1:5000 in U S A ; h o w e v e r , a n u m b e r of researchers feel t h a t t h i s i s t o o l o w a n d t h a t m a n y cases o f C D g o u n d i a g n o s e d ( F a l c h u k 1 9 9 9 ) . S o m e e s t i m a t e rates as h i g h as 1:200 (Feighery 1 9 9 9 ) . C D i s a r e a c t i o n t o g l u t e n p r o t e i n s (Kasarda 1 9 8 1 , M a r s h 1 9 9 2 ) . G l u t e n i s a c o m p l e x m i x t u r e c o m p o s e d p r i m a r i l y o f t w o classes o f t h e w h e a t storage p r o t e i n s , gliadins a n d g l u t e n i n s (Kasarda 1 9 8 1 ) . G l i a d i n s are generally

49 r e c o g n i z e d a s t h e p r i m a r y agent responsible for t h e d e v e l o p e m e n t o f C D i n genetically predisposed people (Cornell 1996). Most of the research into the t o x i c effects o f gliadins has b e e n d o n e w i t h a f r a c t i o n o f -gliadins, called A-gliadin, either intact or digested into small peptide s ( C o r n e l l 1 9 9 6 , Silano a n d D e V i n c e n z i 1 9 9 9 ) . H o w e v e r , all classes o f gliadins are r e p o r t e d a s t o x i c (Cornell 1996, Silano and De Vincenzi 1999). Proteins from rye, barley and oats produce toxic effects a l t h o u g h oats are n o t a s m u c h o f a p r o b l e m (Kasarda 1 9 8 1 , M a r s h 1 9 9 2 ) . Rice a n d m a i z e p r o t e i n s d o n o t cause t o x i c effects i n C D p a t i e n t s (Feighery 1 9 9 9 ) . L i t t l e w o r k has b e e n d o n e o n C D w i t h e i t h e r s o r g h u m o r p e a r l m i l l e t . S o r g h u m i s m o r e closely r e l a t e d t o maize, w h i c h has n o t b e e n r e p o r t ed to cause CD when consumed by celiacs. Because maize has been found to be non-toxic to CD p a t i e n t s , i t i s reasonable t o e x p e c t t h a t s o r g h u m w o u l d also be safe. Prolamins f r o m r i c e , m a i z e , s o r g h u m a n d m i l l e t d i d n o t cross react to monoclonal antibodies to A-gliadin from wheat, indicating structu ral dissimilarity (Ellis et al. 1998). Unfortunately, the specific type of millet was n o t i n d i c a t e d . Pearl m i l l e t i s l i k e l y t o b e n o n - t o x i c ; h o w e v e r , pennisetins, t h e class o f p r o l a m i n s i n p e a r l m i l l e t , d i f f e r f r o m t h e s o m e w h a t h o m o l o g o u s p r o l a m i n zeins i n m a i z e a n d k a f i r i n s i n s o r g h u m ( M a r c e l l i n o e t al. 2 0 0 2 ) . I f s o r g hum and pearl millet w e r e f o u n d t o b e safe f o r C D , t h e y w o u l d re p res e n t n e w a n d s o m e w h a t n o v e l f o o d i t e m s t h a t c o u l d b e u s e d f o r C D p a t i e n t s . M o r e c o m p l e t e characterization of sorghum and pearl millet proteins a nd their functionality would provide useful information for marketing celiac foods.

Processing and food product technologies and shelf life

Extensive research information is available on the processing and product development of sorghum. Rooney and Waniska (2000) prov ide an excellent r e v i e w o f t h e c u r r e n t state o f research o n s o r g h u m f o r use in food products. T h e i r basic c o n c l u s i o n i s t h a t s o r g h u m can b e u s e d i n s i m i l a r fashion, w i t h slight modifications, as other grains in production of food products through processing technologies that are currently available. Research and technologies are n o t l i m i t i n g factors i n t h e p r o d u c t i o n o f these p r o d u c t s . A n d r e w s a n d K u m a r ( 1 9 9 2 ) also present a s i m i l a r survey o f t h e c u r r e n t technologies available f o r use i n p e a r l m i l l e t . Research i s s o m e w h a t l imited on this cereal b u t i t c o u l d b e u s e d i n various f o o d p r o d u c t s w i t h a d d i t i o n a l research. Because b o t h grains w o u l d be t y p i c a l l y u s e d as a w h o l e grain, t h e r e is p o t e n t i a l f o r

50 some s h e l f l i f e p r o b l e m s , especially i n p e a rl m i l l e t (because o f its h i g h p r o p o r t i o n o f g e r m w h i c h i s r i c h i n oils), t h o u g h w i t h p r o p e r processing, h a n d l i n g and storage these s h o u l d be s o m e w h a t i r r e l e v a n t issues. A p p l i c a t i o n s o f c u r r e n t technologies t o t h e p r o d u c t i o n o f high-value snacks m a d e f r o m s o r g h u m are c u r r e n t l y u n d e r w a y i n Japan a n d several s n a c k - f o o d p r o d u c t s are available in t h e m a r k e t . Technology is n o t l i m i t i n g use o f e i t h e r s o r g h u m o r p e a rl m i l l e t ; i t i s t h e availability o f a high quality, reliable s u p p l y o f these grains t h a t i s t h e m a j o r l i m i t i n g factor t o use i n f o o d p r o d u c t i o n systems.

Price structure and commercialization: The current sorghum market as a case study

G r a i n s o r g h u m m a r k e t i n g fits n o o r d i n a r y m a r k e t i n g m o d e l w i t h i n t h e U n i t e d States. T r a d i t i o n a l l y o n l y 8 t o 9 % o f t h e c r o p carries over t o t h e n e x t m a r k e t i n g year. T h e r e are t w o p r i m a r y reasons for t h i s l o w carryover. First, grain s o r g h u m as a c o m m o d i t y moves in and o u t of feeding channels as a r e p l a c e m e n t for maize i n m o s t m a r k e t s d u e t o l o w e r p r i c e . Second, t h e t r a d i t i o n a l m a r k e t for grain s o r g h u m is a r e p l a c e m e n t starch source m a r k e t . M a r k e t s f o r starch i n c l u d e b i n d e r s f o r m a k i n g w a l l b o a r d a n d for e t h a n o l p r o d u c t i o n . I n t h e U n i t e d States, one o f t h e fastest g r o w i n g areas o f n e w u t i l i z a t i o n i s i n t h e p r o d u c t i o n o f e t h a n o l , w h i c h n o w uses a p p r o x i m a t e l y 1 2 % o f t h e t o t a l s o r g h u m grain p r o d u c t i o n i n t h e c o u n t r y . Prices o f s o r g h u m i n c e n t r a l U S A and t h e G u l f Coast o f t e n e q u a l o r e x c e e d maize p r i c i n g . I n t h e m a j o r s o r g h u m b e l t , large v o l u m e e t h a n o l c o n s u m e r s a n d p e t f o o d m a n u f a c t u r e r s boost t h e grain s o r g h u m p r i c e . I n regions w i t h o u t access t o e i t h e r e t h a n o l o r o t h e r h i g h v o l u m e starch c o n s u m i n g m a n u f a c t u r e r s , such as in t h e Texas Panhandle, grain s o r g h u m prices f a l l m a n y t i m e s t o 3 0 o r 4 0 cents b e l o w maize. T h e r e are n e w v a l u e - a d d e d m a r k e t s d e v e l o p i n g f o r grain s o r g h u m e x p o r t s . Japan a n d M e x i c o have raised t h e awareness t h a t grain s o r g h u m benefits f r o m specific m a r k e t a b l e traits. M e x i c o i m p o r t s varieties preferably h a v i n g h i g h p r o t e i n a n d starch, p r i m a r i l y f o r use i n p o u l t r y p r o d u c t i o n . Japan has b e g u n t o i m p o r t h i g h q u a l i t y food-grade ( w h i t e seeded, t a n p l a n t , tan g l u m e ) s o r g h u m f o r its h i g h p r o t e i n c o n t e n t , c o l o r and f l e x i b i l i t y o f use i n s n a c k - f o o d systems. These t r a i t s usually confer higher value t o s o r g h u m t h a t t y p i c a l l y b r i n g i n s i g n i f i c a n t l y greater m a r k e t prices.

51 The challenge to new markets

Traditionally, sorghum has been viewed within the Unit ed States as simply a r e p l a c e m e n t for m a i z e i n b o t h i n d u s t r i a l u t i l i z a t i o n and feed. Those that have worked to move sorghum into new markets have been stymi ed by what can be termed as 'death valley' (Fig. 1). Fundamental research o n u n i q u e uses o f sorghum has taken place within the United States for several years ( R o o n e y a n d W a n i s k a 2 0 0 0 ) . B u t , t h e d i f f i c u l t y has b e e n m o v i n g p r o d u c t s f r o m experimental consideration to actual market developme nt. We have lacked t h e ' t e c h n o l o g y transfer b r i d g e ' t o cross over o u r research findings into market opportunities (Fig. 1). The need is for the foundation o f t h i s ' b r i d g e ' t o b e b u i l t s o t h a t p r o d u c t s can m o v e f r o m d e v e l o p m e n t t o p r o d u c t i o n . I n m a n y ways, these are t h e same h u r d l e s t h a t c o u n t r i e s i n t h e developing world face in introducing new food products to consumers: Is t h e r e a d e m a n d ? W h o w i l l m a r k e t it? W h o w i l l produce it? Is there a

Death valley

Private

Public

Technology transfer

Fundamental Commercial research implementation

Figure 1. Technology bridge that fills the gap between basic research and commercialization (Source: Peter Johnsen, USDA-ARS-NCAUR, USA).

52 consistent s u p p l y o f h i g h - q u a l i t y p r o d u c t ? A n o t h e r t e r m t h a t has b e e n c o i n e d f o r such a d i l e m m a is ' t h e c h i c k e n or t h e egg' s y n d r o m e . T h i s has b e e n one of t h e m a j o r s t u m b l i n g b l o c k s t o get s o r g h u m i n t o t h e f o o d m a r k e t i n t h e U n i t e d States. In t h e s o r g h u m e x a m p l e , t h e egg c o u l d be q u a l i f i e d as supply, w h i l e t h e c h i c k e n w o u l d b e a n e w c o n s u m e r p r o d u c t . D r Rooney m a y have been one o f t h e first f o o d researchers i n s o r g h u m i n t h e U n i t e d States t o r u n i n t o these issues w h e n h e t r i e d g e t t i n g p r i v a t e i n d u s t r y i n v o l v e d i n f o o d d e v e l o p m e n t using s o r g h u m . H e h a d d e v e l o p e d t h e ' c h i c k e n ' , a f o o d p r o d u c t , b u t o n l y h a d a l i m i t e d s u p p l y o f t h e 'egg' i n t h i s case, a h i g h q u a l i t y food-grade s o r g h u m n e e d e d by i n d u s t r y to d e v e l o p t h e p r o d u c t . W i t h o u t t h e t w o , t h e interest i n a m a r k e t a b l e p r o d u c t was e f f e c t i v e l y shelved. T h i s has b e e n t h e d i f f i c u l t y i n t r y i n g t o generate interest i n f o o d p r o d u c t s m a d e f r o m s o r g h u m .

New market development in pearl millet

I n t r a d i t i o n a l regions, t h e area d e d i c a t e d t o pearl m i l l e t c u l t i v a t i o n i s decreasing, as is per capita c o n s u m p t i o n of t h e grain. Factors i n f l u e n c i n g these t r e n d s i n c l u d e t h e stigma o f p o v e r t y associated w i t h its c o nsumption, time a n d energy r e q u i r e d t o prepare m i l l e t - b a s e d foods, i n a d e q u a t e i n f r a s t r u c t u r e for storage, marketing, and transportation, poor processing t e c h n i q u e s , c o m p e t i t i o n w i t h alternative crops a n d uses for l a n d resources, and availability o f l o w - c o s t , subsidized alternative p r o d u c t s ( F A O 1 9 9 5 , P ionetti 1997). T h e r e d u c t i o n in acreage p l a n t e d to m i l l e t is to be e x p e c t e d as diets are d i v e r s i f i e d . G i v e n t h e e c o n o m i c and s o c i o - c u l t u r a l constraints, i t w o u l d b e naive to suggest t h a t caloric a n d n u t r i e n t needs are b e i n g satisfied by c u r r e n t diets i n m a n y A f r i c a n c o u n t r i e s , b u t t h e overall decreasing d e m a n d f o r pearl m i l l e t suggests t h a t greater d i v e r s i t y i s b e i n g i n t r o d u c e d i n t o diets. T h i s p h e n o m e n o n m a y r e f l e c t a d e v e l o p i n g t r e n d f o r t h e role o f pearl m i l l e t changing f r o m a staple to a d i e t a r y c o m p o n e n t , w h i c h is desirable f r o m t h e n u t r i t i o n a l s t a n d p o i n t o f a p o p u l a t i o n . A l t h o u g h t r a d i t i o n a l m a r k e t s f o r t h e grain are s l o w l y e r o d i n g , t h e y w i l l c o n t i n u e t o p l a y a k e y r o l e i n d e f i n i n g research a n d m a r k e t i n g plans f o r t h e foreseeable future. Convenience-formulations of traditi o n a l p r o d u c t s s h o u l d find significant markets in traditional areas. The size o f t h i s p o r t i o n o f t h e e t h n i c - f o o d m a r k e t i n t h e U n i t e d States w i l l r e m a i n l i m i t e d . M a n y o f t h e t r a d i t i o n a l p r o d u c t s such as porridges, f e r m e n t e d breads a n d opaque beers

53 w i l l have o n l y l i m i t e d penetration into US markets. Research into convenience formulations of traditional products should be balanced with new product development for non-traditional regions. Expanding the total market share in traditional regions can b e accomplished by substituting pearl millet for wheat in traditional wheat- based products. Pearl millet flour can substitute for u p to 10 to 20% of w h e a t f l o u r i n ' w h o l e - g r a i n ' breads. T h e s u b s t i t u t i o n rate is limited by the effects o n p r o d u c t c o l o r a n d l o a f density. C o m p o s i t e f l o u r s can b e u s e d b u t are usually not desired. If composite flours are produc e d , fats i n t h e n o n - w h e a t c o m p o n e n t m a y r e d u c e s h e l f l i f e . S u b s t i t u t i o n strategies are a v a l i d approach to temporarily support local economies by incr easing market o u t l e t s f o r a l o c a l l y - p r o d u c e d g r a i n , b u t its v a l u e as a l ong-term strategy is questionable for well-established food products. As a marketing strategy for t h e U n i t e d States, s u b s t i t u t i o n o f p e a r l m i l l e t f o r one o f t h e m o r e c o m m o n commodity grains is unlikely to be successful, since pr oduct quality is often i n f e r i o r t o c u r r e n t standards a n d t h e p r a c t i c e does n o t contribute to s u p p o r t i n g l o c a l e c o n o m i e s . To integrate pearl millet into the US market, new produ c t s w i l l b e r e q u i r e d a n d research s h o u l d focus o n t h e i r d e v e l o p m e n t . Based u p o n p o p u l a r i t y o f specific foods i n t h e U n i t e d States, p r o d u cts that are likely to be successful m i g h t i n c l u d e pearl m i l l e t a s a c o m p o n e n t o f m ixed whole-grain breads, crackers a n d p r e t z e l - l i k e snacks, or use as a rice a l t e r n a t i v e . U s e in tortillas, dry and creamed cereals, and as a component in specialty beers w o u l d b e a secondary c o n s i d e r a t i o n . U s e o f p e a r l m i l l e t i n p r o d u c t s s h o u l d b e highlighted, and an effort should be made to redefine its r o l e f r o m t h a t o f a staple crop in subsistence agriculture to that of a hea lth item with superior nutritional qualities. Adoption of pearl millet into US markets will require p r o d u c t s t h a t are formulated for convenience and taste. Because of the w idespread practice of fortification, nutritional qualities and health benef i t s o f t h e grain are a n advantage f r o m a m a r k e t i n g s t a n d p o i n t , b u t are less c r i t i c a l f r o m a d i e t a r y s t a n d p o i n t . T h e n o v e l t y o f t h e use o f p e a r l m i l l e t w i l l permit some entry into t h e h e a l t h f o o d m a r k e t o f t h e U n i t e d States, b u t e x p a n d e d use in the processed f o o d i n d u s t r y w i l l depend upon its flavor and/or functionality in formulations. Unless pearl millet represents a substantial c o m p o n e n t o f t h e diet, its nutritional qualities are relevant not in con trast to, but in context with o t h e r d i e t a r y i t e m s .

54 Specific c o m b i n a t i o n s w i t h o t h e r p r o d u c t s s h o u l d b e i d e n t i f i e d t h a t m a k e p e a rl m i l l e t a desirable i n g r e d i e n t in f o r m u l a t i o n s or recipes. Its c o n t r i b u t i o n t o p r o d u c t flavor w i l l m o s t l i k e l y b e a result o f factors associated w i t h its i n h e r e n t l y h i g h levels o f l i p i d s a n d / o r p r o t e i n s i n c o m b i n a t i o n w i t h o t h e r i n g r e d i e n t s . I t w i l l b e i m p o r t a n t t o d e t e r m i n e t h e q u a l i t y a n d s t a b i l i t y o f flavor w h e n b l e n d e d w i t h o t h e r grains, meats, f r u i t s a n d vegetables i n c o n v e n i e n c e f o r m u l a t i o n s . A s has b e e n d e m o n s t r a t e d i n t h e s o r g h u m i n d u s t r y , p r o d u c t d e v e l o p m e n t i s u n l i k e l y u n t i l food-grade pearl m i l l e t becomes r e a d i l y a n d c o n s i s t e n t l y available.

Future efforts

N e w food-grade sorghums a n d specialty sorghums are c u r r e n t l y available i n t h e U S m a r k e t a n d can b e used f o r f o o d and for t h e n u t r i t i o n a n d h e a l t h f o o d specialty m a r k e t s . M a r k e t s i n n o r t h c e n t r a l U S A c u r r e n t l y sell grain sorghum-based p r o d u c t s w h i l e m a k i n g v e r y significant h e a l t h claims a t t r i b u t a b l e t o t h e benefits o f w h o l e grain s o r g h u m . K e e p i n g i n l i n e w i t h these research efforts and t h e d e m a n d f o r a t t r i b u t e specific m a r keting, NGSP has u n d e r t a k e n t h e task o f i d e n t i f y i n g and b u i l d i n g n e w m a r k e t s i n t o t h e ' h u m a n c o n s u m p t i o n ' f o o d chain, specialty m e d i c a l m a r k e t s , p e t f o o d applications and e x p a n d e d a n i m a l feed m a r k e t s . T o f u r t h e r d i f f e r e n t i a t e q u a l i t y grain, t h e ' N G S P C e r t i f i e d S o r g h u m ' p r o g r a m was d e v e l o p e d t o p r o v i d e t h e i n f r a s t r u c t u r e necessary t o b u i l d c o n f i d e n c e in grain s o r g h u m as a ' n o n - G M O ' (genetically m o d i f i e d o r g a n i s m ) , gluten-free, i d e n t i t y preserved f o o d source for h u m a n c o n sumption. It p r o v i d e s t r a i t specific m a r k e t i n g for m e d i c i n e and f u n c t i o n a l foods u n d e r o u r ' S p e c i a l t y ' label a n d w i l l h e l p facilitate n e w m a r k e t s for i n t e r n a l use a n d e x p o r t t r a d e by p r o v i d i n g a traceable source for grain s o r g h u m u n d e r t h e ' C e r t i f i e d S o r g h u m F o o d ' label. B y b u i l d i n g t h i s p r o g r a m , N G S P believes i t w i l l reestablish t h e d i f f e r e n t varieties o f grain s o r g h u m i n t o n e w a n d e x i s t i n g g r o w t h o r i e n t e d m a r k e t i n g channels. T h e p r o g r a m does n o t c e r t i f y seed. I t does, h o w e v e r , p r o v i d e a p p r o v e d varieties for d e l i v e r y i n t o a p p r o v e d m a r k e t i n g channels. T h i s w i l l a l l o w t h e p r o d u c e r t o sell his o r her grain a n d have a reasonable e x p e c t a t i o n of gaining a p r o f i t in a n e w or e x p a n d e d m a r k e t . T h e advent o f t h e ' N G S P C e r t i f i e d S o r g h u m ' p r o g r a m and t h e d e v e l o p m e n t o f o t h e r value-added programs s h o u l d ensure t h e confidence o f t h e seed industry, marketers, m a n u f a c t u r e r s and consumers o f grain s o r g h u m .

55 W e c o n t i n u e t o w o r k o n solving t h e ' q u a n t i t y ' issue and w o r k o n r e i n t r o d u c i n g s o r g h u m t o those i n t h e f o o d market who w i l l d e v e l o p f o o d p r o d u c t s . W i t h t h e q u a n t i t y a n d q u a l i t y issues being resolved, grain s o r g h u m can be t r a d e d i n t o m a r k e t s w h e r e specific f o o d q u a l i t y sorghums are r e q u i r e d . N o w , a n East A f r i c a n c o u n t r y can request ' f o o d sorghums' a n d be assured of a specific set of q u a l i t y characteristics a n d an adequate supply f o r delivery. T h i s is h o w research and m a r k e t i n g grain s o r g h u m has w o r k e d t o g e t h e r t o c o n s t r uct the 'technology b r i d g e ' t h a t spans t h e gap b e t w e e n research a n d m a r k e t d e v e l o p m e n t . I n A f r i c a a n d A s i a , s i m i l a r issues h i n d e r t h e d e v e l o p m e n t of profitable s o r g h u m a n d p e a r l m i l l e t p r o d u c t s . F o o d processors i n A f r i c a a n d A s i a face p r o b l e m s o f l i m i t e d p r o d u c t i o n o f reliable, h i g h q u a l i t y s o r g h u m o r pearl m i l l e t t h a t are c r i t i c a l t o t h e d e v e l o p m e n t o f n e w f o o d m a r k e t s . T h e n h o w w i l l A f r i c a a n d A s i a b u i l d t h e necessary f o u n d a t i o n t o ensure t he 'technology b r i d g e ' does n o t collapse a n d p r e v e n t t h e d e v e l o p m e n t o f o t h e r markets? A serious issue in A f r i c a is t h a t m a n y countries lack a d i v e r s i f i e d m a r k e t t h a t w o u l d h e l p stabilize t h e m a r k e t a n d p r o v i d e a consistent and stable grain p r i c e . W i t h o u t t h e d e v e l o p m e n t of alternative m a r k e t s , such as a feed m a r k e t , t h e p r i c e o f s o r g h u m a n d pearl m i l l e t w i l l c o n t i n u a l l y b e affected b y w i l d price f l u c t u a t i o n s t h a t w i l l h i n d e r t h e a b i l i t y o f a f o o d c o m p a n y to produce a product t h a t i s viable i n t h e m a r k e t . C r e a t i o n o f n e w m a r k e t s o t h e r t h a n f o r h u m a n consumption w i l l p r o v i d e avenues for selling the commodities in times when q u a l i t y is an issue, a n d w i l l h e l p t o stabilize p r i c i n g . D e v e l o p m e n t o f these m a r k e t s w i l l r e q u i r e storage and transportation infrastructure that ensures ready supplies o f grain. W i t h o u t these basic r e q u i r e m e n t s , d e v e l o p m e n t o f these n e w f o o d m a r k e t s for s o r g h u m o r pearl m i l l e t w i l l b e e x t r e m e l y d i f f i c u l t .

References Andrews DJ and Kumar K A . 1992. Pearl m i l l e t for food, feed, and forage. Advances in A g r o n o m y 4 8 : 8 9 - 1 3 9 . Asp N G . 1996. Dietary carbohydrate: classification by chemistry and physiology. Journal of Food Chemistry 7:9-14.

Awika J M . 2000. Sorghum phenols as antioxidants. MS thesis, Texas A & M University, College Station, Texas, U S A . 118 pp.

Chung KT, Wong TY, Wei C I , H u a n g YW and Lin Y. 1998. Tannins and human health: a review. Critical Reviews in Food Science and N u t r i t i o n 38:421-464.

CAST. 2003. Mycotoxins: Risks in plant, animal, and human systems. Task Force Report # 139. Ames, Iowa, U S A : CAST. 199 pp.

56 Cornell H J . 1996. Celiac disease: A review of the causative agents and their possible mechanisms of action. A m i n o Acids 10:1-19.

Doggett H. 1988. Sorghum. N e w York, U S A : John Wiley & Sons, Inc.

Ellis H J , Rosen-Bronson S, O'Reilly N and Ciclitira PJ. 1998. Measurement of gluten using a monoclonal antibody to a coeliac toxic peptide of A gliadin. G u t 43:190-195.

FAO. 1995. Sorghum and millets in human nutrition. F A O Food and N u t r i t i o n Series N o . 27. Rome, Italy: FAO.

FAO. 2002. Sorghum and millet: Post-harvest operations. In Information N e t w o r k on Post-harvest Operations, (http//www.fao.org/inpho) Rome, Italy: FAO.

FAO. 2003. FAOSTAT database, (http://apps.fao.org/default.htm) Rome, Italy: FAO. Falchuk Z M . 1999. The hows and whys of celiac disease. Lifeline 27:1-4.

Feighery C. 1999. Coeliac disease. British Medical Journal 319:236-239.

H a h n D H , Rooney LW and Earp CF. 1984. Tannins and phenols of sorghum. Cereal Foods W o r l d 29(12):776-779.

Hamaker BR, Kirleis AW, Butler L G , Axtell JD and Mertz ET. 1987. Improving the in vitro protein digestibility of sorghum w i t h reducing agents. Proceedings of the National Academy of Sciences, U S A 84:626-628.

Heinonen M, Rein D, Satu-Gracia M T , Huang SW, German JB and Frankel EN. 1998. Effect of protein on the antioxidant activity of phenolic compounds in a lecithin-liposome oxidation system. Journal of Agricultural and Food Chemistry 46:917-922. H u a n g MT and Ferraro T. 1992. Phenolic-compounds in food and cancer prevention. A C S Symposium Series 507:8-34.

Kasarda D D . 1981. Toxic proteins and peptides in celiac disease: Relations to cereal genetics. Pages 201-216 in Food, nutrition, and evolution: Food as an environmental factor in the genesis of human variability (Walcher D and Kretchmer N, eds.). N e w York, U S A : Masson Publishing.

Klopfenstein CF and Hoseney R C . 1995. Nutritional properties of sorghum and millets. Pages 125-168 in Sorghum and millets: Chemistry and technology (Dendy DAV, ed.). St. Paul, Minnesota, U S A : American Association of Cereal Chemists.

M a k i M and Collin P. 1997. Coeliac disease. Lancet 349:1755-1759.

Marcellino L, Junior CB and Gander ES. 2002. Characterization of pearl millet prolamins. Protein and Peptide Letters 9:237-244. Marsh M N . 1992. G l u t e n , major histocompatability complex, and the small intestine. Gastroenterology 102:330-354.

57 M u r t y DS and Kumar K A . 1995. Traditional uses of sorghum and millets. Pages 1 8 5 - 222 in Sorghum and millets: Chemistry and technology (Dendy D A Y ed.). St. Paul, Minnesota, U S A : American Association of Cereal Chemists.

Oshodi A A , Ogungbenle H N and Oladimeji M O . 1999. Chemical composition, nutritionally valuable minerals and functional properties of benniseed (Sesamum radiatum), pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours. International Journal of Food Sciences and N u t r i t i o n 5 0 : 3 2 5 - 3 3 1 .

Pionetti C. 1997. Coarse cereals retreating in dryland agriculture in South India:The case of millet and sorghum in Karnataka and Andhra Pradesh. (http://www.globenet.org/bede/interface/encyclo/fiches/6560dph.htm)

Prior R L , Cao G, M a r t i n A, Sofic E, McEwens J, O'Brien C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G and Mainland C M . 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural and Food Chemistry 46:2686-2693.

Rooney LW and Pflugfelder RL. 1986. Factors affecting starch digestibility w i t h special emphasis on sorghum and corn. Journal of A n i m a l Science 63:1607-1623.

Rooney LW and Waniska R D . 2000. Sorghum food and industrial utilization. Pages 6 8 9 - 7 2 9 in Sorghum: Origin, history, technology, and production (Smith CW and Frederiksen RA, eds.). N e w York, U S A : John Wiley & Sons, Inc.

Serna-Saldivar S and Rooney LW. 1995. Structure and chemistry of sorghum and millet. Pages 69-124 in Sorghum and millets: Chemistry and technology (Dendy DAV, ed.). St. Paul, Minnesota, U S A : American Association of Cereal Chemists.

Shahidi F and Naczk M. 1992. An overview of the phenolics of canola and rapeseed - Chemical, sensory and nutritional significance. Journal of the American O i l Chemistry Society 69:917-924. Silano M and De Vincenzi M. 1999. In vitro screening of food peptides toxic for coeliac and other gluten-sensitive patients: a review. Toxicology 132:99-110. Sloan A E . 1 9 9 9 . Positive eating and problem treating: nutraceuticals and cereal-based foods in the 2 1s t century. Cereal Foods W o r l d 44(11):746-750. Smith CW and Frederiksen RA. 2000. Sorghum: Origin, history, technology, and production. N e w York, U S A : John Wiley & Sons, Inc. 824 pp.

Sripriya G, Chandrasekharan K, M u r t y VS and Chandra T S . 1996. ESR spectroscopic studies on free radical quenching action of finger millet (Eleusine coracana). Food Chemistry 57(4):537-540. Trier JS. 1983. Celiac sprue. Pages 1050-1069 in Gastrointestinal disease: pathology, diagnosis, and management (Sleisenger MH and Fordtran JS, eds.). Philadelphia,USA: W B . Saunders Company.

58 Waniska RD and Rooney LW. 2000. Structure and chemistry of the sorghum caryopsis. Pages 649-688 in Sorghum: Origin, history, technology, and production (Smith CW and Frederiksen RA, eds.). N e w York, USA: John Wiley & Sons, Inc.

Wilson JP, Casper HH and Wilson D M . 1995. Effect of delayed harvest on contamination of pearl millet grain w i t h mycotoxin producing fungi and mycotoxins. Mycopathologia 132:27-30.

Wilson JP, Hanna W W , Wilson D M , Beaver RW and Casper H H . 1993. Fungal and mycotoxin contamination of pearl millet grain in response to environmental conditions in Georgia. Plant Disease 77:121-124.

Wilson JP, Hanna W W , Wilson DM and C o y A E . 2002. Host-specific differences in preharvest grain infection by toxigenic fungi in dryland pearl millet and corn. Phytopathology 92:S87. Wilson JP, Jurjevic Z, Wilson DM and Casper H. 2000. Fungal and mycotoxin contamination of stored pearl m i l l e t grain. Phytopathology 90:S129.

59 Recent Technologies in Pearl Millet and Sorghum Processing and Food Product Development

S Sehgal, A Kawatra and G Singh1

Abstract Pearl millet and sorghum are highly valuable in semi-arid regions because of their short growing season and higher productivity under heat and drought conditions. Both pearl millet and sorghum grains are nutritionally comparable and even superior to major cereals with respect to protein, energy, vitamins and minerals. They are also a rich source of dietary fiber, phytochemicals and micronutrients. In spite of huge production, consumption of sorghum and pearl millet is restricted to the poorer section of population. Utilization of pearl millet and sorghum can be increased by various processing treatments including blanching, malting, dry heating, acid treatment, popping, etc. All these treatments decrease the level of antinutrients, improve digestibility and increase shelf life. Pearl millet and sorghum can be utilized for development of various food products. These include traditional products (porridges, flat breads, chips, bhakri, suhali, khichri, dalia, shakkerpara, etc), baked products, extruded products, health products, weaning and supplementary foods. Products developed from processed flour have longer shelf life and higher starch and protein digestibility than products prepared from unprocessed flour. Utilization of pearl millet and sorghum for novel product development will help in diversifying their use which will be beneficial for human health and increase profits to farmers. However, there is a need to popularize the new products developed from sorghum and pearl millet.

M i l l e t s are h i g h l y valuable small-seeded c r o p species i n d i g e n o u s t o m a n y areas o f t h e w o r l d . T h e y can g r o w u n d e r l o w soil f e r t i l i t y , l o w m o i s t u r e a n d h o t e n v i r o n m e n t a l c o n d i t i o n s . T h e y are valuable i n t h e s e m i - a r i d regions because o f t h e i r s h o r t g r o w i n g season a n d h i g h p r o d u c t i v i t y u n d e r heat a n d d r o u g h t conditions. M i l l e t grains are n u t r i t i o n a l l y c o m p a r a b l e a n d e v e n s u p e r i o r t o m a j o r cereals w i t h re s p e c t t o p r o t e i n , energy, v i t a m i n s a n d m i n e r a l s . Besides t h e y are a r i c h source o f d i e t a r y fiber, p h y t o c h e m i c a l s a n d m i c r o n u t r i e n t s a n d h e n c e , t h e y are r i g h t l y t e r m e d a s ' n u t r i - c e r e a l s ' . H o w e v e r, the utilization of

1. College of H o m e Science, C C S Haryana Agricultural University, Hisar 125 001, Haryana, India.

60 m i l l e t s f o r f o o d i s s t i l l m o s t l y c o n f i n e d t o t h e t r a d i t i o n a l c o n s u m e r s a n d population of lower socioeconomic strata, partly due to the non-availability o f these grains i n ready-to-use o r ready-to-eat f o r m s ( M a l l e s h i a n d D e s i k a c h a r 1 9 8 5 ) . S o r g h u m (Sorghum bicolor) and pearl millet (Pennisetum glaucutn) have a place o f p r o m i n e n c e because o f t h e i r w i d e s p r e a d c u l t i v a tion in different parts o f t h e globe a n d large-scale f o o d uses and feed value. O t h e r m i l l e t s g r o w n in I n d i a are finger m i l l e t (Eleusine coracana), foxtail millet (Setaria italica), k o d o m i l l e t (Paspalum scrobiculatum), proso millet (Panicum miliaceum), little millet (Panicum miliare) and barnyard millet (Echinochloa frumentacea). Both sorghum and pearl millet are important cereals in t h e d i e t o f m a n y p e o p l e i n A f r i c a a n d I n d i a . S o r g h u m r a n k e d f i f t h w i t h 6 9 . 1 m i llion t total p r o d u c t i o n i n 1 9 9 6 . Pearl m i l l e t i s one o f t h e m o s t p o p u lar crops in India and d u r i n g 1 9 9 9 its p r o d u c t i o n was 8.1 m i l l i o n t ( F A O 2 0 0 0 ) .

Structure and physical properties

Pearl m i l l e t grain is a caryopsis a n d t h e p e r i c a r p is c o m p letely fused to the seed. T h e k e r n e l i s c o m p o s e d o f p e r i c a r p , e n d o s p e r m a n d g e r m , w h i c h comprises 8.4, 7 5 . 1 a n d 1 6 . 5 % o f t o t a l k e r n e l w e i g h t , r e s p e c t i v e l y ( A b d e l r a h m a n et al. 1 9 8 4 ) . Pearl m i l l e t has one to t w o layers thick epicarp, a m e s o c a r p t h a t varies i n thickness d u e t o genetic factors and an endocarp layer t h a t contains cross a n d t u b e cells. Pearl millet varieties from the world collection have more variation in physical characteristics than any other millet (McDon ough and Rooney 1 9 8 5 ) . K e r n e l c o l o r ranges f r o m w h i t e , gray, y e l l o w , g r e e n t o b l a c k . K e r n e l shape has f i v e m a j o r classes: o b o v a t e , h e x a g o n a l , lanceolate, g l o b u l a r a n d elliptical. T h e s o r g h u m k e r n e l is a n a k e d caryopsis a n d consists of t h r e e m a i n anatomical parts: pericarp (outer layer), endosperm (storage tissue) and germ (embryo), which generally account for 6, 84 and 10% of the seed mass, respectively. Sorghum is the only cereal grain known t o have starch in the m e s o c a r p layer o f p e r i c a r p . T h e e n d o s p e r m , c o m p o s e d o f aleurone layer, peripheral, corneous and floury areas is the main storage tissue. The 1000- seed mass o f p e a r l m i l l e t varieties ranged f r o m 6.75 t o 8.76 g whereas t h a t o f sorghum varieties ranged from 19.0 to 28.5 g (Sehgal et al. 2 0 0 2 ) .

61 Nutrient composition of pearl millet and sorghum

T h e n u t r i e n t c o m p o s i t i o n o f grains i s a f f e c t e d b y b o t h e n v i r o n m e n t a n d genetics and varies widely among species.

Pearl millet

I n pearl m i l l e t t h e percentage o f c r u d e p r o t e i n ranges f r o m 7.02 t o 1 3 . 6 7 , fat f r o m 4 . 0 t o 7.8, c r u d e f i b e r f r o m 0.5 t o 4 . 0 a n d ash c o n t ent from 0.25 to 2.54 as r e p o r t e d in various a n a l y t i c a l studies (Table 1). Pearl m i l l e t grain b r a n , w h i c h represents a b o u t 8 % o f grain i s r i c h i n n o n - p r o t e i n nitrogen; non- protein nitrogen ranges from 39.02 to 73.0 mg 100g- 1 and true protein content f r o m 9.9 t o 1 2 . 2 % ( A g g a r w a l 1 9 9 2 ) . The total quantity of proteins and their amino acid co mposition is i m p o r t a n t f o r b e t t e r n u t r i t i o n a l q u a l i t y . T h e a m i n o a c i d p r ofile of pearl millet is b e t t e r t h a n t h a t of s o r g h u m and m a i z e (Zea mays) a n d is c o m p a r a b l e to

Table 1. Proximate composition (g 100 g-1) of pearl millet grains.

Moisture Protein Fat Ash Fiber Reference

- 10.6 - - - Andrews (1990) - 10.5-11.1 4.0-6.3 1.5-1.8 0.8-1.2 Saxena et al. (1992) - 10.4 6.0 1.6 - Aggarwal(1992) - - - - 1.5 Navita and Sumathi (1992) - 9.4 6.5 2.0 - Kumar and Chauhan (1993) 10.7 15.4 5.2 1.7 - Almeida-Dominguez et al. (1993b) - 12.7 4.3 1.5 - Hadimani and Malleshi (1993) 10.3 17.9 6.7 1.8 - Serna-Saldivar et al. (1994) - - 6.1-7.5 - - Dalvi (1995) - 8.1-13.9 3.4-7.4 1.1-2.4 - Hadimani et al. (1995) - 12.3 5.3 2.4 - Bashay(1996) 7.4 - 8.4 8.7-10.8 6.0-6.4 - - Elkhalifa and Singh (1996) 11.30-11.49 11.3-13.2 7.2-7.8 1.9-2.1 1.64-1.99 Archana(1997) 11.26-11.37 12.8-13.1 6.2-7.4 1.9-2.1 1.74-1.95 Rekha(1997) - 8.5-15.1 2.7-7.1 1.6-2.4 2.6-4.0 Abdalla et al. (1998) - 16.9 5.1 1.5 1.6 Malleshi and Klopfenstein (1998) - - 6.2 - - Banger etal. (1999) - 11.4 - - - Oshodi et al. (1999) 7.13 12.2 4.5 0.25 0.54 Akubor and Obiegbuna (1999) 8.1-9.26 10.9-13.3 5.8-7.1 1.4-2.0 0.8-1.1 Malik (1999) 8.78 10.36 7.63 2.03 1.26 Poonam (2002) 10.12-13.30 8.83-13.67 4.42-6.90 1.74-2.54 1.30-2.50 Sehgal et al. (2002)

62 w h e a t ( T r i t i c u m aestivum), barley (Hordeum vulgare) and rice (O r y z a sativa) (Ejeta e t al. 1 9 8 7 , H a d i m a n i e t al. 1 9 9 5 , A b d a l l a e t al. 1 9 9 8 ) . T h e e n d o s p e r m p r o t e i n f r a c t i o n o f pearl m i l l e t contains l o w level o f lysine (1.4 g 1 0 0 g - 1 p r o t e i n ) whereas t h e g e r m contains 5.16 g lOOg"1 p r o t e i n . T h e a m i n o a c i d c o m p o s i t i o n o f p r o t e i n i s also i n f l u e n c e d b y relative a m o u n t o f specific p r o t e i n class present i n t o t a l p r o t e i n . I t was f o u n d t h a t p r o l a m i n e s a n d glutelins a c c o u n t f o r a b o u t 6 0 % o f t o t a l p r o t e i n . A l b u m i n a n d g l o b u l i n o n a n average a c c o u n t f o r 1 5 a n d 9 % p r o t e i n , respectively. T h e a l b u m i n a n d g l o b u l i n have b e e n f o u n d t o b e r i c h i n basic a m i n o acids, ie, lysine, arginine, histidine, c y s t i n e a n d m e t h i o n i n e . T h e p r o l a m i n e s o f p e a r l m i l l e t are h i g h i n g l u t a m i c acid, p r o l i n e a n d l e u c i n e . C a r b o h y d r a t e i n pearl m i l l e t i s c o m p a r a b l e w i t h o t h e r cereals. Total c a r b o h y d r a t e ranges f r o m 5 9 . 8 t o 7 7 . 3 % ( S a w h n e y a n d N a i k 1 9 6 9 , Rekha 1 9 9 7 ) . S o l u b l e c a r b o h y d r a t e i n pearl m i l l e t ranges f r o m 1.40 t o 2 . 7 8 % . A b o u t 6 3 % of soluble c a r b o h y d r a t e is sucrose a n d 2 9 % is raffinose. O t h e r carbohydrates include stachyose, glucose and fructose. Total sugar in pearl m i l l e t ranges f r o m 2.55 t o 2 . 9 3 % , n o n - r e d u c i n g sugar f r o m 2.15 t o 2 . 5 7 % a n d r e d u c i n g sugar f r o m 0 . 3 4 t o 0 . 3 9 % (Rekha 1 9 9 7 , P o o n a m 2 0 0 2 ) . Starch is t h e major c o m p o n e n t in pearl m i l l e t and constitutes about 5 6 - 6 5 % o f t o t a l carbohydrate. W i d e variation i n t h e starch content (53.0 t o 70.3%) among different varieties was also recorded by H a d i m a n i et al. ( 1 995). Raghuwanshi et al. (1999) r e p o r t e d amylose content in t h e range of 28.8 to 31.9%. T h e m i n e r a l c o n t e n t i n p e a r l m i l l e t i s h i g h e r t h a n o t h e r cereals. Sodium, m a g n e s i u m a n d c o p p e r i n p e a r l m i l l e t are r e p o r t e d t o b e a t par w i t h w h e a t whereas p o t a s s i u m , p h o s p h o r u s a n d i r o n are higher t h a n i n w heat. Calcium c o n t e n t i n pearl m i l l e t varieties ranges f r o m 10.0 t o 8 0 . 0 m g 1 0 0 g - 1 a n d p h o s p h o r u s f r o m 185 t o 9 9 0 m g 1 0 0 g - 1 grain. I r o n c o n t e n t i n p e a rl m i l l e t a s r e p o r t e d i n various studies varies f r o m 3.0 t o 18.0 m g 1 0 0 g - 1 (Table 2).

Antinutritional factors Pearl m i l l e t has h i g h n u t r i e n t c o n t e n t b u t t h e b i o a v a i l a b i l i t y i s l o w d u e t o t h e presence of c e r t a i n a n t i n u t r i t i o n a l factors. P h y t a t e is a n a t u r a l l y o c c u r r i n g organic c o m p o u n d f o u n d i n seeds (seed coat a n d g e r m ) , roots a n d t u b e r ( M a h g o u b a n d Elhag 1 9 9 8 ) . I t f o r m s i n s o l u b l e o r nearly soluble c o m p o u n d s with mineral elements including calcium, iron, magnesiu m a n d zinc. M o s t o f t h e p h o s p h o r u s i n cereals i s r e p o r t e d t o b e present i n t h e f o r m o f p h y t i c a c i d w h i c h i s n o t available t o h u m a n system. Phytates i n t e r a c t w i t h p r o t e i n

63 T a b l e 2 . M i n e r a l c o m p o s i t i o n ( m g 100g-1) of pearl millet grains.

Phosphorus Calcium Iron Zinc Copper Manganese Reference

185.0-363.0 13.0-52.0 4.0-5.83 1.0-6.6 0.6-21.2 0.2-1.8 Jambunathan and Subramanian (1988) 302 51.4 16.3 2.67 1.21 1.53 Alpana(1989) - 50.0 18.0 2.7 Khetarpaul and Chauhan (1991) 290 54.8 11.8 4.09 Aggarwal(1992) 272-326 27-46 - - - - Saxenaetal.(1992) - 51.4 16.3 2.67 Kumar and Chauhan (1993) 300.5 - 3.00 - - - Hadimani and Malleshi (1993) 355 79.0 - _ Serna-Saldivar et al. (1994) 349.0-376.7 45.7-50.0 8.9-9.7 2.7-2.9 1.11-1.23 1.16-1.20 Archana (1997) 364.0-385.6 44.5-49.7 8.9-9.4 2.7-2.8 1.16-1.23 1.16-1.23 Rekha(1997) 450.0-990.0 10.0-60.0 7.0-18.0 5.3-7.0 1.0-1.8 1.8-2.3 Abdallaetal. (1998) - 19.9-22.5 8.3-9.9 2.8-3.2 0.9-1.0 Malik (1999) 348.40 39.60 8.16 2.85 0.99 1.20 Poonam (2002) reducing their availability. Phytic acid inhibits the a c t i v i t y o f protease, - amylase a n d t r y p s i n a n d t h u s reduces starch u t i l i z a t i o n . P h y t a t e c o n t e n t i n d i f f e r e n t pearl m i l l e t varieties a s r e p o r t e d b y various w o r k e r s ranges f r o m 3 5 4 t o 8 5 7 m g 1 0 0 g - 1 (Aggarwal 1992, Kumar and Chauhan 1993, Rekha 1997, A b d a l l a e t al. 1 9 9 8 , M a l i k 1 9 9 9 , P o o n a m 2 0 0 2 ) . T h e p h y t a t e level i n p l a n t m a t e r i a l is f o u n d to decrease d u r i n g c e r t a i n f o o d processing operations such as m i l l i n g , g e r m i n a t i o n , f e r m e n t a t i o n a n d heat t r e a t m e n t ( K a d l a g e t al. 1 9 9 5 , C h a t u r v e d i a n d Sarojini 1 9 9 6 , M a h g o u b a n d Elhag 1 9 9 8 ) . P o l y p h e n o l s o c c u r m o s t l y i n p e r i c a r p o f seed. P o l y p h e n o l s are m a j o r a n t i n u t r i t i o n a l factors because t h e y i n h i b i t activities o f several h y d r o l y t i c enzymes such as trypsin, chymotrypsin, amylases, cellulases a n d galactosidase ( S i n g h 1 9 8 4 ) a n d also f o r m t a n n i n p r o t e i n c o mplexes, thus l i m i t i n g p r o t e i n a n d starch u t i l i z a t i o n ( T h o m p s o n a n d Y o o n 1 9 8 4 , Pawar a n d Parlikar 1 9 9 0 ) . Phenols also r e d u c e availability o f m i n e r a l s a n d v i t a m i n s ( S i n g h a n d N a i n a w a t e e 1 9 9 9 ) . V a r i o u s w o r k e r s r e p o r t e d w i d e v a r i a t i o n i n c o n c e n t r a t i o n o f p o l y p h e n o l i n pe a rl m i l l e t w h i c h ranged f r o m 2 8 5 t o 7 9 0 m g 100g- 1 (Khetarpaul and Chauhan 1991, Aggarwal 1992, Chaudhar y 1 9 9 3 , Rekha 1 9 9 7 , M a l i k 1 9 9 9 , P o o n a m 2 0 0 2 ) .

In vitro digestibility Pearl m i l l e t has b e e n f o u n d t o have l o w p r o t e i n a n d s t a r c h d i g e s t i b i l i t y w h i c h i s a t t r i b u t e d t o t h e presence o f a n t i n u t r i t i o n a l factors i n grain. P r o t e i n a n d

64 starch d i g e s t i b i l i t y i s i n h i b i t e d b y p o l y p h e n o l and p h y t i c a c i d i n s o l u b l e c o m p l e x e s w i t h amylase a n d -glucosidase are f o r m e d b y p o l y p h e n o l s , and p r o t e i n m i n e r a l c o m p l e x e s are f o r m e d b y p h y t i c acid. P r o t e i n d i g e s t i b i l i t y i n pearl m i l l e t varieties ranges f r o m 54.2 t o 5 9 . 2 % ( A l p a n a 1 9 8 9 , K u m a r a n d C h a u h a n 1 9 9 3 ) . D i f f e r e n t studies o n pearl m i l l e t have s h o w n t h a t p r o t e i n d i g e s t i b i l i t y ranges f r o m 4 9 . 9 t o 6 1 . 9 % (Rekha 1 9 9 7 ) , 5 7 . 9 t o 6 0 . 4 % ( M a l i k 1 9 9 9 ) a n d 5 5 . 7 3 % ( P o o n a m 2 0 0 2 ) . S t a r c h d i g e s t i b i l i t y o f pearl m i l l e t has been r e p o r t e d t o range f r o m 1 2 t o 18.7 m g m a l t o s e released per g a n d was f o u n d t o b e negatively c o r r e l a t e d w i t h phytic acid content (Aggarwal 1992, Archana 1997, Poona m 2 0 0 2 ) .

Sorghum

S t a r c h i s a m a j o r grain c o m p o n e n t i n s o r g h u m f o l l o w e d b y p r o t e i n . M o s t o f t h e s o r g h u m starch contains 7 0 - 8 0 % b r a n c h e d a m y l o p e c t i n a n d 2 0 - 3 0 % a m y l o s e . W a x y o r g l u t i n o u s s o r g h u m varieties c o n t a i n starch t h a t i s 1 0 0 % amylopectin. C h e m i c a l c o m p o s i t i o n o f s o r g h u m grain was s t u d i e d b y Bach K n u d s e n a n d M u n c k ( 1 9 8 5 ) , Rooney e t al. 1 9 8 6 and Torres-Cepeda e t al. ( 1 9 9 6 ) (Table 3 ) . I n s o r g h u m grain, a p p r o x i m a t e l y 8 0 % o f t h e p r o t e i n i s i n t h e e n d o s p e r m , 1 6 % i n t h e g e r m a n d 1 3 % i n t h e p e r i c a r p (Taylor a n d Schussler 1986). Kafirin, a n a l c o h o l soluble p r o t e i n , comprises 5 0 % o r m o r e o f t h e p r o t e i n . K a f i r i n i s r i c h i n p r o l i n e , aspartic acid a n d g l u t a m i c acid a n d contains l i t t l e lysine. S o r g h u m contains h i g h levels o f i n s o l u b l e fiber w i t h l o w levels o f (3- glucans. M o s t o f t h e c r u d e fiber i s present i n t h e p e r i c a r p a n d e n d o s p e r m c e l l w a l l s . T h e f i b e r i s c o m p o s e d m a i n l y o f cellulose, h e m i c e l l u l o s e and small q u a n t i t i e s o f l i g n i n . S o m e o f t h e h i g h t a n n i n sorghums have higher levels o f d i e t a r y f i b e r because o f c o m p l e x e s b e t w e e n s o r g h u m tannins a n d p r o t e i n s ( B a c h K n u d s e n a n d M u n c k 1 9 8 5 ) .

Constraints to utilization of pearl millet and sorghum

I n spite o f greater availability, l o w cost a n d c o m p a r a t i v e l y g o o d n u t r i t i o n a l value, use o f pearl m i l l e t and s o r g h u m i n f o o d i n d u s t r y i s v e r y l i t t l e . Pearl m i l l e t has r e m a i n e d a f o o d f o r e c o n o m i c a l l y w e a k e r sections (Desikachar 1 9 7 5 ) because o f some constraints t h a t l i m i t its acceptability. The major constraints are gray c o l o r a n d p o o r s h e l f l i f e o f t h e f l o u r . S o r g h u m has fibrous seed coat, c o l o r e d p i g m e n t a n d characteristic astringent flavor.

65 Table 3. Typical composition of sorghum grain1.

Constituent Mean Range Number of samples

Proximate analyses Protein (%) 11.6 8.1-16.8 1463 Ether extract (%) 3.4 1.4-6.2 1462 Crude fiber (%) 2.7 0.4-7.3 1383 Ash (%) 2.2 1.2-7.1 1436 Nitrogen-free extract (%) 79.5 65.3-81.0 1372 Fiber (%) Dietary insoluble 7.2 6.5-7.9 2 Dietary soluble 1.1 1.0-1.2 2 Acid detergent 3.3 2.9-3.6 2

Protein fractionation Prolamine (%) 52.7 39.3-72.9 5 Glutelins (%) 34.4 23.5-45.0 5 Albumins (%) 5.7 1.6-9.2 5 Globulins (%) 7.1 1.9-10.3 5

Essential amino acids (g 100g-1 protein) Lysine 2.1 1.6-2.6 640 Leucine 14.2 10.2-15.4 582 Phenylalanine 5.1 3.8-5.5 582 Valine 5.4 0-5.8 582 Tryptophan 1.0 0.7-1.3 92 Methionine 1.0 0.8-2.0 582 Threonine 3.3 2.4-3.7 582 Histidine 2.1 1.7-2.3 582 Isoleucine 4.1 2.9-4.8 582

1. All values are expressed on dry matter basis. Source: Bach Knudsen and Munck (1985), Rooney et al. (1986).

Rapid development of rancidity and bitterness in the fl o u r has been a m a j o r p r o b l e m i n t h e acceptability and u t i l i z a t i o n o f pearl m i l l e t f l o u r ( K a c e d e t al. 1 9 8 4 ) . Pearl m i l l e t grain can be s t o r e d for longer periods without substantial q u a l i t y alteration i f t h e kernels r e m a i n i n t a c t ( K a c e d e t al. 1984, Kachare a n d C h a v a n 1 9 9 2 ) . H o w e v e r , once t h e grain i s d e c o r t i c a t e d a n d g r o u n d t h e q u a l i t y of flour deteriorates rapidly (Varriano-Marston and Ho s e n e y 1983, R e d d y e t al. 1 9 8 6 ) . B o t h h y d r o l y t i c a n d o x i d a t i v e changes are r e p o r t e d i n t h e l i p i d s o f t h e meal (Lai and Varriano-Marston 1980, Varriano-Marston and Hoseney 1983) r e s u l t i n g i n release o f free f a t t y acid a n d f o r m a t i o n o f peroxides.

66 C h a u h a n e t al. ( 1 9 8 6 ) suggested t h a t t h e degree o f u n s a t u ration in pearl m i l l e t l i p i d s i s one o f t h e m a i n factors responsible f o r development of r a n c i d i t y i n p e a r l m i l l e t f l o u r . O d o r d e v e l o p e d d u r i n g t h e storage o f pearl millet flour is probably due to high fat content, high unsaturated fatty acids, non-occurrence of natural antioxidants and high enzyma tic hydrolytic activities ( H o s e n e y e t al. 1 9 8 1 , K a c e d e t al. 1 9 8 4 , R e ddy e t al. 1 9 8 6 ) . W a t e r soluble p h e n o l i c a n d peroxidase activity, c o n c e n t r a t e d m ostly in germ fraction o f grain appeared t o b e responsible f o r o d o r g e n e r a t i o n in stored pearl millet (Banger et al. 1 9 9 9 ) . Another major constraint for utilization of pearl mill e t i s gray t o y e l l o w green c o l o r o f p e a r l m i l l e t f l o u r w h i c h i s n o t p r e f e r r e d by many consumers (Panwal a n d Pawar 1 9 8 9 ) . Presence o f gray, b r o w n o r greenish p i g m e n t s i n p e a r l m i l l e t l i m i t s its use i n b a k e r y p r o d u c t s ( N a i k a r e et al. 1986). Removal of pigments enhances its acceptability (Panwal and Pawar 1 9 8 9 ) . T h e r e m o v a l o f b r a n c o n t a i n i n g p i g m e n t s t o o b t a i n w h i t e f l o u r i s t h e m a j or objective in pearl millet processing (Naikare et al. 1986). Phenolic pigm ents are easily removed by acidic solution and high temperature during extracti on process (Miean and M o h a m e d 2 0 0 1 ) .

Processing of grain

Various processing treatments like milling, decorticati on, germination, malting, blanching, fermentation and popping improve the nutritional quality a s w e l l a s t h e c o n s u m e r a c c e p t a b i l i t y o f pearl m i l l e t a n d s o r g h u m . Enhancement of nutritive value and shelf life of pearl millet flour depends u p o n t h e grain processing t e c h n i q u e s .

Pearl millet

Milling Millets are normally decorticated and ground with mort ar and pestle prior to use. M o s t m i l l e t s can b e d e c o r t i c a t e d i n rice m i l l s o r o t her modified mills. Millets are also decorticated using abrasive disks in m echanical dehullers and g r o u n d i n t o f l o u r i n h a m m e r m i l l s . Pearl m i l l e t w i t h t h i c k p e r i c a r p i s m o r e easily decorticated than those with thin pericarp. Pearl millet has a tendency t o b e c o m e r a n c i d after b e i n g g r o u n d i n t o flour. A n effective milling operation s h o u l d b e able t o r e m o v e m o s t o f t h e g e r m t o increase s h e lf life of the flour.

67 S t a r c h y i e l d f r o m p e a r l m i l l e t after w e t m i l l i n g i s r e p o r t e d t o b e s i g n i f i c a n t l y l o w e r t h a n t h a t o b t a i n e d f r o m maize o r s o r g h u m. Decortication has b e e n f o u n d t o r e d u c e t h e fat, fiber, ash, c a l c i u m , i r o n , lysine a n d m e t h i o n i n e c o n t e n t , b u t i t i m p r o v e s t h e d i g e s t i b i l i t y o f nutrients. B o o k w a l t e r e t al. ( 1 9 8 7 ) also r e p o r t e d t h a t b o t h processed ( h e a t e d a t 9 7 ° C f o r 2 m i n ) a n d u n p r o c e s s e d m i l l e t w e r e m i l l e d t o 5 0 % a n d 8 0 % e x t r a c t i o n f l o u r s . T h e 8 0 % e x t r a c t i o n f l o u r c o n t a i n e d g e r m fractions, which resulted in much higher protein, lipid, thiamine, ribof lavin, niacin, iron, zinc, available lysine a n d p r o t e i n e f f i c i e n c y r a t i o t h a n 5 0 % e x t r a c t i o n f l o u r . T h e d e c o r t i c a t e d grains c o n t a i n f e w e r p h e n o l i c acids t h a n w h o l e kernels. I n v i t r o p r o t e i n d i g e s t i b i l i t y c o u l d b e increased b y 6 9 . 1 % after d e h u l l i n g t h e grain ( R a m c h a n d r a e t al. 1 9 7 8 ) . G r o u n d m i l l e t storage s t a b i l i t y i s i m p r o v e d b y d r y m i l l i n g processes t h a t r e m o v e t h e m a j o r l i p i d c o n t a i n i n g p o r t i o n s o f g r a i n (ie, t h e g e r m a n d c o v e r i n g layer) from the endosperm (Bookwalter et al. 1987). Dec o r t i c a t i o n o f r a w grains s i g n i f i c a n t l y increases apparent p r o t e i n a n d d r y m a t t e r d i g e s t i b i l i t y . H o w e v e r , d e c o r t i c a t i o n r e s u l t e d i n loss o f p r o t e i n , i n s o l u b l e d i e t a r y fiber, fat, ash, lysine and o t h e r a m i n o acids (Serna-Saldivar et al. 1 994). Debranning reduces t h e p h y t i c acid, amylase i n h i b i t o r s a n d p o l y p h e n o l s a n d t h u s increases t h e d i g e s t i b i l i t y ( S h a r m a a n d K a p o o r 1 9 9 6 , M a l l e s h i a n d K l o p f e n s t e i n 1 9 9 8 ) .

Malting M a l t i n g helps t o i m p r o v e t h e a v a i l a b i l i t y o f n u t r i e n t s , sensory a t t r i b u t e s a n d e x t e n d s t h e s h e l f l i f e . S o r g h u m a n d m i l l e t m a l t s f i n d use as a cereal base f o r l o w d i e t a r y b u l k a n d calorie-dense w e a n i n g f o o d , s u p p l e m e n t a r y foods, h e a l t h foods a n d also a m y l a s e - r i c h foods. M a l t i n g o f pearl m i l l e t grain i s d e s c r i b e d b y C h a t u r v e d i and Sarojini ( 1 9 9 6 ) , Rekha ( 1 9 9 7 ) a n d A r c h a n a ( 1 9 9 7 ) . For m a l t i n g , pearl m i l l e t grains are soaked i n 0 . 1 % f o r m a l d e h y d e s o l u t i o n f o r six h o u r s . A f t e r t h a t aeration i s d o n e f o r t h r e e h o u r s a n d grains are again steeped in fresh f o r m a l d e h y d e s o l u t i o n f o r 1 6 h o u r s . T h e grains are g e r m i n a t e d f o r 12, 2 4 , 3 6 , 4 8 a n d 7 2 hours, d r i e d i n o v e n a n d vegetative g r o w t h i s r e m o v e d b y abrasive a c t i o n . M a l t i n g i m p r o v e s t h e g e r m i n a t i o n of grains in such a w a y as to degrade or m o d i f y t h e e n d o s p e r m w i t h m i n i m a l loss i n grain w e i g h t . I t also helps i n m o b i l i z a t i o n o f seed reserves a n d e l a b o r a t i o n o f t h e a c t i v i t y o f a - a n d amylase, l i p i d s a n d protease. T h e process results i n h i g h e r p r o t e i n e f f i c i e n c y r a t i o a n d b i o a v a i l a b i l i t y o f m i n e r a l s (Rao 1 9 8 7 ) .

68 M a l t i n g o f grains results i n i m p r o v e m e n t o f t o t a l p r o t e i n , fat, ash, c e r t a i n a m i n o acids, t o t a l sugars a n d B g r o u p v i t a m i n s . M a l t i n g causes significant d r y m a t t e r loss i n grain a n d i t i s a t t r i b u t e d t o t h e m e t a b o l i c a c t i v i t y and separation o f vegetative g r o w t h ( C h a t u r v e d i a n d Sarojini 1 9 9 6 ) . O p o k u e t al. ( 1 9 8 1 ) analyzed t h e p e a rl m i l l e t m a l t a n d r e p o r t e d a r e d u c t i o n o f 57, 6 6 , 2 1 , 10, 8 2 and 1 7 % i n m o i s t u r e , l i p i d , ash, c a r b o h y d r a t e , p h y t i c acid and t o t a l c a l c i u m , r e s p e c t i v e l y a n d also significant increase in p r o t e i n , l i g n i n , fiber, soluble c a l c i u m a n d all v i t a m i n s (Table 4 ) . After malting, pearl millet starch is more susceptible t o amylolysis t h a n f o x t a i l m i l l e t starch. T h e g r a i n i s m a l t e d , m i x e d w i t h l e g ume flour and offered a s p o r r i d g e t o infants. T h e m a l t e n z y m e decreases t h e viscosity o f foods a n d i m p r o v e s t h e p a l a t a b i l i t y o f p r o d u c t s f o r c h i l d r e n . Pearl m i l l e t c o m b i n e d w i t h c o w p e a (Vigna unguiculata) produces acceptable weaning foods (Almeida- D o m i n g u e z e t al. 1 9 9 3 b ) . A b o u t 9 7 % increase i n t h e i n v i t r o starch digestibility, 17% i n p r o t e i n d i g e s t i b i l i t y and 71 % in t o t a l sugar is o b t a i n e d by steeping pearl m i l l e t in w a t e r for 16 h f o l l o w e d by g e r m i n a t i o n for 72 h ( C h a t u r v e d i a n d Sarojini 1996). M a l t i n g helps t o decrease t h e starch, p r o t e i n , c r u d e fiber, fat a n d polyphenol content and increases soluble protein, free a m i n o acids a n d r e d u c i n g sugars (Pawar a n d Pawar 1 9 9 7 ) . M a l t i n g p r o d u c e s h i g h a m o u n t o f

Table 4. Proximate analysis of pearl millet grain and malt.

Constituent Grain Malt

Moisture (%) 10.2 4.3 Protein (%) 8.6 11.8 Lipid (%) 7.5 2.5 Ash(%) 4.1 3.2 Lignin (%) 1.3 4.4 Fiber (%) 10.4 18.6 Carbohydrate (%) 53.9 48.5 Tannin (%) 1.6 0.83 Total phenol (%) 0.32 0.485 Total oxalate (%) 0.619 0.433 Soluble oxalate (%) 0.502 0.068 Phytic acid (%) 0.264 0.045 Total calcium (mg 100g-1) 20.4 16.8 Soluble calcium (mg 100g-1) 2.4 14.12

Source: Opoku et al. (1981).

69 r e d u c i n g sugars a n d h i g h amylase a c t i v i t y ( N i r m a l a e t al. 2 0 0 0 ) . M a l t i n g f o r 7 2 h has been observed t o decrease t h e p o l y p h e n o l c o n t e n t b y 4 0 . 9 % a n d p h y t i c a c i d f r o m 5 2 . 8 % a n d increase t h e p r o t e i n d i g e s t i b i l i t y b y 2 6 . 9 % a n d starch d i g e s t i b i l i t y b y 1 1 2 . 7 % ( A r c h a n a e t al. 2 0 0 0 ) .

Blanching

B l a n c h i n g aids i n increasing t h e s h e l f l i f e o f p e a rl m i l l e t . B l a n c h i n g has b e e n o b s e r v e d t o b e e f f e c t i v e i n r e t a r d i n g e n z y m a t i c a c t i v i t y a n d t h u s i m p r o v e s t h e s h e l f l i f e o f p e a r l m i l l e t f l o u r w i t h o u t m u c h a l t e r a t i o n i n t h e n u t r i e n t c o n t e n t ( C h a v a n a n d K a c h a r e 1 9 9 4 ) . B l a n c h i n g i s usually d o n e b y steeping t h e grains i n b o i l i n g w a t e r (at 9 8 ° C ) (1:5 r a t i o o f seeds t o b o i l i n g w a t e r ) f o r 3 0 sec a n d d r y i n g a t 5 0 ° C f o r one hour. B l a n c h i n g o f seeds a t 9 8 ° C f o r 1 0 sec i n b o i l i n g w a t e r b e f o r e m i l l i n g e f f e c t i v e l y r e t a r d e d t h e d e v e l o p m e n t o f fat a c i d i t y i n f l o u r a n d e n h a n c e d s h e l f l i f e by 25 days ( K a d l a g et al. 1 9 9 5 ) (Table 5 ) . Fat a c i d i t y increased by a b o u t 6 - f o l d i n u n t r e a t e d p e a rl m i l l e t f l o u r whereas i t r e m a i n e d a l m o s t u n c h a n g e d i n

Table 5. Effect of hot water blanching of seeds on chan g e s in lipids of pearl millet during storage.

Treatment 01 5 10 15 20 30 Fat acidity (mg KOH 100g-1 meal) Unblanched (control) 13.7 60.6 108.0 147.4 201.3 267.6 Blanched at 98± 2°C 10 sec 8.7 9.5 31.3 32.5 4.4 71.8 20 sec 10.6 11.7 30.3 33.2 45.6 80.2 Free fatty acid (%) Unblanched (control) 0.8 4.8 6.5 8.7 11.7 16.8 Blanched at 9 8 ±2 °C 10 sec 0.6 2.1 2.1 2.7 3.1 4.1 20 sec 0.7 3.1 2.2 2.4 3.6 4.6 Peroxide value (meq kg-1 oil) Unblanched (control) 1.7 0.4 6.0 3.7 2.7 2.1 Blanched at 9 8 ±2 °C 10 sec 7.1 3.0 4.9 4.8 3.1 2.3 20 sec 5.9 4.9 3.8 3.6 2.8 2.6

1. Storage period in days. Source: Kadlag et al. (1995).

70 f l o u r o b t a i n e d f r o m grains b l a n c h e d i n b o i l i n g w a t e r ( 9 8 ° C for 3 0 sec) ( C h a v a n a n d Kachare 1 9 9 4 ) . B l a n c h i n g o f pearl m i l l e t seeds also r e d u c e d p o l y p h e n o l b y 2 8 % a n d p h y t i c acid c o n t e n t b y 3 8 % (Table 6 ) . Fat a c i d i t y has b e e n f o u n d t o r e d u c e s i g n i fi c a n t ly i n b l a n c h e d pearl m i l l e t f l o u r a s c o m p a r e d t o r a w f l o u r after 2 8 days o f storage (Rekha 1 9 9 7 ) .

Acid treatment G r a y c o l o r o f pearl m i l l e t a n d its p r o d u c t s i s t h e m a i n reason for n o n - preference by consumers. Pigments in pearl millet make t h e p r o d u c t s b i t t e r . The pigments glyceosylvitexin, glycoxyl orientation an d alkali-labile f e r u l i c a c i d are responsible f o r n a t u r a l gray c o l o r of p e r i p h e r a l e n d o s p e r m and are h i g h l y sensitive t o change i n p H . A c i d t r e a t m e n t helps t o r e d u c e t h e gray c o l o r a n d t h u s i m p r o v e s a c c e p t a b i l i t y o f t h e p r o d u c t . Various studies have r e p o r t e d t h a t soaking o f pearl m i l l e t i n acidic solutions l i k e sour m i l k and t a m a r i n d (Tamarindus indica), markedly reduces the color of the grain. The acidic s o l u t i o n penetrates t h e w h o l e grain t h r o u g h areas a r o u n d t h e e m b r y o . D e h u l l e d grains decolorize faster than whole grains because the acidic s o l u t i o n penetrates t h e grain faster ( R e i c h e r t and Youngs 1 9 7 9 ) . D i l u t e h y d r o c h l o r i c acid ( H C 1 ) was a m o r e effective c h e m i c a l t r e a t m e n t i n r e m o v i n g p i g m e n t s f r o m w h o l e grain before m i l l i n g a s c o m p a r e d t o c i t r i c acid a n d acetic acid ( N a i k a r e et al. 1 9 8 6 ) . Soaking grains in d i l u t e HCl for 15 to 24 h reduces a m a j o r p o r t i o n of these p i g m e n t s a n d t h u s helps in t h e p r o d u c t i o n o f c r e a m y w h i t e grains. A c i d soaking of pearl m i l l e t grain (0.2 N H C 1 ) for 6, 12, 18 a n d 24 h is effective i n r e d u c i n g t h e p o l y p h e n o l a n d p h y t i c acid (Table 7). Acid treatment f o r 6 a n d 24 h increases t h e in v i t r o p r o t e i n d i g e s t i b i l i t y by 2 9 . 0 a n d 5 9 . 3 % ,

Table 6. Effect of malting and blanching on polyphenols and phytic acid content of pearl millet (mg 100g-1 dry matter).

Treatment Polyphenols Phytic acid Control 755.04+1.44 858.72±2.22 Malting (48 h) 449.35±0.41 (-40.49)1 481.42±1.41 (-43.94) Malting (72 h) 420.53±0.40 (-44.30) 429.5011.75 (-49.98) Blanching 529.85±0.047 (-29.82) 565.58+1.16 (-34.14) CD at 5% 2.40 4.96

1. Figures in parentheses indicate percentage over control. Source: Rekha (1997).

71 Table 7. Effect of acid on the antinutrient content of pearl millet (mg 100g-1 dry matter)1.

Treatment Phytic acid Polyphenol

Control 710.15 687.26 Acid treatment 6 h 411.16 (42.10) 450.33 (34.47) 12 h 286.20 (59.70) 294.93 (57.09) 18 h 234.30(67.01) 203.70 (70.36) 24 h 182.50(74.30) 153.06(77.73) P<0.05 2.01 1.38

1. Data is mean ± SE of three independent determinations. Figures in parentheses indicate percentage over control.

r e s p e c t i v e l y a n d t h e i n v i t r o starch d i g e s t i b i l i t y b y 39.7 a n d 8 4 . 6 % , r e s p e c t i v e l y (Table 8 ) (Pawar a n d Parlikar 1 9 9 0 , P o o n a m 2 0 0 2 ) . Soaking o f grain i n 0.1 N has b e e n s h o w n t o i m p r o v e t h e grain c o l o r o f various varieties o f p e a r l m i l l e t ( R e i c h e r t a n d Youngs 1 9 7 9 ) . Fat a c i d i t y was f o u n d t o increase b y 1.5-fold i n a c i d soaked grain f l o u r d u r i n g storage as against 6 - f o l d increase in u n t r e a t e d a n d d r y h e a t e d grain f l o u r ( C h a v a n a n d K a c h a r e 1 9 9 4 ) .

Dry heat treatment

Lipase a c t i v i t y i s t h e m a j o r cause o f spoilage o f pearl m i l l e t m e a l , s o its i n a c t i v a t i o n b e f o r e m i l l i n g i s essential. T h e a p p l i c a t i o n o f d r y heat t o m e a l e f f e c t i v e l y retards t h e lipase a c t i v i t y a n d m i n i m i z e s l i p i d d e c o m p o s i t i o n

Table 8. Effect of acid on the in vitro digestibility of pearl millet1.

In vitro protein digestibility In vitro starch digestibility Treatment (g 100g-1) (mg maltose released g-1)

Control 55.73 14.03 Acid treatment 6 h 71.93(29.07) 19.60(39.70) 12 h 80.40 (44.27) 22.00 (56.80) 18 h 86.73 (55.62) 24.66 (75.77) 24 h 88.80 (59.34) 25.90 (84.60) P<0.05 2.04 0.62

1. Data is mean ± SE of three independent determinations on dry matter basis. Figures in parentheses indicate percentage over control. Source: Poonam (2002).

72 d u r i n g storage. Pearl m i l l e t seeds w e r e given d r y heat t r e a t m e n t in hot air o v e n a t 1 0 0 ± 2 ° C f o r d i f f e r e n t t i m e periods, ie, 30, 6 0 , 9 0 a n d 1 2 0 m i n a n d t h e n c o o l e d t o r o o m t e m p e r a t u r e . Increase i n fat a c i d i t y a n d free f a t t y acids i n t h e m e a l o b t a i n e d f r o m h e a t e d p e a rl m i l l e t grains was 3 - t o 4 - f o l d l o w e r t h a n t h e m e a l f r o m u n h e a t e d grain. H e a t i n g o f grains for 1 2 0 m i n was m o s t effective f o r m a x i m u m r e t a r d a t i o n o f t h e l i p o l y t i c d e c o m p o s i t i o n o f l i p i d s d u r i n g storage ( K a d l a g et al. 1 9 9 5 ) . Fat acidity, free f a t t y a c i d and lipase a c t i v i t y was r e p o r t e d t o decrease significantly d u r i n g 2 8 days o f storage i n pearl m i l l e t f l o u r given a c i d ( 1 8 h ) a n d heat ( 1 2 0 m i n ) t r e a t m e n t (Table 9 ) . A l s o heat t r e a t m e n t increased t h e s h e l f l i f e o f p e a rl m i l l e t f l o u r a s c o m p a r e d t o r a w f l o u r ( P o o n a m 2 0 0 2 ) .

Popping P o p p e d grain is a crunchy, p o r o u s a n d p r e c o o k e d p r o d u c t . P o p p i n g i m p r o v e s taste and flavor and leads t o t h e d e v e l o p m e n t o f pleasing t e xture. Popped

Table 9. C h a n g e s in fat acidity, free fatty acids a n d lipase activity of acid and heat treated pearl millet flour during storage1 . Treatment 02 7 14 21 28 CD at 5% Fat acidity (mg KOH 100g-1) Control 30.30 42.40 58.10 87.30 123.70 3.36 Acid treatment 35.10 35.00 36.20 38.60 38.00 1.82 Heat treatment 28.00 30.90 34.40 41.20 50.50 1.27 CD at 5% 2.56 2.17 1.26 3.65 2.56 Free fatty acids (mg 100g-1 fat) Control 282.00 427.30 789.00 942.00 1115.00 4.32 Acid treatment 208.00 210.30 216.00 221.00 230.30 4.27 Heat treatment 67.00 70.00 75.00 80.00 84.00 5.68 CD at 5% 3.82 3.94 5.99 6.82 5.20 Lipase activity3 Control 3.69 5.60 10.34 12.35 14.61 0.06 Acid treatment 2.90 2.93 3.01 3.08 3.21 0.06 Heat treatment 0.89 0.93 1.00 1.06 1.12 0.08 CD at 5% 0.05 0.05 0.08 0.09 0.07

1. Data is mean ± SE of three independent determinations. 2. Storage period in days. 3. Enzyme activity (%) on fat (%) basis. Source: Poonam (2002).

73 grain/product formulation has very low moisture, which helps i n m i n i m i z i n g deterioration during storage and thus increases the she l f l i f e o f p r o d u c t s . Popping can be done using c o m m o n salt as heating m e d i u m in an o p e n i r o n pan (grain to salt in t h e r a t i o of 1:10) at 2 4 0 to 2 6 0 ° C for 1 5 - 2 5 seconds. Salt can be removed by sieving. Popped starch exhibited higher in vitro enzyme digestibility. More than 50% of popped pearl m illet starch was reported to be hydrolyzed by pancreatic amylase within 120 minutes ( M u r l i k r i s h n a e t al. 1 9 8 6 ) . P o p p i n g i n d i f f e r e n t varieties o f pearl m i l l e t varies f r o m 52.3 to 79.2%. Maximum popping percentage was found in HHB-60 and mini m u m i n H H B - 68 (Sehgal et al. 2 0 0 3 ) .

Sorghum

Milling Most traditional foods in Asian and African countries are produced from decorticated sorghum which is milled into flour. Highl y refined sorghum products are produced by abrasive removal of pericarp followed by 'degermination' and physical separation and/or classification of dry milled fraction. Industrial sorghum decortication involves the use o f m i l l s w i t h abrasive disks or carborundum stones. Mechanical dehull i n g i m p r o v e s b o t h t h e q u a n t i t y and q u a l i t y o f s o r g h u m grits o r f l o u r ( M u n c k 1 9 9 5 ) . D e c o r t i c a t i o n o f s o r g h u m reduces t h e a m o u n t o f fiber, minerals, p r o t e i n s and lysine. I t r e s u l t e d i n 4 0 % loss o f lysine i n m a n u a l sorghum decortication ( y i e l d = 7 5 - 8 0 % ) and 14% loss in m e c h a n i c a l s o r g h u m d e c o r tication (yield = 90%). Nutrient digestibility of decorticated sorghum i s slightly higher than that of whole grain, but nitrogen retention and protein efficiency ratios are considerably lower in decorticated grain because the g erm fraction with the highest a m o u n t of lysine is p a r t i a l l y lost. Decortication of brown sorghum significantly reduces th e a m o u n t o f condensed tannins and can overcome the deleterious effe c t o f t a n n i n s o n t h e n u t r i t i o n a l value o f s o r g h u m grain ( M w a s a r u e t al. 1 9 8 8 ) . T h e d e c o r t i c a t i o n process r e d u c e d t h e t a n n i n c o n t e n t f r o m 4.5 t o 0.2 c a t e c hin equivalent in t h e k e r n e l i n w h i c h 3 7 % o f its o r i g i n a l w e i g h t was r e m o v e d ( C h i b b e r e t al. 1 9 8 0 ) . Dehulling improves the sensory qualities of roti (flat, unleavened b r e a d ) m a d e w i t h s o r g h u m f l o u r a n d also m i n i m i z e s v a r i e t a l d i f f e r e n c e s

74 with respect to grain hardness, without affecting the r olling and kneading qualities of roti (Vimala et al. 1996). For making a good quality sor g h u m f l o u r , a 6 0 - m e s h sieve c o u l d b e u s e d f o r sieving t h e s o r ghum flour milled b y e i t h e r t r a d i t i o n a l chakki m i l l o r h a m m e r m i l l (Table 10) ( N a i k a r e 2 0 0 2 ) . A small-scale unit for dehulling and milling sorghum was developed by rural industries innovation center in Botswana. The ma c h i n e allows progressive abrasion of outer layer of grains througho u t t h e length o f t h e barrel ( M m a p a t s i e t al. 1 9 9 4 ) .

Malting Sorghum malt is produced by traditional process and on an industrial basis in Africa (Daiber and Taylor 1995) and India. Diastatic ac tivity developed during m a l t i n g depends o n t e m p e r a t u r e , m o i s t u r e c o n t e n t , d u r a t i o n o f m a l t i n g , germination level and types of grain used. Sorghum mal t is high in -amylase and low in |3-amylase for use in brewing lager beer. Losses during malting are about 20%. Traditional and industrial sorghum malting involves the following steps: (1) steeping (1-3 days); (2) germination (2-6 days); (3) sun drying; and (4) g r i n d i n g w i t h m o r t a r and pestle. Naikare (2002) has described standard malting procedu r e f o r t h e popular sorghum variety M 35-1. Malting of sorghum increases protein c o n t e n t , fat, fiber, m i n e r a l s , i n v i t r o p r o t e i n d i g e s t i b i l i t y ( I V P D ) a n d i n v i t r o

Table 10. Overall nutritional composition of s o r g h u m flour obtained by traditional chakki and hammer mill1 . Constituent2 Traditional chakki Hammer mill Moisture (%) 7.2 8.0 Protein (%) 9.8 10.2 Fat (%) 1.9 2.3 Total carbohydrates (%) 79.8 77.9 Starch (%) 76.7 74.3 Soluble sugars (%) 1.5 1.8 Ash (minerals) (%) 1.3 1.6 Crude fiber (%) 1.6 1.8 IVSD (mg maltose g-1 meal per 5 min) 73.0 75.0 IVPD (mg maltose g-1 meal per 5 min) 82.0 84.0

1. Data is mean of three determinations. 2. IVSD = In vitro starch digestibility; IVPD = In vitro protein digestibility.

75 starch digestibility (IVSD). The malting process of grain s o r g h u m has improved the overall physico-chemical and nutritional values o f r e s u l t a n t f l o u r (Table 1 1 ) . Germination reduces effect on viscosity of cereals. Flo ur behavior indices of sorghum approached unity with increased ger mination time. Appreciable -amlase activity was obtained 48 h after germination.

Parboiling A good quality parboiled sorghum could be processed by soaking the grains f o r 2 4 h i n h o t w a t e r , d r a i n i n g , s t e a m i n g f o r 1 0 m i n i n pressure c o o k e r ( 1 5 lbs p s i ) , d r y i n g a n d f i n a l l y g r i n d i n g i n t o f l o u r o r grits. Such produce was opaque, had low calorie content and remained in good c ondition in vacuumized pack (Naikare 2002). The yield of parboiled grits (suji) was 8 0 - 8 2 % , w h i l e t h a t o f f i n e f l o u r was 1 8 - 2 0 % w h e n r e s u l t a n t m e a l was sieved through 40-mesh sieve, and no bran was obtained. No mic robial spoilage or a p h y s i c a l damage was o b s e r v e d u p t o 6 m o n t h s w h e n p a c k e d i n polypropylene flexible bags after vacuumization and st o r e d u n d e r a m b i e n t conditions. The parboiled grains can be used for various snack f o o d i t e m s especially for diabetic patients. The fine flour of par boiled sorghum can be u s e d i n g r u e l p r e p a r a t i o n .

Table 11. Chemical composition of malted flour from thr e e s o r g h u m cultivars1 . M 35-1 Swati CSH 5 Constituent2 Unmalted Malted Unmalted Malted Unmalted Malted Moisture (%) 5.1 5.2 5.4 5.1 5.0 5.4 Protein (%) 9.6 9.9 9.4 9.7 9.0 9.5 Fat (%) 1.7 1.2 1.6 1.0 1.3 1.0 Carbohydrate (%) 82.4 82.2 82.3 82.2 83.3 82.4 Fiber (%) 1.4 1.6 1.6 1.8 1.8 1.9 Minerals (%) 1.2 1.5 1.3 1.6 1.4 1.7 IVPD (mg maltose g-1 73 77 72 75 70 74 meal per 5 min) IVSD (mg maltose g-1 84 87 80 84 80 82 meal per 5 min)

1. Data is mean of three determinations. 2. IVPD = In vitro protein digestibility; IVSD = In vitro starch digestibility. Source: Naikare (2002).

76 Popping

The grain puffing/popping process is based on the pri nciple of heat shock treatment, which causes expansion of the grains with porous and crunchy texture and roasted flavor. At this time the grain has about 17% moisture c o n t e n t . T h e grains are soaked in b r i n e w a t e r for about 1-2 h prior to roasting. The grains are roasted along with fine sand in an iron skillet at about 2 0 0 - 2 3 0 ° C for about 5 - 7 m i n . T h e grains are p u f f e d q u i c k l y w ith crackling sound. Sorghum pops can be made available in the market by vac u u m packaging/ nitrogen flushing (Naikare 2002). Characteristics of po p p e d grain o f f o u r sorghum cultivars are presented in Table 12.

Utilization of pearl millet and sorghum in food products

In India pearl millet and sorghum are used in preparati on of conventional f o o d s s u c h as p o r r i d g e , roti or bhakhri (s t i f f roti), m a d e f r o m e i t h e r coarsely or finely ground flour. But the major constrai nt is that the flour becomes rancid within a few days after milling. To over c o m e t h i s p r o b l e m , t h e grains o f p e a r l m i l l e t a n d s o r g h u m are s u b j e c t e d t o processing treatments like blanching, malting, popping and dry heat treatment before p r o d u c t d e v e l o p m e n t , w h i c h p r o d u c e s a f l o u r w i t h l o n g e r s h e l f l i f e a n d better nutritional profile. The products prepared from processed flour w e r e f o u n d t o have l o n g e r s h e l f l i f e t h a n t h o s e p r e p a r e d f r o m u n p r o c e s s e d f l o u r .

Table 12. Characteristics of popped grain of four sorgh u m cultivars. Characteristics M 35-1 Local CSH 15 Swati SE CD at 5% Popping (%) 80.0 88.5 73.5 78.0 1.0 3.0 Expansion volume (pop:grain) 3.5:1 4:1 3:1 3.4:1 Flake size Big, full Big, full Small, full Big, full Color of popped grains White White White White Organoleptic quality characteristics Color White White White White Flavor Good Good Good Good Taste/crispiness Good Good Good Good Overall acceptability Good Good Good Good

Source: Naikare (2002).

77 Pearl millet products

I n A f r i c a pearl m i l l e t i s c o n s u m e d , p r i m a r i l y i n t h e f o r m o f t h i c k a n d t h i n porridges ( f e r m e n t e d o r u n f e r m e n t e d ) , flat breads ( f e r m e n t e d o r u n f e r m e n t e d ) , s t e a m e d o r b o i l e d c o o k e d p r o d u c t s , snacks, alcoholic beverages, a n d in c o m p o s i t e flours for bread, cookies, noodles, etc.

Traditional products Porridges. Porridges are m a d e in b o t h Asia a n d A f r i c a using various m e t h o d s . I n some preparations, t h e f l o u r m a y b e soaked o v e r n i g h t w i t h sour m i l k o r f e r m e n t e d briefly, before c o o k i n g . I n A f r i c a p o r r i d g e i s p r e p a r e d b y steeping t h e w h o l e grain for 2 or 3 days in w a t e r before it is crushed and t h e b r a n r e m o v e d . As a result, seeds g e r m i n a t e w i t h t h e resultant changes in e n d o s p e r m a n d g e r m . G e r m i n a t i o n and f e r m e n t a t i o n have been s h o w n t o i m p r o v e t h e n u t r i t i v e value t h r o u g h i m p r o v e d p r o t e i n q u a l i t y a n d d i g e s t i b i l i t y and increased v i t a m i n c o n t e n t (Serna-Saldivar et al. 1 9 9 0 ) . Flat breads. I n m a n y countries i n Asia and A f r i c a , pearl m i l l e t f l o u r i s used for m a k i n g flat, r o u n d e d , unleavened bread. T h i s i s b a k e d o n flat i r o n over h o t f i r e . For m a k i n g f e r m e n t e d breads, t h e f l o u r i s f i r s t m i x e d w i t h w a t e r a n d a starter and a l l o w e d t o f e r m e n t for 1 2 t o 2 4 h , and t h e n c o o k e d a t h i g h t e m p e r a t u r e or in clay oven. In Nigeria, pearl millet is dry milled into flour and m ixed with wheat f l o u r for p r o d u c t i o n o f b r e a d . Chapati prepared from pearl millet flour e n r i c h e d w i t h soybean ( G l y c i n e max) f l o u r p r o d u c e d h i g h p r o t e i n efficiency r a t i o w i t h m i n i m a l thickness a n d increased p u f f i n g a n d u n i f o r m i t y o f c o l o r and t e x t u r e . Chapati prepared with bleached pearl millet has better acceptability. O v e r a l l a c c e p t a b i l i t y score o f chapati p r e p a r e d w i t h a c i d - t r e a t e d pearl m i l l e t flour and heat-treated pearl millet flour increased significantly a s c o m p a r e d t o t h a t p r e p a r e d f r o m r a w f l o u r (Poonam 2 0 0 2 ) . O t h e r products. A t t e m p t s have been m a d e by m a n y w o r k e r s to incorporate processed pearl m i l l e t f l o u r i n other t r a d i t i o n a l p r o d u c t s t o i m p r o v e t h e n u t r i t i v e value and shelf life of p r o d u c t s and also to reduce t h e cost of products. Rekha ( 1 9 9 7 ) i n c o r p o r a t e d b l a n c h e d a n d m a l t e d pearl m i l l e t f l o u r i n various t r a d i t i o n a l p r o d u c t s and t h e p r o d u c t s w e r e f o u n d t o b e organoleptically acceptable. A n earlier s t u d y b y C h a u d h a r y ( 1 9 9 3 ) also indicated that traditional products prepared from pearl millet were not only acceptable, b u t t h e i r p r o t e i n a n d starch digestibilities w e r e also better.

78 The products developed using blanched and malted pearl m i l l e t f l o u r were highly acceptable and had longer shelf life up to 3 m o n t h s . Use of processed f l o u r i n c o m p a r i s o n t o r a w f l o u r has been f o u n d to reduce the antinutrients and increase the digestibility (Singh 2 0 0 3 ) .

Baked products A t t e m p t s have been m a d e b y various researchers t o increase t h e c o n s u m p t i o n o f pearl m i l l e t f l o u r b y i n c o r p o r a t i n g i t i n various b a k e d products. Millet flour i t s e l f is n o t a g o o d r a w m a t e r i a l for b a k i n g industry, since it does not contain gluten and forms dough of poor consistency (Haber et al. 1980). Cookies made from pearl millet flour do not spread during baking; these have a poor top grain character and are also dense and compact (Badi and Hoseney 1976). H o w e v e r , i f t h e m i l l e t f l o u r i s h y d r a t e d w i t h w a t e r and d r i e d and supplemented with 0.6% unrefined soylecithin, the spreading characteristics o f cookies are similar t o those o f soft w h e a t flour. Pearl millet biscuit had better amino acid composition. Therefore, biscuit prepared from combined pearl millet and chickpea (Cicer arietinum) h a d better true digestibility and net protein utilization a s c o m p a r e d t o t h a t prepared from finger millet and chickpea (Geervani et al. 1 9 9 6 ) . Various types of biscuits a n d cakes w e r e d e v e l o p e d using blanched pearl m i l l e t f l o u r and all w e r e organoleptically acceptable (Sehgal et al. 2 0 0 2 ) . D i f f e r e n t types of biscuits and nankhatai were developed by incorporating d i f f e r e n t levels of b l a n c h e d as w e l l as m a l t e d pearl m i l l e t flour. A l l t h e products were in the range of slight to moderate acceptability and the p r o d u c t s stored w e l l u p t o t h r e e m o n t h s .

Extruded products Noodles, macaronies and pasta can be prepared from mil let flour (Desikachar 1975). Extruded snacks prepared with millet flour mixe d with either rice f l o u r a n d / o r maize f l o u r a n d / o r cassava (Manihot esculenta) starch in various proportions have acceptable appearance, color, texture and flavor (Siwawij and Trangwacharakul 1995). Porridge prepared from extru ded pearl millet after blending with press-dried cowpea produces high nu tritional quality with intermediate consistency, smooth texture, pleasant color and flavor (Almeida- D o m i n g u e z et al. 1993a). Inclusion of extruded pearl millet and sorghum (60% each) with roasted m u n g bean (Vigna radiata) (30%) and non-fat dried milk (10%) increased the

79 d i e t a r y fiber c o n t e n t u p t o 7.6 t o 1 0 . 1 % . E x t r u s i o n c o o k i n g also enhanced t h e i n v i t r o p r o t e i n d i g e s t i b i l i t y o f foods. E x t r u d e d p r o d u c t s have been p r e p a r e d f r o m b l a n c h e d pearl m i l l e t f l o u r i n c o m b i n a t i o n w i t h soybean f l o u r o r m u n g bean f l o u r o r chickpea flour. T h e d e v e l o p e d pasta was n o t o n l y acceptable b u t also h a d h i g h p r o t e i n and fiber c o n t e n t (Sehgal et al. 2 0 0 3 ) .

Supplementary and weaning foods G e r m i n a t i o n a n d m a l t i n g increase t h e f o o d value o f cereal grains and a d d i t i o n o f l e g u m e f l o u r and v i t a m i n s can p r o d u c e a balanced w e a n i n g f o o d ( M a l l e s h i and Desikachar 1 9 8 6 ) . W e a n i n g m i x t u r e s p r e p a r e d w i t h 4 5 % p r e c o o k e d p e a rl m i l l e t flour, s k i m m e d m i l k p o w d e r , g r o u n d n u t (Arachis hypogaea) o i l a n d sucrose have h i g h n u t r i t i v e value and a n e f f i c i e n t d i e t for t h e t r e a t m e n t o f p r o t e i n energy m a l n u t r i t i o n ( G u i r o e t al. 1 9 8 7 ) . Pearl m i l l e t - b a s e d b a b y f o o d p r e p a r e d f r o m 7 0 % f l o u r , 1 3 % m a l t and 1 7 % m i l k p o w d e r increased d i g e s t i b i l i t y a n d l o w e r e d t h e v i s c o s i t y o f t h e foods a n d p r o v i d e d adequate p r o t e i n a n d energy l e v e l f o r o n e - y e a r - o l d c h i l d r e n ( B a d i e t al. 1 9 9 0 ) . E x t r u s i o n o f baby f o o d p r e p a r e d f r o m 7 0 % p e a r l m i l l e t and 3 0 % c o w p e a s u p p l i e d 1 7 % o f t h e d a i l y needs o f protein, 72% lysine a n d 1 1 0 % o f t h r e o n i n e i n t w o - y e a r - o l d c h i l d r e n ( A l m eida-Dominguez et al. 1 9 9 0 ) . Four types o f s u p p l e m e n t m i x t u r e s using w h o l e w h e a t o r pearl m i l l e t , chickpea or mung bean, groundnut, amaranth (A m a r a n t h u s sp) leaves a n d jaggery ( 4 0 : 1 0 : 1 0 : 1 0 : 4 0 ) w e r e d e v e l o p e d using roasting and m a l t i n g techniques and all t h e p r o d u c t s w e r e o r g a n o l e p t i c a l l y acceptable ( D a h i y a and K a p o o r 1 9 9 4 ) . H o m e m a d e w e a n i n g f o o d p r o d u c e d f r o m pearl m i l l e t c o m b i n e d w i t h m u n g bean, amaranthus and jaggery was c o m p a r a b l e t o n u t r i t i v e value o f Cerelac, a c o m m e r c i a l w e a n i n g f o o d i n I n d i a . T h e p r o t e i n efficiency r a t i o ranged f r o m 2.04 t o 2.13, biological value f r o m 79.6 t o 80.7, net protein u t i l i z a t i o n f r o m 6 6 . 8 t o 6 7 . 9 , net p r o t e i n r e t e n t i o n f r o m 2.13 t o 2 . 7 6 a n d p r o t e i n r e t e n t i o n efficiency f r o m 3 4 . 1 t o 4 4 . 2 ( G u p t a and Sehgal 1 9 9 2 ) . Six w e a n i n g m i x t u r e s having pearl m i l l e t ( r a w / m a l t e d / b l a n c h e d ) , c o w p e a o r m u n g bean, s k i m m i l k p o w d e r , sugar a n d ghee ( c l a r i f i e d b u t t e r ) i n t h e r a t i o 4 5 : 2 5 : 2 5 : 1 5 : 5 h a d h i g h organoleptic a c c e p t a b i l i t y and s t o r e d w e l l u p t o one m o n t h . W e a n i n g m i x t u r e p r e p a r e d f r o m processed f l o u r was m o r e acceptable i n t e r m s o f all sensory a t t r i b u t e s a n d h a d increased s h e l f l i f e ( A r c h a n a 1 9 9 7 ) .

80 Health foods

Various types of h e a l t h foods can be p r e p a r e d f r o m pearl m i l l e t as it contains relatively higher proportion of unavailable carbohydrates and t h e release o f sugar is slow, m a k i n g it suitable for diabetic persons. Six recipes of c o m m o n l y consumed foods (pearl millet, sorghum, finger millet, m u n g bean) w e r e t e s t e d i n w e s t e r n I n d i a f o r t h e i r g l y c e m i c i n d e x ( G I ) . Recipe based o n pearl m i l l e t was f o u n d t o have l o w e s t G I ( 5 5 ) a s c o m p a r e d t o o t h e r recipes. T h i s suggests t h a t presence o f h i g h p h y t i n p h o s p h o r u s c o n t e n t o f pearl m i l l e t influences t h e g l y c e m i c response ( M a n i et al. 1 9 9 3 ) . Pearl m i l l e t , fenugreek (Trigonella foenum-graecum) seeds and legumes w e r e used after processing t o f o r m u l a t e t h r e e n u t r i t i o u s diabetic I n d i a n f o o d p r o d u c t s - dhokla, upma a n d laddu; of these upma h a d l o w e s t GI ( 1 7 . 6 0 ) , f o l l o w e d by laddu ( 2 3 . 5 2 ) and dhokla (34.96) (Pathak et al. 2000). Other p r o d u c t s w e r e d e v e l o p e d for diabetic persons after i n c o r p o r a t i n g bleached pearl m i l l e t , fenugreek a n d chickpea i n d i f f e r e n t p r o p o r t i o n s . Results s h o w e d t h a t m i n i m u m G I was observed i n pearl m i l l e t - b a s e d dhokla ( 3 8 ) f o l l o w e d b y chapati ( 4 8 ) , instant idli (52), pasta (54) and biscuit (58). The products had h i g h fiber c o n t e n t as c o m p a r e d to c o n t r o l a n d c o u l d be used for diabetics ( A r c h a n a 2 0 0 2 ) .

Sorghum

In I n d i a , s o r g h u m is t r a d i t i o n a l l y used for f o o d p r o d u c t s l i k e roti, bhakri, p o r r i d g e , khicheri, p o p p e d grain and roasted grain.

Traditional foods Porridge. S o r g h u m is used extensively for m a k i n g p o r r i d g e . Couscous is m a d e f r o m s o r g h u m a n d m i l l e t i n W e s t A f r i c a ( G a l i b a e t al. 1987, 1 9 8 8 ) . I t i s m a d e b y agglomerating f l o u r w i t h water, steaming t h e covered flour, m i x i n g and sizing t h e p a r t i a l l y c o o k e d f l o u r and adding m u c i l a g i n o u s m a t e r i a l d u r i n g final steaming. S o m e t i m e s couscous is d r i e d and used as convenience f o o d . Flat bread. Parboiling has b e e n used t o p r o d u c e g o o d p r o d u c t s f r o m s o r g h u m a n d m i l l e t (Young et al. 1990, Serna-Saldivar et al. 1 9 9 4 ) . T h e c o o k e d p r o d u c t has e x c e l l e n t t e x t u r e and color. Roti m a d e f r o m s o r g h u m has been s h o w n to be organoleptically acceptable. Bhakri. S o r g h u m f l o u r has b e e n successfully used for bhakri p r e p a r a t i o n a n d l o t of research is being c o n d u c t e d for increasing t h e shelf l i f e . Bhakri p r e p a r e d

81 f r o m M 3 5 - 1 s o r g h u m f l o u r w i t h a d d i t i o n o f p h o s p h a t i d e starch ( 5 % ) o r guar (Cyamopsis tetragonoloba) gum (3%) using standard method, then packed in low density polyethylene pouch (150 guage) or polypropy l e n e p o u c h o r laminated pouch, hermetically sealed after vacuumizati on and stored under ambient condition remained in the acceptable conditio n for about two days w i t h o u t any sign o f spoilage o r staleness ( N a i k a r e 2 0 0 2 ) . Flakes. G o o d q u a l i t y s o r g h u m flakes can b e p r e p a r e d b y b o i l i n g or autoclaving grains f o r 3 0 m i n , t h e n f l a k i n g a n d d r y i n g u p t o 5 . 0 - 6 . 0 % moisture content. The flakes exhibited excellent taste and crispiness. T he finished products s t o r e d w e l l u p t o 7 5 days i n v a c u u m i z e d package w i t h o u t spoilage and breakage ( N a i k a r e 2 0 0 2 ) . C h i p s . A c c e p t a b l e t o r t i l l a chips can b e p r o d u c e d f r o m b l e n d s c ontaining 50% sorghum and 50% maize (Serna-Saldivar et al. 1988). Flo u r f r o m w h i t e s o r g h u m can replace u p t o 2 0 % o f w h e a t f l o u r for t h e p r o d u c t i o n o f t o r t i l l a s (Torres et al. 1 9 9 3 ) . Papad. S o r g h u m can be e f f e c t i v e l y u t i l i z e d f o r papad making. A good quality papad from malted sorghum can be prepared by addition of 40%) m a l t e d finger millet, which improves the nutritional value and quali ty of sorghum papad (Naikare 2002). Vacuum packaging significantly extende d the shelf life.

Baked products S o r g h u m f l o u r does n o t c o n t a i n p r o t e i n s t h a t p r o d u c e viscoelastic gluten as in w h e a t . S o r g h u m a n d w h e a t f l o u r b l e n d s have b e e n u s e d t o produce baked products including yeast leavened breads, cakes, muffin s , cookies a n d biscuits ( M o r a d e t al. 1 9 8 3 , Torres e t al. 1 9 9 3 , S u h e n d r o 1 9 9 8 ) . U sually 5-50% sorghum flour is substituted for wheat flour. Sorghum flour at 15% produces acceptable breads without affecting the l o a f v o l u m e , c r u s t c o l o r a n d c r u m b t e x t u r e ( I w u o h a e t al. 1 9 9 7 , Rao a n d Rao 1 9 9 7 ) . S o r g h u m a n d w h e a t c o m p o s i t e f l o u r i n t h e p r o p o r t i o n 50:50 produced organoleptically acceptable biscuit (Orewa and Iloh 1 9 8 9 , P r i y o l k a r 1 9 8 9 ) . Blends o f w h e a t , s o r g h u m a n d soy f l o u r a t 6 5 : 3 0 : 5 have been used to m a k e b r e a d , a n d a t 4 0 : 5 5 : 5 t o m a k e biscuits. R e p l a c e m e n t of wheat up to 20% with sorghum flour is acceptable for bread while furthe r s u b s t i t u t i o n u p t o 55% by sorghum flour gave acceptable biscuit. Blend of 70%) sorghum flour and 30% detoxified cassava starch produced acceptable bread and cakes ( O l a t u n j i e t al. 1 9 8 9 ) . S o r g h u m f l o u r was a d d e d t o w h e a t f l o u r f o r preparation of bread and biscuit; bread prepared with 5 % s o r g h u m a n d 3 0

82 ppm cystine gave acceptable bread by straight dough met hod. Also, high q u a l i t y b i s c u i t was p r e p a r e d b y a d d i t i o n o f 2 0 % s o r g h u m flour and cystine (60 p p m 1 0 0 g- 1 f l o u r ) .

Pasta Sorghum with soft texture, yellow endosperm with white pericarp and without pigmented testa produce the best pasta products. Noodl e s f r o m 1 0 0 % s o r g h u m f l o u r w e r e n o t equal i n q u a l i t y t o rice noodles b u t t h e y w ere edible and could be cooked without losing their texture (Lekalake 1993, Kun e t z 1 9 9 7 ) .

Health foods

High fiber contents are very important for reducing gas tro-intestinal problem of diabetics. Sorghum is rich in fiber as well as mineral content and i n c o r p o r a t i o n o f s o r g h u m i n v a r i o u s p r o d u c t s increases t h e f i b e r c o n t e n t a n d decreases sugar l e v e l . C o n s u m p t i o n o f w h o l e s o r g h u m recipes resulted in l o w e r glucose l e v e l , lesser peak rise i n glucose a n d lesser area u n d e r c u r v e i n diabetics, compared to dehulled sorghum and wheat recipes ( L u k s h m i a n d V i m a l a 1 9 9 6 ) . V a r i o u s t y p e s o f c o o k i e s a n d b i s c u i t s w e r e prepared for diabetic diets using malted and unmalted sorghum flour. C o o k i e s p r e p a r e d f r o m 4 0 % w h e a t f l o u r b l e n d e d w i t h 6 0 % m a l t e d s o r g h u m f l o ur increased f i b e r c o n t e n t a n d calories w h e r e a s b i s c u i t s p r e p a r e d f r o m 40% refined flour b l e n d e d w i t h 6 0 % m a l t e d s o r g h u m f l o u r a n d 8 % b r a n w e r e s u p e r i o r i n t e r m s of cooking quality. The products remained acceptable wi t h o u t any sign o f spoilage o r d e v e l o p m e n t o f o f f - f l a v o r o r r a n c i d i t y f o r a b o u t 3 m o n t h s after packaging in vacuumized low density polyethylene (LDP E) pack (Naikare 2 0 0 2 ) .

Conclusion and recommendations

All millet-based food products generally have strong flavor and aroma. These products have more nutritional value and health benefits a s c o m p a r e d t o s i m i l a r p r o d u c t s d e v e l o p e d f r o m m a j o r cereals. M o r e o v e r these value-added products are not available in the market. The cost of millet-based value-added p r o d u c t s i s a b o u t 5 0 % less t h a n t h a t o f t r a d i t i o n a l p r o d u c ts. But the health benefits are m o r e a n d c a n n o t b e q u a n t i f i e d . The technology of acceptable millet-based products can b e t a k e n u p b y housewives at h o u s e h o l d level as t h e r a w i n g r e d i e n t s are already available in

83 t h e i r h o m e s . T h e c o n s u m p t i o n o f these p r o d u c t s w i l l improve the nutritional status and p r o v i d e m a n y h e a l t h benefits. Efforts can be made to popularize millet-based low-cos t h i g h p r o t e i n a n d energy rich products among population through ongoing nutritional intervention programs. Development and consumption of such value-added food claiming health benefits could go a long way in i mproving the nutritional status of the population especially those suffering fro m protein malnutrition a n d o t h e r d e f i c i e n c y diseases. The preparation and production of such products at home a n d commercial level would initiate the production units on small scale in rural a n d u r b a n areas t o raise t h e i n c o m e l e v e l o f h o u s e w i v e s . T h e manufacture of millet-based value-added products will help to upgrad e not only the health status b u t also t h e e c o n o m i c status o f g r o w e r s . Industrial linkages for development and commercializa tion of these food p r o d u c t s w i l l secure market for m i l l e t especially pearl m i l l e t and sorghum. The developed value-added, baked, supplementary and hea l t h foods i n spite of being inexpensive, acceptable and nutritionally sup erior are not taken up by industries for commercialization as people are not aware about the production t e c h n o l o g y a n d h e a l t h b e n e f i t s . T h e r e is a n e e d to create awareness a b o u t t h e technical know-how of the processing and product develo p m e n t . T h e r e i s scope f o r c o m m e r c i a l i z a t i o n o f various p r o d u c t s f r o m h e a lth and cost point of v i e w .

F u t u r e s t r a t e g i e s

• T h e r e is a n e e d to p o p u l a r i z e t h e d e v e l o p e d a n d s t a n d a r d ized millet-based products to common masses for adoption of technology at household level. • S o m e s i m p l e processing t e c h n i q u e s f o r s o r g h u m a n d p e a r l m i l l e t can be t a k e n u p a t h o u s e h o l d l e v e l / c o m m e r c i a l l e v e l . • B l a n c h i n g o f pearl m i l l e t g r a i n b e f o r e m i l l i n g a t c o m m ercial level needs to b e t a k e n u p b y m i l l i n g i n d u s t r i e s a s i t w i l l h e l p i n increasing the shelf life of the flour. Also, milling industries can take up the sale of pearl millet flour. • T o resolve t h e p r o b l e m o f gray c o l o r o f p e a r l m i l l e t f l o ur, bleaching process u s i n g H C 1 o r o t h e r organic a c i d c o u l d b e i n i t i a t e d a t s m a l l scale. • Industrial linkage needs to be strengthened for uptak e of developed products for commercialization. Efforts are required to popularize and commercialize health food including diabetic food and weaning food based on millet.

84 References Abdalla A A , El-Tinay A H , Mohamed BE and Abdalla A H . 1998. Proximate composition, starch, phytate and mineral contents of 10 pearl millet genotypes. Food Chemistry 63(2):243-246.

Abdelrahman A, Hoseney RC and Varriano-Marston E. 1984. The proportion and chemical composition of hand dissected anatomical parts of pearl millet. Journal of Cereal Science 2:127.

Aggarwal AJ. 1992. Processing of pearl m i l l e t for its more effective utilization. PhD thesis, CCS Haryana Agricultural University, Hisar, Haryana, India. 183 pp.

Akubor PI and Obiegbuna JE. 1999. Certain chemical and functional properties of ungerminated and germinated m i l l e t flour. Journal of Food Science and Technology 36(3):241-243. Almeida-Dominguez H D , Gomez M H , Serna-Saldivar SO and Rooney LW. 1990. Weaning food from composite of extruded or press dried pearl millet and cowpea. Cereal Foods W o r l d 35:831. Almeida-Dominguez H D , Gomez M H , Serna-Saldivar SO, Waniska R D , Rooney LW and Lusas EW 1993a. Extrusion cooking of pearl m i l l e t for production of m ill e t cowpea weaning foods. Cereal Chemistry 70(2):214-219.

Almeida-Dominguez H D , Serna-Saldivar SO, Gomez MH and Rooney LW. 1993b. Production and nutritional value of weaning foods f r o m mixtures of pearl millet and cowpea. Cereal Chemistry 70(1): 14-18.

Alpana. 1989. A study on nutritional value and utilization of sprouted pearl millet. MSc thesis, C C S Haryana Agricultural University, Hisar, Haryana, India. 62 pp.

Andrews D J . 1990. Breeding pearl m i l l et for developing countries. Pages 114-118 in lNTSORMIL Annual Report. Lincoln, Nebraska, USA: INTS O R M I L , University o f Nebraska. Archana. 1997. Utilization of processed pearl millet for the development of weaning and supplementary foods. MSc thesis, CCS Haryana Agricultural University, Hisar, Haryana, India. 121 pp.

Archana. 2002. Development and nutritional evaluation of pearl millet based diabetic food. P h D thesis, C C S Haryana Agricultural University, Hisar, Haryana, India. 176 pp. Archana, Sehgal S and Kawatra A. 2000. In vitro protein and starch digestibility of pearl m i l l e t (P. glaucum L.) as affected by processing techniques. Die Nahrung 45(l):25-27. Bach Knudsen KF and M u n c k L. 1985. Dietary fiber content and composition of sorghum and sorghum based foods. Journal of Cereal Science 3 :153.

85 Badi S, Pedersen B, Manowar L and Eggum BO. 1990. The nutritive value of new and traditional sorghum and m i l l e t foods from Sudan. Plant Foods for H u m a n N u t r i t i o n 40:5-19.

Badi SM and Hoseney R C . 1976. Use of sorghum and pearl m i ll e t flours in cookies. Cereal Chemistry 53(5):733-738.

Banger M U , Bhite BR, Kachare DP and Chavan JK. 1999. Role of phenolics and polyphenol oxidizing enzymes in odour generation in pearl millet meal. Journal of Food Science and Technology 36(6):535-537.

Bashay AY. 1996. Nutritional and chemical evaluation of pearl millet grains [Pennisetum typhoides (Brum, f.) Stapf and Hubbard, Poaceae] grown in the Gizan area of Saudi Arabia. International Journal of Food Science and N u t r i t i o n 47(2): 165-169.

Bookwalter G N , Lyte SA and Warner K. 1987. Millet processing for improved stability and nutritional quality w i t h o u t functional changes. Journal of Food Science 52(2):399-402.

Chaturvedi A and Sarojini G. 1996. Malting of pearl millet (Pennisetum typhoidum): its effects on starch and protein digestibilities. Journal of Food Science and Technology 33(4):343-344.

Chaudhary S. 1993. Preparation of nutritional evaluation of some traditional foods f r o m pearl millet. M S c thesis, C C S Haryana Agricultural University, Hisar, Haryana, India. 98 pp.

Chauhan B M , Suneja N and Bhat V M . 1986. N u t r i t i v e value and fatty acid composition of some high yielding varieties of bajra. Bulletin of Grain Technology 21 (1): 4 4 1 - 4 9 2 .

Chavan JK and Kachare DP. 1994. Effect of seed treatment on lipolytic deterioration of pearl m i l l e t flour during storage. Journal of Food Science and Technology 31:81-82.

Chibber BAK, Mertz ET and Axtell JD. 1980. In vitro digestibility of high tannin sorghum at different stages of dehulling. Journal of Agricultural and Food Chemistry 28:160.

Dahiya S and Kapoor A C . 1994. Development, nutritive content and shelf life of home processed supplementary foods. Plant Foods for H u m a n N u t r i t i o n 45:334-342.

Daiber KH and Taylor J R N . 1995. Opaque beers. Pages 299-323 in Sorghum and millets: Chemistry and technology (Dendy, D A Y ed.). St. Paul, Minnesota, USA: American Association of Cereal Chemists.

Dalvi U S . 1995. Effect of hot water blanching of seeds on changes in lipids of promising pearl millet cultivars during storage. MSc (Agri.) thesis, Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, India. 112 pp.

Desikachar H S R . 1975. Processing of maize, sorghum and millets for food uses. Journal of Scientific and Industrial Research 34:231-236.

86 Ejeta G , Hansen M M and M e r t z ET. 1987. I n vitro digestibility and amino acid composition of pearl millets and other cereals. Proceedings of the National Academy of Sciences, U S A 84:6016-6019.

Elkhalifa EA and Singh U. 1996. Evaluation of grain quality of newly developed pearl m i l l e t cultivars. UK Journal of Agricultural Sciences 4(2):44-55.

FAO. 2000. Quarterly Bulletin of Statistics 1 (1):33 and 56.

Galiba M, Rooney LW, Waniska RD and Miller FR. 1987. The preparation of sorghum and millet couscous in West Africa. Cereal Foods W o r l d 32:878.

Galiba M, Waniska R D , Rooney LW and Miller FR. 1988. Couscous quality of sorghum w i t h different kernel characteristics. Journal of Cereal Science 7:183-193.

Geervani P, Vimala V, Umapradeep K and Rama Devi A. 1996. Effect of processing on protein digestibility, biological value and net protein utilization of m i l l e t and legume based infant mixes and biscuit. Plant Foods for H u m a n N u t r i t i o n 49:221 — 229.

Guiro AT, Sail H G , Kane O, Ndiaye A M , Diarra D and Sy, M T A . 1987. Protein- calorie malnutrition in Senegalese children: Effect of rehabilitation w i t h pearl millet weaning foods. N u t r i t i o n Report International 36(5): 1071-1079.

Gupta C and Sehgal S. 1992. Protein quality of formulated homemade weaning foods. Ecolology of Food N u t r i t i o n 28:319.

Haber T, Jakubczyk T, Lewczuk J and Sniadowski A. 1980. Test utilization of millet flour for bread making. Pizcglad Piekarski I, Cukierniczy 28(1): 10-12.

Hadimani N A , Ali SZ and Malleshi N G . 1995. Physico-chemical composition and processing characteristics of pearl millet varieties. Journal of Food Science and Technology 32(3): 193-198.

Hadimani NA and Malleshi N G . 1993. Studies on milling, physico-chemical properties, nutrient composition and dietary fibre content of millets. Journal of Food Science and Technology 30(1): 193-198.

Hoseney R C , Varriano-Marston E and Dendy DAV. 1981. Sorghum and millets. Advances in Cereal Science and Technology 4:71-144.

Iwuoha C I , Anyadike AC and Eke O S . 1997. The effect of flour-blending on the physico-chemical and sensory qualities of bread. Journal of Food Science and Technology 34:311-315. Jambunathan R and Subaramanian V. 1988. Grain quality and utilization of sorghum and pearl millet. Pages 133-139 in Biotechnology in tropical crop improvement: proceedings of the International Biotechnology Workshop, 12-15 Jan 1987, I C R I S A T Center, India. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

87 Kaced I, Hoseney RC and Varriano-Marston E. 1984. Factors affecting rancidity in ground pearl m i l l e t (Pennisetum americanum L. Leeke). Cereal Chemistry 61 (2): 187- 192.

Kachare DP and Chavan JK. 1992. Effect of seed treatment on the changes in fat acidity of pearl m i l l e t meal during storage. Indian Journal of Agricultural Biochemistry 5(1&2):15-20. Kadlag RV, Chavan JK and Kachare DP. 1995. Effect of seed treatments and storage on the changes in lipids of pearl m i l l et meal. Plant Foods for H u m a n N u t r i t i o n 4 5 : 2 7 9 - 285.

Khetarpaul N and Chauhan BM. 1991. Effect of pure sequential culture fermentation by yeasts and lactobacilli on HCl - extractability of minerals f r o m pearl millet. Food Chemistry 39:347-355. Kumar A and Chauhan B M . 1993. Effects of phytic acid on protein digestibility [in vitro) and HCl-extractability of minerals in pearl millet sprouts. Cereal Chemistry 70(5):504-506.

Kunetz C. 1997. Processing parameters affecting sorghum noodle qualities. MSc thesis, Texas A & M University, College Station, Texas, U SA. Lai CC and Varriano-Marston E. 1980. Changes in pearl m i l l e t meal during storage. Cereal Chemistry 57(4):275-277. Lekalake R. 1993. Factors affecting the cooking and extrusion properties of sorghum for noodle production. M S c thesis, Texas A & M University, College Station, Texas, USA.

Lukshmi KB and Vimala V. 1996. Hypoglycemic effect of selected sorghum recipes. Nutrition Research 16(16):1651-1658. Mahgoub EO Salah and Elhag A Safia. 1998. Effect of milling, soaking, malting, heat treatment and fermentation on phytate level of flour in Sudanese sorghum cultivars. Food Chemistry 61 ( l ) : 7 7 - 8 0 . M a l i k M. 1999. Functional and nutritional properties of newly developed hybrids and varieties of pearl millet. M S c thesis, C C S Haryana Agricultural University, Hisar, Haryana, India. 80 pp.

Malleshi NG and Desikachar H S R . 1985. Milling, popping and malting characteristics of some m i n o r millets. Journal of Food Science and Technology 22:400. Malleshi NG and Desikachar H S R . 1986. N u t r i t i v e value of malted flour. Qualitas Plantarum Plant Foods for H u m a n N u t r i t i o n 36(3): 191-196. Malleshi NG and Klopfenstein CF. 1998. N u t r i e n t composition and amino acid contents of malted sorghum, pearl m i l l e t and finger millet and their m i l l i n g fractions. Journal of Food Science and Technology 35(3):247-249.

88 M a n i U V , Prabhu B M , Damle SS and M a n i I. 1993. Glycemic index of some commonly consumed foods in western India. Asia Pacific Journal of Clinical N u t r i t i o n 2:111-114.

McDonough CM and Rooney LW. 1985. Structure and phenol content of six species of millets using fluorescence microscopy and H P L C . Cereal Foods W o r l d 30:550. Miean KH and Mohamed S. 2001. Flavonoid (myricitin, quercetin, kaempferol, luteolin and apigenin) content of edible tropical plants. Journal of Agricultural Food Chemistry 49(6):3106-3112. Mmapatsi M D , Maleke JM and Leuschner K. (eds.) 1994. Proceedings of the S A D C - I C R I S A T Regional Sorghum and Pearl M i l l e t Workshop on Development and Institutional Support Systems for Sorghum M i l l i n g Technology, 25-29 July 1994, ICRISAT, Patancheru, India. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. M o r a d M M , Doherty C A , Faubion JM and Rooney LW. 1983. Utilization of dried distillers grain from sorghum in baked food systems. Progress Report. College Station, Texas, U S A : Rgr. Exp. Sta. M u n c k L. 1995. N e w milling technologies and products. Pages 223-281 in Sorghum and millets: Chemistry and technology (Dendy DAV ed.). St. Paul, Minnesota, USA: American Association of Cereal Chemists. Murlikrishna G, Malleshi N G , Desikachar HSR and Tharanathan RN. 1986. Effect of popping on the properties of some m i l l e t starches. Starch/Starke 3 8 : 4 8 - 5 1 . Mwasaru M A , Reichert RD and M u k u r u SZ. 1988. Factors affecting the abrasive dehulling efficiency of high tannin sorghum. Cereal Chemistry 63:171. Naikare S M . 2002. Annual report of N A T P submitted to C R I D A , Hyderabad, India. 40 pp. Naikare S M , Chavan JK and Kadam SS. 1986. Depigmentation and utilization of pearl millet in the preparation of cookies and biscuits. Journal of Maharashtra Agricultural Universities 11:90. Navita G and Sumathi S. 1992. Effect of primary processing on dietary fibre profile of selected millets. Journal of Food Science and Technology 29(5):314-316. Nirmala M, Subba Rao M V S S T and Murlikrishna G. 2000. Carbohydrates and their degrading enzymes from native and malted finger millet (ragi, Eleusine coracana, Indaf-15). Food Chemistry 69:175 - 1 8 0 . Olatunji O, Adesina AA and Koleoso O A . 1989. Use of sorghum as composite flour in baking. Page 21 in Industrial utilization of sorghum: summary proceedings of a Symposium on the Current Status and Potential of Industrial Uses of Sorghum in Nigeria, 4 - 6 Dec 1989, Kano, Nigeria ( M u r t y DS, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics.

89 O p o k u A R , Ohenhen SO and Ejiofor Ngozi. 1981. Nutrient composition of millet (Pennisetum typhoides) grains and malt. Journal of Agricultural and Food Chemistry 29:1247-1248.

Orewa GO and Iloh A. 1989. Current status of composite flour technology and prospects w i t h particular reference to the production of biscuits in Nigeria. Page 22 in Industrial utilization of sorghum: summary proceedings of a Symposium on the Current Status and Potential of Industrial Uses of Sorghum in Nigeria, 4 - 6 Dec 1989, Kano, Nigeria (Murty DS, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics.

Oshodi A A , Ogunbenle H N and Oladimeja M O . 1999. Chemical composition, nutritionally valuable minerals and fractional properties of benniseed (Sesamum radiatum), pearl m i l l e t (Pennisetum typhoides] and quinoa (Chenopodium quinoa) flours. Journal of Food Science and N u t r i t i o n 5 0 ( 5 ) : 3 2 5 - 3 3 1 .

Panwal JH and Pawar V D . 1989. Effect of soaking pearl m i l l et in acid on the bleaching and functional properties of flours. Journal of Food Science and Technology 26(2)79-82.

Pathak P, Srivastava S and Grover S. 2000. Development of food products based on millets, legumes and fenugreek seeds and their suitability to diabetic diet. International Journal of Food Sciences and N u t r i t i o n 51 (5):409-414.

Pawar VD and Parlikar G S . 1990. Reducing the polyphenols and phytate and improving the protein quality of pearl m i l l e t by dehulling and soaking. Journal of Food Science and Technology 27(3): 140-143.

Pawar VS and Pawar V D . 1997. M a l t i n g characteristics and biochemical changes of foxtail millet. Journal of Food Science and Technology 34(5):416-418.

Poonam. 2002. Effect of acid and heat treatment on nutrient composition and shelf life of pearl millet (Pennisetum glaucum) flour. MSc thesis, CCS Haryana Agricultural University, Hisar, Haryana, India. 106 pp.

Priyolkar V S . 1989. Use of sorghum flour in biscuit and wafer production: The N A S C O experience. Page 23 in Industrial utilization of sorghum: summary proceedings of a Symposium on the C u r r e n t Status and Potential of Industrial Uses of Sorghum in Nigeria, 4 - 6 Dec 1989, Kano, Nigeria ( M u r t y D S, ed.). Patancheru, A n d h r a Pradesh 502 324, India: International Crops Research Institute for the S e m i - A r i d Tropics.

Raghuwanshi A, Sehgal S, Kawatra A and Rekha. 1999. Carbohydrate and dietary fiber composition of pearl m i l l e t (Pennisetum glaucum L.) cultivars. Tests of agrochemicals and cultivars. Annals of A p p l i e d Biology (Supplement) 14(20):56-57.

Ramchandra G , Virupushka T K and Shadaksharaswamy M . 1978. Comparison o f the protein fractions of finger millet. Phytochemistry 17:1487.

90 Rao JS and Rao V G . 1997. Effect of incorporation of sorghum flour to wheat flour on chemical, rheological and bread characteristics. Journal of Food Science and Technology 34:251-254.

Rao N B S . 1987. Nutritional implications of millets and pseudo m i l l et. Nutrition News 8(5):1-3. Reddy VP, Faubion JM and Hoseney R C . 1986. Odor generation in ground stored pearl millet. Cereal Chemistry 63(5) : 4 0 3 - 4 0 6 .

Reichert RD and Youngs C G . 1979. Bleaching effect of acid in pearl millet. Cereal Chemistry 56:287.

Rekha. 1997. Efficacy of processing techniques in the utilization of pearl millet for value added products. MSc thesis, C C S Haryana Agricultural University, Hisar, Haryana, India. 125 pp.

Rooney LW, Kirleis AW and Murty DS. 1986. Traditional foods from sorghum: their production, evaluation and nutritional value. Advances in cereal science and technology, Vol. VIII (Pomeranz, ed.). St. Paul, Minnesota USA: American Association of Cereal Chemists.

Sawhney SK and N a i k M S . 1969. A m i n o acid composition of protein fractions of pearl millet and the effect of nitrogen fertilization in its proteins. Indian Journal of Genetics and Plant Breeding 29:395-406.

Saxena A K , Sharma A K , Sehgal KL and Bakshi A K . 1992. Proximate composition and fatty acid make-up of some improved varieties of pearl m i l l e t in Punjab. Indian Journal of N u t r i t i o n and Dietetics 29:177-180.

Sehgal S, Kawatra A, Begum J, Srivastava S and Naikare S M . 2002. Annual report of N A T P submitted to C R I D A , Hyderabad, India. 160 pp.

Sehgal S, Kawatra A, Begum J, Srivastava S and Naikare S M . 2003. Annual report of NATP submitted to CRIDA, Hyderabad, India.

Serna-Saldivar SO, Cannett R, Vargas J, Gonzalez M, Bedolla S and Medina C. 1988. Effect of soyabean and sesame addition on nutritional value of maize and decorticated sorghum tortillas produced by extrusion cooking. Cereal Chemistry 65:44.

Serna-Saldivar SO, Clegg C and Rooney LW. 1994. Effects of parboiling and decortication on the nutritional value of sorghum (Sorghum bicolor L. Moench) and pearl millet (Pennisetum glaucum L . ) . Journal of Cereal Science 1 9 ( l ) : 8 3 - 8 9 .

Serna-Saldivar S O , McDonough CM and Rooney LW. 1990. The millet. Pages 2 7 1 - 300 in Handbook of cereal science and technology (Lorenz KJ and Kulpeds K, eds.). N e w York, USA: Marcel Dekker. Sharma A and Kapoor A C . 1996. Levels of antinutritional factors in pearl m i l l et as affected by processing treatment and various types of fermentation. Plant Foods for H u m a n N u t r i t i o n 49:241-252.

91 Singh G. 2003. Development and nutritional evaluation of value added products from pearl millet (Pennisetum glaucum). PhD thesis, CCS Haryana Agricultural University, Hisar, Haryana, India.

Singh P and Nainawatee H S . 1999. Grain quality traits. Pages 158-183 in Pearl m i ll e t breeding (Khairwal IS, Rai K N , Andrews DJ and Harinarayana G, eds.). N e w D e l h i , India: O x f o r d & I B H Publishing Co. Pvt. L t d .

Singh U. 1984. The inhibition of digestive enzymes by polyphenols of chickpea and pigeonpea. Nutrition Report International 29:745.

Siwawij S and Trangwacharakul. 1995. Study on sorghum snack production by extrusion process. Thailand Journal of Agricultural Sciences 2 8 ( 3 ) : 2 5 3 - 2 6 1 .

Suhendro ES, McDonough C M , Rooney LW, Waniska RD and Yetneberk S. 1998. Effects of processing conditions and sorghum cultivar on alkaline-processed snacks. Cereal Chemistry 75(2): 187-193.

Taylor J R N and Schussler L. 1986. The protein composition of the different anatomical parts of sorghum grain. Journal of Cereal Science 4:361.

Thompson LU and Yoon J H . 1984. Starch digestibility as affected by polyphenol and phytic acid. Journal of Food Science 49:1228-1229.

Torres P I , Ramirez-Wong B, Serna-Saldivar SO and Rooney LW. 1993. Effect of sorghum flour addition on the characteristics of wheat flour tortillas. Cereal Chemistry 70(1):8-13.

Torres-Cepeda TE, Alanis-Guzman MG and M a i t i R. 1996. Relations between nutritional composition of anatomical parameter in sorghum [Sorghum bicolor L. Moench). Archivos-Latinoamericanos-de-Nutricion 46(3):253-259.

Varriano-Marston E and Hoseney R C . 1983. Barriers to increased utilization of pearl millet in developing countries. Cereal Foods W o r l d 28(7):392-395. Vimala V, Geervani P, Umapradeep K and Rama Devi A. 1996. Effect of dehulling and genotypes of sorghum (Sorghum vulgare) on roti quality. Journal of Food Science and Technology 33(3):234-236.

Young R, Haidara M, Rooney LW and Waniska R D . 1990. Parboiled sorghum development of a novel decorticated product. Journal of Cereal Science 11:277-289.

92 Dynamics of Utilization, Markets, Trade and Coalitions: Sorghum and Millets in Asia

P Parthasarathy Rao, AJ Hall and MCS Bantilan1

Abstract Production and consumption patterns of sorghum and millet in Asia have changed significantly in the last decade. While food use is declining, non-food or industrial uses are on the increase. This has implications on crop production and marketing with the entry of private industry in coarse cereal economies. This paper highlights the recent trends in the production, consumption and trade of sorghum and millet and spells out the need for a stronger coalition of sector stakeholders as a way of developing the non-food market by effectively linking farmers with new sources of demand for these crops. Production and consumption patterns of sorghum (Sorghum bicolor) a n d millet have changed significantly in Asia in the last decade and this has important implications for cereal improvement programs , particularly those seeking t o s u p p o r t t h e l i v e l i h o o d s o f r u r a l h o u s e h o l d s . Notably, an increasing shift from food to non-food uses has made private indus try a much more important player in coarse cereal economies. In this paper, recent trends in the production, consumption and trade of sorghum and m illets are reviewed. The implications for institutional changes associated w ith the way public research programs might constructively interact with private companies, farmers and intermediary organization such as non-gov ernmental organization (NGO) and farmer-operated enterprises such as associations a n d cooperatives are discussed. The dilemma embodied by these developments is that no t o n l y t h e r e are clear social b e n e f i t s t o b e d e r i v e d f o r a c r o p t h a t i s p r imarily grown by small farmers in marginal production environments but also t h e r e i s a n e e d t o ensure a smooth transition from food to markets for oth e r uses. A c o a l i t i o n approach might be a useful way to strengthen links betw een scientists, industry and farmers so as to negotiate and generate t echnical and institutional i n n o v a t i o n s t h a t will fulfill t h e agendas of all stakeholders. This is discussed i n t h e f i n a l s e c t i o n o f t h i s paper.

1. ICRISAT, Patancheru 502 324, Andhra Pradesh, India.

93 E v o l v i n g s o r g h u m a n d m i l l e t e c o n o m i e s : a n o v e r v i e w

I n 2 0 0 2 , Asia p r o d u c e d 2 2 % o f t h e w o r l d ' s s o r g h u m a n d 3 9 % of the world's millet2 . O f a p p r o x i m a t e l y 9 8 7 m i l l i o n t o f cereals p r o d u c e d i n Asia i n 2 0 0 2 , sorghum and millet account for 11.7 and 12.6 million t, respectively. Sorghum and millets are primarily grown in low rainfall and dro ught-prone areas that are u n s u i t a b l e f o r g r o w i n g o t h e r crops unless i r r i g a t i o n is available. Production is characterized by semi-extensive system under low input conditions. In contrast, in developed countries intensive commercialized produc tion systems exist with yields averaging 3 - 5 t h a 1 ; the grain is used and traded mainly for livestock fee d . Both sorghum and millet contribute to household food s e c u r i t y i n s o m e o f t h e m o s t i n s e c u r e regions o f A s i a . H o w e v e r , d u r i n g t h e last two decades, several factors are contributing to a change in the tr aditional role of these c r o p s a s f o o d s e c u r i t y c r o p s . Firstly, o n t h e s u p p l y side the area planted to these crops is declining, due to slow productivity grow th compared to competing crops and low/declining producer price. On th e demand side, food use p a r t i c u l a r l y f o r s o r g h u m has d e c l i n e d d u e t o i n c o m e growth, urbanization a n d c h a n g e i n tastes a n d p r e f e r e n c e s , f u r t h e r l o w e r i n g t he prices. But utilization patterns in Asia are in a dynamic phase. So r g h u m a n d t o lesser e x t e n t m i l l e t g r a i n are m o v i n g f r o m t h e i r t r a d i t i o n a l use a s a f o o d c r o p t o a l t e r n a t i v e uses s u c h a s l i v e s t o c k a n d p o u l t r y f e e d , b a k e r y p r o d u c t s [ b l e n d e d w i t h w h e a t ( T r i t i c u m aestivum)], potable alcohol and starch industry. In non- traditional uses, price competition from competing crop s l i k e m a i z e (Zea mays) i s a n i m p o r t a n t d e t e r m i n a n t o f d e m a n d f o r s o r g h u m a n d m i l l e t . T h e straw/stover of these crops, however, continues to be v alued as an important s o u r c e o f f e e d f o r l i v e s t o c k p a r t i c u l a r l y i n areas w h e r e o t h e r f o d d e r sources are l i m i t e d o r y e a r r o u n d f o d d e r s u p p l i e s are n o t available. Sorghum and millet research needs to be placed in the c ontext of current and future market forces that would have a bearing on t he future prospects of t h e s e c r o p s i n v a r i o u s uses. I n several n i c h e areas w h e r e o n l y s o r g h u m a n d m i l l e t c a n b e g r o w n , t h e y w i l l c o n t i n u e t o p l a y a n i m p o r t a n t r o l e a s a f o o d s e c u r i t y c r o p . B u t e v e n h e r e p r o d u c t i v i t y increases can translate into higher incomes for the marginal and small farmers.

2 . T h e F o o d a n d A g r i c u l t u r e O r g a n i z a t i o n o f t h e U n i t e d N a t i o n s ( F A O ) does n o t p u b l i s h separate data f o r p e a r l m i l l e t . For t h i s analysis, area a n d production for all millets are r e p o r t e d . For t h e m a j o r m i l l e t - g r o w i n g c o u n t r i e s i n A s i a , pearl millet accounts for 10% of t o t a l m i l l e t p r o d u c t i o n . Pearl m i l l e t accounts f o r 9 0 % o f millet production in Bangladesh, 5 8 % i n I n d i a , 8 5 % i n M y n a m a r a n d 9 0 % i n Pakistan ( I C R I S A T a n d F A O 1 9 9 6 ) .

94 I n t h e sections t h a t f o l l o w , t h e changes i n t h e p r o d u c t i o n , c o n s u m p t i o n t r a d e a n d m a r k e t i n g p a t t e r n s f o r s o r g h u m and m i l l e t s i n Asia with particular reference to I n d i a are discussed.

Area and production

Asia accounts for 11.8 m i l l i o n t o f s o r g h u m ( t r i e n n i u m e n d i n g 2 0 0 2 ) , w i t h a n average y i e l d of one t ha-1, except China where yields averaged 3.5 t ha-1, c o m p a r a b l e to yields in d e v e l o p e d c o u n t r i e s . I n d i a is a m a j o r p r o d u c e r accounting for 68% of total production in Asia followed b y C h i n a . S o r g h u m area and production declined in major producing countr i e s i n Asia, a n d t h u s all Asia level (Table 1 ) . S o r g h u m yields, h o w e v e r , increased in all countries averaging 1.1% annual growth between 1980 and 2002. The c r o p i s capable o f higher yields but is constrained since in many countrie s l i k e I n d i a , C h i n a a n d Pakistan it is increasingly being pushed to more and m ore marginal areas

Table 1. Sorghum area, production and yield in major pr oducing countries in Asia, t r i e n n i u m e n d i n g , 2 0 0 0 - 0 2 .

Annual growth rate (1980-2002) (%) Area Production Yield Country/Region (million ha) (million t) (t ha-1) Area Production Yield

Asia India 10.0 8.0 0.8 -2.7 -1.6 1.1 China 0.8 2.7 3.3 -5.7 -4.1 1.7 Yemen 0.4 0.4 1.0 . - 2 . 5 -0.5 2.1 Pakistan 0.4 0.2 0.6 -0.3 0.03 0.3 Saudi Arabia 0.2 0.2 1.2 3.9 7.3 3.2 Thailand 0.1 0.2 1.5 -4.8 - 3 . 0 1.9 Bangladesh 0.001 0.001 1.2 - 4 . 7 - 2 . 4 2.4 Syrian Arab Republic 0.004 0.003 0.8 6.0 4.4 -1.5

Region Asia 11.9 11.7 1.0 -2.9 -2.3 0.7 South Asia 10.4 8.3 0.8 - 2 . 7 -1.6 1.1 Developing 38.2 42.8 1.1 -0.2 -0.2 - 0 . 1 Developed 4.3 14.7 3.4 -2.4 -1.8 0.7 World 42.4 57.5 1.4 - 0 . 4 - 0 . 7 -0.3

Source: FAO (2003).

95 (Kelley and Parthasarathy Rao 1993). Developed countr i e s a c c o u n t f o r o n l y 1 0 % o f t h e t o t a l global area u n d e r s o r g h u m b u t a c c o u n t f o r a l m o s t 2 6 % o f global p r o d u c t i o n . Asia p r o d u c e s 12.6 m i l l i o n t m i l l e t s a n d as in t h e case f o r s o r g h u m , I n d i a a n d C h i n a are t h e m a j o r p r o d u c e r s . U n l i k e s o r g h u m , d e v e l oping countries a c c o u n t f o r b u l k o f m i l l e t p r o d u c t i o n . Average y i e l d s are close t o one t ha-1, w i t h t h e e x c e p t i o n o f C h i n a , w h e r e y i e l d s are higher. B e t w e e n 1 9 8 0 a n d 2002, as for sorghum, millet area too declined in all c ountries in Asia. Yield increases are generally positive thus dampening the dec l i n e i n p r o d u c t i o n (Table 2 ) . T h u s , d e s p i t e t e c h n o l o g i c a l change f o r b o t h s o r g h u m a n d millet, area u n d e r these crops i s d e c l i n i n g . Relative p r o f i t a b i l i t y o f c o m p e t i n g crops, d e c l i n i n g r o l e as a f o o d c r o p at t h e aggregate level, l o w e r m a r k e t prices, urbanization, income growth and change in tastes and preferences are s o m e o f t h e factors e x p l a i n i n g d e c l i n e i n area a n d p r o d u c t i o n .

Table 2. Millet area, production and yield in major producing countries in Asia, triennium ending, 2000-02.

Annual growth rate (1980-2002) (%) Area Production Yield Country/Region (million ha) (million t) (t ha1) Area Production Yield

Asia India 12.3 9.6 0.8 -2.0 0.1 2.1 China 1.2 2.1 1.8 -6.2 -5.4 0.9 Pakistan 0.4 0.2 0.5 -1.3 -1.2 0.1 Nepal 0.3 0.3 1.1 4.3 5.1 0.8 Myanmar 0.2 0.2 0.7 1.9 1.3 -0.6 Bangladesh 0.1 0.1 0.7 -0.5 -0.6 -0.1 Yemen 0.1 0.1 0.6 -0.3 1.1 -0.8 Saudi Arabia 0.01 0.01 1.2 -1.2 -2.3 3.6

Region Asia 14.8 12.6 0.8 -2.3 -1.4 0.9 South Asia 13.1 10.1 0.8 -1.9 0.1 2.0 Developing 35.1 26.0 0.7 0.2 0.4 0.2 Developed 1.7 1.6 0.9 -4.1 -3.4 0.8 World 36.8 27.5 0.7 -0.1 0.1 0.2

Source: FAO (2003).

96 Utilization

Sorghum

T h e r o l e of s o r g h u m a n d m i l l e t s as f o o d staples at t h e aggregate level has d e c l i n e d since 1 9 8 0 . I n Asia, s o r g h u m f o r f o o d use c o n t r ibuted 5.7 kg capita- 1 yr- 1 and millets 5.2 kg capita"1 yr1 in 1980. In 2000, it declined to 2.3 kg capita- 1 yr- 1 for sorghum and 3 kg capita"1 yr1 for millets. During the same p e r i o d t h e per capita a v a i l a b i l i t y o f all cereals i n Asia increased marginally f r o m 164 kg capita- 1 yr- 1 to 171 kg capita- 1 yr- 1 (Table 3). Per capita availability o f s o r g h u m a n d m i l l e t s d e c l i n e d i n all c o u n t r i e s i n c l u d i n g C h i n a , I n d i a and Pakistan. In India, the per capita availability of sorg hum reduced by more than h a l f and f o r m i l l e t s b y less t h a n o n e - t h i r d . D e s p i t e t h e low and declining per

Table 3. F o o d u s e (kg capita- 1 yr-1) of total cereals, sorghum and millet in Asia1 .

Total cereals Sorghum Millet Country/Region 1980 2000 1 9 8 0 2000 1980 2000 Asia Myanmar 192 215 - - 1.9 2.9 China 186 183 4.5 0.9 4.4 0.9 Syrian Arab Republic 171 177 0.6 0.0 Bangladesh 168 179 0.1 0.0 0.4 0.4 Nepal 164 194 - - 7.2 10.7 Thailand 153 126 - - Yemen 148 164 616 18.3 7.8 3.3 Saudi Arabia 145 154 12.4 9.7 0.7 0.5 Pakistan 144 149 2.3 1.3 1.1 0.6 India 140 159 13.4 6.6 12.2 9.0

Region Asia 164 171 5.7 2.3 5.2 3.0 South Asia 143 160 10.7 5.1 9.8 7.1 Developing 157 162 7.2 5.0 5.8 4.5 Developed 130 129 0.2 0.4 1.2 0.4 World 150 155 5.3 4.0 4.6 3.6

1. Domestic availability for food use, ie, domestic production - exports + imports ± stock changes - feed and other industrial uses. Source: FAO (2003).

97 capita a v a i l a b i l i t y o f s o r g h u m a n d m i l l e t s a t t h e aggregate l e v e l t h e i r i m p o r t a n c e a s f o o d crops c a n n o t b e u n d e r e s t i m a t e d . For e x a m p l e , i n t h e I n d i a n states o f G u j a r a t , Rajasthan, M a h a r a s h t r a a n d K a r n ataka, coarse cereals a c c o u n t e d f o r 2 0 - 3 0 % o f t h e t o t a l cereal c o n s u m p t i o n i n 1 9 9 9-2000. For h o u s e h o l d s b e l o w t h e p o v e r t y l i n e i n these states, coarse cereals a c c o u n t f o r m o r e t h a n 5 0 % o f t h e t o t a l cereal i n t a k e ( C h a n d a n d K u m a r 2 0 0 2 ) . A d d i t i o n a l l y , f o r m a n y p o o r l i v e s t o c k keepers i n t h e m a r g i n a l areas s o r g h u m s t r a w i s t h e o n l y source o f f e e d f o r bovines t h r o u g h o u t t h e year ( K e l l e y a n d Parthasarathy Rao 1 9 9 4 , H a l l 2 0 0 0 ) . T h e I n d i a n g o v e r n m e n t ' s a g r i c u l t u r e a n d f o o d p o l i c y g e a r e d t o w a r d s r i c e (Oryza sativa) a n d w h e a t p l a y e d a n i m p o r t a n t r o l e i n r e d u c i n g c o n s u m p t i o n o f coarse cereals. D u e t o subsidies o n f a r m i n p u t s ( i r r i g a t i o n , e l e c t r i c i t y , f e r t i l i z e r s ) , p r o d u c t i o n o f r i c e a n d w h e a t i n c r e a s e d faster t h a n t h e p o p u l a t i o n g r o w t h r a t e . A l s o , subsidies o n sale o f r i c e a n d w h e a t t h r o u g h P u b l i c D i s t r i b u t i o n S y s t e m ( P D S ) f u r t h e r c o n t r i b u t e d t o r e d u c t i o n i n s o r g h u m a n d m i l l e t c o n s u m p t i o n ( C h a n d a n d K u m a r 2 0 0 2 ) . D u e t o h i g h t a r i f f s o n e d i b l e o i l i m p o r t s , oilseeds p r o d u c t i o n b e c a m e m o r e c o m p e t i t i v e r e p l a c i n g s o r g h u m a n d m i l l e t s ( G u l a t i a n d K e l l e y 1 9 9 9 , H a l l 2 0 0 0 ) . Besides its t r a d i t i o n a l use as f o o d g r a i n c r o p in A s i a , s o r g h u m is u s e d as f e e d g r a i n i n C h i n a , T h a i l a n d , Japan a n d S o u t h K o r e a , f o r l i q u o r p r o d u c t i o n i n C h i n a a n d a s a g r e e n f o d d e r c r o p i n I n d i a , Pakistan a n d C h i n a . I n r e c e n t years its use as f e e d g r a i n a n d to a l i m i t e d e x t e n t o t h e r n o n - f o o d uses is increasing i n c o u n t r i e s w h e r e i t i s t r a d i t i o n a l l y u s e d a s a f o o d c r o p (Table 4 ) . I n A s i a , 3 5 % o f s o r g h u m g r a i n i s u s e d a s l i v e s t o c k f e e d a n d o t her industrial uses; 5 8 % i s u s e d i n C h i n a a n d 8 - 1 0 % i n I n d i a a n d Pakistan. I n a s t u d y o n i n d u s t r i a l uses o f s o r g h u m i n I n d i a , i t i s p r o j e c t e d t h a t 2.5 t o 4.3 m i l l i o n t o f s o r g h u m w i l l b e u s e d i n i n d u s t r i a l uses b y 2 0 1 0 , ie, t h r e e - t o f o u r - f o l d increase f r o m its c u r r e n t usage levels i n 1 9 9 8 . P o u l t r y f e e d w i l l a c c o u n t f o r b u l k o f t h e use f o l l o w e d b y d a i r y f e e d , a l c o h o l p r o d u c t i o n a n d s t a r c h p r o d u c t i o n ( K l e i h e t a l . 2 0 0 0 ) . W i t h e x p a n d i n g d a i r y a n d m e a t i n d u s t r y d u e t o r i s i n g d e m a n d f o r l i v e s t o c k p r o d u c t s (Ryan a n d Spencer 2 0 0 2 ) , forage s o r g h u m has b e c o m e i m p o r t a n t i n m a n y A s i a n c o u n t r i e s . I t i s increasingly b e i n g g r o w n b o t h u n d e r i r r i g a t e d a n d d r y l a n d c o n d i t i o n s . H o w e v e r , data o n area u n d e r forage s o r g h u m are n o t r e a d i l y available.

98 Millet

F o o d use i s s t i l l t h e m o s t i m p o r t a n t use o f m i l l e t s . I n 2 0 0 0 , o n l y 1 4 % o f t o t a l grain p r o d u c t i o n in A s i a was used for f e e d a n d o t h e r n o n - f o o d uses. Feed use is h i g h i n C h i n a a n d Pakistan. I n I n d i a , a l t h o u g h , o n l y 6 % o f m i l l e t p r o d u c t i o n i s u s e d f o r f e e d its i m p o r t a n c e i s increasing i n r e c e n t years. For example, in T a m i l N a d u i n s o u t h e r n I n d i a , f a r m e r s g r o w i n g i m p r o v e d cultivars o f pearl m i l l e t (Pennisetum glaucum) are able to m a r k e t t h e i r surplus to t h e a n i m a l f e e d sector, m a i n l y p o u l t r y a n d c a t t l e f e e d m a n u f a c t u r i n g u n i t s ( R a m a s w a m y e t al. 2 0 0 0 ) . I n c o n t r a s t t o s o r g h u m a n d m i l l e t , m o r e t h a n 7 0 % o f maize p r o d u c t i o n i s u s e d as feed a n d o t h e r i n d u s t r i a l uses (starch, b a k e r y p r o d u c t s ) in Asia as also a t t h e global l e v e l . H o w e v e r , t h e r e are c o u n t r i e s i n Asia like India, where its use as feed g r a i n is o n l y 15%). G l o b a l l y , m a i z e is one of t h e m a i n c o m p e t i n g crops t o s o r g h u m a n d m i l l e t s i n n o n - f o o d uses.

Table 4. F e e d a n d other industrial uses (% to d o m e s t i c availability) of sorghum, millet a n d m a i z e in A s i a .

Sorghum Millet Maize Country/Region 1980 2000 1980 2000 1980 2000

Asia Syrian Arab Republic 98.5 96.8 68.4 - 94.3 95.4 Thailand 91.9 99.4 100.0 100.0 64.3 90.3 China 37.3 57.7 20.5 42.5 59.4 78.2 Saudi Arabia 12.5 5.0 26.7 5.0 95.0 99.1 Pakistan 10.6 10.0 55.0 55.3 39.9 37.7 Bangladesh 10.0 10.0 0.0 0.0 10.0 15.5 Yemen 8.8 8.0 4.0 4.0 36.3 48.6 India 7.8 8.2 6.3 6.5 14.5 14.3 Myanmar - - 15.0 15.0 28.1 58.2 Nepal - - 10.7 10.5 16.4 27.6

Region Asia 36.1 35.4 12.7 13.9 59.6 71.1 South Asia 7.9 8.2 7.4 7.5 17.5 18.5 Developing 40.0 46.9 15.7 16.7 54.3 64.0 Developed 97.1 88.5 25.6 71.3 89.0 79.1 World 56.8 55.8 16.5 20.0 75.4 71.6

Source: FAO (2003).

99 Trade

International trade

Sorghum

I n 2 0 0 2 a b o u t 7 m i l l i o n t o f s o r g h u m ( 1 3 % o f global p r o d u c t i o n ) was t r a d e d g l o b a l l y i n d i c a t i n g a d e c l i n e f r o m 1 1 m i l l i o n t ( 2 0 % o f p roduction) in 1980 (Table 5). Global sorghum trade compares favorably wit h trade in all cereals, which is about 12-13% of production. Developed countri e s a c c o u n t f o r t h e b u l k o f t r a d e i n s o r g h u m , w h i c h i s m a i n l y f o r f e e d use (Fig. 1). In Asia, major sorghum-growing countries account for a small fraction o f g l o b a l t r a d e , a n d t h e i r share has b e e n d e c l i n i n g over t i m e ( F i g . 1). T h a i l a n d was a m a j o r exporter of sorghum in the 1980s and China in the early 1990s. E x p o r t s f r o m Asia declined drastically in 2001, reflecting the grow ing demand for sorghum i n n o n - f o o d uses. Sorghum imports to Asia declined from 5.4 million t in 1 9 8 0 to 2 m i l l i o n t i n 2 0 0 1 . Japan accounts for b u l k o f these i m p o r t s . C h i n a , Malaysia, Republic of Korea a n d Y e m e n i m p o r t small quantities, w i t h n o discernable trend (Table 6).

Table 5. S o r g h u m e x p o r t s in A s i a .

Exports ('000 t) Exports as % of production Country/Region 1980 1990 2001 1980 2001

Asia Thailand 180.6 19.8 0.3 76.2 0.2 Indonesia 12.6 - - - - Singapore 9.8 0.1 0.2 - - Pakistan 5.4 0.0 0.02 2.3 0.01 China 1.0 289.3 19.0 0.015 0.7 India 0.1 0.0 0.4 0.001 0.004 Region Asia 209.5 309.5 20.6 1.1 0.2 South Asia 5.5 0.0 0.4 0.05 0.005 Developing 2,053.7 1,501.9 518.8 5.1 1.2 Developed 9,125.7 7,362.6 6,494.5 53.2 40.2 World 11,179.4 8,864.5 7,013.3 19.5 11.6

Source: FAO (2003).

100 S o r g h u m 16000 Developed World 12000

8000

4000

0 1980 1985 1990 1995 2001

Millet 300 - Developed World 250

200

150

100

50

0 1980 1985 1990 1995 2001

Share of Asia to World 20

16

12

8

4

0 1980 1985 1990 1995 2001

Figure 1. Sorghum and millet exports.

101 Table 6. S o r g h u m i m p o r t s ('000 t) in A s i a .

Country/Region 1980 1990 2001 Asia Japan 4,219 3,763 1,908 China 417 33 37 Israel 314 367 55 Cyprus 99 0.002 0.007 Saudi Arabia 31.9 0.5 0.1 Singapore 19.8 0.4 0.1 Malaysia 12.7 2.3 0.3 Republic of Korea 12.2 92.3 4.2 Bangladesh 5.7 0.0 0.0 Yemen 2.5 18.7 0.5 India 1.5 0.0 0.0 Thailand 0.1 1.3 0.9 Iraq 0 155.0 0.0 Lebanon 0 0.0 4.5 Philippines 0 0.3 4.5 Turkey 0 25.8 0.0 Region Asia 5,144.4 4,468.0 2,015.7 South Asia 7.1 0.004 0.013 Developing 3,659.3 3,556.0 5,301.9 Developed 7,372.6 5,035.9 2,265.6 World 11,031.9 8,591.9 7,567.5

Source: FAO (2003).

Millet A r o u n d less t h a n 1 % o f global p r o d u c t i o n o f m i l l e t i s t r a d e d . T h i s figure c o u l d b e a n u n d e r e s t i m a t e since substantial q u a n t i t i e s o f m i l l e t t r a d e are u n r e c o r d e d ( I C R I S A T a n d F A O 1 9 9 6 ) . O f f i c i a l records o n prices, etc are also n o t r e g u l a r l y p u b l i s h e d . U n l i k e s o r g h u m , b o t h d e v e l o p e d a n d d e v e l o p i n g c o u n t r i e s are i m p o r t a n t e x p o r t e r s o f m i l l e t , a n d e x p o r t s have generally increased over t i m e ( F i g . 1 ) . A s i a accounts f o r o n e - f i f t h o f g l o b a l e x p o r t s a n d C h i n a a n d I n d i a are t h e m a j o r e x p o r t i n g c o u n t r i e s (Table 7 ) . U n l i k e s o r g h u m , share o f A s i a i n t o t a l e x p o r t s o f m i l l e t has increased over t i m e a l t h o u g h f r o m a s m a l l base (Fig. 1). A s i a i m p o r t e d a b o u t 6 6 0 0 0 t o f m i l l e t s i n 2 0 0 1 . Japan a n d R e p u b l i c o f K o r e a a c c o u n t f o r b u l k o f t h e i m p o r t s (Table 8 ) . Several o t h e r countries in Asia import small quantities mainly for fo o d use.

102 Table 7. Millet e x p o r t s in A s i a .

Exports ('000 t) Exports as % of production Country/Region 1980 1990 2001 1980 2001 Asia China 5 3.9 21.4 0.09 1.09 Sri Lanka 1.4 0.002 0.005 8.90 0.12 Singapore 0.4 0.3 0.02 - - Thailand 0.03 1.3 0.2 - - Iran, Islamic Rep of 0.03 0.0 2.0 0.29 22.2 Turkey 0.002 0.6 0.8 0.01 12.3 India 0 4.5 19.1 0 0.17 Yemen 0 0.0 0.1 0 0.21 Kazakhstan 0 0.0 1.7 0 1.98

Region Asia 6.9 13.6 45.7 0.04 0.3 South Asia 1.4 4.7 19.1 0.01 0.2 Developing 118.1 81.1 106.0 0.51 0.4 Developed 96.7 105.9 142.3 5.12 9.7 World 214.9 105.9 142.3 5.12 9.7

Source: FAO (2003).

Domestic trade in India

Large quantities of sorghum are traded within India fro m t h e m a j o r g r o w i n g areas to u r b a n centers, to n o n - s o r g h u m g r o w i n g areas a n d also between g r o w i n g areas. T h e t r a d e i s m a i n l y t o m e e t d e m a n d f o r s o r g h u m f r o m u r b a n c o n s u m e r s a n d t o m e e t q u a l i t y r e q u i r e m e n t s o f consumers f r o m d i f f e r e n t i n c o m e groups. For e x a m p l e , p o o r c o n s u m e r s p r e f e r s o r g h u m grown in the r a i n y season because it is cheaper t h a n s o r g h u m g r o w n in the postrainy season, w h i c h i s o f s u p e r i o r quality. S o r g h u m i s t r a d e d over l o n g distances mainly for non-food uses like poultry feed, cattle feed, alcohol m anufacture, etc (Marsland and Parthasarathy Rao 1999).

Prices

World market

At t h e global level s o r g h u m is a l m o s t exclusively t r a d e d as feed grain a n d its market price is closely related to production and trade o f o t h e r f e e d grains

103 Table 8. Millet imports ('000 t) in Asia.

Country/Region 1980 1990 2001

Asia Japan 47.4 26.2 12.9 Kuwait 1.1 0.1 0.4 Republic of Korea 1.0 0.1 15.4 Saudi Arabia 0.8 0.0 5.2 Thailand 0.6 1.8 3.9 Singapore 0.5 1.0 0.1 Malaysia 0.5 2.2 3.2 Philippines 0.035 0.3 1.8 China 0.00 3.6 4.0 Indonesia 0.00 1.6 7.6 Israel 0.00 0.3 1.1 Sri Lanka 0.00 0.0 2.3 Turkey 0.00 0.0 1.9 Region Asia 52.2 41.6 65.9 South Asia 0.002 0.4 2.9 Developing 114.5 38.4 108.1 Developed 170.1 164.4 152.4 World 284.6 202.9 260.5

Source: FAO (2003). such as maize, w h e a t a n d b a r l e y ( H o r d e u m vulgare). T h e r e are no p u b l i s h e d data o n s o r g h u m t r a d e a n d prices f o r f o o d use d u e t o s m a l l v o l u m e s t r a d e d . T h e closest c o m p e t i t o r f o r s o r g h u m i n m o s t n o n - f o o d uses i s m a i z e . M a i z e i s p r e f e r r e d over s o r g h u m w h e n t h e r e i s n o p r i c e d i f f e r e n c e b e t w e e n t h e t w o crops. Generally international market prices of sorghu m are l o w e r t h a n m a i z e prices b y 5 - 1 0 % ( F i g . 2 ) . T h e p r i c e d i f f e r e n c e varies f r o m year t o year d e p e n d i n g o n p r o d u c t i o n o f m a i z e i n t h e m a j o r g r o w i n g o r e x p o r t i n g c o u n t r i e s .

Domestic prices in India

I n d e x o f real w h o l e s a l e prices o f s o r g h u m i n I n d i a d e c l i n e d sharply u n t i l early 1990s a n d rose above t h e rate of i n f l a t i o n since 1 9 9 5 (base 1 9 8 1 = 1 0 0 ) , perhaps i n d i c a t i n g r e n e w e d d e m a n d f o r s o r g h u m p a r t i c u l a r l y f o r n o n - f o o d

104 180

Sorghum Maize 160

140

120

100

80

60

Year

F i g u r e 2 . A v e r a g e a n n u a l e x p o r t p r i c e s o f s o r g h u m a n d m a i z e a t U S G u l f p o r t s . uses. Since t h e m i d - 1 9 9 0 s real prices o f r i c e a n d w h e a t (since 1 9 9 7 ) have increased faster than the inflation rate. Due to an eff e c t i v e p r o c u r e m e n t p r i c e p o l i c y f o r r i c e a n d w h e a t , m a r k e t p r i c e s are n o t a t r u e i ndicator of demand for these c r o p s . S o r g h u m p r i c e s are generally m o r e v o l a t i l e (large year t o year fluctuations) compared to rice and wheat prices since its p r o d u c t i o n i s d e p e n d e n t o n r a i n f a l l (Fig. 3 a ) . I n c o n t r a s t , t h e real p r i c e o f s o r g h u m s t r a w increased faster than the grain price leading to a sharp increase in the straw to grain p r i c e r a t i o o v e r t i m e , r e f l e c t i n g a g r o w i n g d e m a n d f o r l i v e s t o c k f e e d , t o m e e t t h e rising d e m a n d f o r m i l k a n d m e a t ( K e l l e y a n d Parthasarathy Rao 1993). Compared to cereals, pulse price index increased sharply, with the index value around 135 in 2001 (Fig. 3b). The sharp rise i n real prices o f pulses has m a d e i t a n a t t r a c t i v e c r o p , w i t h area u n d e r d i f ferent pulse crops expanding, substituting area under coarse cereals. As indicated earlier, maize is an important competitor f o r s o r g h u m i n alternative uses. As at the global level, even in India 1 0 - 1 5 % l o w e r m a r k e t p r i c e f o r s o r g h u m c o m p a r e d t o m a i z e i s a m i n i m u m r e q u i r e m e n t f o r f e e d m a n u f a c t u r e r s a n d o t h e r i n d u s t r i a l processors t o p a r t i a l ly substitute sorghum f o r m a i z e . W h o l e s a l e m a r k e t prices f o r s o r g h u m a n d m a i z e are assembled for

105 a 130 Rice Sorghum Wheat 120

110

100

90

80

70 1982 1985 1988 1991 1994 1997 2000 Year

b 150 - Pearl millet Sorghum Pulses 140

130

120

110

100

90

80

70 1982 1985 1988 1991 1994 1997 2000 Year

Figure 3. Index of real wholesale prices in India (base 1981 = 100): (a) Cereals; and (b) Cereals and pulses. a f e w select m a r k e t s i n I n d i a and are s h o w n i n Figure 4 . The ratio of sorghum t o m a i z e p r i c e i s equal t o o r l o w e r t h a n m a i z e prices i n Bahraich, Chindwara, K a n p u r and C a l c u t t a m a r k e t s i n I n d i a e x c e p t i n f e w years when sorghum prices are h i g h e r t h a n m a i z e prices. I f s o r g h u m prices can b e c o n s i s t e n t l y l o w e r t h a n m a i z e prices b y 1 0 - 1 5 % t h e prospects o f s u b s t i t uting larger quantities of sorghum in non-food uses would be enhance d . A c c o r d i n g t o

106 i n d u s t r y sources, besides p r i c e , s o r g h u m usage f o r i n d u s t r i a l uses w o u l d d e p e n d o n c o n t i n u o u s s u p p l y t h r o u g h o u t t h e year. A c c o r d i n g t o i n d u s t r i a l processors, maize supplies are m o r e consistent in any given year.

Marketing in India

T h e m a r k e t i n g system f o r s o r g h u m i n I n d i a i s generally free o f m a j o r d i s t o r t i o n s a n d is n o t a c o n s t r a i n t to m a r k e t i n g of s o r g h u m as a f o o d grain. A l t h o u g h l i n k e d o r t i e d o u t p u t and c r e d i t m a r k e t s lead t o distress sale b y small

1.30 Bahraich Chindwara 1.20

1.10

1.00

0.90

0.80

0.70 1985 1987 1989 1991 1993 1995 1997 1999 Year

1.30 Calcutta Kanpur 1.20

1.10

1.00

0.90

0.80

0.70 1985 1987 1989 1991 1993 1995 1997 1999 Year

Figure 4 . R a t i o o f s o r g h u m t o m a i z e p r i c e i n selected wholesale m a r k e t s i n I n d i a .

107 and marginal farmers, existing marketing arrangements m ay not be optimal for i n d u s t r i a l users o f s o r g h u m a n d m i l l e t . I n d u s t r i a l users may wish to bypass the regular channels and obtain sorghum and millet more eff iciently through new institutional arrangements. Thus, twin track marketin g i s envisaged f o r s o r g h u m , one f o r f o o d s o r g h u m a n d a n o t h e r f o r i n d u s t r i a l users ( M a r s l a n d a n d Parthasarathy Rao 1 9 9 9 ) .

Promoting innovations in the coarse grain sector through science-industry coalitions

W h a t clearly emerges f r o m t h e t r e n d s discussed above i s t h a t s o r g h u m a n d t o a l i m i t e d e x t e n t m i l l e t crops are m a k i n g t h e t r a n s i t i o n from food to non-food markets. Supporting this transition with relevant postharvest i n t e r v e n t i o n s is a potentially important way of ensuring that new markets are f o u n d f o r a c r o p which farmers in marginal environments have little choice but to grow. The c e n t r a l e m p i r i c a l q u e s t i o n concerns w h a t t h e n a t u r e o f t hat postharvest i n t e r v e n t i o n s h o u l d be. Research and technology development in this area has ha d limited success. A m a j o r s t u d y o f s o r g h u m u t i l i z a t i o n i n I n d i a ( H a l l 2 0 0 0 ) c o n c l u d e d t h a t increased utilization of sorghum in the industrial sector has h a p p e n e d despite any specific technical breakthrough in the formal publ ic research sector. The same r e p o r t goes o n t o emphasize t h a t one o f t h e c r i t i c a l weaknesses o f c u r r e n t institutional arrangements is weak linkages between pub lic and private sectors. This is unfortunate given the considerable amount of research t h a t has been carried o u t on alternative u t i l i z a t i o n of coarse cereals. Exploration of the potential role of the Indian privat e sector in relation to creating incentives for different coarse grain qualities reached a broadly similar conclusion (Hall et al. 2000). Again the recommendation from that study focused on t h e n e e d for p a r t n e r s h i p s b e t w e e n i n d u s t r y and research as w e l l as institutional innovations (such as contract farming) th a t l i n k farmers t o industry. While this constraint affects the postharvest sector i n particular, i t i s a m o r e general feature o f t h e n a t u r e o f relationships b e t ween the public and t h e p r i v a t e sectors i n I n d i a ( H a l l e t al. 2 0 0 2 ) . Before going on to discuss h o w these issues c o u l d be resolved it is useful to b r i e f l y reflect on postharvest i n n o v a t i o n systems. T h i s allows us to investigate t h e i m p l i c a t i o n s these have for developing institutional arrangements that w i l l simultaneously support industrial utilization of coarse cereals as w e l l as ensure t h a t t h e strategy also supports t h e livelihoods o f p o o r farmers.

108 Postharvest innovation systems

Postharvest R & D seems t o b e placed u n c o m f o r t a b l y i n t h e conventional arrangements for agricultural research. Crop improveme n t research, for example, can clearly identify plant breeders (and increasingly molecular biologists) as the central scientific personnel. T h e p r o d u c t - n e w varieties - is well defined and the systems for disseminating this technology and t h e roles of extension services and seed supply agencies are relatively straightforward. Th e main client, the farmer, is clearly i d e n t i f i e d , as is t h e role of t h e client in applying this new input technology. In this v i e w of agricultural research the n u m b e r of players is fairly limited - scientist, extension workers, farmers - and t h e i r roles are clearly defined and m u t u a l l y exclusive. W h i l e this is a stylized description of t h e R & D process and the w a y it is arranged, it is all t o o recognizable as t h e conventional m o d e l of agricultural research t h a t persists in m a n y parts of t h e w o r l d . Postharvest R & D , on t h e other hand, cannot be so neatly categorized. Professionally the sector spans engineering, food science, pathology, marketing systems, economics and other disciplines. The postharvest sector is also characterized by its linkages and relationships b e t w e e n producers and consumers and between rural and urban areas, with markets playing a large role in mediating these linkages. T h e sector includes technology clients and intermediary organizations from the whole range of organizational types, from both public and private sectors and f r o m an equally diverse set of stakeholder agendas and interests. Furthermore, postharvest technology applications often f o r m part of c o m p l e x techno-economic systems w h e r e m a n y players are involved, each with different skills, responding to different incentives. As a result postharvest innovation is frequently e m b e d d e d in a w i d e r set of relationships and contexts t h a n i s i m p l i e d b y t h e conventional research-extension-farmers m o d e l o f R & D . Managing postharvest innovation and doing so in ways t h a t support a pro-poor policy goal is therefore challenging. It is increasingly argued that conceiving postharvest innovation as a process emerging from a system of supportive actors, relationships and institutional context, is a policy perspective t h a t can be used to plan R & D m o r e effectively ( H a l l e t al. 2 0 0 3 ) .

A coalitions approach to postharvest innovation

To o p e ra t i o n a l i z e t h i s c o n c e p t of a postharvest i n n o v a t i o n system, scientists f r o m t h e I n t e r n a t i o n a l C r o p s Research I n s t i t u t e for t h e Semi-Arid Tropics (ICRISAT), Patancheru, India have recently begun exper imenting with a coalitions a p p r o a c h t o research. T h e a p p r o a c h involves investigating and

109 s t r e n g t h e n i n g t h e i n s t i t u t i o n a l c o n t e x t o f t h e research u n d e r t a k e n , w i t h a v i e w t o b u i l d i n g l o c a l i n n o v a t i o n s y s t e m capacity. T h e focus o f t h e c o a l i t i o n t y p e p r o j e c t i s s p e c i f i e d i n b r o a d d e v e l o p m e n t t e r m s ( r a t h e r t h a n n a r r o w scientific t e r m s ) so as to a r t i c u l a t e t h e i d e n t i f i e d p r o b l e m in a w a y t h a t includes t h e interests of b o t h n o n - s c i e n t i f i c as w e l l as scientific stakeholders. F u r t h e r m o r e , instead o f h a v i n g a f i x e d w o r k p l a n t h e a p p r o a c h uses a n a c t i o n research m e t h o d o l o g y w h e r e b y t h e p r o g r a m o f w o r k a n d t h e partners i n t h e c o a l i t i o n i n v o l v e d can evolve along t h e w a y t o m a t c h e m e r g i n g c i r c u m s t a n c e a n d f i n d i n g s . T h e idea i s t h a t b y b u i l d i n g t h e r i g h t c o a l i t i o n o f partners a r o u n d a n i n t e r v e n t i o n task, t h e research e l e m e n t o f t h e p r o j e c t b e c o m e s l i n k e d t o a n d i n f o r m e d b y those w h o w i l l use and op erat i on al iz e research p r o d u c t s . T h e focus o f t h i s e x p e r i m e n t a t I C R I S A T i s t h e p r o m o t i o n o f sorghum by t h e p o u l t r y i n d u s t r y . T h e c o a l i t i o n , m a d e u p o f breeders, e c o n o m i s t s , p o u l t r y scientists, poultry feed manufacturers and sorghum farmers, i s t e s t i n g n e w varieties i n p o u l t r y rations. T h e p r o j e c t i s e x p l o r i n g i n stitutional arrangement t h a t w o u l d a l l o w a c o n t r a c t g r o w i n g scheme t o d e v e l o p a n d i n t h e longer t e r m b u i l d i n g a n e w r e l a t i o n s h i p b e t w e e n s o r g h u m breeders a n d t h e i n d u s t r i a l sector t h a t w i l l increasingly d e t e r m i n e t h e u t i l i z a t i o n q u a l i t y characteristics o f t h e c r o p . T h e n o v e l t y o f t h i s a p p r o a c h i s n o t o n l y t h e d i v e r s i t y o f partners i n v o l v e d i n t h e process, b u t also t h a t t h e o u t c o m e s o f t h e p r o j e c t are b o t h t e c h n i c a l a n d i n s t i t u t i o n a l . W h i l e i t i s t o o early t o p r e d i c t t h e o u t c o m e s o f t h i s c o a l i t i o n e x p e r i m e n t at ICRISAT, evidence from other postharvest interventio n s o f t h i s t y p e suggest t h a t i t can b r i n g a b o u t significant i n n o v a t i o n and i m p a c t ( C l a r k e t al. 2 0 0 3 ) . G i v e n w h a t i s already k n o w n a b o u t i n n o v a t i o n process i n t h e postharvest sector i t i s apparent t h a t i f t h e i n d u s t r i a l u t i l i z a t i o n o f coarse cereals i n A s i a w i l l evolve i n ways t h a t s u p p o r t t h e l i v e l i h o o d s o f p o o r producers, institutional development is likely to be as important as technological change. A critical part of institutional development will be stronger a n d m o r e e f f e c t i v e linkages b e t w e e n science, i n d u s t r y a n d f a r m e r s .

Conclusions

I n r e c e n t years p r o d u c t i o n , c o n s u m p t i o n a n d t r a d e p a t t e r n s f o r coarse cereals i n A s i a i n d i c a t e a shift f r o m f o o d t o n o n - f o o d uses. Stronger coalitions o f sector stakeholders s h o u l d be p r o m o t e d as a w a y of d e v e l o p i n g t h e n o n - f o o d m a r k e t a n d b u i l d i n g stronger a n d m o r e e f f e c t i v e l y l i n k i n g f a r m e r s w i t h n e w sources o f d e m a n d f o r t h e i r crops.

110 References

Chand R and Kumar P. 2002. Long-term changes in coarse cereal consumption in India: causes and implications. Indian Journal of Agricultural Economics 57(3):316- 325.

Clark N G , H a l l AJ, Rasheed Sulaiman V and G u r u Naik. 2003. Research as capacity building: the case of an N G O facilitated post-harvest innovation system for the Himalayan Hills. W o r l d Development 31 (11):1845-1863.

FAO. 2003. FAOSTAT database. Rome, Italy: FAO.

Gulati A and Kelley T G . 1999. Trade liberalization and Indian agriculture - cropping pattern changes and efficiency gains in the semi-arid tropics. N e w Delhi, India: O x f o r d University Press.

Hall AJ. 2000. Sorghum utilization and the Indian poor: a review of future prospects. Pages 5-41 in Sorghum utilization and the livelihoods of the poor in India: summary proceedings of a workshop, 4-5 January 1999, ICRISAT, Patancheru, India ( H a l l AJ and Yoganand B, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crop Research Institute for the Semi-Arid Tropics.

H a l l AJ, Bandyopadhyay R, Chandrashekar A and Clark N G . 2000. Sorghum grain mold: the scope of institutional innovations to support sorghum-based rural livelihoods. Pages 258-289 in Technical and institutional options for sorghum grain mold management: proceedings of an international consultation, 18-19 May 2000, ICRISAT, Patancheru, India (Chandrashekar A, Bandyopadhyay R and H a l l AJ, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

H a l l AJ, Rasheed Suliaman V, Clark N G , Sivamohan M V K and Yoganand B. 2002. Public-private sector interaction in the Indian agricultural research system: An innovation systems perspective on institutional reform. Pages 155-175 in Agricultural research policy in an era of privatization: Experiences f r o m the developing w o r l d (Byerlee D and Echeverria R G , eds.). Wallingford, Oxon, U K : CAB International.

H a l l AJ, Rasheed Sulaiman V, Yoganand B and Clark N G . 2003. Post-harvest innovation systems in South Asia: research as capacity development and its prospects for pro-poor impact. O u t l o o k on Agriculture 32(2): 19-26.

ICRISAT and F A O . 1996. The w o r l d sorghum and m i l l et economies: facts, trends and outlook. Patancheru 502 324, Andhra Pradesh, India: ICRISAT; and Rome, Italy: FAO. 68 pp. Kelley TG and Parthasarathy Rao P. 1993. Production and research environment for sorghum and m i l l e t in Asia. Pages 93-124 in Sorghum and millets commodity and research environments (Byth D E , ed.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

111 Kelley TG and Parthasarathy Rao P. 1994. Y i e l d and quality characteristics of improved and traditional sorghum cultivars: Farmers' perceptions and preferences. Pages 133-145 in Variation in quantity and quality of fibrous crop residues: proceedings of National Seminar held at the B A I F Development Research Foundation, Pune, Maharashtra, 8-9 February 1994 (Joshi A L , Doyle PT and Oosting SJ, eds.). Pune, Maharashtra, India: BAIF Development Research Foundation.

Kleih U, Bala Ravi S, Dayakar Rao B and Yoganand B. 2000. Industrial utilization of sorghum in India. Working Paper Series no. 4. Patancheru 502 324, Andhra Pradesh, India: Socioeconomics and Policy Program, International Crops Research Institute for the Semi-Arid Tropics. 44 pp.

Marsland N and Parthasarathy Rao P. 1999. Marketing of rainy- and postrainy-season sorghum in Andhra Pradesh, Karnataka, and Maharashtra. Working Paper Series no. 1. Patancheru 502 324, Andhra Pradesh, India: Socioeconomics and Policy Program, International Crops Research Institute for the Semi-Arid Tropics. 40 pp.

Ramaswamy C, Bantilan M C S , Elangovan S and Asokan M. 2000. Improved cultivars of pearl m i l l e t in Tamil Nadu: Adoption, impact, and returns to research investment. Impact Series no. 7. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 64 pp.

Ryan JG and Spencer D C . 2002. Future challenges and opportunities for agricultural R & D in the semi-arid tropics. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 79 pp.

112 Demand-driven Sorghum and Millet Utilization: Failures, Successes and Lessons Learned

LW Rooney1

Abstract Sorghum and millets have excellent quality for processing. However, generally, the grain available for processing from market channels has variable, poor quality. The key to producing profitable sorghum and millet products is a consistent supply of grain that can be processed into convenient, cost competitive, attractive products that provide an alternative for higher cost imported products. The concept of supply chain management starts during development of new cultivars and continues through production, harvesting, storage, processing and marketing. There must be sufficient value added during the process to improve and share prof its with all participants. This system is difficult to initiate but is an essential need all over the world. The development of adequate supply chains from producers to processors will allow profitable production of new products. Several myths about sorghum tannins and poor digestibility negatively affect the perceived nutritional and processing quality of sorghum, making many potential users afraid to use sorghum. Thus, the advantages and disadvantages of sorghum and millets must be clarified to potential users. Development and marketing of value-added products from millet and sorghum is progressing. Demand is emerging, but systems linking seed and grain quality to production, food processing and marketing must be promoted. Many failures are behind us; the future looks promising if we can meet the challenges of providing a good quality grain supply at competitive prices.

Many fantastically good foods have been produced from s o r g h u m [Sorghum bicolor) and millets in pilot projects conducted by numerous scientists and companies around the world. These grains can be processed i n t o a w i d e v a r i e t y o f foods a n d f o o d i n g r e d i e n t s . H o w e v e r , m o s t o f t he time the technology and products fail because there is an inadequate supply of grain t h a t can be p r o f i t a b l y processed. Good products that were well accepted when they were m a d e w i t h good quality grain failed dramatically with consumers when grains from local markets were utilized. Basically, the situation "Which comes first, the chicken or the egg?" applies since an adequate supply of grain cannot be

1. Cereal Q u a l i t y Laboratory, Soil & C r o p Sciences D e p a r t m e nt, Texas A & M University, 2 4 7 4 T A M U S , College Station, T X 7 7 8 4 3 - 2 4 7 4 , U S A .

113 o b t a i n e d u n t i l one produces a n d sells a g o o d q u a l i t y p r o d u c t t h a t is competitive with existing products. Farmers cannot affo r d t o preserve t h e i d e n t i t y a n d m a r k e t g o o d q u a l i t y grain unless t h e y are p a i d extra; processors cannot c o m p e t e w i t h i m p o r t e d foods w i t h o u t g o o d grain supplies. T h u s t h e cycle goes o n . H o w e v e r , rising i n c o m e s and t h e n e e d f o r convenience, good taste, p r o p e r t e x t u r e , etc p r o v i d e an o p p o r t u n i t y f o r n i c h e m a r k e t i n g t h a t w i l l g r o w dramatically. S o m e o f m y experiences w i t h s o r g h u m and m i l l e t p r o d u c t s over t h e past 35 years are summarized. Also, some thoughts about futu r e research a n d d e v e l o p m e n t needs t o i m p r o v e t h e i r c o n s u m p t i o n i n p r o f i t a b l e foods d e m a n d e d by u r b a n consumers are presented.

C o n s u m e r d e m a n d s

U r b a n consumers w a n t f o o d p r o d u c t s t h a t d e l i v e r convenience, taste, t e x t u r e , color a n d shelf-stability at an e c o n o m i c a l l y c o m p e t i t i v e cost. H o w e v e r , up-scale s o r g h u m and m i l l e t p r o d u c t s t h a t m e e t these r e q u i r e m e n t s are usually n o t available in u r b a n areas. O u r l a b o r a t o r y and collaborators i n s o r g h u m p r o d u c i n g c o u n tries around t h e w o r l d have m a d e e x c e l l e n t p r o t o t y p e p r o d u c t s f r o m s o r g h u m a n d m i l l e t using e x i s t i n g t e c h n o l o g y a n d grain w i t h g o o d processing quality. However, acceptable value-added products cannot be made profitab l y b y using grain purchased i n t h e local m a r k e t s . T h e m a j o r constraints t o s o r g h u m a n d m i l l e t u t i l i z a t i o n are: • L a c k of consistent, u n i f o r m q u a l i t y grain supplies • L o g i s t i c s / m a r k e t s • S u b s i d i z e d i m p o r t e d cereals • E x t e n s i o n of e x i s t i n g processing t e c h n o l o g y unavailable • F e w shelf-stable convenience foods • G o v e r n m e n t a l policies, v a l u e - a d d e d t a x o n s o r g h u m i n S o u t h A f r i c a • S u b s i d i z e d f o o d systems based on maize (Zea mays), rice (Oryza sativa) or w h e a t (Triticum aestivum) • Poor image of s o r g h u m a n d m i l l e t • N u t r i t i o n a l m y t h s , tannins a n d p o o r d i g e s t i b i l i t y • G r a i n m o l d s T h e greatest obstacle to u t i l i z a t i o n is t h e lack of a consistent supply of grain t h a t can b e processed i n t o e c o n o m i c a l l y c o m p e t i t i v e products. Other constraints affecting t h e u t i l i z a t i o n o f s o r g h u m and m i l l ets, though serious, can

114 be overcome once a supply of grain of consistent quality is available. In the past, opportunities were lost by governmental policy changes that discriminate against local cereals by easing i m p o r t restrictions on foreign grain. I n spite o f all these p r o b l e m s , local grain p r o d u c t s are being profitably sold with increasing demand for export and domestic mar kets in some areas. T h i s is especially t r u e in Dakar, Senegal w h e r e a w i d e variety of high quality p e a rl m i l l e t (Pennisetum glaucum) products are marketed profitably. The p r o d u c t s are based on local t r a d i t i o n a l p r o d u c t s , eg, couscous and related p r o d u c t s , a higher value y o g u r t c o n t a i n i n g pearl m i l l e t and puffed snacks. These processors have learned to produce high quality p r o d u c t s t h a t are i n d e m a n d b y local consumers i n spite o f p o o r q u a l i t y grain supplies. Their success is s t i m u l a t i n g a d e m a n d for supplies of i m p r o v e d quality grain because t h e y recognize t h e n e e d t o p r o d u c e a q u a l i t y p r o d u c t . These processors started with a very small niche scale operation and in some cases have expanded significantly. Other similar operations have failed because they did n o t p r o v i d e q u a l i t y p r o d u c t s . Thus, there may be more demand for sorghum products tha n we realize. For e x a m p l e , in S o u t h A f r i c a , in spite of a local 14% value-added tax on processed sorghum products (Mabella Meal), significant a m o u n t s o f decorticated sorghum are sold to consumers. The produ ct made from local sorghums w i t h r e d or b r o w n grain color is c o n s u m e d even t hough it costs more t h a n w h i t e maize m e a l . In Botswana, w h i t e sorghum meal is p r e f e r r e d and has t a k e n m a r k e t share away f r o m maize m e a l . Significantly greater decortication is r e q u i r e d t o m a k e l i g h t c o l o r e d meal and f l o u r f r o m r e d sorghums i m p o r t e d f r o m S o u t h A f r i c a . Progress has been made in recent years in the United States to p r o v i d e identity-preserved white food sorghums for use in domestic ethnic and dietary foods and for e x p o r t to Japan for snacks and other products. M a n y n e w ethnic and special dietary recipes have been d e v e l o p e d and published. T h e i d e n t i t y - preserved food sorghums have stimulated significant interest and demand for s o r g h u m f o o d products. Reasonable chances for g r o w t h of these markets exist, provided progress to produce good quality sorghum continues.

Value-added supply chain

T h e value a d d e d s u p p l y c h a i n includes: • Seed supplier (seed p r o d u c t i o n ) - q u a l i t y a n d p u r i t y

115 • G r a i n p r o d u c e r • H a r v e s t i n g • Storage • H a n d l i n g a n d t r a n s p o r t a t i o n • Processing i n t o p r o d u c t s • M a r k e t i n g Developing a value-added grain supply chain is a challenge. A l l t h e c o m p o n e n t s i n s o m e f o r m o r a n o t h e r are necessary t o m e e t t h e needs f o r demand-driven food and feed products. More efficient me t h o d s o f t h r e s h i n g a n d cleaning t h e g r a i n t o r e m o v e sand a n d o t h e r i m p u r i t i e s are essential. Development of the supply chain involves extensive comm u n i c a t i o n s a n d promotion of good will and understanding among all the participants. Simple methods to assess quality are required to facil itate supply chain m a n a g e m e n t . A set o f standards along w i t h p r a c t i c a l specifications f o r each important quality criteria is required. These specifications must be agreeable and practical to producers, grain traders and processors alike. C o n t r a c t s are required along with credit systems to build grain storage facilities to hold grain t h r o u g h o u t t h e year t o assure a consistent s u p p l y o f grain for the processor. Profit for all is necessary to make the scheme work. Communications are critically important. It is inherent ly difficult for producers and processors to understand each other's needs a n d p r o b l e m s . A long-term relationship between producers and processors i s r e q u i r e d a n d must be developed over time. The best way to make it wo r k i s t o start s m a l l a n d g r o w a s e x p e r i e n c e i s o b t a i n e d . E f f o r t s t o w o r k w i t h large processors have f a i l e d since s u p p l y logistics are a m a j o r p r o b l e m . Several large mills producing sorghum flour in Africa failed because obtaining and t ransporting large quantities of sorghum to and from a central location an d u r b a n areas w e r e i m p o s s i b l e t o d o p r o f i t a b l y . Some varieties and improved cultivars are available in most countries that have significantly improved processing quality. A supply chain management scheme would facilitate the introduction o f n e w c u l t i v a r s w i t h improved quality and grain yields. In Mali, N'Tenemiss a , a w h i t e grain, t a n p l a n t c o l o r p h o t o s e n s i t i v e s o r g h u m v a r i e t y t h a t avoids h ead bug and molds, has demonstrated excellent processing properties and has b e e n i d e n t i t y preserved, stored, handled and processed into flours, decorticated rice-like p r o d u c t s , a n d s o l d a s clean w h o l e g r a i n . Farmers a n d c o n s u m e r s p r e f e r t h e p r o d u c t s m a d e f r o m N ' T e n e m i s s a o v e r o t h e r local varieties.

116 Likewise, in Central America, farmers prefer certain wh i t e grain, t a n p l a n t color s o r g h u m varieties for use i n t o r t i l l a s a n d b a k e d p r o d u c t s . I n fact, some farmers are g r o w i n g t h e tan p l a n t varieties, storing t h e grain, m i l l i n g i t i n t o f l o u r a n d m a r k e t i n g t h e f l o u r as bread, cookies a n d r e l a t e d p r o d u c t s in u r b a n areas. These v e r t i c a l l y i n t e g r a t e d operations are small b u t are p roviding opportunities for p r o d u c e r s t o enhance t h e i r p r o f i t s . T h e linkage b e t w e e n c r o p i m p r o v e m e n t programs a n d processors is important. New cultivars w i l l be a d o p t e d m o r e r a p i d l y i f t h e y can increase t h e p r o f i t a b i l i t y o f farmers b y increasing t h e value o f t h e c r o p f o r t r a n s f o r m a t i o n i n t o f o o d p r o d u c t s .

F u n c t i o n a l i t y o f s o r g h u m a n d m i l l e t s

T h e r e are m a n y d i f f e r e n t sorghums t h a t can b e used i n various ways. Therefore, i t i s necessary t o consider w h a t sorghums are available a n d h o w t o choose a m o n g t h e m . T h e color and c o m p o s i t i o n o f sorghums vary f r o m w h i t e f o o d types t o b r o w n h i g h t a n n i n types. Each of these s o r g h u m varieties has advantages and disadvantages for utilization. For example, our laboratory has d o c u m e n t e d t h a t t h e b r o w n , h i g h t a n n i n sorghums have levels o f a nt iox ida n ts equal t o o r higher t h a n those o f blueberries ( V a c c i n i u m c o r y m b o s u m ) a n d o t h e r fruits a n d vegetables. O v e r t h e years t a n n i n grains have been e l i m i n a t e d f r o m c o m m e r c i a l p r o d u c t i o n i n t h e U n i t e d States because t h e y decrease t h e feed efficiency o f livestock rations. H o w e v e r , t a n n i n sorghums for use in specialty foods for d i e t a r y purposes m a y b e c o m e i m p o r t a n t i n t h e f u t u r e . M o r e o v e r , t h e flavor a n d c o l o r o f t h e b r o w n s o r g h u m s f i n d a p p l i c a t i o n s i n b a k e d p r o d u c t s w h e r e t h e n a t u r a l colors are a n advantage. I t i s possible t h a t s o r g h u m w i t h t a n n i n s w i l l f i n d n e w a p p l i c a t i o n s i n t h e f o o d i n d u s t r y i n m a n y c o u n t r i e s . W e have d e v e l o p e d i n o u r s o r g h u m i m p r o v e m e n t p r o g r a m , w h i t e grain, t a n p l a n t color, f o o d - t y p e h y b r i d sorghums f o r use i n f o o d applications. F u n c t i o n a l advantages for f o o d sorghums i n c l u d e a w h i t e , l i g h t color, b l a n d flavor, lack o f G M O (genetically m o d i f i e d organism) c o n t a m ination, and excellent processing p r o p e r t i e s for use in snacks, breakfast cereals and an array o f flours, grits, meals and porridges. T h e b l a n d flavor a n d l i g h t color o f f o o d - t y p e sorghums affords a real advantage in f u n c t i o n a l i t y to s o r g h u m . S o r g h u m does n o t c o n t a i n g l u t e n a n d i s h y d r o l y z e d slowly, m a k i n g i t attractive t o diabetics, celiacs a n d e t h n i c groups. In a d d i t i o n , it is an alternative to rice for e x t r u d e d , processed foods because of its b l a n d flavor, l i g h t color and g o o d expansion.

117 W e recently r e p o r t e d t h a t these w h i t e f o o d - t y p e sorghums can b e e x t r u d e d as w h o l e grain in d i r e c t expansion e x t r u d e r s to p r o d u c e snacks, breakfast foods and o t h e r p r o d u c t s . In m a n y areas, rice is sold at a m u c h higher price t h a n s o r g h u m , so t h e w h i t e f o o d - t y p e sorghums can c o m p e t e as f o o d ingredients, replacing m o r e expensive rice p r o d u c t s . H o w e v e r , t h e q u a l i t y o f t h e grain m u s t be excellent and t h e kernels cannot be m o l d e d or w e a t h e r e d . Pearl m i l l e t has a s t r o n g flavor a n d d a r k c o l o r t h a t is d e s i r e d in m i l l e t consuming areas, which affords an opportunity for produ c t s w i t h d i f f e r e n t characteristics. S o m e w h i t e a n d y e l l o w grain types t h a t exist i n N a m i b i a have f u n c t i o n a l advantages f o r processed foods w i t h l i g h t e r c o l o r a n d m i l d e r flavors. Certain varieties in Senegal have better qual i t y f o r use i n c o m p o s i t e b r e a d flours, w h i l e others have significantly i m p r o v e d m i l l i n g p r o p e r t i e s . These i m p r o v e d t y p e s w i l l be used i n Senegal i f t h e y can be i n t r o d u c e d i n t o t h e s u p p l y s y s t e m for local processors. O v e r t i m e t h i s w i l l h a p p e n because i t can i m p r o v e p r o f i t a b i l i t y for a l l . Rice is c o n s i d e r e d a convenience f o o d in m a n y areas in A f r i c a because it is available in d i f f e r e n t f o r m s as r e a d y - t o - c o o k p r o d u c t s . Similar products, eg, m e a l , couscous, flour, grits a n d snacks m a d e f r o m s o r g h u m and m i l l e t are c o m p e t i t i v e w i t h rice i n these areas. T h e r e are several e x a m p l e s o f s m a l l entrepreneurs in Bamako, Mali that profitably sell loca lly-milled maize, s o r g h u m , m i l l e t a n d f o n i o p r o d u c t s because t h e y p r o d u c e relatively h i g h q u a l i t y p r o d u c t s free o f sand, ready for c o o k i n g . S o m e o f these business w o m e n are m a i n t a i n i n g g o o d consistent q u a l i t y b y securing supplies o f h i g h q u a l i t y grain f o r processing. T h i s m a r k e t i s l i m i t e d i n scope b u t i t has c o n t i n u e d f o r m a n y years. D u r i n g t h i s t i m e , I have observed some larger maize m i l l i n g operations t h a t f a i l e d q u i c k l y because t h e y p r o d u c e d v e r y p o o r q u a l i t y p r o d u c t s . T h e h i g h cost o f cleaning m i l l e t a n d s o r g h u m increases prices, w h i c h l i m i t s t h e a b i l i t y o f t h e grains t o c o m p e t e w i t h i m p o r t e d p r o d u c t s .

Plant breeding and improvement of grain quality

T h e efforts t o d e v e l o p i m p r o v e d c u l t i v a r s w i t h b u i l t i n q u a l i t y f o r processing are critically important for successful utilization and increased p r o f i t s f o r farmers a s w e l l . T h e goals o f p l a n t b r e e d i n g p r o g r a m s m u s t b e c o n s i d e r e d i n t e r m s o f y i e l d o f useful q u a n t i t i e s o f f o o d p r o d u c e d per u n i t o f l a n d . T h e m a j o r objectives o f s o r g h u m a n d m i l l e t b r e e d i n g p r o g r a m s are: • M a x i m i z e y i e l d o f useful p r o d u c t s per hectare

118 • Focus on e c o n o m i c grain yields a n d q u a l i t y • Develop genotypes with value-added characteristics an d mold/head bug/ weathering resistance Breeding for y i e l d w i t h o u t regard for q u a l i t y is a major mistake. Farmers in the semi-arid tropics have not planted many improved s orghum varieties because they are susceptible to weathering and head bugs, and have unacceptable processing and food properties. For examp le, women will not accept a t h i n pericarp s o r g h u m because t h e w o r k r e q u i r e d to dehull it by hand p o u n d i n g is increased by 5 0 % or greater. T h e r e f o r e , it is important that sorghum breeders recognize that food quality is critically impo rtant and is an essential part o f grain y i e l d . T h i s i s i l l u s t r a t e d i n C e n t r a l A m e r i ca, where several white grain, t a n p l a n t color f o o d - t y p e sorghums are p r e f e r r e d by farmers because they have good tortilla-making qualities and can be used in a variety of b a k e d products with superior quality. These sorghums are used in commercial bakeries t o e x t e n d w h e a t f l o u r for sweet breads and o t h e r p r o d u c t s . I n t h e m o r e h u m i d areas o f W e s t A f r i c a , a m a j o r p r i o r i t y s h o u l d b e t o develop improved local varieties that have photosensiti vity and good food q u a l i t y ( t a n p l a n t color, s t r a w c o l o r g l u m e s ) . S u c h varieties c o u l d b e u t i l i z e d for identity preserved sorghum production for value-add e d p r o d u c t s . U n t i l we obtain superior quality sorghums that consistently a void damage by molds, s o r g h u m f o o d use in u r b a n areas is d o o m e d . W e d o need t o develop s o r g h u m varieties t h a t are resistant t o m o l d s a n d weathering. However, mold resistance is very difficult to select for because it is quite complex. Thus, in my opinion, the photosensitive sorghums are desirable since t h e y can a v o i d at least some of t h e m o l d and w e a t h e ring problems. Research to improve mold resistance is highly significant, but it is likely to be a long-term effort. In the meantime, the use of photosensitive varieties can be effective, as judged by the progress previously mentio ned in Mali.

F o o d u t i l i z a t i o n o f s o r g h u m a n d m i l l e t

Proper sorghum and millet cultivars can be processed i nto a wide variety of very acceptable commercial food products. These grains can be extruded to p r o d u c e a great array of snacks, ready-to-eat breakfast foods, instant porridges a n d o t h e r p r o d u c t s . T h e flakes o f a w a x y s o r g h u m o b t a i n e d by dry heat processing can b e used t o p r o d u c e granola p r o d u c t s w i t h e x c e l l e n t t e x t u r e a n d taste. Tortillas and tortilla chips have been produced from sorghum and pearl

119 m i l l e t alone o r w i t h m a i z e b l e n d s . T h e s o r g h u m p r o d u c t s have a bland flavor w h i l e p e a r l m i l l e t p r o d u c t s have a u n i q u e s t r o n g f l a v o r a n d color. A g a i n , t h e critical limitation is cost-efficient, reliable supplies o f g r a i n . N e i t h e r s o r g h u m n o r m i l l e t have g l u t e n p r o t e i n s . H e n c e , t o p r o d u c e yeast-leavened breads, they are usually substituted f or part of the wheat flour i n t h e f o r m u l a . T h e l e v e l o f s u b s t i t u t i o n varies d e p e n d i ng upon the quality of t h e w h e a t f l o u r , t h e b a k i n g p r o c e d u r e , t h e q u a l i t y o f t h e s o r g h u m o r m i l l e t f l o u r a n d t h e t y p e o f p r o d u c t d e s i r e d . I n biscuits ( c o o k i e s ) , u p t o 1 0 0 % s o r g h u m o r m i l l e t f l o u r can b e used. T h e n o n - w h e a t f l o u r gives t h e b i s c u i t a drier more sandy texture and so the formula must be m odified to make it more acceptable to consumers. White sorghum has a defin ite advantage over m a i z e a n d m i l l e t i n c o m p o s i t e f l o u r s because o f its b l a n d flavor and light color. However, molds and discoloration are major constraints t h a t m u s t b e recognized. Thus, we do not recommend that white food-t y p e s o r g h u m s b e g r o w n i n t h e Coastal B e n d o f Texas, o r o t h e r s i m i l a r h u m i d areas, since m o l d s are o f t e n significant p r o b l e m s t h e r e .

D r y m i l l i n g q u a l i t y

T h e m i l l i n g q u a l i t y o f s o r g h u m a n d m i l l e t i s d e t e r m i n e d m ainly by kernel shape, density, hardness, structure, presence of a pigmented testa, pericarp thickness and color. Kernels with a high proportion of hard endos perm, and a white, thick pericarp without a pigmented testa have outstanding de hulling properties. Soft floury kernels disintegrate during dehulling and cannot be milled efficiently. For h a n d d e h u l l i n g , a t h i c k starchy mesocarp layer in t h e p e r i c a r p reduces labor by 5 0 % o r m o r e . L o n g , slender pearl m i l l e t kernels have v e r y p o o r d e h u l l i n g properties, while spherical kernels produce the highest yields o f d e c o r t i c a t e d grain. The white grain, tan plant color food sorghums have significantly improved yields of light-colored flour and decorticate d kernels.

F e e d u t i l i z a t i o n o f s o r g h u m a n d m i l l e t

B o t h f e e d a n d f o o d use o f s o r g h u m a n d m i l l e t are c o m p a t i ble; not all grains will have desirable food processing properties, so the poor quality grain will go into feeds. Obviously, care must be taken to avoid pr oblems with mycotoxins. S o r g h u m is a v e r y g o o d f e e d g r a i n as l o n g as it is p r o p e r l y supplemented f o r t h e p a r t i c u l a r species f e d . S o r g h u m s w i t h o u t a p i g m e nted testa have 95% o r greater t h e f e e d i n g value o f y e l l o w d e n t maize f o r all species o f l i v e s t o c k .

120 Pearl millet has outstanding feed value for poultry an d swine because of higher fat content and increased essential amino acid content . Animals fed rations containing high tannin sorghums usually consume more of the ration to produce similar weight gains, which reduces the feed ef ficiency significantly. However, the concern that animals will not consume tan n i n s o r g h u m s i s erroneous.

Effect of molds, insects and weathering on quality

M o l d s d i s c o l o r t h e grain, break d o w n t h e e n d o s p e r m and s ignificantly deteriorate processing qualities. Mold damaged or weat hered grain cannot be easily decorticated due to softness of the grain; the r e s u l t i n g f l o u r o r grits are b a d l y d i s c o l o r e d a n d c a n n o t b e used f o r f o o d . T h i s p r o b l e m can b e o v e r c o m e b y t h e p r o d u c t i o n o f p h o t o s e n s i t i v e s o r g h u m s h a v i n g w h i t e grain, tan plant c o l o r a n d s t r a w - c o l o r e d g l u m e s . T h i s i s c r i t i c a l l y i m p o r tant in West Africa where most new improved types have been devastated by h e a d bugs a n d mold. For example, N'Tenemissa recently released in Ma l i , i s t h e f i r s t t a n plant photosensitive sorghum released that has improved characteristics for processing into a wide variety of food products ranging f r o m biscuits t o decorticated rice-like convenience foods. Production o f N ' T e n e m i s s a a n d r e l a t e d lines has l e d t o i m p r o v e d q u a l i t y f o o d p r o d u c t s . Systems t o p r o d u c e and supply the grain for value-added processing are evo l v i n g . T h e c o n c e p t w o r k s a n d i f a m a r k e t exists t h a t i s p r o f i t a b l e i t w i l l b e a d a p t e d over t i m e .

M y c o t o x i n s

Unlike maize, sorghum does not develop aflatoxins prior to harvest. Sorghum contains Aspergillus flavus and other fungal species, but apparently the e x p o s u r e o f t h e grain t o t h e a t m o s p h e r e p r e v e n t s significant levels of aflatoxin formation in the field. However, improper handling and storage can increase levels of aflatoxin significantly in sorghum. In additi o n , s o r g h u m does n o t p r o d u c e significant a m o u n t s o f f u m o n i s i n s c o m p a r e d t o maize. The relative resistance to field contamination of sorghum by these i mportant mycotoxins is a m a j o r advantage f o r s o r g h u m over m a i z e . As m a i z e is g r o w n under more marginal conditions, the risk of increased levels of my cotoxins to populations c o n s u m i n g m a i z e s h o u l d b e c o n s i d e r e d . S o r g h u m d e f i n i t e l y has f e w e r p r o b l e m s w i t h m y c o t o x i n s t h a n m a i z e .

121 S o r g h u m i m a g e - t a n n i n s

T h e alleged ' p o o r n u t r i t i o n a l q u a l i t y ' o f s o r g h u m d u e t o the presence of t a n n i n s , r e s u l t i n g in p o o r p r o t e i n d i g e s t i b i l i t y , is a m a j o r p r o b l e m as o p i n e d by s o m e p e o p l e . O f t e n , k e y n u t r i t i o n i s t s , scientists a n d i n dustry personnel believe that all sorghums contain tannins, and thereby scare potential users away. For e x a m p l e , a p o u l t r y n u t r i t i o n i s t f r o m I n d i a i n d i c a t e d h e w o u l d o n l y f e e d s o r g h u m i f i t was p r i c e d a t 6 0 t o 7 0 % t h e value o f m a i z e "because o f t h e tannins in sorghum", even though most, if not all, Indi a n s o r g h u m s d o n o t c o n t a i n c o n d e n s e d t a n n i n s . T h e same i s t r u e o f C e n t r a l A m e r i c a w h e r e poultry producers are wary of using sorghum since "it has t a n n i n s " . E v e n t h o u g h t a n n i n s are n o t present, fear o f t h e m s i g n i f i c a n t l y affects t h e d e m a n d f o r s o r g h u m . The sorghums without a pigmented testa do not contain t a n n i n s a n d s o they should be referred to as 'tannin free'. Often laboratories use general p h e n o l assays t o m e a s u r e t a n n i n s , w h i c h results i n e r r o n e o u s i n f o r m a t i o n since all sorghums contain phenols but most do not cont ain tannins. The tannin sorghums (brown sorghums) have a very definiti ve pigmented testa, which is caused by the combination of dominant B1 -B2 - S - genes, a n d c o n s t i t u t e a s m a l l p r o p o r t i o n of t h e soybean (G l y c i n e max) g r o w n today. S u c h s o r g h u m s have s i g n i f i c a n t levels o f c o n d e n s e d t a n n i n s w i th resistance to birds a n d g r a i n m o l d . The tannin sorghums decrease feed efficiency by 5 to 2 0% when fed to livestock, depending upon feeding systems and livestoc k species; h o w e v e r , t h e y have h i g h a n t i o x i d a n t a c t i v i t i e s a n d m a y b e a v e r y g o o d source o f nutraceuticals. Thus we might someday use the sorghums w i t h a p i g m e n t e d testa a n d d o m i n a n t spreader genes as p o t e n t sources of a n t i o x i d a n t s t h a t are more efficiently produced than fruits or berries.

Improving sorghum digestibility

Many people consider sorghum protein as indigestible an d believe that s o r g h u m s h o u l d n o t b e u s e d i n p r o d u c t s l i k e w e a n i n g foods. T h e c o m b i n a t i o n o f m i s i n f o r m a t i o n a b o u t t a n n i n s a n d p o o r d i g e s t i b i l i t y o ften causes difficulty i n gaining a p p r o v a l f o r s o r g h u m foo ds . S o r g h u m i s a n e x c e l lent food that when properly processed, has good digestibility, and has sustained m i l l i o n s o f p e o p l e over t h e c e n t u r i e s . H o w e v e r , l i k e all cereals i t i s d e f i cient in lysine and other essential amino acids and must be processed properly f or use in foods.

122 A significant b o d y of k n o w l e d g e indicates t h a t s o r g h u m p roteins are only slightly less digestible than maize when measurements o f digestibility other than pepsin protein digestibility are used. Also, the i nformation using pepsin digestibility shows that digestibility is significantly improved when sorghum is c o o k e d b y e x t r u s i o n o r a c o m b i n a t i o n o f m o i s t u r e a n d m e c h a n i c a l energy (such as t h e energy t h a t occurs w h e n porridges are s t i r r e d and beaten vigorously). Soft, digestible sorghums are destroyed by molds in t he field prior to harvest e x c e p t i n v e r y d r y areas l i k e S u d a n a n d E t h i o p i a . T h u s , efforts t o enhance d i g e s t i b i l i t y o f s o r g h u m m u s t b e d o n e w i t h care. I t i s d i f f i c u l t t o improve digestibility without enhancing the susceptibi l i t y o f t h e g r a i n t o deterioration since sorghum kernels are exposed to ambi e n t c o n d i t i o n s d u r i n g maturation, and are prone to attack by molds and insects. Increasing the levels of lysine and tryptophan in sorg h u m i s e x t r e m e l y valuable i n t e r m s o f h u m a n a n d a n i m a l n u t r i t i o n . D e v e l o p ing high-yielding sorghums with improved levels of lysine and trypotophan would greatly enhance its value f o r b o t h h u m a n s a n d animals. W i t h t h e increasingly widespread use of quality protein maize, the comparativ e protein quality (lysine and tryptophan) of sorghum will be significantl y l o w e r . H e n c e , m o r e w o r k i s n e e d e d t o i m p r o v e s o r g h u m p r o t e i n q u a l i t y .

Strategy for value-added products

The strategy for value-added products include the follo w i n g activities o r components: • I d e n t i f y up-scale p r o d u c t s • P r o m o t e n i c h e m a r k e t s ( s u p e r m a r k e t s ) • D e v e l o p s o r g h u m a n d m i l l e t p r o d u c t s • U s e l o w i n p u t , a p p r o p r i a t e technologies • U s e i d e n t i t y p r e s e r v e d grain • S p e c i f y v a r i e t y a n d h y b r i d s • E d u c a t e f a r m e r s a n d p r o d u c e r s • Share t h e p r o f i t s w i t h m e m b e r s o f t h e s u p p l y c h a i n T h e best strategy f o r d e v e l o p i n g c o n v e n i e n t , shelf-stable s o r g h u m a n d m i l l e t foods i s t o use i d e n t i t y - p r e s e r v e d grains t o p r o d u ce high-value products t h a t can b e p r i c e d s l i g h t l y l o w e r t h a n i m p o r t e d p r o d u c t s . T h e targets s h o u l d be middle class and wealthy people who can afford to pay prices h i g h e n o u g h

123 t o p r o v i d e p r o f i t s f o r a l l . T h e r e i s n o n e e d t o d e v e l o p l o w cost, i n f e r i o r q u a l i t y foods t h a t d o n o t p r o v i d e significant p r o f i t s . T h e p r o d u c t i o n o f h i g h q u a l i t y p r o d u c t s i s w o r k i n g i n Senegal w h e r e a n e x p a n d e d snack f o o d i s b e i n g s o l d p r o f i t a b l y . T h e snack i s a c o m b i n a t i o n o f p e a rl m i l l e t , m a i z e a n d r i c e f l o u r w h i c h i s p u f f e d , f l a v o r e d , packaged a n d sold i n s m a l l packets. L o c a l supplies i n c l u d i n g packaging are used; t h e p r o d u c t sells so fast that it does not require costly imported long-term packaging material. Since she l f l i f e i s n o t a p r o b l e m f o r t h i s c o m p a n y , w h o l e grains can b e u s e d f o r e x t r u s i o n a n d p u f f i n g . T h i s strategy w o r k s f o r t h e c o m p a n y . H o w e v e r , s h e l f l i f e i s a p r o b l e m f o r s o m e p r o d u c t s . I n n o v a t i v e w a y s o f e x t e n d i n g s h e l f l i f e can b e d e v e l o p e d t h r o u g h n e w t e c h n o l o g y o r m a r k e t i n g strategies. E d u c a t i o n a l p r o g r a m s t o p r o m o t e a n d correct misinformation about sorghum and millet propert i e s are necessary t o p r o m o t e acceptance b y t h e f o o d a n d f e e d i n d u s t r i e s .

Acknowledgment

O v e r 3 5 years I have been p r i v i l e g e d t o w o r k w i t h c o m p e t e n t , h a r d w o r k i n g scientists a n d o t h e r s a r o u n d t h e w o r l d . I t h a n k all m y colleagues, f o r m e r colleagues and graduate s t u d e n t s w h o have c o n t r i b u t e d m u c h t o o u r i m p r o v e d u n d e r s t a n d i n g o f factors t h a t affect t h e u t i l i z a t i o n o f s orghum and millets and h e l p e d t o d e f i n e q u a l i t y i n b r e e d i n g a n d i m p r o v e m e n t p r o g r a m s . T h e l o n g - term financial support through the USAID Title XII INT SORMIL C o l l a b o r a t e Research S u p p o r t P r o g r a m has b e e n a k e y f a c t o r in o u r p r o g r a m .

Bibliography Acosta D. 2003. White food-type sorghum in direct-expansion extrusion applications. MS thesis, Texas A & M University, College Station, Texas, U S A . 120 pp.

Akingbala JO, Faubion JM and Rooney LW. 1981. A laboratory procedure for the preparation of ogi, a Nigerian fermented food. Journal of Food Science 46(5): 1532-1536.

Almeida-Dominguez H D , Gomez M H , Serna-Saldivar SO, Waniska R D , Rooney LW and Lusas EW. 1993. Extrusion cooking of pearl m i l l e t for production of millet- cowpea weaning foods. Cereal Chemistry 70(2):214-219.

Almeida-Dominguez H D , Serna-Saldivar SO, Gomez MH and Rooney LW. 1993. Production and nutritional value of weaning foods from mixtures of pearl m il l e t and cowpeas. Cereal Chemistry 70(1): 14-18.

Almeida-Dominguez H D , Serna-Saldivar SO and Rooney LW. 1991. Properties of new and commercial sorghum hybrids for utilization in alkaline cooked foods. Cereal Chemistry 68(1):25-30.

124 Awika J M . 2003. Antioxidant properties o f sorghum. P h D dissertation, Texas A & M University, College Station, Texas, USA. 118 pp.

Awika J M , Dykes L, Gu L, Rooney LW and Prior R L . 2003. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. Journal of Agricultural and Food Chemistry 51:5516-5521.

Awika J M , Rooney LW, Wu X, Prior RL and Cisneros-Zevallos L. 2003. Screening methods to measure antioxidant activity of sorghum and sorghum products. Journal of Agricultural and Food Chemistry 51:6657-6662. (on-line: DOI 10.1021/jf034790i) Awika J M , Suhendro EL and Rooney LW. 2002. Milling value of sorghums compared by adjusting yields to a constant product color. Cereal Chemistry 79(2):249-251.

Bello A B , Waniska R D , Gomez MH and Rooney LW. 1995. Starch solubilization and retrogradation during preparation of to (a food gel) from different sorghum cultivars. Cereal Chemistry 7 2 ( l ) : 8 0 - 8 4 .

Beta T, Rooney LW and Taylor JRN. 1998. Sorghum phenolics and their implications in food processing. Pages 159-163 in Asian food product development (Corke H and L i n R, eds.). N e w York, U S A : Science Press. Beta T, Rooney LW and Taylor JRN. 2000. Effect of chemical conditioning on the milling of high-tannin sorghum. Journal of the Science of Food and Agriculture 80:2216-2222.

Beta T, Rooney LW and Waniska RD. 1995. Malting characteristics of sorghum cultivars. Cereal Chemistry 72(6):533-538.

Choto C E , M o r a d M M and Rooney L W 1985. The quality of tortillas containing whole sorghum and pearled sorghum alone and blended wi th yellow maize. Cereal Chemistry 62(1):51-54.

C r u z y Celis LP, Rooney LW and McDonough CM. 1996. A ready-to-eat breakfast cereal from food-grade sorghum. Cereal Chemistry 73(1): 108-114.

Galiba M, Waniska R D , Rooney LW and Miller FR. 1987. The preparation of sorghum and millet couscous in West Africa. Cereal Foods World 32(12):878-884.

Galiba M, Waniska R D , Rooney LW and Miller FR. 1988. Couscous quality of sorghum with different kernel characteristics. Journal of Cereal Science 7:183-193.

Gomez M H , Rooney LW, Waniska RD and Lusas E. 1988. Extrusion cooking of sorghum containing different amounts of amylose. Journal of Food Science 53(6):1818-1822.

H u g o LF, Rooney LW and Taylor JRN. 2000. Malted sorghum as a functional ingredient in composite bread. Cereal Chemistry 77(4):428-432. Lusas E and Rooney LW. 2001. Snack foods processing. Lancaster, Pennsylvania, U S A : Technomic Publishing Company. 639 pp.

125 Maranphal N . 2003. Direct expanded snacks from sorghum. MS thesis, Texas A & M University, College Station, Texas, USA. 65 pp.

McDonough C M , Anderson BJ, Acosta-Zuleta H and Rooney LW. 1998. Steam flaking characteristics of sorghum hybrids and lines w i t h differing endosperm characteristics. Cereal Chemistry 75(5):634-638.

McDonough C M , Anderson BJ and Rooney LW. 1997. Structural characteristics of steam-flaked sorghum. Cereal Chemistry 74(5):542-547.

McDonough C M , Anderson BJ and Rooney LW. 1998. The effect of conditioning agents on the structure of tempered and steam-flaked sorghum. Cereal Chemistry 75(l):58-63. McDonough C M , Rooney LW and Serna-Saldivar S. 2000. The millets. Pages 1 7 7 - 201 in Handbook of cereal science and technology (Kulp K and Ponte J, eds.). Second edition. N e w York, U S A : Marcel Dekker, Inc.

Quintero-Fuentes X , McDonough C M , Rooney L W and Almeida-Dominguez H. 1999. Functionality of rice and sorghum flours in baked tortilla and corn chips. Cereal Chemistry 76(5}:705-710. Rooney LW. 1996. Sorghum and millets. Pages 153-177 in Cereal grain quality (Henry RJ and Kettlewell PS, eds.). London, U K : Chapman & H a l l .

Rooney LW and Waniska R D . 2000. Sorghum food and industrial utilization. Pages 6 8 9 - 7 2 9 in Sorghum: Origin, history, technology, and production ( S m i t h CW and Frederiksen RA, eds.}. N e w York, U S A : John Wiley & Sons, Inc.

Scheuring JF, Sidibe S, Rooney LW and Earp CF. 1982. Sorghum pericarp thickness and its relation to decortication in a wooden mortar and pestle. Cereal Chemistry 60(l):86-89.

Serna-Saldivar SO, Clegg C and Rooney LW. 1994. Effects of parboiling and decortication on the nutritional value of sorghum (Sorghum bicolor L. Moench) and pearl m i l l e t (Pennisetum glaucum L.). Journal of Cereal Science 19:83-89.

Serna-Saldivar SO and Rooney LW. 1995. Structure and chemistry of sorghum and millets. Pages 6 9 - 1 2 4 in Sorghum and millets: Chemistry and technology (Dendy D A Y ed.). St. Paul, Minnesota, U S A : American Association of Cereal Chemists.

Serna-Saldivar SO, Tellez-Giron A and Rooney LW. 1988. Production of tortilla chips f r o m sorghum and maize. Journal of Cereal Science 8:275-284.

Suhendro EL, Kunetz CF, McDonough C M , Rooney LW and Waniska RD. 2000. Cooking characteristics and quality of noodles f r o m food sorghum. Cereal Chemistry 77(2):96-100.

Suhendro EL, McDonough C M , Rooney LW, Waniska RD and Yetneberk S. 1998. Effects of processing conditions and sorghum cultivar on alkaline-processed snacks. Cereal Chemistry 75(2):187-193.

126 Waniska RD and Rooney LW. 2000. Structure and chemistry of the sorghum caryopsis. Pages 649-688 in Sorghum: Origin, history, technology, and production ( S m i t h CW and Frederiksen RA, eds.). N e w York, U S A : John W i l e y & Sons, Inc.

Young R, Haidara M, Rooney LW and Waniska R D . 1990. Parboiled sorghum: development of a novel decorticated product. Journal of Cereal Science 11:277-289.

127 Effects of Mycotoxins on Cereals Grain Feed and Fodder Quality

F Waliyar, SV Reddy and RP Thakur1

Abstract The mycotoxigenic mold fungi Aspergillus, Penicillium and Fusarium were shoum to be associated with grain molds in sorghum and pearl millet. These fungi produce several mycotoxins, some of which can affect human and animal health. The most important mycotoxins that occur at biologically significant concentrations in cereals

are aflatoxins, ochratoxinA, fumonisins, zearalenone, deoxynivalenol and T2 toxin.

Reports indicate that aflatoxin B1 was associated with liver cancer, synergistic with hepatitis B virus and childhood cirrhosis in humans. Several outbreaks of aflatoxicosis in poultry and livestock were reported. The fumonisins were associated

with oesophageal cancer and T2 toxin with alimentary toxic aleukia in humans. Fusarial mycotoxins have been implicated as causative agents in various animal diseases such as leucoencephalomalacia, pulmonary edema, infertility, diarrhea, vomiting, reduced growth rate, drop in egg production and immunosuppression. Mycotoxin contamination of cereals can cause economic losses at levels of food and feed production including crop distribution, processing and animal production. Health risks associated with consumption of contaminated cereals were recognized and several countries have recommended permissible levels of mycotoxins. At ICRISAT, Patancheru, India, we have developed an enzyme-linked

immunosorbent assay (ELISA)-based technology to detect aflatoxin B1, aflatoxin

M1, ochratoxin A and fumonisins in food and feeds.

A large number of agricultural commodities are vulnerabl e to infestation by a g r o u p o f f u n g i t h a t p r o d u c e t o x i c secondary m e t a b o l i t e s called mycotoxins. Mycotoxins are a group of chemically diverse secondary m e t a b o l i t e s t h a t e x h i b i t a w i d e array o f b i o l o g i c a l effects. S o m e o f t h e m y c o t o x i n s can b e mutagenic, carcinogenic, embryo-toxic, nephro-toxic, teratogenic, oestrogenic or immunosuppressive. Among the various mycotoxins, aflatoxins, ochratoxins and fusarial toxins (fumonisins) assume significance due to their deleterious effects on human beings, poultry and livest o c k . T h e t o x i n s are produced on cereal grains both in field and storage. In s o r g h u m (Sorghum bicolor) and pearl millet (Pennisetum glaucum), grain molds are important in relation to mycotoxin con tamination. Grain mold f u n g i g r o w o n o r i n seed ( W i l l i a m s a n d M c D o n a l d 1 9 8 3 ) . T h e y affect sorghum

1. I C R I S A T , P a t a n c h e m 5 0 2 3 2 4 , A n d h r a Pradesh, I n d i a .

128 a n d p e a r l m i l l e t g r o w n i n w a r m a n d w e t c o n d i t i o n s b e t w e e n flowering and harvest ( W i l l i a m s a n d Rao 1 9 8 1 , W i l l i a m s a n d M c D o n a l d 1 9 8 3 ) . T h e y are m u c h m o r e w i d e s p r e a d i n s o r g h u m t h a n i n pearl m i l l e t because o f t h e n a t u r e o f t h e g r o w i n g e n v i r o n m e n t s o f t h e t w o crops. T h e p r o b l e m o f g r a i n m o l d i s encountered throughout the humid tropical and subtropic a l regions. I t i s p a r t i c u l a r l y serious i n areas w h e r e i m p r o v e d , short- a n d medium-duration c u l t i v a r s t h a t m a t u r e b e f o r e t h e e n d o f t h e rains have been c u l t i v a t e d . U n d e r these c o n d i t i o n s , t h e f u n g i such as Aspergillus spp, Penicillium spp a n d Fusarium spp can infect these crops and produce mycotoxins (Ba ndyopadhyay et al. 1 9 8 8 , Stenhouse et al. 1 9 9 7 ) . According to Charmley et al. (1994), 25% of the world' s f o o d crops are affected by mycotoxins each year. The American Phytopathological Society ( A P S ) reports t h a t t h e loss i n U S A i s e s t i m a t e d t o b e U S $ 1 00 million per year (Source: A P S N e t ) . T h e m o s t i m p o r t a n t m y c o t o x i n s t h a t can f r e q u e n t l y occur a t biologically significant concentrations in cereals are aflatoxins, ochratoxins, fumonisins, zearalenone, moniliformin and trichothecenes (deoxynivalenol, nivalenol a n d T2 toxin). These compounds can occur naturally in cereals, either i n d i v i d u a l l y or as specific clusters of t w o or m o r e depending on the fungal species (or strain) i m p l i c a t e d . These m y c o t o x i n s are associated w i t h causative agents in various h u m a n and animal diseases. M y c o t o x i n c o n t a m i n a t i o n of crops cause economic losses at all levels of f o o d and feed chain, i n c luding crop and animal production. Under certain environmental conditions the contamination of various cereal grains with mold fungi and mycotoxin is unavoidable. Therefore, t h e prevention of mycotoxin contamination of grain is the m a i n goal o f f o o d and agricultural industries t h r o u g h o u t t h e w o r l d . T h i s report reviews some general information on the occurrence of toxigenic fungi and ty p e o f m y c o t o x i n s t h e y p r o d u c e i n s o r g h u m and pearl m i l l e t and t h e i r affect o n h u m a n , animal health and economic losses. M o s t of t h e i n f o r m a t i o n has been accessed from the book 'Mycotoxins in agriculture and food safety' (Sinha and Bhatnagar 1998).

T o x i g e n i c f u n g i o n s o r g h u m a n d p e a r l m i l l e t

Fungi t h a t belongs t o m o r e t h a n 4 0 genera are associated with molded grain i n c l u d i n g Fusarium spp, Aspergillus spp a n d Penicillium spp. These fungi p r o d u c e m y c o t o x i n s in cereal grains a n d o i l seeds (Fig. 1). T h e l i t e r a t u r e on t o x i g e n i c abilities of Fusarium species contain significant number of confusions, caused b y usage o f several t a x o n o m i c systems, w r o n g i d e n tification of toxigenic isolates or incorrect identification of mycotoxins (Che lkowsky 1989).

129 Figure 1. Groundnut and maize seeds affected by fungi that produce mycotoxins.

Effect of mycotoxins on human and animal health

Aflatoxins

Toxicologically, the aflatoxins, particularly aflatoxi n B1 (AFB1 ) s h o u l d be r e g a r d e d as a q u a d r u p l e t h r e a t , ie, as a p o t e n t t o x i n , carcinogen, t e r a t o g e n a n d mutagen. AFB1 i n d u c e s l i v e r cancer i n several a n i m a l species, a n d has also been l i n k e d t o l i v e r cancer i n h u m a n beings ( W a n g e t al. 1 9 9 6 ) . S t a t i s t i c a l

130 correlations between contaminated food supplies and hi g h frequencies o f human hepatocellular carcinomas in Africa and Asia have implicated aflatoxins a s risk factors i n h u m a n l i v e r cancer. A l l e p idemiological studies of aflatoxins and liver cancer conducted in Africa and Asia involving populations s u b j e c t e d t o h e p a t i t i s B virus ( H B V ) i n f e c t i o n indicates possible synergistic effect of aflatoxins and HBV infection in the etiology o f l i v e r cancer ( V a n Rensberg 1986, Groopman and Kensler 1996, Montesano et al. 1 9 9 7 ) . A m l a et al. (1974) presented circumstantial evidence to ind icate that children exposed to aflatoxins through breast milk and dietary i t e m s m a y d e v e l o p cirrhosis. They detected AFB, in 7% of urine samples fr om cirrhotic children. No animal species are resistant to the acute toxic effects o f aflatoxins. A w i d e v a r i a t i o n i n L D5 0 values has been obtained in animal species tested wit h

single doses of aflatoxins. For most species, the LD5 0 value ranges from 0.5 to 1 0 m g k g - 1 body weight. Animal species respond differently in th e i r susceptibility to the chronic and acute toxicity of aflatoxins. Environmental factors, exposure level and duration of exposure besides age, h e a l t h a n d nutritional status of diet can influence the toxicity. Several outbreaks of aflatoxicosis in poultry have been reported from India. The disease symptoms included severe and sudden anorexia, loss o f weight, staggering gait, convulsive movements, feed refusal and drop in egg production. Post-mortem examination of dead birds revealed l i v e r lesions o f v a r y i n g severity ( C h a r e t al. 1 9 8 2 , C h o u d a r y 1 9 8 6 ) . A n increase in blood clotting time increases the susceptibility of the carcass to bruising even at doses b e l o w t h a t t o have a n effect o n g r o w t h . I n p o u l t r y , aflatoxins i m p a i r t h e

availability of bile salts, which decreases vitamin D3 p r o d u c t i o n . T h i s causes a decrease in the absorption of fat-soluble vitamins. Several outbreaks of aflatoxicosis in cattle have been reported. The lesions were confined mainly to the liver, showing degenerative changes with biliary proliferation and finally leading to diffuse cirrhosis ( A l l c r o f t a n d L e w i s

1 9 6 3 ) . A f l a t o x i n M1 (AFM1 ) is a m a j o r m e t a b o l i t e of a f l a t o x i n B1 f o u n d in milk of animals that have consumed feeds contaminated w ith aflatoxin B1 .

T h e t o x i c a n d carcinogenic effects o f A F M 1 have been convincingly demonstrated in laboratory animals and therefore A F M1 i s classified a s class

2B human carcinogen. A F M1 is relatively stable during pasteurization, storage a n d p r e p a r a t i o n o f various d a i r y p r o d u c t s . T h e r e f o r e , A F M1 contamination poses a significant threat to human health especially to children, who are m a j o r c o n s u m e r s o f m i l k .

131 Ochratoxin A

O c h r a t o x i n A has b e e n i m p l i c a t e d w i t h a fatal h u m a n k i d n e y disease r e f e r r e d t o a s ' B a l k a n E n d e m i c N e p h r o p a t h y ' ( B E N ) c h a r a c t e r i z e d b y c o n t r a c t e d k i d n e y s . O c h r a t o x i n A has been f o u n d m o r e f r e q u e n t l y i n f o o d samples a n d i n t h e s e r u m t a k e n f r o m p e o p l e i n villages w i t h B E N t h a n i n areas w h e r e t h e disease i s u n k n o w n (Petkova-Boeharova e t al. 1 9 8 8 ) . T h e t o x i n i s n e p h r o t o x i c t o m o s t o f t h e a n i m a l species a n d i n d u c e s l i v e r a n d k i d n e y t u m o r s . T h e renal lesions associated w i t h diseases i n c l u d e d e g e n e r a t i o n o f t h e p r o x i m a l t u b u l e s a n d i n t e r s t i t i a l fibrosis i n t h e re n al c o r t e x . Pigs f e d w i t h o c h r a t o x i n A , s h o w e d reduced feed intake, weight loss, increased water consu m p t i o n , f o l l o w e d b y p o l y u r e a diarrhea.

Fusarium toxins

Species of Fusarium are w i d e s p r e a d in n a t u r e as saprobes in d e c a y i n g v e g e t a t i o n a n d a s parasites o n a l l parts o f p l a n t s . M a n y cause diseases o f e c o n o m i c a l l y i m p o r t a n t p l a n t s . T h e r e are a n u m b e r o f species t h a t p r o d u c e mycotoxins, mostly fumonisins, zearalenone and trichot h e c e n e s ( T2 t o x i n , deoxynivalenol and nivalenol). A few common examples are discussed b e l o w .

Fumonisins A n o u t b r e a k o f p o i s o n i n g , c h a r a c t e r i z e d b y a b d o m i n a l p a i n a n d diarrhea, caused by t h e i n g e s t i o n of f u m o n i s i n - c o n t a m i n a t e d m a i z e (Zea mays) a n d s o r g h u m i n I n d i a was r e p o r t e d . People i n 2 7 villages i n K a r n ataka, India were a f f e c t e d a n d t h e disease was seen o n l y i n h o u s e h o l d s w h i c h c o n s u m e d s o r g h u m o r m a i z e c o n t a m i n a t e d w i t h f u m o n i s i n ( B h a t e t al. 1 9 9 7 ) . C o n s u m p t i o n o f f u m o n i s i n - c o n t a m i n a t e d m a i z e has b e e n l i n k e d t o oesophageal cancer i n h u m a n s i n Transkei r e g i o n o f S o u t h A f rica, China and other countries (Rheeder et al. 1992). Ingestion of fum onisin-contaminated m a i z e has b e e n associated w i t h spontaneous o u t b r e a k o f leucoencephalomalacia in horses, a neurological syndr o m e c h a r a c t e r i z e d by focal, o f t e n e x t e n s i v e , l i q u e f a c t i v e necrosis o f t h e w h i t e m a t t e r o f t h e c e r e b r u m , a n d w h i t e a c u t e p u l m o n a r y e d e m a i n pigs. A l t h o u g h h e p a t i c i n j u r y has b e e n o b s e r v e d in all v e r t e b r a t e species s t u d i e d , a n u m b e r of species- specific effects have b e e n i n d u c e d e x p e r i m e n t a l l y b y t h e f u m o n i s i n s o n o t h e r t a r g e t organs i n c l u d i n g r e n a l i n j u r y a n d l i v e r cancer i n rats,

132 i m m u n o s u p p r e s s i o n i n c h i c k e n , t o x i c i t y t o b r o i l e r c h i c k e n a n d c h i c k e n e m b r y o s , n e p h r o t o x i c i t y a n d b r a i n h e m o r r h a g e i n rabbits (Marasas 1 9 9 5 ) .

T2 toxin

O f t h e Fusarium trichothecenes, T2 i s t h e m o s t t o x i c t h o u g h less w i d e l y d i s t r i b u t e d t h a n d e o x y n i v a l e n o l . T h e effects o f t h e f i r s t trichothecene toxin,

T 2 , d o c u m e n t e d was i n t h e 1940s w h e r e i t was associated w i t h a n o u t b r e a k o f a l i m e n t a r y t o x i c aleukia ( A T A ) . A t its peak, i n 1 9 4 4 , t h e p o p u l a t i o n i n t h e O r e n b u r y d i s t r i c t a n d o t h e r d i s t r i c t s o f t h e t h e n U S S R suffered e n o r m o u s casualties; m o r e t h a n 1 0 % o f t h e p o p u l a t i o n was a f f e c t e d a n d m a n y fatalities occurred (Joffe 1986). The term 'alimentary toxic' refers t o t h e fact t h a t t h e t o x i n i s c o n s u m e d i n f o o d a n d 'aleukia' refers t o t h e r e d u c e d n u m b e r o f leucocytes o r w h i t e b l o o d cells i n t h e a f f e c t e d person. O t h e r s y m p t o m s i n c l u d e d b l e e d i n g f r o m nose a n d t h r o a t , a n d m u l t i p l e , subcutaneous hemorrhages. T h e i n f e c t e d f o o d i n t h i s case was m i l l e t , w h i c h m a d e u p a great p a r t o f t h e d i e t o f t h e p e o p l e i n t h e r e g i o n , a n d a t t i m e s , d u r i n g W o r l d W a r I I , i t was n o t u n c o m m o n t o a l l o w t h e m i l l e t t o b e l e f t s t a n d i n g i n t h e fields over w i n t e r because b a d w e a t h e r i n t h e fall p r e v e n t e d its harvest a t t h e p r o p e r t i m e . D u r i n g late w i n t e r a n d early spring t h e m i l l e t w o u l d b e c o m e i n f e c t e d w i t h various f u n g i , i n c l u d i n g F. tricinctum, a n d w h e n t h e p e o p l e g a t h e r e d a n d ate t h i s fungus, m a n y w e r e a f f e c t e d w i t h w h a t was diagnosed a s A T A . T h o u s a n d s w e r e a f f e c t e d a n d m a n y d i e d (Joffe 1 9 8 6 ) .

I n pigs, t h e c l i n i c a l signs o f T2 toxicosis include emesis, posterior paresis, l e t h a r g y a n d f r e q u e n t d e f e c a t i o n . A t l o w levels o f c o n t a m i n a t i o n i n t h e d i e t T2 t o x i n causes r e d u c e d feed i n t a k e a n d a n i m a l p e r f o r m a n c e . A t h i g h c o n c e n t r a t i o n s ( > 2 m g kg-1) i n t h e d i e t i t p r o d u c e s diarrhea, emesis a n d f e e d refusal. T2 t o x i c o s i s i n p o u l t r y causes o r a l lesions, r e d u c e d f e e d c onsumption, r e d u c e d g r o w t h rate a n d egg p r o d u c t i o n i n l a y i n g hens. I n r u minants the T2 t o x i c o s i s results in a w i d e range of responses, such as f e ed refusal, leukopenia, depression, diarrhea, coagulopathy, enteritis and poste r i o r ataxia. R e d u c t i o n o f h u m o r a l i m m u n i t y i s a c o m m o n effect f o r pigs, p o u l t r y a n d r u m i n a n t s and w h e n e x p o s e d t o l o w c o n c e n t r a t i o n s o f T2 t o x i n i n t h e d i e t s h o w e d increased s u s c e p t i b i l i t y t o o t h e r diseases.

Zearalenone Z e a r a l e n o n e a n d r e l a t e d m e t a b o l i t e s pose s t r o n g estrogenic a c t i v i t y a n d can result i n severe r e p r o d u c t i v e a n d i n f e r t i l i t y p r o b l e m w h e n f e d t o d o m e s t i c

133 animals in sufficient amounts. Pigs appear to be most sensitive; therefore, they are most frequently reported with problems caused by zearalenone, which include enlargement or swelling and reddening of the vu lva in gilts and sows, s w e l l i n g o f m a m m a r y g l a n d a n d atrophy, a n d prolapse o f t h e ovaries, vagina a n d r e c t u m . I n y o u n g m a l e pigs zearalenone can cause s w e l l i n g o f t h e p r e p u c e , t e s t i c u l a r a t r o p h y a n d e n l a r g e m e n t o f t h e m a m m a r y glands, w h i l e i n boars i t causes reduced libido and marginal reduction in sperm q u a l i t y .

Deoxynivalenol Deoxynivalenol is also called vomitoxin and is the mos t i m p o r t a n t t r i c h o t h e c e n e because o f its h i g h incidence i n cereals, b u t i t i s n o t one o f t h e m o s t acutely t o x i c o f this g r o u p o f m y c o t o x i n s ( R o t t e r e t al. 1 9 9 6 ) . A t cellular level t h e m a i n t o x i c effect i s i n h i b i t i o n o f p r o t e i n synthesis via b i n d i n g t o ribosomes. In animals, the overt effect at low dietary concentrations (>2 mg g-1) appears to be a r e d u c t i o n i n f o o d c o n s u m p t i o n a n d w e i g h t gain, w h i l e higher doses ( > 20 mg g1 ) i n d u c e feed refusal, diarrhea and v o m i t i n g . D e o x y n i v a l e n o l i s k n o w n t o alter b r a i n neurochemicals, and serotoninergic system appears to play a role in mediation of the feeding behavior and emetic response. Animals fed l o w doses o f t o x i n are able t o recover f r o m i n i t i a l w e i g h t loss, w h i l e higher doses i n d u c e m o r e l o n g - t e r m changes in feeding behavior. Pigs are m o r e sensitive than other livestock to t h e presence o f d e o x y n i v a l e n o l i n t h e i r feed. M o s t o f t h e c l i n i c a l signs caused b y the ingestion of deoxynivalenol are also observed with nivalenol, t h e l a t t e r being generally m o r e t o x i c .

E c o n o m i c losses c a u s e d b y m y c o t o x i n s i n s o r g h u m a n d p e a r l m i l l e t

S o m e factors t h a t influence t h e degree o f fungal in fe s t a tion and mycotoxin contamination in cereals are the prevailing weather co n d i t i o n s and t h e susceptibility of the crop to fungal invasion and myc otoxin contamination ( V i s c o n t i 1 9 9 6 ) . D u r i n g t h e seasons o f extensive m y c o t o x in contamination, grain shortages m a y o c c u r leading to elevated prices for grain a n d costs f o r livestock and poultry producers and consumers of grain p r o d u c t s . Mycotoxigenic fungal infestation may reduce crop yields, seed g e r m i n a t i o n rates, seedling vigor and grain quality. Mycotoxin con taminated grains are d o w n g r a d e d f r o m f o o d t o feed, a n d a d d i t i o n a l cleaning a n d milling procedures m a y b e r e q u i r e d t o r e d u c e c o n t a m i n a t i o n , a n d e x p o r t m a r k e t s are affected.

134 A m o n g a l l t h e m y c o t o x i n s , a f l a t o x i n B 1 is the most toxic, carcinogenic a n d i m m u n o s u p p r e s s i v e agent t o h u m a n beings a n d l i v e s t o c k . Mycotoxin e x p o s u r e i n h u m a n s increases m e d i c a l a n d w e l f a r e costs, a n d reduces i n c o m e p o t e n t i a l o f t h e i n d i v i d u a l . C o n s u m e r p r o b l e m s are r e l a t e d t o less n u t r i t i o u s f o o d , increased h e a l t h risks i n years o f severe m y c o t o x i n c o n t a m i n a t i o n , h i g h e r p r o d u c t prices a n d l o n g - t e r m c h r o n i c effects f r o m l o w c o n t a m i n a t i o n . M o s t e c o n o m i c losses d u e t o c o n s u m p t i o n o f m y c o t o x i n c o n t a m i n a t e d d i e t b y f a r m animals result f r o m r e d u c e d a n i m a l p r o d u c t i o n a n d increased disease i n c i d e n c e . L i v e s t o c k p r o d u c e r s are affected by increased p r o d u c t i o n cost d u e t o h i g h e r m o r t a l i t y rates, r e p r o d u c t i v e failures (abortions), reduced f e e d e f f i c i e n c y a n d overall q u a l i t y loss. Presence o f m y c o t o x i n s i n p o u l t r y feed causes adverse effects on laying h e n a n d b r o i l e r chicks. M o r e o v e r , c o n s u m p t i o n of f e e d c o n t a i n i n g a c o m b i n a t i o n of t o x i n s has a greater adverse effect on p o u l t r y t h a n w h e n feeds c o n t a i n i n g a single t o x i n are f e d . Pigs are v e r y sensitive to Fusarium m y c o t o x i n s in t h e i r d i e t . D e o x y n i v a l e n o l can cause r e d u c e d feed i n t a k e , v o m i t i n g a n d r e d u c e d b o d y w e i g h t gain. D e l a y i n t h e t i m e t a k e n for pigs t o reach t h e ideal m a r k e t i n g b o d y w e i g h t o r m a r k e t i n g pigs b e l o w n o r m a l w e i g h t can have serious e c o n o m i c consequences for p i g producers. Economic implications of animal feed contami n a t e d w i t h f u m o n i s i n s are significant, especially i f c o n t a m i n a t i o n results i n d e a t h o f l i v e s t o c k . M y c o t o x i n c o n t a m i n a t i o n i n cereal a n d l e g u m e b y p r o d u c t s i s h a m p e r e d b y s t r i c t r e g u l a t i o n o f m a n y c o untri e s. G r o u n d n u t e x p o r t was s i gn ifi c a n t ly r e d u c e d b o t h i n Asia a n d A f r i c a because o f v e r y l o w p e r m i s s i b l e levels o f

aflatoxin B1 . T h u s t h e r e d u c t i o n i n t h e level o f m y c o t o x i n s i n a g r i c u l t u r a l p r o d u c t s f o r f o o d a n d f e e d is of h i g h i m p o r t a n c e . Table 1 shows t h e p e r m i s s i b l e level o f some o f t h e m y c o t o x i n s i n cereals.

Detection technologies

Several physio-chemical methods are available for estim a t i o n o f m y c o t o x i n s . These m e t h o d s are expensive a n d t i m e c o n s u m i n g . A t t h e I n t e r n a t i o n a l C r o p s Research I n s t i t u t e f o r t h e S e m i - A r i d Tropics ( I C R I S A T ) , Patancheru, Andhra Pradesh, I n d i a , w e have d e v e l o p e d a n E L I S A ( e n z y m e - l i n k e d i mmunosorbent assay)-based d e t e c t i o n t e c h n i q u e , w h i c h is cost effective a n d less t i m e c o n s u m i n g . W e have p r o d u c e d m o n o c l o n a l and p o l y c l o n a l antibodies f o r aflatoxin B1 a n d d e t e r m i n e d t h e A F B 1 q u a n t i t i e s i n various foods a n d f e e d

135 Table 1. W o r l d w i d e r e c o m m e n d e d regulatory limits on Fusarium m y c o t o x i n s in cereals a n d cereal p r o d u c t s .

Country Mycotoxin Commodity Limit (ng g-1)

Austria Deoxynivalenol Wheat, rye/durum wheat 500-750 Zearalenone Wheat, rye, durum wheat 60

Brazil Zearalenone Maize 200

Canada Deoxynivalenol Uncleaned soft wheat (food) 2,000

Deoxynivalenol Diets for swine, young calves, lactating 1,000 dairy animals, cattle, poultry 5,000 All mycotoxins Feedstuff for reproducing animals 0

France Zearalenone Cereals 200

Netherlands All mycotoxins Cereals (products) 0

Romania Zearalenone All foods 30

Russia T2 toxin Cereals (wheat, hard and strong type), 100 flour, wheat bran Zearalenone Cereals (wheat, hard and strong type), 1,000 flour, wheat bran

Switzerland Fumonisins Maize (products) 1,000

Uruguay Zearalenone Maize, barley 200

USA Deoxynivalenol Finished wheat products (food) 1,000 Deoxynivalenol Grains and grain byproducts for feed 5,000 -10.0001 Fumonisins Maize (products) for feed 5,000 -50,0002

1. 5,000 ng g-1 feed for pigs (not exceeding 40% of the diet); 10,000 ng g-1 feed for ruminating beef and feed lot cattle older than 4 months and for chicken (not exceeding 50% of the cattle or chicken total diet). 2. Feed for horses (5,000 ng g-1), pigs (10,000 ng g-1), and beef cattle and poultry (50,000 ng g-1). Source: FAO (1997).

m a t e r i a l s . We have also p r o d u c e d p o l y c l o n a l a n t i b o d i e s against a f l a t o x i n M1 a n d o c h r a t o x i n A , a n d d e v e l o p e d t e c h n o l o g y t o d e t e c t these t o x i n s i n m i l k , foods a n d feeds. W e are i n t h e process o f r e f i n i n g t h e E L I S A test f o r f u m o n i s i n d e t e c t i o n .

136 R e c e n t l y w e p r o d u c e d p o l y c l o n a l antibodies t o f u m o n i s i n B1 . L i k e m o s t o f t h e m y c o t o x i n s , f u m o n i s i n s are also l o w m o l e c u l a r w e i g ht compounds. Since t h e l o w m o l e c u l a r w e i g h t c o m p o u n d s d o n o t s t i m u l a t e t h e i m m u n e s y s t e m in w a r m - b l o o d e d animals, it is essential to tag these c o m p o u n d s to a bigger p r o t e i n m o l e c u l e , such as b o v i n e s e r u m a l b u m i n ( B S A ) . To p r o d u c e p o l y c l o n a l a n t i b o d i e s for f u m o n i s i n B1 , w e p r e p a r e d f u m o n i s i n - B S A conjugate (Feng-Yih Y u a n d C h u 1 9 9 6 ) . T h e r a b b i t was i m m u n i z e d 5 t i m e s ( 3 subcutaneous a n d 2 i n t r a - m u s c u l a r ) each w i t h 2 5 0 m g F B I - B S A conjugate a n d 8 - 9 bleedings w e r e m a d e f o r s e r u m c o l l e c t i o n . H i g h t i t e r e d antibodies w e r e o b t a i n e d a n d a n E L I S A m e t h o d was standardized. Several a n i m a l feed samples w e r e t e s t e d f o r f u m o n i s i n c o n t e n t using t h e antibodies p r o d u c e d . D i f f e r e n t e x t r a c t i o n m e t h o d s w e r e used. W e faced some d i f f i c u l t i e s i n e x t r a c t i o n o f f u m o n i s i n f r o m c r o p residues. O n e h u n d r e d s o r g h u m s t r a w samples m e a n t f o r c a t t l e f e e d w e r e c o l l e c t e d f r o m m a r k e t s o f A n d h r a Pradesh and analyzed f o r aflatoxins a n d f u m o n i s i n B , . A l l t h e samples w e r e free f r o m aflatoxins; h o w e v e r , 4 5 % o f t h e samples c o n t a i n e d > 1 0 0 u g - 1 -1 kg fumonisin B1 (range 1 0 0 - 1 6 0 0 ug kg ). As we have r e c e n t l y d e v e l o p e d t h e test f o r f u m o n i s i n s , w e can n o w test m a n y m o r e samples t o u n d e r s t a n d b e t t e r t h e i m p o r t a n c e o f f u m o n i s i n c o n t a m i n a t i o n a n d its i m p l i c a t i o n o n h u m a n a n d l i v e s t o c k h e a l t h .

Conclusions

M y c o t o x i n s are d i s t r i b u t e d w i d e l y i n cereal crops, t o t h e e x t e n t u b i q u i t y i n certain crops g r o w n in specific regions and seasons. In cereals, grain q u a l i t y as w e l l as straw q u a l i t y are i m p o r t a n t in r e l a t i o n to a n i m a l f e e d purpose. Mycotoxin contamination in sorghum and pearl millet grain was r e p o r t e d i n d i f f e r e n t parts o f t h e w o r l d . H o w e v e r , l i t e r a t u r e availability o n m y c o t o x i n s i n cereal s t r a w is scanty. Since cereal straw is used for a n i m a l feed very extensively, i t i s essential t o m o n i t o r t h e cereal s t r a w for m y c o t o x i n c o n t a m i n a t i o n . M o r e o v e r , after c r o p harvest, cereal s t r a w in storage gets exposed to h i g h t e m p e r a t u r e a n d h i g h h u m i d i t y t h a t are c o n d u c i v e for t h e g r o w t h o f m o l d f u n g i a n d subsequent m y c o t o x i n p r o d u c t i o n . T o some e x t e n t , t h e presence o f small a m o u n t s o f m y c o t o x i n s i n cereals and related f o o d p r o d u c t s i s unavoidable. T h i s necessitates m o n i t o r i n g of t h e f o o d and feed samples at regular intervals. Some o f t h e technologies available a t I C R I S A T can h e l p d i f f e r e n t groups o f people for b e t t e r m o n i t o r i n g and analysis o f t h e i r p r o d u c t s for m y c o t o x i n s .

137 References

Allcroft R and Lewis G. 1963. Groundnut toxicity in cattle: Experimental poisoining of calves and a report on clinical effects in older cattle. Veterinary Records 75:487- 494.

Amla I, M u r t h y V S , Jayaraj AP and Parpia H A B . 1974. Aflatoxins and Indian childhood cirrhosis - a review. Journal of Tropical Pediatrics and Environmental Child Health 20:28-33.

Ansari AA and Srivastava A K . 1994. Susceptibility of pearl millet varieties to toxigenic Aspergillus ochraceus for ochratoxin production. Indian Journal of Agricultural Sciences 64:421-422.

Bandyopadhyay R, Mughogho LK and Prasada Rao K E . 1988. Sources of resistance to sorghum grain molds. Plant Disease 72:504-508.

Bhat RV, Shetty P H , A m r u t h RP and Sudershan RV. 1997. A food borne disease outbreak due to the consumption of moldy sorghum and maize containing fumonisin mycotoxin. Journal of Toxicology, Clinical Toxicology 35:249-255. Chandran N, M a l l OP and Chauhan SK 1993. Moniliformin production by fusaria infecting bajra. National Academy of Science Letters 16:285-286. Char N L , Rao P, Khan I and Sarma DR. 1982. An outbreak of aflatoxicosis in poultry. Poultry Adviser 15:57-58.

Charmley L L , Rosenberg A and Trenholm HL. 1994. Factors responsible for economic losses due to Fusarium mycotoxin contamination of grain, foods and feedstuffs. Pages 471-493 in Mycotoxins in grains ( M i l l e r JD and Trenholm H L , eds.). St. Paul, Minnesota, U S A : Eagan Press.

Chelkowsky J. (eds.) 1989. Fusarium - mycotoxins, taxonomy and pathogenicity. Amsterdam, The Netherlands: Elsevier. 63 pp. Choudary C. 1986. An outbreak of fatty liver syndrome in commercial layer farms. Poultry Adviser 19:59-60.

FAO. 1997. W o r l d w i d e regulation for mycotoxins 1995. A compendium. F A O Food and N u t r i t i o n Paper N o . 64. Rome, Italy: FAO. 46 pp.

Feng-Yih Yu and C h u FS. 1996. Production and characterization of antibodies against fumonisin B l . Journal of Food Protection 59:992-997.

Gamanya R and Sibanda L. 2 0 0 1 . Survey of Fusarium moniliforme (F. verticillioides) and production of fumonisin in cereal grains and oil seeds in Zimbabwe. International Journal of Food Microbiology 71:145-149. Groopman JD and Kensler W. 1996. Temporal patterns of aflatoxin-albumin adducts in hepatitis B surface antigen-positive and antigen-negative residents of D a x i n , Qidong

138 County, People's Republic of China. Cancer Epidemiology Biomarkers and Preventions 5:253-256.

Gupta Rajani and Gupta R. 1998. Incidence of zearalenone producing Fusarium species on sorghum grains. Indian Phytopathology 51.251-253.

Joffe A Z . 1986. Effects of fusariotoxins in humans. Pages 225-292 in Fusarium species: their biology and toxicology. N e w York, U S A : Willey-Interscience Publication. Marasas W F O . 1995. Fumonisins: their implications for human and animal health. Natural Toxins 3:193-198. Misra NK and Daradhiyar SK. 1991. Mold flora and aflatoxin contamination of stored and cooked samples of pearl millet in the Paharia belt of Santhal Paragana, Bihar, India. Applied and Environmental Microbiology 57:1223-1226. Montesano R, Hainaut P and W i l d CP. 1997. Hepatocellular carcinoma: from gene to public health. Journal of National Cancer Institute 8 9 : 1 8 4 4 - 1 8 5 1 .

Petkova-Boeharova T, Chernozemsky IN and Castegnaro M. 1988. Ochratoxin A in human blood in relation to Balkan endemic nephropathy and urinary system tumors in Bulgaria. Food Additives and Contaminants 5:299-301.

Ramakrishna Y, Bhat RV and Vasanthi S. 1990. Natural occurrence of mycotoxins in staple foods in India. Journal of Agricultural and Food Chemistry 38:1857-1859. Rheeder JP, Marasas WFO, Theil PG, Sydenham EW, Shephard GS and van Schalkwyk D J . 1992. Fusarium moniliforme and fumonisins in corn in relation to human oesophageal cancer in Transkei. Phytopathology 82:353-357.

Rotter B, Prelusky DB and Pestaka JJ. 1996. Toxicology of deoxynivalenol (vomitoxin). Journal of Toxicology and Environmental Health 48:1-34. Sashidhar RB, Ramakrishna Y and Bhat RV. 1992. Moulds and mycotoxins in sorghum stored in traditional containers in India. Journal of Stored Products Research 28:257-260. Shetty H S , Usha C M , Patkar KL and Lacey J. 1994. Mycotoxin contamination in developing seeds of rice sorghum and groundnut in Mysore. Seed Research 22:31-38.

Shetty PH and Bhat RV 1997. Natural occurrence of fumonisin Bl and its co- occurrence w i t h aflatoxins Bl in Indian sorghum, maize and poultry feeds. Journal of Agricultural and Food Chemistry 45:2170-2173. Silva JB da, Pozzi C R , Mallozzi M A B , Ortega EM and Correa B. 2000. Mycoflora and occurrence of aflatoxin Bl and fumonisin Bl during storage of Brazilian sorghum. Journal of Agricultural and Food Chemistry 48:4352-4356. Sinha KK and Bhatnagar D. (eds.) 1998. Mycotoxins in agriculture and food safety. N e w York, U S A : Marcel Dekker, Inc. 511 pp.

139 Stenhouse JW, Bandyopadhyay R, Singh SD and Subramanian V. 1997. Breeding for grain m o l d resistance in sorghum. Pages 326-336 in Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl M i l l e t , 22-27 Sep 1996, Lubbock, Texas, U S A . U S A : I N T S O R M I L .

Thirumala-Devi K, Mayo M A , Gopal Reddy and Reddy D V R . 2002. Occurrence of aflatoxins and ochratoxin A in Indian poultry feeds. Journal of Food Protection 65:1338-1340.

Van Rensberg SJ. 1986. Role of mycotoxins in endemic liver cancer and oesophageal cancer. Pages 483-494 in Mycotoxins and phycotoxins (Steyn PS and Vleggar R, eds.). Amsterdam, The Netherlands: Elsevier.

Visconti A. 1996. Fumonisins maize genotypes grown in various geographical areas. Advances in Experimental Medicine and Biology 392:193-204.

Wang LY, Hatch M , Chen C J , Levin B , You SL, L u S N , W u M H , W u W P , Wang LW, Wang Q, H u a n g GY, Yang P M , Lee HS and Santella R M . 1996. Aflatoxins exposure and risk of hepatocellular carcinoma in Taiwan. International Journal of Cancer 67:620-625. Williams RJ and McDonald D. 1983. Grain m o l d in the tropics: problems and importance. Annual Review of Phytopathology 21:153-178.

Williams RJ and Rao K N . 1981. A review of sorghum grain moulds. Tropical Pest Management 27:200-211.

Wilson JP, Casper HS and Wilson D M . 1995. Effect of delayed harvest on contamination of pearl millet grain w i t h mycotoxin producing fungi and mycotoxins. Mycopathologia 132:27-30.

140 Cereal Grain Procurement, Storage and Handling Systems for Commercial Use

S Sivakumar1

Abstract For historical reasons, the grain procurement, storage and handling systems in India have evolved to suit a shortage economy. The focus has been on maximizing production, productivity and minimizing wastages in that order Supply-driven value chains built in such a context create a disconnect between the way a farmer sells (physical properties), a processor adds value (chemical properties) and a consumer buys (rheological and organoleptic properties). Aggregation of grain without preserving its identity while storing at FCl warehouses in the Government system, and while transporting from mandis in the private marketing system creates the classical 'lemons problem'. Consumer-centric market economy must be supported by demand-driven storage and handling systems. The information related to the varied needs of multiple market segments needs to flow back seamlessly along the chain to enable producers deliver differentiated products to the consumers efficiently. Agribusiness firms in the developed world have met this need for identity preservation through models like vertical integration and contract farming. Large-scale replication of such models in India is not viable because the Indian farmers are fragmented, dispersed and heterogeneous. The problem is further compounded by weak infrastructure - physical, social and institutional. However, by deploying information technology creatively through models like virtual integration, one can build efficient value chains even in India, notwithstanding above constraints. Information technology also helps in building traceability systems, which ensure visibility of the grain identity to the whole chain during the entire process of storage and handling from farmer to the consumer. Success of such a system depends heavily on linkages with the scientific community for decoding product chemistry from consumer perspective.

Grain procurement, storage, and handling systems in In d i a have e v o l v e d t o suit a shortage economy. Research a n d e x t e n s i o n efforts of g o v e r n m e n t organizations have primarily been oriented towards yi eld improvements and increasing total production by crop commodities. The M inimum Support Price S c h e m e for rice a n d w h e a t has e v e n t u a l l y m a d e t h e g o v e r n m e n t t h e primary buyer. Grain procurement is facilitated through t h e F o o d

1. ITC Limited, 31 Sarojini Devi Road, Secunderabad 500 0 03, Andhra Pradesh, India.

141 Corporation of India (FCI). A combination of tradition a l a n d m o d e r n infrastructure exists for safekeeping and wastage redu ction during grain storage a n d h a n d l i n g . T h u s , t h e focus has been on m a x i m i z i n g grain production and productivity, and minimizing wastage.

T h e f o o d v a l u e c h a i n

T h e f o o d value c h a i n p r i m a r i l y has t h r e e e l e m e n t s (as s h o wn in Fig. 1): 1. Primary production: High grain yields depend on favorable climate, soil and water resources, and other agricultural inputs, inclu ding high-yielding varieties. 2. Processing: Efficient methods of milling, curing an d preserving are essential. 3. Retail: Quality products can be made available throu g h e f f i c i e n t systems for grading, packaging and merchandizing. The market functions include exchange (buying, selling), physical infrastructure (storage, transportation, processing), and facilitating (financing, i n f o r m a t i o n , risk bearing) f u n c t i o n s .

F o o d e c o n o m y i n I n d i a a n d its i m p l i c a t i o n s

T h e s u p p l y - d r i v e n value chains d i f f e r i n t h e exchange processes along t h e chain. For example, the farmer sells the product (grain) based o n physical properties; a grain processor adds value based on chem i c a l p r o p e r t i e s of grain;

Primary production Processing Retail

Climate Milling Grading Soil/Water Curing Packaging Agri-inputs Preserving Merchandizing

Market functions Exchange Physical Facilitating Buying Storage Financing Selling Transportation Information Processing Risk bearing

Figure 1. A diagrammatic representation of the food value chain.

142 and t h e c o n s u m e r buys t h e p r o d u c t s based o n organoleptic properties. Farmers grow multiple varieties to suit different agroclimatic conditions (soil fertility, soil type, rainfall pattern, temperature, et c ) . H o w e v e r , t h e grain loses its source i d e n t i t y after aggregation w h i l e storing at warehouses by the government and transporting by village traders and t he private sector. The aggregation o f grain w i t h o u t preserving its i d e n t i t y results in the classical ' l e m o n s p r o b l e m ' . Consumer-centric market economy must be supported by d e m a n d - d r i v e n storage a n d h a n d l i n g systems. C o n s u m e r s prefer d i f f e r e n t p r o d u c t s t o suit varied food preparations and individual tastes. Th e information on consumer preferences and requirements of multiple mark e t segments n e e d t o flow seamlessly along the chain to enable producers del iver different products t o t h e v a r y i n g needs o f d i f f e r e n t consumers efficiently. T h e i n f r a s t r u c t u r e should be equipped with traceability systems to preserve i d e n t i t y o f t h e source ( o f d i f f e r e n t varieties o f t h e same c r o p ) . Agribusiness firms in the developed world have preserved the source i d e n t i t y o f t h e grain p r o d u c e d t h r o u g h m o d e l s such a s v e rtical integration of t h e f o o d value chain a n d c o n t r a c t f a r m i n g . Large-scale r e p l i c a t i o n o f such m o d e l s in I n d i a is n o t viable because t h e l a n d h o l d i n g s of I n d i a n farmers are small, fragmented, dispersed and heterogeneous. The social i m p e r a t i v e o f achieving global competitiveness in emerging economies like India is to bring t h e p o w e r o f scale t o t h e s m a l l farmers r a t h e r t h a n displacing them. The problem is further aggravated by weak infrastructure (physical, social a n d institutional). Numerous intermediaries are present in the agricultural value chains of d e v e l o p i n g economies. These i n t e r m e d i a r i e s or middlemen are a necessary evil. They are necessary because they not onl y make up for the lack o f i n f r a s t r u c t u r e b u t also b l o c k t h e i n f o r m a t i o n f l o w a n d m a r k e t signals f o r their own benefit, thereby making the chain uncompetit i v e . M a n y ' m i d d l e m e n ' have e x p l o i t e d t h e small farmers by s p i n n i n g a cycle of dependency starting with credit, leading to input sales and then on to output purchases. N o m a t t e r w h e t h e r t h e i n p u t i s o f spurious q u a l i t y o r t h e p r i c e b i d f o r o u t p u t is low, farmers have to go back to t h e same i n termediary because t h e person offers t h e m o s t f l e x i b l e f i n a n c i n g o p t i o n . T h i s e n v i r o n m e n t has h e l d t h e I n d i a n f o o d and a g r i c u l t u r a l chain at a l o w - l e v e l equilibrium, n o t w i t h s t a n d i n g t h e p o t e n t i a l upside, i n l i g h t o f t h e large arable land in m u l t i p l e a g r o c l i m a t i c c o n d i t i o n s as w e l l as s o u n d p u b l i c agricultural research system.

143 A l t e r n a t i v e s i n m a r k e t c h a i n

Several alternatives have been tried from time to time t o p u l l t h e sector o u t o f this vicious cycle. Producers' cooperative has been one such system. While t h e r e are a f e w success stories a m o n g cooperatives, r e p l i c ation across different crops on a large scale has n o t been satisfactory. F u r t h e r t h e r e are l i m i t a t i o n s in technology acquisition and marketing capabilities. The three-tier cooperative s t r u c t u r e o f A m u l ( t h e m o s t successful a m o n g t h e p r o d u c e r s ' cooperatives i n India, dealing with milk and milk products), led by sma ll-farmer production, aggregated processing at t h e d i s t r i c t level and a f u r t h e r aggregated marketing at t h e state level, is a s u p p l y - d r i v e n m o d e l t h a t is m o r e appropriate in a shortage economy. The transition to a demand-driven co mpetitive market c o n d i t i o n w i l l b e a n i n t e r e s t i n g challenge t o o v e r c o m e , given the prevailing l a n d o w n e r s h i p s t r u c t u r e . Contract farming is another viable solution although it has n o t b e e n successful on a large scale d u e to c r e d i t risks a n d h i g h costs. Theoretically, it is the most efficient link between the consumer and the fa rmer because the contracting company can provide the available inputs a nd best practices to the farmers, besides providing market linkages. The effectiveness is, h o w e v e r , l i m i t e d to some crops (such as perishable, h o r t i c u l t u r a l crops) t h a t have natural reciprocal dependency in the value chain betwe e n t h e f a r m e r a n d t h e company that provides an economic incentive for them to stay together in the l o n g r u n . Large v o l u m e c o m m o d i t i e s such as grain crops are n o t t h e ideal candidates for contract farming because the natural rec iprocal dependency is n o t v e r y h i g h . Eventually, there is a need for the emergence of consu mer-oriented business enterprises spanning the food and agricultura l sector. But the current Government policies - notably high and multiple taxes, r e s t r i c t i o n s o n m o v e m e n t o f goods - b e n e f i t t h e u n s c r u p u l o u s players i n t h e market chain because t h e r e are larger p r o f i t s i n t a x evasion a n d a d u l teration, making the long-term oriented, consumer-focused businesses unviab l e .

T h e f u t u r e

D e s p i t e t h e above constraints, e f f i c i e n t value chains can be built even in India by using information technology creatively through mod e l s l i k e v i r t u a l integration. The value chain should be demand driven, w ith the farmer having a f r e e d o m o f choice o n f a r m i n g decisions ( c o n t r a s t e d w i t h the exploitative

144 cycle o f d e p e n d e n c y spun b y t h e t r a d i t i o n a l i n t e r m e d i a r y a n d m i d d l e m e n ) . T h e business m o d e l s h o u l d be able to deliver effective service at l o w cost notwithstanding the fragmentation, dispersion, heterogeneity and w e a k i n f r a s t r u c t u r e . T h e I T C L i m i t e d ' s e C h o u p a l [ a village g r o u p using i n f o r m a t i o n a n d c o m m u n i c a t i o n t e c h n o l o g y ( I C T ) - b a s e d i n f o r m a t i o n sharing] i s b u i l t o n these v e r y p r i n c i p l e s . I t gives t h e f a r m e r a n e n d - t o - e n d c o m p l e t e s o l u t i o n ( i n f o r m a t i o n l i k e c o m m o d i t y prices a n d local w e a t h e r forecasts, k n o w l e d g e o n best f a r m practices, q u a l i t y i n p u t s , a n d access t o c r e d i t and o u t p u t m a r k e t s ) . I t e m p o w e r s t h e f a r m e r t o transact sale o f grain f r o m h o m e , instead o f incurring transportation cost to the market-yard, as re q u i r e d i n t h e t r a d i t i o n a l m a r k e t i n g system. Because t h e grain i s b o u g h t d i r e c t l y f r o m t h e f a r m e r a t t h e village, t h e r e is a source i d e n t i t y even as t h e p r o d u c t s reach consumers. Information technology also helps in building traceabil i t y systems, w h i c h ensure v i s i b i l i t y o f t h e grain i d e n t i t y t o t h e w h o l e c h a i n d u r i n g t h e e n t i r e process o f storage a n d h a n d l i n g , f r o m t h e f a r m e r t o t h e consumer. L o n g - t e r m success o f d e m a n d - d r i v e n value c h a i n depends heavily o n linkages w i t h t h e scientific c o m m u n i t y f o r assessing p r o d u c t q u a l i t y f r o m a c o n s u m e r perspective, using r a p i d t e s t i n g e q u i p m e n t t h a t can l i n k physical p r o p e r t i e s w i t h c h e m i c a l p r o p e r t i e s o f grain, a s w e l l a s with the organoleptic p r o p e r t i e s , t o e l i m i n a t e t h e d i s c o n n e c t t h a t exists i n t h e s u p p l y - d r i v e n value chains.

145 Sorghum: A Potential Source of Raw Material for Agro-industries

RB Somani1 and JRN Taylor2

Abstract Adaptation to poor habitats, poor resource base and production and consumption by poorer sections of the society have made sorghum crop an indispensable component of dryland agriculture. It is a drought hardy crop, can withstand waterlogging and thus excels over maize; it is also ecologically sound and environment friendly demanding little pesticide use for crop management. Notwithstanding the moderate contribution of sorghum to the national food basket, this crop offers enormous advantages such as early maturity, wide adaptation, ease of cultivation and good nutritive value of both grain and fodder With the green revolution and availability of fine cereals in remote places, proper disposition by value addition and establishing food, feed, beverages, sugars and alcohol industries will not only generate employment potential but also improve the regional economy. Sorghum is a valuable food grain for many of the world's most food insecure people. Much of Africa and India is characterized by semi-arid tropical climatic conditions. Sorghum is undoubtedly and uniquely adapted in the Afro-Asian regions. Sorghum in Africa and Asia is processed into a very wide variety of nutritive food products. Documentation, standardization, popularization and commercial exploitation of traditional products need attention. A large number of accessions are available. Proper selection for the requirements of the end users is necessary. Use of new biotechnological tools such as anti-sense gene technology to incorporate desired traits is now possible. Continuing focused fundamental and applied research is essential to unleash sorghum's capacity to be the cornerstone in food, feed, fuel and fiber sectors in Afro-Asian countries. Sorghum types of both the continents are different; in Africa it is 'milo' based whereas in the Indian subcontinent it is 'caudatum' type. More attention on dehulling and debranning of red sorghum and mold resistance in white sorghum is anticipated. The future for sweet sorghum or high energy sorghum is also bright. Combined efforts of research institutions, private seed sector, industry and the government are necessary for its commercial exploitation. So far, there was a concept of developing agro-based industry. However, we now have to think of industry-based agriculture.

1. " K a v i t a " , O p p . T i l a k Park, Ramdaspeth, A k o l a 4 4 4 0 0 4 , Maharashtra, India. 2. Department of Food Science, University of Pretoria, Pretoria 0 0 0 2 , S o u t h A f r i c a .

146 C e r e a l grains have been t h e p r i n c i p l e source o f calories i n t h e h u m a n d i e t , w i t h starch c o n t r i b u t i n g 8 0 % o f h u m a n calories i n t a k e . A m o n g cereals, s o r g h u m ( S o r g h u m bicolor) is r a t e d very h i g h for d r y m a t t e r a c c u m u l a t i o n rate w h e n c o m p a r e d on a d a i l y basis. Similarly, s o r g h u m has t h e highest food energy per u n i t c u l t u r a l energy, exceeding maize ( Z e a mays) silage, sugarcane (Saccharum o f f i c i n a r u m ) a n d maize grains. Being a C4 species, it is one of t h e most photosynthetic efficient plant species producing d i r e c t l y f e r m e n t a b l e sugars as w e l l as grains. It is one of t h e m o s t ideal crops for simultaneous p r o d u c t i o n o f f o o d a n d energy t h a t can b e c u l t i v a t e d i n b o t h t e m p e r a t e and t r o p i c a l e n v i r o n m e n t s d u e t o its d r o u g h t tolerance. A f t e r U S A , I n d i a i s t h e second largest p r o d u c e r o f s o r g h u m grain. I n I n d i a , s o r g h u m is b e i n g g r o w n in rainy a n d postrainy seasons. A r e a s o n a b l e level o f s t a b i l i t y i n grain y i e l d has been reached i n t h e last decade i n t h e state o f M a h a r a s h t r a , I n d i a . I n t r o d u c t i o n o f p h o t o - i n s e n s i t i v e , s h o r t - d u r a t i o n and h i g h - y i e l d i n g h y b r i d s o n a n acreage o f > 9 2 % i n rainy season r esulted in higher p r o d u c t i v i t y , ie, u p t o 1.8 t h a1 . H o w e v e r , even w i t h t h e increase i n h u m a n p o p u l a t i o n , t h e c o n s u m p t i o n o f t h i s coarse cereal has n o t increased even i n those regions where sorghum has been the traditional staple grain in t h e past. A c c o r d i n g t o t h e N a t i o n a l S a m p l e Survey O r g a n i s a t i o n ( 1 9 8 8 ) , c o n s u m p t i o n of s o r g h u m as f o o d is 4 4 . 3 , 3 1 . 7 , 17.02 a n d 1 6 . 4 1 % in Maharashtra, Karnataka, G u j a r a t and M a d h y a Pradesh, respectively. H o w e v e r , per capita c o n s u m p t i o n o f s o r g h u m has d e c l i n e d f r o m 2 3 . 2 k g y r - 1 i n 1 9 8 1 t o 14.4 k g yr- 1 i n 1 9 8 9 . I n M a h a r a s h t r a c o n s u m p t i o n d e c l i n e d f r o m 106 k g y r- 1 i n 1 9 6 1 t o 6 6 . 7 k g y r 1 i n 1 9 8 9 . A sample survey u n d e r t a k e n b y t h e first a u t h o r i n A m r a v a t i d i v i s i o n o f M a h a r a s h t r a d u r i n g 1 9 9 2 - 9 3 revealed f u r t h e r decline i n c o n s u m p t i o n of s o r g h u m , whereas t h e r e is a slight increase in d e m a n d in u r b a n areas o n l y for postrainy season s o r g h u m . T h e f a l l i n c o n s u m p t i o n even i n r e m o t e areas c o u l d b e a t t r i b u t e d t o p r i c e factor, status o f t h e grain, easy availability of fine cereals such as w h e a t ( T r i t i c u m a e s t i v u m ) a n d rice ( O r y z a s a t i v a ) t h r o u g h Public D i s t r i b u t i o n S y s t e m ( P D S ) a n d f i n e r o a d n e t w o r k . I n V i d a r b h a , M a r a t h w a d a a n d K h a n d e s h regions o f Maharashtra, s o u t h e r n G u j a r a t a n d w e s t e r n M a d h y a Pradesh, s o r g h u m i s usually g r o w n i n rainy season as a r a i n f e d c r o p . T h e c r o p is usually caught in rains at grain-filling stage and t h e grains b e c o m e d i s c o l o r e d d u e t o m o l d s . T h e d i s c o l o r e d grains cannot b e s t o r e d for l o n g periods a n d have l o w n u t r i t i v e value. C o n s i d e r i n g these factors, p r o d u c e r s b r i n g t h e i r d i s c o l o r e d p r o d u c e i m m e d i a t e l y t o t h e m a r k e t a n d d u e t o g l u t , i t fetches v e r y l o w p r i c e . H o w e v e r , farmers cannot s w i t c h over to some o t h e r m o r e r e m u n e r a t i v e crops such as s u n f l o w e r

147 ( H e l i a n t h u s annuus) a n d soybean (Glycine max) since t h e r e is no a l t e r n a t i v e / s u b s t i t u t e t o s o r g h u m i n r a i n f e d c r o p p i n g s y s t e m f o r d r y fodder. Unless s u b s t i t u t e f o r c a t t l e f o d d e r is suggested, s o r g h u m has to be g r o w n i r r e s p e c t i v e of market price of grain. Therefore, diversification of its uses f o r m a k i n g t h i s c r o p m o r e r e m u n e r a t i v e is essential. Since h i g h l y p r o d u c t i v e s h o r t - d u r a t i o n h y b r i d s are u n d e r cultivation, prices c o m e d o w n w h e n p r o d u c t i o n exceeds t h e d e m a n d . T h e r e i s t h u s n o i n c e n t i v e f o r increasing s o r g h u m p r o d u c t i o n a n d m a n y f a r m e r s t e n d t o k e e p t h e p r o d u c t i o n a t subsistence levels, w i t h o u t any increase i n i n p u t costs, e v e n w h e n o u t p u t p o t e n t i a l o f t h e c r o p i s q u i t e h i g h . P r o d u c e r s are i n f l u e n c e d b y t w o factors; one i s t h e m a r k e t p r i c e , w h i c h i s o f t e n l o w e r t h a n w h e a t a n d m a i z e . T h e s e c o n d f a c t o r i s t h a t d e m a n d f o r s o r g h u m has a degree o f i n f l e x i b i l i t y , i n t h a t s o m e b u y e r s c a n n o t easily change f e e d / f o o d formulations. In A f r i c a , s o r g h u m is s t i l l largely a subsistence f o o d c r o p, but it is increasingly b e i n g used in b a k e r y a n d beverage i n d u s t r i e s . S o r g h u m grains f r o m S o u t h A f r i c a have b r o w n / r e d p e r i c a r p a n d some genotypes have c o l o r e d testa. T h i s i s d u e t o c o n d e n s e d tannins k n o w n a s p r o a n t h o c y a n i d i n s l o c a t e d i n t h e testa a n d p e r i c a r p o f t h e grain. Tannins confer considerable agronomic advantages. T a n n i n sorghums are less a t t r a c t i v e to b i r d p r e d a t i o n , a m a j o r p r o b l e m i n s o u t h e r n A f r i c a . T h e tannins also p r o t e c t these sorghums f r o m insect pests and diseases. H o w e v e r , tannins b i n d w i t h b o t h t h e grain p r o t e i n s and enzymes o f t h e digestive t r a c t a n d t h u s r e d u c e t h e n u t r i t i o n a l value o f t h e grain. T h e tannins also adversely affect t h e q u a l i t y o f m a l t b y r e d u c i n g t h e e n z y m e a c t i v i t y . H o w e v e r , as a d r o u g h t resistant c r o p , s o r g h u m m a y enjoy a b r i g h t f u t u r e , especially w i t h genetic i n p u t s t o n e w f o o d / f e e d grain strains. S o r g h u m i s c r u c i a l l y i m p o r t a n t t o f o o d s e c u r i t y i n A f r i c a a s i t i s u n i q u e l y d r o u g h t resistant a m o n g cereals a n d can w i t h s t a n d periods o f h i g h t e m p e r a t u r e . A y i e l d t r i a l o f 3 0 entries i n Z i m b a b w e ( 2 8 s o r g h u m genotypes a n d 2 m a i z e h y b r i d s ) s h o w e d t h a t u n d e r i r r i g a t i o n t h e maize h y b r i d s r a n k e d 1 1 a n d 2 2 whereas u n d e r d r o u g h t c o n d i t i o n s t h e y r a n k e d 2 8 a n d 3 0 . I n fact, s o r g h u m i s n o t o n l y d r o u g h t resistant b u t also can w i t h s t a n d periods o f waterlogging. D i v e r s i f i c a t i o n o f c r o p use can m a k e s o r g h u m p r o d u c t i o n m o r e r e m u n e r a t i v e a n d can result i n c e r t a i n t y o f t h e m a r k e t d e m a n d a n d p r i c e . T h e research s h o u l d b e o r i e n t e d i n t h i s d i r e c t i o n . T h e w h o l e p l a n t u t i l i z a t i o n c o n c e p t a n d source o f r a w m a t e r i a l f o r agro-industries n e e d m o r e a t t e n t i o n . I t i s t r u l y a ' F 4 ' ( f o o d , fodder, f e e d a n d fuel) c r o p w i t h a d d i t i o n a l prospects o f

148 being a good source of sugars (Somani 1996). Several potential areas where sorghum cannot be used are discussed in this paper.

E x p o r t

A t present Japan, M e x i c o , W e s t E u r o p e a n countries, Israel and Taiwan are t h e m a j o r i m p o r t i n g countries. E x c e p t i n some A s i a n countries and A f r i c a , s o r g h u m is used as feed. D u e to m o r e emphasis on increasing m e a t p r o d u c t i o n i n C h i n a , Korea, f o r m e r U S S R , etc, t h e prospects f o r i n c l u s i o n o f s o r g h u m i n f e e d rations have b r i g h t e n e d . I n V i e t n a m , egg p r o d u c t i o n has gone d o w n d u e t o h i g h e r feed prices; maize can w e l l b e r e p l a c e d b y s o r g h u m t o i m p r o v e t h e s i t u a t i o n . S o r g h u m p r o d u c t i o n in Asia is a r o u n d 20 m i l l i o n t (Table 1). Share o f I n d i a a n d C h i n a t o t o t a l s o r g h u m p r o d u c t i o n i n Asia i s 5 4 % a n d 3 1 % i n 1 9 8 8 a n d 6 9 % a n d 2 0 % i n 2 0 0 0 , respectively. I t i s e s t i m a t e d t h a t after 2 0 0 0 , Y e m e n ( N ) , Pakistan and C h i n a w i l l have d e f i c i t o f s o r g h u m s u p p l y and I n d i a w i l l have surplus p r o d u c t i o n ( K e l l e y e t al. 1 9 9 1 ) . I m p o r t d e m a n d o f I r a n a n d O P E C ( O r g a n i z a t i o n o f t h e P e t r o l e u m E x p o r t i n g C o u n t r i e s ) w i l l s u d d e n l y rise i n near f u t u r e t o f u l f i l l t h e r e q u i r e m e n t s o f sugars and d e x t r i n . C o n s i d e r i n g t h e scope, feed t y p e o f s o r g h u m needs t o b e encouraged for g r o w i n g o n larger areas. I n I n d i a m o s t o f t h e h i g h - y i e l d i n g varieties a n d h y b r i d s are d w a r f a n d early m a t u r i n g a n d f u l f i l l t h e i n t e r n a t i o n a l c r i t e r i o n o f feed a n d national r e q u i r e m e n t o f f o o d and fodder. I m p r o v e m e n t o f t h e t r a d i n g sector a n d e x p o r t agencies, b o t h p u b l i c a n d p r i v a t e , is essential to successfully u t i l i z e

Table 1. Projected production a n d c o n s u m p t i o n (million t) of sorghum in 2000 in selected countries in A s i a . Country Production Food Feed Total Surplus/Deficit

India 13.74 10.47 1.34 11.81 +1.94 China 4.08 1.80 5.11 6.91 -2.82 Australia 1.04 0.03 0.85 0.88 +0.16 Yemen (N) 0.21 0.82 0.82 +0.60 Thailand 0.38 0.03 0.12 0.15 +0.23 Pakistan 0.19 0.22 0 0.22 -0.03 Taiwan 0.26 0.02 1.29 1.31 -1.05 Israel 0 0.05 0.16 0.21 -0.21 Japan 0 4.32 4.32 -4.32 Total Asia 19.91 13.44 13.19 26.63 -6.72

Source: Kelley et al. (1991).

149 t h e surplus. A t t e m p t s b y t h e g o v e r n m e n t t o e x p o r t h a d been m a d e b u t t h e p r i c e f e t c h e d f o r d i s c o l o r e d grains was U S $ 6 8 t - 1 i n 1 9 9 4 . H e n c e , i t was p r o p o s e d for value a d d i t i o n r a t h e r t h a n e x p o r t . H o w e v e r , t o d a y t h e i n t e r n a t i o n a l rate is a r o u n d U S $ 1 3 0 t- 1 ; hence, export can be profitable. Since t h e r e are n o t a n n i n s i n I n d i a n sorghums, its acceptance w i l l be m o r e at t h e i n t e r n a t i o n a l m a r k e t ; cultivars g r o w n w o r l d over have m u c h tannins i n t h e grains ( S o m a n i 1 9 9 6 ) .

F o o d

S o r g h u m c u l t i v a r s h a v i n g h i g h caloric value a n d n o tannins are d e s i r e d f o r f o o d purposes. T o t a l d i g e s t i b l e p r o t e i n s h o u l d b e s u f f i c i e n t l y h i g h a n d t h e e n d o s p e r m s h o u l d n o t b e m o r e c o r n e o u s a s m i l l i n g i s d i f f i c u l t a n d f l o u r recovery is less (requires higher grinding energy). How e v e r , s u c h q u a l i t y grains are h i g h l y s u s c e p t i b l e t o g r a i n m o l d s . T h e r e f o r e , d e v e l o p m e n t o f c u l t i v a r s w i t h a f o r e m e n t i o n e d d e s i r e d t r a i t s a n d w e l l a d a p t e d f o r p o s t r a i n y season needs i n t e n s i v e research e f f o r t s . S u c h p r o d u c e fetches g o o d m a r k e t p r i c e . H o w e v e r , r a i n y season p r o d u c e has t o b e u t i l i z e d f o r a l c o h o l , glucose, h i g h f r u c t o s e s y r u p , etc, since h a r d l y 2 / 5 o f t h i s p r o d u c e goes f o r f o o d purposes. I n c r e a s i n g p u r c h a s i n g p o w e r a n d e l a s t i c i t y o f d e m a n d w i l l be t h e d r i v i n g forces b e h i n d t h e f u t u r e increase i n c o n s u m p t i o n o f a n i m a l f o o d p r o d u c t s i n I n d i a . I t i s p r e d i c t e d t h a t t h e change i n I n d i a ' s f o o d c o n s u m p t i o n p a t t e r n s w i l l be s i m i l a r t o those e x p e r i e n c e d b y o t h e r c o u n t r i e s s u c h as Japan a n d K o r e a ( M c K i n s e y 1 9 9 7 ) . N o r m a l l y cereal c o n s u m p t i o n declines a n d p r o t e i n c o n s u m p t i o n goes u p a s per capita i n c o m e increases. T h e N a t i o n a l S t a t i s t i c a l S u r v e y c o n f i r m s t h i s f o r b o t h r u r a l a n d u r b a n I n d i a (Table 2 ) .

Table 2. Relative c o n s u m p t i o n (million t) of cereals and pulses in rural and urban India.

Commodity 1970 1990

Urban Cereals 36 26 Pulses 20 25

Rural Cereals 54 37 Pulses 15 21

150 Feed

Cultivars good for food are good for feed. Protein bind er, ie, tannin is not present in Indian sorghums. With the increasing per capita income, demand f o r m e a t , eggs a n d m i l k has gone u p . H o w e v e r , c o n s u m p t i o n a s c o m p a r e d t o o t h e r c o u n t r i e s i s l o w (Table 3 ) .

Poultry feed

T h e d e m a n d f o r s o r g h u m i n p o u l t r y f e e d largely d e p e n d s o n p r i c e and availability of maize. Inclusion of sorghum up to 10% f o r layers and 1 5 % f o r b r o i l e r s i s c o m m o n . H o w e v e r , t h i s rate goes u p i n t h e years o f h i g h e r prices o f m a i z e . I f s o r g h u m has t o b e m a d e m o r e c o m p e t i t i v e , t h e p rice should be a r o u n d 7 0 t o 8 0 % t h a t o f m a i z e . P o u l t r y sector i s l i k e l y t o g r o w a t 8 t o 1 0 % per a n n u m i n t h e case o f layers a n d a r o u n d 1 5 % f o r b r o i l e r s . Thus, the increasing d e m a n d f o r s o r g h u m f r o m p o u l t r y f e e d sector i s e x p e c t e d t o result in deficit in energy source considering low availability of maize in the country and higher import price. It was also revealed during discussion wi t h layer i n d u s t r y p e o p l e i n A n d h r a Pradesh, I n d i a t h a t s o r g h u m i s less p r e f e r r e d t han maize because of l o w c a r o t e n e t h a t gives less y e l l o w c o l o r t o y o l k . H o w e v er, supplementation using o t h e r c h e a p e r c a r o t e n e sources i s possible. T h e gene f o r m o r e c a r o t e n e production could be incorporated through genetic engine ering. Another misconception and misunderstanding with feed manufact u r e r s i s t h a t sorghum grains contain more tannins and discolored grains c o n t a i n m o r e aflatoxins besides less energy value in comparison to m a i z e . It is necessary to b r i n g t o t h e n o t i c e o f e n t r e p r e n e u r s a n d e x t e n s i o n w o r k e r s s o m e facts a b o u t s o r g h u m grain. T h e t e c h n o l o g y f o r p r i m a r y processing o f s o r g h u m has b e e n already developed. All cultivated white- grained sorghu ms contain practically n o t a n n i n s a n d t h e r e are less chances o f a f l a t o x i n c o n t a m ination. Samples analyzed at various national and international laboratories d i d n o t reveal

Table 3. Per capita per a n n u m c o n s u m p t i o n of milk a n d poultry products in 1992.

Commodity India China USA

Milk (kg) 65 3 104 Eggs (pieces) 26 163 181 Poultry meat (kg) 0.5 4 40

Source: World Bank (1996).

151 presence o f aflatoxins. Studies u n d e r t a k e n b y t h e N a t u r a l Resources I n s t i t u t e ( N R I ) , U K revealed m y c o t o x i n s b e l o w t o l e r a n c e levels i n all samples a n d v e r y interestingly, the levels decreased during storage, whereas in all o t h e r grains t h e t r e n d was generally reverse. I t m i g h t b e d u e t o aconitic acid present i n t h e sorghum grains (Hodges 2000); however, it needs confirm a t i o n . S o r g h u m i s m o r e or less at par w i t h maize as regards to energy. M a i z e has m o r e o i l as c o m p a r e d t o s o r g h u m ; calorific value f o r t h e fat i s c o m p e n s a t e d b y h i g h e r starch a n d p r o t e i n i n s o r g h u m . I n case o f m o l d y grains, t h e r e i s r e d u c t i o n i n starch c o n t e n t ; h o w e v e r , p r o t e i n i s u n c h a n g e d a n d change i n a m i n o acid p r o f i l e was i n d e s i r e d way. N e a r Pune, I n d i a t w o persons w h o g r a d u a t e d f r o m E d i n b u r g h , U K are using solely s o r g h u m as p o u l t r y f e e d for a l o n g p e r i o d w i t h o u t any adverse effect o n p r o d u c t i o n o f eggs a n d m e a t . Saxena ( 1 9 9 4 ) also o p i n e d t h a t s o r g h u m shall b e p r e f e r r e d over maize a n d t h e U n i v e r s i t i e s shall c o m e o u t w i t h t h e data t o impress u p o n t h e p o u l t r y feed i n d u s t r y . W h a t e v e r i n f o r m a t i o n t h e i n d u s t r y has is based on m i l o - b a s e d sorghums. S o m e see it as a g o o d energy alternative to maize, whereas others consider t h e energy level in s o r g h u m a s l o w . These disparities m a y b e d u e t o t h e q u a l i t y o f s o r g h u m examined. The Project Directorate on Poultry, Hyderabad , I n d i a r e p o r t e d t h a t apparent m e t a b o l i z a b l e energy o f s o r g h u m i s m u c h higher t h a n maize a n d pearl m i l l e t (Pennisetum glaucum). C o m p o s i t i o n of layer m a s h used on c o m m e r c i a l farms i n c l u d e d 2 1 % s o r g h u m (Saxena 1 9 9 4 ) . Pathological studies o n feeding o f h i g h l y d i s c o l o r e d s o r g h u m grains t o b r o i l e r s a t A k o l a , M a h a r a s h t r a i n d i c a t e d t h a t m a i z e can b e r e p l a c e d u p t o 7 5 % w i t h o u t any adverse effect o n b o d y w e i g h t , h e m a t o l o g i c a l a n d b i o c h e m i c a l parameters w h e n c o m p a r e d t o n o r m a l s o r g h u m ; h o w e v e r , maize has s h o w n b e t t e r response t h a n s o r g h u m (Joshi a n d Joshi 1 9 9 6 ) . B u t w i t h t h e m o d e r n to o ls o f genetic engineering i t i s possible t o m a n i p u l a t e and i n c o r p o r a t e d e s i r e d t r a i t c o n s i d e r i n g t h a t s o r g h u m i s a n established t r a d i t i o n a l c r o p i n t h e r a i n f e d a g r i c u l t u r e system. W a s h e d a n d s u n - d r i e d , h i g h l y d i s c o l o r e d s o r g h u m grains w h e n f e d t o p o u l t r y b i r d s i m p r o v e d h u m o r a l a n d i m m u n e response w h e n c o m p a r e d w i t h n o r m a l s o r g h u m a n d maize grains (Joshi a n d Joshi 1 9 9 6 ) .

Animal feed

In I n d i a on an average, 2 5 0 g grains are c o n s u m e d per dairy a n i m a l . C o n s u m p t i o n o f s o r g h u m grain b y dairy cattle i s highest i n n o r t h e r n I n d i a a n d l o w e s t i n s o u t h e r n I n d i a . C o n s i d e r i n g t h e p o p u l a t i o n o f animals and t h e

152 Government policy for white revolution, the requiremen t o f grains b y feed industries w i l l b e q u i t e high. Total feed p r o d u c t i o n had gone u p f r o m 0.48 m i l l i o n t in 1974 to 2.9 m i l l i o n t in 1 9 9 6 - 9 7 . T h e W o r l d Bank estimates deficit of 2.6 m i l l i o n t in concentrate feed and 2 5 1 m i l l i o n t of roughages. According to Dairy India (1997), the annual growth rate of milk pro d u c t i o n was about 5 % d u r i n g 1980s and 1990s. D u r i n g 1 9 9 8 - 9 9 , 4 m i l l i o n t of dairy feed was produced by the commercial sector. The standard dairy ration comprises 10% grains, which corresponds to 0.4 million t of grains per annum. Assuming annual g r o w t h rate at 3%, t h e r e q u i r e m e n t w i l l be around 0.44 m i l l i o n t by 2 0 0 2 . In sorghum-growing areas, sorghum in substantial quant i t y is c o n s u m e d on f a r m by small-scale d a i r y farmers. Besides cost, availability and quality of sorghum the common problem for feed millers is grain storage. Feed manufacturers are more keen about the price rather th an the quality and hence prices for 'Disco' grade are usually quoted and s u p p l i e d . Such m o l d y grain c a n n o t be stored for l o n g periods as it deteriorates f u r t h e r u n d e r storage conditions. In the 1990s the Maharashtra State Governme n t a u c t i o n e d d e t e r i o r a t e d grains s t o r e d i n t h e i r g o d o w n s a t v e r y l o w price and the feed i n d u s t r y p e o p l e i n G u j a r a t p u r c h a s e d t h e m . M a i z e i s m o r e p r o n e t o deterioration as compared to sorghum and mycotoxin level goes d o w n i n s o r g h u m d u r i n g storage. H e n c e , i t i s advantageous for i n c o rporation of s o r g h u m i n a n i m a l feed f o r m u l a t i o n s . T h e u t i l i z a t i o n o f s o r g h u m a s feed i n N o r t h A m e r i c a i s 9 7 % a s against 2 7 % i n Asia. C o n s i d e r i n g t h e n u t r i t i o n a l value o f s o r g h u m (Table 4 ) and probable shortage o f grain a n d roughages a n d l i m i t a t i o n s o f maize cultivation in the c o u n t r y , t h e r e w i l l be w i d e scope for more inclusion of sorghum in feed formulations. If comparative price trend of kharif (rainy) season s o r g h u m over

Table 4. Nutritional values of grains for dairy cattle 1 . Protein (%) Energy (k cal kg-1) Dry matter TDN Ca P Grain (%) Total Digestible (%) Digestible Metabolizable (%) (%) Barley 90 8.7 6.9 79 3483 - 0.06 0.33 Pearl millet 89 11.9 5.1 61 2665 2185 0.12 0.46 Sorghum 87 15.2 7.3 86 3772 3093 0.12 0.44 Maize 89 8.9 6.8 81 3571 2928 0.02 0.31 Oat 89 11.8 8.8 68 2998 2458 0.10 0.35 Wheat 89 13.0 10.1 78 3449 2820 0.50 0.40

1. TDN = Total digestible nutrients; Ca = Calcium; P = Phosphorus.

153 years i s considered, its p r i c e was 1 0 t o 3 0 % l o w e r t h a n t h a t o f maize. I t i s available i n s u f f i c i e n t q u a n t i t y d u r i n g O c t o b e r - J a n u a r y a t m u c h l o w rate a n d thereafter, t h e rates increase. Nevertheless, t h e p r i c e w i l l be l o w e r t h a n t h a t o f m a i z e (Table 5 ) . T h u s c o n s i d e r i n g t h e d e m a n d o f grains i n f e e d a n d l i m i t a t i o n s in i m p o r t i n g maize, s o r g h u m has a b r i g h t f u t u r e . Unless t h e r e is g o o d d e m a n d for s o r g h u m , farmers i n r a i n f e d a g r i c u l t u r e s y s t e m are n o t p r e p a r e d t o increase i n p u t s f o r increased p r o d u c t i o n .

Processing

Sweet sorghum

A w e l l g r o w n sweet s o r g h u m c r o p harvested at physiological grain m a t u r i t y yields about 1-2 t of grains, 1 0 - 1 5 t of fresh leaves and tops and 4 0 - 5 0 t of s t r i p p e d stalks. T h e c r o p m a t u r i t y is attained in 1 2 5 - 1 3 0 days. T h e j u i c e can be extracted by crushing stalks using roller mills commonl y used i n sugar m i l l s t o crush sugarcane o r diffuser. T h e j u i c e e x t r a c t i o n rate i s 4 0 t o 4 5 % w i t h t w o - r o l l e r extractor; however, it can be up to 5 5 % w i t h cane crusher. T h e j u i c e is acidic having p H 4 . 5 - 5 . 2 due t o presence o f aconitic acid. B r i x reading i s 1 4 t o 21 a n d specific gravity is 1.05 to 1.08. T h e j u i c e also contains starch ranging f r o m 0.5 t o 2.0%. T h e r a t i o o f sucrose t o r e d u c i n g sugars ranges f r o m about 10:1 i n h i g h sucrose t y p e t o about 3:1 i n l o w sucrose varieties. C r y s t a l l i z a t i o n o f sucrose is a b i t d i f f i c u l t due to presence of aconitic acid and starch. T h e technology has already been p e r f e c t e d to get crystallized sugar in t h e laboratory. U s e o f amylases reduces starch w h i c h m o s t l y interfere w i t h crystallization. Invertase a c t i v i t y is fast u n d e r central and s o u t h e r n I n d i a n c o n d i t i o n s . H o w e v e r , excellent results have been o b t a i n e d in I r a n ( K u l k a r n i et al. 1 9 9 5 ) . Technology for sugarcane p u r i f i c a t i o n can v e r y w e l l be u t i l i z e d to get excellent crystal clear syrup w h i c h can replace cane sugar in m a n y c o m m e r c i a l p r o d u c t s , viz, beverages, c o n f e c t i o n e r y and ice cream. T h e process has also been d e v e l o p e d to c o n v e r t b o t h cane j u i c e a n d sweet s o r g h u m stalk j u i c e to glucose syrup.

Table 5. Indicative average price (Rs t-1) of maize and sorghum grain paid by feed industries in India. Crop 1993-94 1994-95 1995-96 1996-97 2001-02 Maize 2370 4980 5130 5200 5340 Sorghum 2020 4730 4680 4500 4700

154 T h e j u i c e can also b e f e r m e n t e d t o get g o o d q u a l i t y alcohol. T h e y i e l d o f a l c o h o l can b e e s t i m a t e d b y using t h e f o r m u l a : ( B r i x - 3 ) x specific gravity x 0.59 T h e e f f l u e n t g e n e r a t e d i s less w i t h l o w b i o l o g i c a l o x y g e n d e m a n d a n d c h e m i c a l o x y g e n d e m a n d a s c o m p a r e d t o t h a t generated i n sugarcane molasses-based u n i t . I n t e r e s t i n g l y , t h e yeast strains f o r c o n v e r t i n g cane j u i c e o r s o r g h u m g r a i n are n o t e f f i c i e n t t o c o n v e r t sweet s o r g h u m j u i c e . A c i d i f i c a t i o n o f j u i c e a n d h e a t i n g converts starch t o s i m p l e sugars; also, n o s t e r i l i z a t i o n is necessary. T h e process has b e e n s t a n d a r d i z e d a n d ready for c o m m e r c i a l i z a t i o n . W h e n t h e w h o l e stalks are s u b j e c t e d t o t h e e x t r a c t i o n process, t h e i m p u r i t i e s i n t h e r i n d a n d t h e leaf sheath (silica, waxes, p h e n o l c o m p o u n d s , p i g m e n t s , p r o t e i n s , etc) also get e x t r a c t e d f r o m t h e r i n d . I f juice is extracted from the pith (without rind) the imp u r i t i e s w i l l a u t o m a t i c a l l y b e e l i m i n a t e d . I t i s necessary i f c r y s t a l l i n e sugar o r s y r u p i s t o b e p r o d u c e d . Bagasse can be used f o r f o d d e r purpose or for silage or g o o d n u t r i t i v e feed can b e p r e p a r e d b y t a k i n g 4 0 - 6 0 % o f f i n e l y c h o p p e d o r p o w d e r e d bagasse t o w h i c h 4 0 % molasses, 5% cereal grains a n d pulse m i l l waste and 10% m i n e r a l s are a d d e d . C o m p r e s s e d b l o c k s can be p r e p a r e d for easy storage. Bagasse sprayed w i t h 2 % urea i s g o o d f e e d for animals. G o o d q u a l i t y p a r t i c l e b o a r d can also be p r e p a r e d and t h e process has been d e v e l o p e d at Carlsberg Research Laboratory, D e n m a r k .

Grain processing

E x c e p t f o r m u c h smaller size a n d generally oval shape t h e s t r u c t u r e o f s o r g h u m grain i s r e m a r k a b l y similar t o t h a t o f maize. B o t h grains have f l o u r y a n d h o r n y e n d o s p e r m a n d f a t - r i c h g e r m . N e i t h e r grain has a t r u e h u l l . T h i s means t h a t processing technologies such a s m e t h o d s o f d r y and w e t m i l l i n g a p p l i e d t o maize can b e a p p l i e d t o s o r g h u m . Pericarp o f s o r g h u m grain appears to be m o r e friable. It is disadvantageous in d r y m i l l i n g as t h e f l o u r can b e c o m e c o n t a m i n a t e d w i t h b r a n . T h e friable nature o f t h e pericarp m a y b e d u e t o presence o f starch granules. S o r g h u m p r o t e i n s l i k e those o f all cereals e x c e p t w h e a t , do n o t have t h e a b i l i t y to f o r m a gas-holding, viscous elastic d o u g h . H o w e v e r , leavened b r e a d - t y p e p r o d u c t s have t r a d i t i o n a l l y been p r o d u c e d i n A f r i c a using s o r g h u m . Similarly, i n I n d i a t o o , some o f t h e t raditional products p r e p a r e d f r o m s o r g h u m are organoleptically g o o d . S t a n d a r d i z a t i o n o n documentation and commercial exploitation is necessary.

155 Sorghum grain is usually processed by dry milling to m a k e f l o u r for bread. Other processing methods include rolling, steaming, flaking, p o p p i n g , parching, malting and fermentation. Dehulling (pearling) is prac ticed only in some parts of the country particularly, the southern Indian states. D e h u l l i n g i s c o m m o n l y done b y h a n d p o u n d i n g , w h i c h i s laborious and t i m e c o n s u m i n g . M e c h a n i c a l dehullers n o t o n l y save t i m e b u t large q u a n t i t y o f grains can be processed with u n i f o r m a n d b e t t e r quality. Several types o f m i l l s have been developed in India for dehulling; however, these mills have not become popular a m o n g t h e consumers. Tangential abrasive dehulling device (TADD ) is c o m m o n l y used w o r l d w i d e . D e h u l l i n g removes coarse fibrous o u t e r coat so that the product is m o r e appealing t o consumers. I t i s v e r y useful i n r e m o v i ng the outer black coat (due t o grain m o l d s ) o f grains damaged b y rains. H o w e v e r , good amount of starch is lost in dehulling. Prairie Research Laborator y ( P R L ) d e h u l l e r was first developed in Canada and is very commonly used in the subcontinent. T h e drawbacks of t h e P R L d e h u l l e r for i n d u s t r i a l m i l l i n g is t h a t t h e b a t c h size is rather small. Besides, milling losses can be very high up to 30%. To overcome these p r o b l e m s , a small r o l l e r m i l l has been developed. T h i s m i l l consists o f 2 or 3 pairs of rollers a n d a v i b r a t i n g screen sieving device to remove bran from the flour. Typically, such mills have a capacity of 500 kg h-1. Research has shown that with moderate pre-conditioning (to 16% moisture), mill ing with such a roller m i l l can consistently p r o d u c e s o r g h u m m e a l o f higher e x t raction, and slightly lower ash and fat content compared to debranning and ha m m e r m i l l i n g . I n I n d i a d r y m i l l i n g o f grains f o r b r e a d p u r p o s e i s c a r r i e d out in small q u a n t i t i e s always, since staling o f f l o u r i s c o m m o n . T h i s may be due to aconitic a c i d o r some free f a t t y acids. S o r g h u m f l o u r i s c o m m o n l y used in preparation of r e d 'Kankoo' since its plasticity is less at ambient temperature as c o m p a r e d to o t h e r cereal grains. I n d i a n sorghums have w h i t e grains and are susceptible t o grain m o l d s r e s u l t i n g i n e n o r m o u s losses. T h e c o l o r e d - g r a i n sorghums can also b e g r o w n since t h e y are resistant t o grain m o l d s a n d deterrent to birds. T h e t a n n i n s can b e r e m o v e d b y various processes. T h e grains are m o r e f l o u r y a n d w a x y a n d t h u s have advantages i n i n d u s t r i a l uses. P i g m e n t f r o m c o l o r e d g l u m e s was o b t a i n e d ( S o m a n i 2 0 0 0 ) . T h i s c o l o r can b e used i n f o o d preparations also. China is now producing a good quanti t y of n a t u r a l c o l o r f r o m n o n - t a n stalk sheath a n d g l u m e s .

Grit production I n f o r m a t i o n o n d r y m i l l i n g o f s o r g h u m i s scanty and c u r r ently available technology is inadequate. Sorghum is harder than wheat . M o r e corneous grains

156 on d e h u l l i n g can be processed for semolina p r o d u c t i o n . T h e sick w h e a t r o l l i n g machines in Maharashtra can be used for semolina p r o d u c t i o n w i t h l i t t l e change in sequence of processing. T h e semolina is in good d e m a n d in southern states for u t t a p a and o t h e r similar preparations. H o w e v e r , o n l y good grains can be processed for t h e purpose. T h e recently developed h y b r i d S S H 1 has been f o u n d to give m o r e g r i t o u t p u t . G r i t s can be used as adjunct in beer m a k i n g .

Starch production G r a i n s o r g h u m is similar to maize in its c o m p o s i t i o n and properties (Table 6 ) . H e n c e , t h e technology d e v e l o p e d to extract starch f r o m maize can be used for s o r g h u m w i t h slight m o d i f i c a t i o n s . T h e technology developed i n G e r m a n y for maize processing failed to give desired results w h e n used for starch e x t r a c t i o n f r o m s o r g h u m . T h e w o r k done i n t h e past a t t h e I n t e r n a t i o n a l C r o p s Research I n s t i t u t e for t h e S e m i - A r i d Tropics ( 1 C R I S A T ) , Patancheru, I n d i a and o t h e r i n s t i t u t i o n s o n starch e x t r a c t i o n y i e l d e d o f f - w h i t e starch. H o w e v e r , t h e m o d i f i c a t i o n s in steeping, coarse g r i n d i n g a n d fiber washing system have y i e l d e d g o o d q u a l i t y o f absolutely w h i t e starch. Few starch industries i n Gujarat and M a d h y a Pradesh are using s o r g h u m w h e n either maize is in short supply or the cost is relatively very h i g h as c o m p a r e d to s o rg h u m. S o r g h u m starch before d r y i n g is m a i n l y used for starch p o w d e r or l i q u i d and glucose p r o d u c t i o n . D e x t r i n p r o d u c e d f r o m s o r g h u m has s h o w n superiority over maize.

Table 6. C h e m i c a l c o m p o s i t i o n of m a i z e a n d s o r g h u m grains. Constituent Sorghum Maize Starch (%) 70 68.5 Protein (%) 9 6.2 Fats (%) 3.6 4.6 Ash (%) 1.94 1.7 Crude fiber (%) 1.90 1.9 Starch granule size (mm) 6-25 10-30 Amylose content (%) 23-28 24 Oil in germ (%) 52 52-58 Oil extraction (on grain weight basis) (%) 2-2.3 3.4 Color of oil Dark red Pale Starch extraction rate (%) 50-54 57-61 8% starch solution viscosity (Brabender unit) 630-858 650-865 Viscosity at 95°C after 1 h (Brabender unit) 370-550 375-575 Viscosity at 50°C (Brabender unit) 938-1075 930-1110 Viscosity at 40°C (Brabender unit) 1078-1580 1075-1580

157 Of the three methods tried, adding lactic acid (1%) dur ing steeping or a d d i t i o n of lactic acid bacterial c u l t u r e gave comparatively higher starch yield and good quality white starch. Viscoamylograph of sorghum starch thus extracted has shown similar t r e n d t o that o f maize starch. A t present, some industries in Gujarat and Madhya Pradesh are utilizing sorghum for starch extraction. T h e r e is a misconception amongst users that the starch of sorghum is n o t as good as t h a t of maize. In fact, actual users c o u l d n o t differentiate sorghum starch and maize starch. Sorghum starch has good application in dextrose m o n o h y d r a t e , l i q u i d glucose, d e x t r i n and sorbitol p r o d u c t i o n besides its c o m mon utilization as binders, glue, thickeners, and for adsorption of radioisotopes f r o m effluents generated in heavy w a t e r plants and in synthetic polymers. S o r g h u m germs are small and recovery of oil is also less as c o m p a r e d to that f r o m maize germ. The color intensity of sorghum o i l is m u c h higher and hence less preferred by users for edible purposes. At present, it has application in soap industries. O i l contains l o w levels of stearic acid (4%) and palmitic acid (10%). In starch separation process, a good amount of pentosa n - l i k e m a t e r i a l is separated which can be exploited to produce high qualit y glue, xylose a n d xylitol. Research is also necessary to lower the color value of germ oil since there is no market demand for intense colored oils.

Sugars I f t h e p r o d u c t i o n o f sugars, viz, glucose a n d h i g h fructose s y r u p ( H F S ) f r o m s o r g h u m i s successful, i t i s e s t i m a t e d t h a t sugars f r o m cereals may replace 30- 4 0 % o f cane sugar i n bakery, confectionery, biscuits a n d beverages. Traditionally, starch is first separated from the grains and then acid hydrolyzed (pH 1.8-2.0). Dehydration occurs within the dextrose molecules giving rise initially to 5-hydroxymethyl furfuraldehyde, with fur t h e r t r a n s f o r m a t i o n t a k i n g place t o y i e l d l e v u l i n i c acid o r p o l y m e r s o f h y d r o x y m e t h y l furfuraldehyde. A recombination of dextrose also occurs t o f o r m disaccharides having 1-6 alpha and 1-6 beta linkages. T he rate of formation of degradation product increases with the strength of acid, concentration of starch a n d r e a c t i o n t e m p e r a t u r e . For e c o n o m i c reasons, a sufficiently high c o n c e n t r a t i o n o f starch has t o b e used t o a v o i d t h e r e m o val of large quantities of w a t e r at a later stage. T h e m a j o r l i m i t a t i o n is t h e c o m pletely random nature of acid hydrolysates which makes the sugar composition solely dependent on t h e degree o f h y d r o l y s i s . T h i s makes i t d i f f i c u l t t o a d o p t t h e p r o p e r t i e s t o t h e highly diversified requirements of modern food industri e s .

158 Liquid glucose, glucose powder and dextrose monohydrat e are usually produced universally by starch industries. Starch slurry prior to drying is s u b j e c t e d e i t h e r t o a c i d h y d r o l y s i s for p r o d u c t i o n o f l o w dextrose equivalent ( D E ) l i q u i d glucose, o r t o acid-enzyme o r e n z y m e - e n z y m e process t o get h i g h D E l i q u i d glucose. H i g h D E l i q u i d glucose i s usually c o n v e r t e d e i t h e r t o glucose powder or dextrose monohydrate or fructose syrup. H o w e v e r , for starch e x t r a c t i o n , m o l d y grains cannot b e used and thus disposal o f m o l d y grains re m a i n s a p r o b l e m . A process has been d e v e l o p e d by S o m a n i et al. ( 1 9 9 5 ) w h e r e i n no starch separation is r e q u i r e d a n d w h o l e grains of any q u a l i t y can be used to convert to sugars. H o w e v e r , i n this m e t h o d y i e l d o f sugars i s h i g h . I n case o f s o r g h u m , m u c h o f t h e starch i s present i n t h e mesocarp and i t i s lost along w i t h t h e effluent since no efficient system had so far been available to separate it. In the technology developed at Dr Panjabrao Deshmukh Kris h i V i d y a p e e t h (PDKV), Akola, Maharashtra, the whole starch present i n t h e grains, irrespective of its distribution, is converted and conversion efficiency is more t h a n 9 5 % . M o r e o v e r , h i g h D E l i q u i d glucose i s o b t a i n e d . T h e p a t e n t for t h e process is p e n d i n g . A m i n i ( p i l o t ) p l a n t has r e c e n t l y been e r e c t e d a t A k o l a a n d t r i a l r u n w i l l b e t a k e n v e r y shortly. H o w e v e r , t e s t i n g o f al l sections o f t h e m i n i p l a n t has b e e n d o n e a n d f o u n d satisfactory. T h e w h o l e u n i t w i l l be run shortly. Samples w i l l be sent t o e n d users t o k n o w t h e i r r e a c t i o n . T h e process m a y be m o d i f i e d t o suit t h e r e q u i r e m e n t o f various industries u t i l i z i n g l i q u i d glucose. I f this process proves to be successful, small independent units can be commissioned and grains o f any q u a l i t y c o u l d b e used. T h e y i e l d o f l i q uid glucose, however, would depend upon the quantum of starch present in the grains.

Grain spirit India had been p r o d u c i n g ethanol f r o m molasses that was the cheapest source due t o c o n t r o l l e d price and regulation o f supplies b y the G o v e r n m e n t o f India. B u t d e c o n t r o l of price and supplies resulted in escalation of price f r o m m e r e l y Rs 144 t - 1 to Rs 2 0 0 0 t- 1 in Maharashtra and up to Rs 4000 t- 1 in other states. This has increased ethanol prices to Rs 1 8 - 2 0 L- 1 in different states from only Rs 6.60 L- 1 in 1994. This has resulted in partial capacity utilization of existing distilleries in India. The molasses-based distilleries hardly run for 150 to 170 days a year. The ongoing economic liberalization in India has made it obligatory on t h e p a r t o f I n d i a n l i q u o r industries t o i m p r o v e t h e q u a l i ty of ethyl alcohol so as

159 to compete globally. Ethyl alcohol obtained from molasses contains sulfur a n d hence t h e q u a l i t y i s i n f e r i o r t o t h a t f r o m non-molasses a l cohol even after purification. Moreover, the process is not eco-friendl y as it generates m o r e e f f l u e n t s . I n t h e d e v e l o p e d c o u n t r i e s , e t h a n o l i s m a d e f r o m maize, w h e a t a n d r y e (Secale cereale). I n C h i n a , m a x i m u m e t h a n o l p r o d u c t i o n i s f r o m sweet s o r g h u m . I n Brazil, e t h a n o l i s p r o d u c e d m o s t l y f r o m cane juice followed by sweet sorghum. Now most of the leading breweries have signed a Memorandum of Understanding (MOU) to manufacture world f a m o u s brands i n I n d i a . H e n c e t h e r e i s a n e w m a r k e t f o r g o o d q u a l i t y a l c o h o l f r o m f e e d stocks o t h e r t h a n molasses. S u p e r i o r i t y o f a l c o h o l f r o m s o r g h u m grains has a t t r a c t e d many foreign investors a n d l i q u o r m a n u f a c t u r e r s since t h e cost o f p r o d u c t i o n i s less i n I n d i a . T h e alcohol p r o d u c e d from grains is n e u t r a l alcohol and needs v e r y less refinement to meet international standards whereas that f r o m molasses i s rectified spirit and needs much refinement even though it would not be of high quality. The technology was developed and demonstr a t e d a t P D K V a n d a simple single compact column to yield more than 90% st rength alcohol was also d e v e l o p e d . A n e f f l u e n t t r e a t m e n t process using v a c c u o p o r a t i o n technology was also developed. Around 22 to 26% distil l e r s ' grains c o n t a i n i n g 27 to 2 8 % p r o t e i n is also o b t a i n e d , w h i c h is an e x c e l l e n t feed. S o l u b l e solids are concentrated using multiple vacuum evaporator and m ixed with distillers' grains a n d d r i e d ; t h e p r o d u c t has e x p o r t p o t e n t i a l t o o . The advantages of preparing neutral alcohol from sorgh um grain over molasses are given b e l o w : • Alcohol production from sorghum can be a farm-based i n d u s t r y . M i c r o distilleries can be established. • O n l y 3 to 4 c o l u m n s are r e q u i r e d as against 7 to 9 in molasses-based i n d u s t r y f o r e x t r a n e u t r a l a l c o h o l . • A r o m a a n d p u r i t y o f a l c o h o l i s far b e t t e r t h a n f r o m molasses. A l l over t h e w o r l d , grain s p i r i t i s o n l y u s e d for p o t a b l e purposes, p h a r m a c e u t i c a l s a n d p e r f u m e r y since it does n o t have sulfur odor. • I n d u s t r y can r u n r o u n d t h e year as d i s t i l l e r y in sugar industry runs only for 1 5 0 - 1 7 0 days yr-1. • Storage of molasses, a c i d resistant e q u i p m e n t a n d m o r e pollution are the disadvantages in the sugar industry. However, in sorghum-based industry, t h e r e is no storage p r o b l e m a n d h i g h pressure or a c i d resistant equipment is n o t r e q u i r e d .

160 • Q u a n t i t y of spent wash is a r o u n d 1/4 of t h a t in molasses-based u n i t . C h e m i c a l o x y g e n d e m a n d , biological o x y g e n d e m a n d and color o f spent w a s h are v e r y less in grain-based distillery. • R a w m a t e r i a l is easily available r o u n d t h e year. G r a i n s of any q u a l i t y can be used; rain-damaged and m o l d y grains also can be processed. • Excess rainy season p r o d u c t i o n a n d b l a c k e n e d grains can w e l l be disposed o f f b y value a d d i t i o n . • In I n d i a t h e r e is no p r i c e r e s t r i c t i o n on t h e sale of grain s p i r i t whereas t h e r e is r e s t r i c t i o n f o r molasses-based alcohol. No license is necessary for m a n u f a c t u r i n g alcohol f r o m non-molasses. The G o v e r n m e n t of Maharashtra has been e m p o w e r e d to take t h e decision for p e r m i t t i n g alcohol p r o d u c t i o n f r o m s o r g h u m grains. Selection of yeast strains and c o n d i t i o n s for m a x i m u m y i e l d have already been w o r k e d o u t a t P D K V T h e m a c h i n e r y for all t h e p r o d u c t s is indigenously available. Considering t h e utilities of t h e s o r g h u m crop, it can be said t h a t it is a F4 (food, fodder, feed, fuel) crop and is an excellent r a w m a t e r i a l for m a n y industries. Need-based research is necessary so t h a t m e n u - m a d e s o r g h u m can be d e l i v e r e d (Somani 2 0 0 2 ) . Sweet s o r g h u m has e n o r m o u s p o t e n t i a l w h e r e bagasse can be used for particle board, or feed or for p u l p purposes. In short, s o r g h u m has a bright f u t u r e and research s h o u l d b e o r i e n t e d t o i m p r o v e t h e quality considering t h e r e q u i r e m e n t s of industries. Rainy season sorghum, w h i c h is usually damaged due to rains, can w e l l be disposed o f f to p r o d u c e value-added products. In case producers get g o o d price for t h e i r p r o d u c e that w i l l be an incentive for intensive c u l t i v a t i o n w i t h m o r e f a r m inputs to increase o u t p u t and thus India m a y be a leading c o u n t r y in e x p o r t i n g n o t o n l y grains b u t also grain-based products.

T r a d i t i o n a l s o r g h u m f o o d s a n d b e v e r a g e s

T h e i m p o r t a n c e o f s o r g h u m i n A f r i c a can b e adjudged f r o m t h e fact t h a t t h e r e i s a n a l m o s t b e w i l d e r i n g variety o f A f r i c a n t r a d i t i o n a l s o r g h u m foods a n d beverages. These i n c l u d e : w h o l e grain r i c e - t y p e p r o d u c t s , breads and pancakes, dumplings and couscous, porridges, gruels, opaque and c l o u d y beers, a n d n o n - a l c o h o l i c f e r m e n t e d beverages. A characteristic of m a n y A f r i c a n s o r g h u m foods and beverages is t h a t as p a r t of t h e i r p r o d u c t i o n , t h e y u n d e r g o a lactic acid f e r m e n t a t i o n by lactic acid bacteria, generally of t h e genus Lactobacillus. These so-called ' f e r m e n t e d foods' are a p p e t i z i n g l y sour in taste. T h e f e r m e n t a t i o n is also of c r i t i c a l i m p o r t a n c e w i t h regard t o shelf life and safety o f f o o d i n A f r i c a . T h e

161 p r o d u c t i o n o f lactic a c i d l o w e r s p H o f t h e f o o d , w h i c h slows d o w n o r p r e v e n t s its spoilage. A p a r t f r o m f o o d safety issue, m a n y o t h e r n u t r i t i o n a l advantages o f lactic a c i d f e r m e n t a t i o n have been f o u n d a n d c l a i m e d . F e r m e n t a t i o n increases i n v i t r o c a r b o h y d r a t e a v a i l a b i l i t y a n d starch d i g e s t i b i l i ty. Similarly, sorghum p r o t e i n i n v i t r o d i g e s t i b i l i t y i s i m p r o v e d . T h e B v i t a m i n s , particularly t h i a m i n e , are increased. E v e n t h o u g h f e r m e n t a t i o n does n o t change t h e q u a n t i t y o f m i n e r a l s , t h e r e i s p r o b a b l y some i m p r o v e m e n t i n their availability, since t h e q u a n t i t y o f p h y t a t e ( m y o i n o s i t o l h e x a p h o s p h a t e ), a powerful c h e l a t o r o f d i v a l e n t m e t a l ions present i n s o r g h u m a n d o t h e r cereals, is substantially r e d u c e d b y f e r m e n t a t i o n . T w o f e r m e n t e d f o o d a n d beverage p r o d u c t s , injera a n d s o r g h u m beer, are d e s c r i b e d t o i l l u s t r a t e t h e i m p o r t a n c e a n d p o t e n t i a l o f t r a d i t i o n a l s o r g h u m foods i n A f r i c a .

Injera

Injera, a large circular, f e r m e n t e d pancake-like bread, is the staple food of Ethiopia. It is produced f r o m a n u m b e r of cereal flours, b u t p r i m a r i l y t e f f (Eragrostis tef) and sorghum, either singly or in combination. A l t h o u g h neither of these grains contain gluten, injera is a leavened bread w i t h attractive spongy texture. To m a k e injera, t h e grain is first d e b r a n n e d , t h e n g r o u n d i n t o a fine f l o u r using disk m i l l . T h e f l o u r i s m i x e d w i t h w a t e r i n 5 0 : 5 0 r a t i o and k n e a d e d t o f o r m d o u g h . Starter c u l t u r e f r o m a previous f e r m e n t a t i o n i s a d d e d t o i n i t i a t e f e r m e n t a t i o n . T h e d o u g h is c o v e r e d a n d a l l o w e d to stand for 2 - 3 days. A p o r t i o n o f t h e d o u g h , a b o u t 5%, i s m i x e d w i t h water. T h i s s l u r r y i s a d d e d t o t h e d o u g h and c o o k e d t o m a k e a g r u e l . T h e g r u e l , w h i c h contains ge l a ti n i z e d starch, acts as a b i n d e r a n d p r o v i d e s viscosity. W h e n t h e f o a m collapses t h e b a t t e r is spread on a h o t g r i d d l e a n d b a k e d c o v e r e d . G o o d injera is so f l e x i b l e t h a t i t can b e f o l d e d o r r o l l e d . Recently, t h e r e has been a r a p i d g r o w t h i n A f r i c a i n m a n y ' m o d e r n - t y p e ' fast foods, i n c l u d i n g flat breads a n d ' w r a p s ' c o n t a i n i n g f i l l i n g s . Injera has huge p o t e n t i a l f o r c o m m e r c i a l i z a t i o n i n t h i s m a r k e t . I n a d d i t i o n , t h e t e c h n o l o g y o f g e l a t i n i z i n g p a r t of t h e f l o u r to m a k e a viscous batter, t h e so called ' c u s t a r d ' process has also successfully b e e n a p p l i e d to m a k e c o n v e n t i o n a l leavened pan b r e a d f r o m s o r g h u m .

Sorghum beer

T h r o u g h o u t sub-Saharan A f r i c a , s o r g h u m i s t h e grain o f choice t o p r o d u c e t r a d i t i o n a l c l o u d y a n d o p a q u e beers. T h e k e y i n g r e d i e n t o f these beers i s

162 s o r g h u m m a l t , w h i c h provides h y d r o l y t i c enzymes (especially amylases t o f e r m e n t sugars t o e t h a n o l and carbon d i o x i d e ) , starch ( t h e source o f f e r m e n t a b l e sugars), yeast n u t r i e n t s and beer flavor and color substances.

Malting I n s o u t h e r n A f r i c a , m a l t i n g s o r g h u m for opaque beer b r e w i n g has d e v e l o p e d i n t o a large-scale c o m m e r c i a l i n d u s t r y w i t h some 1 5 0 , 0 0 0 t of s o r g h u m being c o m m e r c i a l l y m a l t e d annually. T h i s figure includes a small a m o u n t of s o r g h u m m a l t e d for t h e p r o d u c t i o n o f a s o r g h u m m a l t breakfast cereal ' M a l t a b e l a ' . S o r g h u m i s also m a l t e d o n large-scale i n N i g e r i a for t h e p r o d u c t i o n o f lager beer and s t o u t a n d for n o n a l c o h o l i c malt-based beverages. T h e q u a l i t y c r i t e r i o n i s m a l t w i t h h i g h diastatic activity. T h e s o r g h u m m a l t i n g process, b o t h t r a d i t i o n a l and m o d e r n c o m m e r c i a l , is s p l i t i n t o t h r e e u n i t operations: steeping, g e r m i n a t i o n and d r y i n g . Steeping is i m m e r s i n g t h e grains i n w a t e r u n t i l i t has i m b i b e d sufficient w a t e r t o i n i t i a t e t h e m e t a b o l i c processes o f g e r m i n a t i o n . Besides, i t i s h e l p f u l t o r e m o v e tannins a n d b r o k e n grains b y w a s h i n g and f l o a t a t i o n . I n a c t i v a t i o n o f tannins b y soaking s o r g h u m grain for 4 - 6 h at t h e beginning of steeping in a v e r y d i l u t e s o l u t i o n o f f o r m a l d e h y d e i s w i d e l y used. H o w e v e r , d i l u t e alkali seems t o b e safer and is n o w b e i n g used instead of f o r m a l d e h y d e . G e r m i n a t i o n involves seedling g r o w t h i n w a r m water-saturated air. I n f l o o r m a l t i n g , t h e steeped grains are spread o u t on a concrete floor, in a layer 1 0 - 3 0 c m deep. T h e g e r m i n a t i n g grain m a y b e c o v e r e d w i t h a sack o r shade c l o t h t o r e d u c e m o i s t u r e loss. T h e grain i s w a t e r e d a t intervals. I n S o u t h A f r i c a , nearly 1 0 0 , 0 0 0 t of s o r g h u m are m a l t e d annually by this process. P n e u m a t i c m a k i n g s are used t o p r o d u c e s o r g h u m m a l t for i n d u s t r i a l b r e w i n g . T h e y c o m p r i s e rectangular or circular chambers 1-1.5 m deep and up to 100 m long. T h e g e r m i n a t i n g grain rests on a s l o t t e d , steel false floor, b e l o w w h i c h is a p l e n u m ( c h a m b e r ) . T h e grain is aerated by fans b l o w i n g air t h r o u g h t h e p l e n u m a n d u p t h r o u g h t h e b e d o f m a l t . D u r i n g g e r m i n a t i o n t h e grain i s w a t e r e d b y spraying and t u r n e d b y helical screws w h i c h traverse t h e c h a m b e r frequently. D r y i n g involves r e d u c i n g t h e m o i s t u r e c o n t e n t o f grain s o r g hum malt to a r o u n d 1 0 % t o p r o d u c e shelf-stable p r o d u c t . D r y i n g i s generally c a r r i e d o u t i n a b o x w i t h a p e r f o r a t e d floor, similar to g e r m i n a t i o n b o x b u t is rather deeper. W a r m air i s b l o w n t h r o u g h t h e green m a l t . T h e air t e m p e r a t u r e s h o u l d n o t b e m o r e t h a n 5 0 ° C . I n some o u t d o o r f l o o r m a l t i n g , t h e m a l t i s s u n - d r i e d .

163 Brewing Large-scale c o m m e r c i a l b r e w i n g o f opaque beer n o w takes place i n m a n y c o u n t r i e s i n s o u t h e r n , c e n t r a l a n d eastern A f r i c a . H o w e v e r , o n l y i n S o u t h A f r i c a , Botswana, Z i m b a b w e , N a m i b i a and S w a z i l a n d b r e w i n g i s c a r r i e d o u t i n t h e t r a d i t i o n a l w a y using s o r g h u m m a l t . I n o t h e r c o u n t r i e s, food-grade i n d u s t r i a l enzymes are used as t h e source of h y d r o l y t i c enzymes. Total opaque beer p r o d u c t i o n in s o u t h e r n a n d eastern A f r i c a is a r o u n d 1,700 m i l l i o n L yr-1. A t least t w i c e t h i s v o l u m e i s h o m e b r e w e d using c o m m e r c i a l l y manufactured s o r g h u m m a l t . In S o u t h A f r i c a , t h e r e is strong evidence t h a t as consumers b e c o m e m o r e a f f l u e n t t h e y p r e f e r lager beer t o s o r g h u m beer. A m o d e r n , efficient s o r g h u m beer b r e w i n g process - t h e split sour, d o u b l e c o o k process - is described. T h e r e are considerable variations in processes d e p e n d i n g on regional tastes and t h e e q u i p m e n t available in a particular brewery. T h e lactic acid f e r m e n t a t i o n k n o w n as souring is an integral part of t h e brewing process. Souring involves incubating 8-10% slurry of s o r g h u m m a l t at a s t r i c t l y c o n t r o l l e d t e m p e r a t u r e o f 4 8 - 5 0 ° C for a p e r i o d u p t o t w o days. T h e lactic acid bacteria c u l t u r e is m a i n t a i n e d . A d j u n c t c o o k i n g involves b o i l i n g slurry of cereal for 1.5-3 h at atmospheric pressure, or for a rather shorter t i m e u n d e r pressure. These long periods b o t h gelatinize a n d solubilize t h e starch. A p o r t i o n of t h e sour is c o o k e d together w i t h t h e adjunct a n d a second p o r t i o n of sour is a d d e d d u r i n g mashing; hence t h e n a m e 'split sour'. T h e first p o r t i o n o f t h e sour lowers t h e p H o f t h e m a s h t o a r o u n d 4.5, close t o t h e o p t i m u m for t h e s o r g h u m m a l t amylases. T h e serial m a s h is t h e n c o o l e d using plate or tubular heat exchangers. M a s h i n g or as it is k n o w n in opaque beer b r e w i n g, 'conversion' is t h e n carried out, and a q u a n t i t y of conversion m a l t (about 2 5 % of cereal adjunct) is added. C o n v e r s i o n is at constant t e m p e r a t u r e for a p p r o x i m a t e l y 1.5 h. M a s h i n g aims to solubilize and enzymatically h y d r o l y z e t h e cereal to create a f e r m e n t a b l e w o r t . A t t h e e n d o f t h e mashing p e r i o d , t h e second p o r t i o n o f sour i s a d d e d t o b r i n g t h e p H t o t h e desired p H o f t h e beer, a r o u n d p H 3.8. T h e w h o l e m a s h is t h e n c o o k e d again; hence t h e n a m e 'double cook'. T h i s gelatinizes all t h e conversion m a l t and second sour starch. T h i s step greatly i m p r o v e s t h e efficiency of t h e process. To o b t a i n t h e desired viscosity, a short mashing p e r i o d of about 15 m i n u t e s at a r o u n d 6 0 ° C is p e r f o r m e d after c o o k i n g . A small q u a n t i t y o f m a l t o r i n d u s t r i a l amylase i s a d d e d t o t h i n t h e mash. T h e spent grain is r e m o v e d by a process k n o w n as straining. T h e mash is s t r a i n e d at e l e v a t e d t e m p e r a t u r e using high-speed c e n t r i f u g a l decanters. D e c a n t e r s separate p r i m a r i l y o n t h e basis o f g r a v i t y a n d r e m ove insoluble

164 m a t e r i a l such as r a w starch insoluble p r o t e i n a n d fiber. After decanting, the wort is invariably passed through fine vibrating screen to r e m o v e coarse m a t e r i a l o f l o w d e n s i t y such a s m a l t pericarp. T h e w o r t i s t h e n c o o l e d t o 3 0 ° C b y heat exchange and p i t c hed with active d r i e d yeast. T h e p i t c h e d w o r t is t h e n either f e r m e n t e d in bulk for draught sale or packaged i n t o containers. A w i d e range of sizes of containers are used, f r o m 1 t o 2 0 L , a n d d i f f e r i n t y p e f r o m non-returnable cardboard cartons and l o w - density polyethylene bottles to returnable high-density polyethylene bottles and d r u m s . A l l t h e containers have i n c o m m o n small slits o r vents i n t h e t o p t o allow t h e escape of carbon d i o x i d e f r o m t h e actively f e r m e n t i n g beer. Opaque beer is distributed and consumed while actively fermenting.

Non-traditional food and beverage products

Sorghum instant soft porridge

' M o r v i t e ' , a p r o d u c t o f K i n g F o o d i n S o u t h A f r i c a (part of the Tiger Foods g r o u p ) i s p r e - c o o k e d s o r g h u m w i t h a d d e d v i t a m i n s (hence t h e n a m e ) , plus c i t r i c acid, sugar a n d o t h e r sweeteners. It is a d r y p o w d e r to which one simply adds e i t h e r h o t o r c o l d w a t e r o r m i l k t o m a k e a n instant breakfast porridge or beverage. Morvite (100 g) makes a substantial contrib ution to the recommended dietary allowance (RDA) for protein, vita m i n s A , B , C , D and E, a n d m i n e r a l s such as c a l c i u m , phosphorus, i r o n and i o d i n e . Morvite was originally developed as an easy to prepare and consume mid- shift n u t r i e n t s u p p l e m e n t f o r m i n e r s . Later, i t was a d o p ted by provincial g o v e r n m e n t s i n S o u t h A f r i c a for school meals. Perhaps m o s t interestingly, M o r v i t e has f o u n d a place on t h e s u p e r m a r k e t shelves. Since 2 0 0 0 , annual production has increased by 20% and is now about 12,00 0 t, w h i c h is 15 to 2 0 % o f S o u t h A f r i c a ' s e n t i r e c o m m e r c i a l s o r g h u m m i l l i n g p r o d u c t i o n . M o r v i t e is such a success t h a t K i n g Food is investing in a d d i t i o n a l m a n u f a c t u r i n g capacity and is bringing out flavored varieties. An instant sorghum porridge like Morvite is relatively simple to manufacture. In addition to the normal dehulling and m illing machines, it requires e q u i p m e n t for d r y cooking, such as an extrusion cooker or gun puffer and a ribbon blender to m i x t h e d r y ingredients. D u e to its ease of manufacture, M o r v i t e is sold in t h e supermarket at about half t h e price of oat (Avena sativa) porridge and one- t h i r d t h e price of cornflakes. Hence, this t y p e of value-added sorghum product is an attractive choice for b o t h t h e manufacturer and consumer.

165 Malt beverages

I n N i g e r i a , a w i d e v a r i e t y o f n o n - a l c o h o l i c m a l t beverages are v e r y popular. These include both bottled 'brewed' non-alcoholic malt d r i n k s such a s ' M a l t a ' p r o d u c t s o f t h e G u i n n e s s a n d H e i n e k e n c o m p a n i e s a n d h o t , m a l t a n d cocoa, p o w d e r - b a s e d d r i n k s such as ' M i l o ' , a N e s t l e p r o d u c t . T r a d i t i o n a l l y these p r o d u c t s are p r o d u c e d using barley (H o r d e u m vulgare) m a l t e x t r a c t . M a l t e x t r a c t is a sweet, sugar-rich w o r t ( u n f e r m e n t e d b e e r ) , w h i c h can be c o n c e n t r a t e d by e v a p o r a t i o n to a d a r k - c o l o r e d , richly f l a v o r e d s y r u p or d r y p o w d e r . I n 1 9 8 8 , t h e N i g e r i a n g o v e r n m e n t b a n n e d t h e i m p o r t o f barley a n d o t h e r cereals, t o save f o r e i g n exchange. T h i s f o r c e d f o o d a n d beverage manufacturers to develop local cereal alternatives. Suitable sorghum cultivars, such a s t h e w h i t e Farafara f o r beer b r e w i n g a n d y e l l o w S h o r t K o w r i e for m a l t beverages have b e e n selected a n d n o w c u l t i v a t e d on large scale. S o r g h u m m a l t i n g i n N i g e r i a has n o w b e c o m e a m a j o r i n d u s t r y b o t h for lager a n d stout beer b r e w i n g and for m a l t beverage m a n u f a c t u r e , w i t h a p p r o x i m a t e l y 1 5 , 0 0 0 t of s o r g h u m b e i n g m a l t e d annually. To c o m p l e t e l y gelatinize a n d solubilize t h e starch a n d to conserve (3- amylase a c t i v i t y of t h e s o r g h u m m a l t , w h i c h as stated is rather low, special m a s h i n g processes have been d e v e l o p e d . These are based o n t h e p r i n c i p l e o f d e c o c t i o n , w h e r e b y a p o r t i o n o f t h e m a s h c o n t a i n i n g t h e starch i s r e m o v e d , c o o k e d t o gelatinize t h e starch a n d t h e n a d d e d back t o t h e rest o f t h e m a s h t o b e e n z y m a t i c a l l y h y d r o l y z e d i n t o sugars. D e c o c t i o n m a y b e c a r r i e d o u t i n a single step, or in a n u m b e r of steps of progressively increasing t e m p e r a t u r e . The latter method provides more optimum conditions for different malt enzymes. Technologies have also been d e v e l o p e d to roast s o rghum malt for m a l t beverages t o p r o d u c e t h e r e q u i r e d c o l o r a n d a c o m p l e x , n u t t y , sweet chocolate aroma, characteristic o f barley m a l t . D e s p i t e t h e fact t h a t t h e b a n o n cereal i m p o r t has l o n g since been r e s c i n d e d , local s o r g h u m has b e c o m e t h e grain o f choice i n N i g e r i a f o r b o t h beer b r e w i n g a n d m a l t beverage m a n u f a c t u r e . These d e v e l o p m e n t s have b e n e f i t e d local f a r m e r s a n d l e d to i n d u s t r i a l d e v e l o p m e n t as w e l l as saving t h e cost o f unnecessary i m p o r t s .

Lager beer

As described, sorghum b r e w i n g in Nigeria started o u t of necessity. H o w e v e r , because of its cost-effectiveness and u n i q u e properties, sorghum is being used for lager b r e w i n g elsewhere in A f r i c a . T h e S o u t h A f r i c a n B r e w e r i e s - M i l l e r group,

166 w h i c h runs m a n y breweries t h r o u g h o u t Africa, after m u c h development w o r k , has begun c o m m e r c i a l b r e w i n g of sorghum lager beer in Uganda. The Uganda story w i l l be described as i t is anticipated that i t w i l l serve as a m o d e l for similar schemes in other A f r i c a n countries w h e r e the use of barley is uneconomical. Development of local commercial sorghum farming is the major a i m of the project w h i c h began in 2001 w i t h selection of a suitable local variety for brewing. Epuripur, a tannin-free, corneous endosperm, white-grained variety was selected. It was developed by the Serere A n i m a l and A g r i c u l t u r a l Research Institute in Uganda and first released in 1995. It has a y i e l d potential of 2 . 5 - 3 . 0 t h a 1 . In January 2 0 0 2 , seed m u l t i p l i c a t i o n started. S o r g h u m is n o w being grown in Soreti and Kumi districts that previously grew cotton (Gossypium sp) b u t have for m a n y years been w i t h o u t a cash crop. Farmers g r o w i n g this sorghum variety under contract for N i l e Breweries can expect a good guaranteed price of US$ 150 t-1. It is anticipated t h a t any surpluses w i l l be readily sold to f o o d aid organizations such as the W o r l d Food Programme, as E p u r i p u r is a high quality food-grade sorghum. Interest from farmers has been almost o v e r w h e l m i n g , w i t h applications f r o m every area in Uganda f r o m nearly 1000 farmers or farmer groups. A l t h o u g h t h e details o f t h e b r e w i n g process are n o t r e p o r t e d , i t i s k n o w n t h a t s o r g h u m grain ( n o t m a l t ) i s used and t h e process involves conversion w i t h industrial enzymes. What is particularly interesting is t h a t s o r g h u m was selected, r a t h e r t h a n maize, because it was f o u n d t h a t t here is no fat rancidity p r o b l e m w i t h s o r g h u m . T h e beer, w h i c h i s called Eagle Lager, was l a u n c h e d i n January 2 0 0 3 a n d so far sales are exceeding all p r e d i c t e d estimates. It is a n t i c i p a t e d t h a t t h e annual r e q u i r e m e n t for s o r g h u m w i l l shortly be around 3 , 0 0 0 t . I t i s clear t h a t b r e w i n g lager beer w i t h s o r g h u m i n this way can result i n a q u a l i t y p r o d u c t , w h i c h i s m u c h m o r e affordable t h a n beer b r e w e d w i t h barley malt. Increased demand resulting from affordabi lity will lead to greater requirement for sorghum bringing direct benefit to local farmers. A r e p o r t o n " A n o v e r v i e w o f t h e p o t e n t i a l o f s o r g h u m and millets for i n d u s t r i a l uses i n I n d i a " has been p r e p a r e d for N R I , w h e r ein the present utilization and scope have been highlighted (Somani 19 96). Recently a joint survey b y N R I , I C R I S A T P D K V and t h e N a t i o n a l Research C e n t r e for Sorghum (NRCS), Hyderabad was taken up to study the di f f i c u l t i e s i n utilizing sorghum in various agro-based industries. Thi s survey a n d questionnaires revealed that there is some misundersta n d i n g w i t h t h e feed industries a n d variations i n t h e policies o f t h e State G o v e r n m e n t s . I t i s necessary to capitalize this crop for improving rural e conomy especially in r a i n f e d a g r i c u l t u r e system.

167 References

Hodges RJ, H a l l AJ, Jayaraj K, Yoganand B, Jaiswal P, Potdar N and Navi SS. 2000. Quality changes in farm-stored sorghum grains grown in the wet or dry season in South India: A technical and social study. Pages 5 7 - 6 0 in Sorghum utilization and the livelihoods of the poor in India: summary proceedings of a workshop, 4-5 February 1999, ICRISAT, Patancheru, India (Hall AJ and Yoganad B, eds.). Patancheru 502 324, Andhra Pradesh, India: Socioeconomics and Policy Program, International Crops Research Institute for the Semi-Arid Tropics.

Joshi MR and Joshi M V . 1996. Toxicopathological studies on feeding of blackened sorghum to broilers. Presented at the W o r l d Poultry Conference, Sep 1996, N e w D e l h i , India.

Kelley T G , Parthasarathy Rao P and Singh RP. 1991. Trends in sorghum production and utilization in Asia. Presented at the Consultative Meeting to consider the Establishment of a Sorghum Research N e t w o r k for Asia, 16-19 September 1991, I C R I S A T Center, Patancheru, India.

Kulkarni DP, Almodares A and Somani RB. 1995. Sweet sorghum - a supplementary sugar crop in Iran. Annals of Plant Physiology 9 ( 2 j : 9 0 - 9 4 .

Mc Kinsey. 1997. Modernizing the Indian Food Chain: Food and agriculture integrated development action. N e w Delhi, India: Confederation of Indian Industry. 178 pp. Saxena H C . 1994. Checking feed prices. Pages 125-129 in Indian poultry industry yearbook 1994. Delhi, India: S.P. Gupta.

Somani RB. 1996. An overview of the potential of sorghum and millets for industrial uses in India. Report produced under Natural Resources Institute, Chatham Maritime, UK Project 0436 for the project on Improved Processing of Sorghum and Millets in Semi-Arid Production Systems in India and East Africa. 268 pp.

Somani RB. 2000. Sorghum - a potential source of raw material for agro industries. Pages 146-169 in Proceedings of the National Seminar on Sustainable Development of Coarse Cereals, 7-9 February 2000, State Institute of Agricultural Management, Jaipur, India. Jaipur, India: Directorate of Millets Development, Government of India.

Somani RB. 2002. Sorghum - an unabatable source of energy for future. Pages 24-42 in Proceedings of the National Seminar on Current Developments in Alcohol Industry, 25 August 2002, M u m b a i , India. M u m b a i , India: Distiller's Association of Maharashtra.

Somani RB, Almodares A and Shirvani M. 1995. Preliminary studies on sweetener production from sorghum grains. Annals of Plant Physiology 10(2):146-148.

World Bank. 1996. India livestock sector review. Enhancing G r o w t h and Development Report N o . 14522 I N . Washington, D C , U S A : W o r l d Bank. 95 pp.

168 Processing of Sorghum and Pearl Millet for Promoting Wider Utilization for Food

SZ AM, MS Meera and NG Malleshi1

Abstract Sorghum and pearl millet, the major coarse grain cereals in Asia and Africa, are being predominantly used for food purposes after conversion to traditional products. Although sorghum is now emerging as an important feed material, pearl millet has still remained a food crop in India and Africa. Diversified utilization of these crops for food, feed and industrial purposes is expected to promote their increased production and utilization in the future. Absence of appropriate primary processing technologies to yield shelf-stable flour/products has been the major limiting factor in their utilization for diversified food uses and development of value-added products. Some recent works have shown this possibility. Technologies for production of shelf-stable refined flour, grits and semolina from sorghum and millet have been developed and laboratory studies have demonstrated their successful utilization and incorporation into various traditional foods (idli, dosa, chakli, papad, etc) and newer convenience health products (vermicelli, noodles, plain and ready-to-eat flakes, extruded products, weaning and supplementary foods, and bakery products). Efforts are needed for popularization and wider adoption of the successful technologies to promote these grains for diversification of their utilization among the non-traditional urban population. S o r g h u m (Sorghum bicolor), m a i z e (Zea mays), p e a r l m i l l e t (Pennisetum glaucum) a n d o t h e r m i l l e t s are classified as coarse grain cereals, perhaps because o f t h e i r h a r d g r a i n t e x t u r e ( M u r t y a n d K u m a r 1 9 9 5 ) . W h i l e s o r g h u m a n d p e a r l m i l l e t are i m p o r t a n t staple f o o d grains i n A s i a a n d A f r i c a , t h e y are u s e d a s t h e m a i n c o m p o n e n t i n f e e d f o r m u l a t i o n s i n o t h e r parts o f t h e w o r l d . G r o w n g e n e r a l l y i n n o n - i r r i g a t e d a n d r a i n f e d lands, w i t h v e r y l i t t l e a g r i c u l t u r a l i n p u t s as c o m p a r e d to w h e a t (Triticum aestivum) a n d r i c e (Oryza sativa), t h e y are i m p o r t a n t f o r f o o d s e c u r i t y in A s i a a n d A f r i c a . B o t h s o r g h u m and pearl m i l l e t c o m p l e m e n t w e l l w i t h l y s i n e - r i c h vegetable ( l e g u m i n o u s ) and a n i m a l proteins and f o r m n u t r i t i o n a l l y balanced c o m p o s i t e foods o f h i g h biological value. C a r b o h y d r a t e s o f s o r g h u m and pearl

1. D e p a r t m e n t of G r a i n Science and Technology, C e n t r a l Food Technological Research Institute (CFTRI), Mysore 570 013, Karnataka, India.

169 m i l l e t c o m p r i s e a large p r o p o r t i o n of starch ( 6 5 - 7 0 % ) a n d a g o o d a m o u n t (16-20%) of non-starchy polysaccharides (NSP). The NSP, w h i c h c o n s t i t u t e nearly 9 5 % o f t h e d i e t a r y f i b e r o f t h e grain, are d e r i v e d n o t o n l y f r o m b r a n b u t also f r o m t h e e n d o s p e r m c e l l w a l l s . T h e r e are n o r e p o r t s o f any adverse effects o f regular c o n s u m p t i o n o f s o r g h u m a n d m i l l e t , especially i n t h e I n d i a n s u b c o n t i n e n t . O n t h e o t h e r h a n d , i n c i d e n c e o f diabetes m e l l i t u s a n d gastro- i n t e s t i n a l disorders are m i n i m a l a m o n g t h e p o p u l a t i o n using these grains as staple f o o d .

C o n s t r a i n t s i n p r o c e s s i n g a n d w i d e r u t i l i z a t i o n

A l t h o u g h s o r g h u m a n d p e a rl m i l l e t are n u t r i t i o u s a n d staple foods for m i l l i o n s i n t h e u n d e r - p r i v i l e g e d section o f t h e society, t h e i r increased u t i l i z a t i o n and d i v e r s i f i c a t i o n i s i m p e d e d b y p r o b l e m s m o s t l y r e l a t e d t o m i l l i n g a n d storage characteristics (Varriano-Marston and Hoseney 1983). These grains are k n o w n f o r t h e i r h i g h ( 3 - 7 % ) fat c o n t e n t ; t h e k e r n e l , b r a n a n d g e r m c o n t a i n a m a j o r p o r t i o n o f t h e l i p i d m a t e r i a l (Serna-Saldivar and Rooney 1 9 9 7 ) . Relatively less w o r k has been c a r r i e d o u t o n t h e n u t r i t i o n a l q u a l i t y o f pearl m i l l e t . T h e p r o t e i n e f f i c i e n c y r a t i o (PER) o f pearl m i l l e t i s h i g h e r t h a n t h a t o f s o r g h u m o r w h e a t (Rao e t al. 1 9 6 4 , P u s h p a m m a e t al. 1 9 7 2 , O k e 1 9 7 7 ) . T h e n u t r i t i o n a l q u a l i t y o f s o r g h u m i s generally a f f e c t e d d u e t o t h e presence o f t a n n i n a n d p o o r p r o t e i n d i g e s t i b i l i t y . T a n n i n i n s o r g h u m reduces d i g e s t i b i l i t y and e f f i c i e n c y o f u t i l i z a t i o n o f absorbed n u t r i e n t s b y 3 t o 15% and hence animals t h a t c o n s u m e b r o w n o r h i g h t a n n i n s o r g h u m a t t h e same o r s l i g h t l y higher rates d o n o t gain a s m u c h w e i g h t (Waniska a n d Rooney 2 0 0 0 ) . T h e c o n t e n t o f t a n n i n can b e r e d u c e d b y processing such a s d e cortication, m a l t i n g , f e r m e n t a t i o n a n d c o o k i n g . A n o t h e r a n t i - n u t r i t i o n a l factor i s t h e presence o f p h y t i c acid a n d p h y t a t e s i n t h e aleurone layers, a n d t o a lesser e x t e n t i n t h e g e r m o f s o r g h u m . P h y t i c a c i d f o r m s c o m p l e x e s w i t h t h e essential m i n e r a l s m a k i n g t h e m unavailable f o r a b s o r p t i o n ( L a s z t i t y a n d L a s z t i t y 1 9 9 0 , B e n e t o a n d M i l l e r 1 9 9 8 ) . P h y t a t e c o n t e n t can b e r e d u c e d b y abrasive m i l l i n g , w h i c h r e m o v e s t h e pericarp and aleurone (Doherty et al. 1981, 1982). Ferm e n t a t i o n a n d m a l t i n g are o t h e r e f f e c t i v e m e t h o d s t o decrease t h e c o n t e n t o f p h y t i c a c i d . M a l t i n g o f pearl m i l l e t reduces t h e c o n t e n t o f oxalic acid, a n a n t i - n utritional compound s h o w n t o f o r m a n i n s o l u b l e c o m p l e x w i t h c a l c i u m , a n d t h u s reduces its b i o - availability ( O p o k u e t al. 1 9 8 1 , W h i t n e y e t al. 1 9 8 7 ) .

170 Another major limitation in utilization of sorghum wor l d w i d e i s t h e o c c u r r e n c e o f m o l d s ( a n d w e a t h e r damage) t h a t reduces g r ain yield and quality which further affects the physical properties, processing, nutritional value and market value (Glueck and Rooney 1 980). Mold or weather-damaged grains cannot be decorticated, since th e f l o u r a n d g r i t s are badly discolored and cannot be used for food and br e w i n g . K u m a r e t al. (1991) have shown that milling and popping of mold-infe sted grains reduced the intensity of seedborne microflora. Excessive consumption of p e a r l m i l l e t has b e e n i m p l i c a t e d i n t h e o c c u r r e n c e o f e n d e m i c g o i t r e i n some areas of Sudan (Osman and Fatah 1981). The phenoli c flavonoid c o m p o u n d s , C - g l y c o s y l flavones a n d t h e i r m e t a b o l i t e s , are t h e factors responsible for causing goitrogenecity (Birzer and Kl opfenstein 1988, G a i t a n e t a l . 1 9 8 9 ) . T h e c o m p o u n d s are also s h o w n t o b e r e sponsible for t h e gray c o l o r a n d o f f - o d o r s ( R e d d y e t al. 1 9 8 6 ) . A n t i - t hyroid properties o f p e a r l m i l l e t can b e r e d u c e d b y a u t o c l a v i n g a n d d e c o r t icating the millet grains.

Traditional foods from sorghum and millets

Various foods from sorghum and pearl millet are traditi onally prepared and consumed over centuries in the Indian subcontinent, Af rica and in Central A m e r i c a . M a j o r i t y o f t h e m are m a d e f r o m f l o u r , e i t h e r f r o m t h e w h o l e grain or partially decorticated grains. These include unleavened pancakes from fermented or unfermented dough, stiff or thin porr idges, snack foods, deep-fried products, sweet or sour opaque beer, non-alcoholic beverages a n d b o i l e d (as f o r r i c e ) d e c o r t i c a t e d grains ( F ig. 1). Table 1 gives t h e l i s t o f these f o o d s w i t h specific names p r e v a l e n t i n t h e c o u n t r i e s w h e r e they are normally consumed (FAO 1995, Rooney and Wanis k a 2 0 0 0 ) . A d e c l i n e i n t h e c o n s u m p t i o n o f s o r g h u m a n d m i l l e t s has been noticed in t h e past t w o t o t h r e e decades i n t h e countries k n o w n for t h e i r p r o d u c t i o n a n d traditional consumption and this is true in both urban as w e l l as r u r a l households i n I n d i a also. T h i s has been ascribed t o increase i n t h e f a m i l y income and the purchasing power accompanied by increased availability of w h e a t a n d rice ( F A O 1 9 9 5 ) . I n some parts o f In d i a , this t r e n d has r e s u l t e d i n d e c l i n e i n t h e n u t r i t i o n a l status o f p o p u l a t i o n belonging t o l o w e r socioeconomic status.

171 Figure 1. A few products from sorghum and pearl millet: (a) sorghum r o t i ; (b) sorghum noodles; (c) pearl millet noodles; (d) processed sorghum i d l i ; and (e) processed pearl millet i d l i .

172 T a b l e 1 . T r a d i t i o n a l f o o d s m a d e f r o m s o r g h u m a n d pearl millet.

Type of food Common names Countries/Region

Sorghum/Pearlmillet UnfermentedR o t i India pancake

Thick (stiff) Ugali, tuwo, saino, dalaki, aceda, atap, Africa, India, Mexico, Central porridge bogobe, ting, tutu, kalo, karo, kwon, America nshimba, nuchu, to, tuo, zaafi, asidah, mato, sadza, sankati

Thin porridge Uji, ambali, edi, eko, kamo, nasha, bwa, kal, Africa, India, Central America obushera, ogi, oko, akamu, kafa, koko, akasa

Steamed cooked Couscous, degue West Africa products

Snack foods Popped, sandige, papad, chakli India

S o r g h u m Nixtamalized Tortilla Mexico, Central America pancake1

Boiled rice-like Annam, acha Africa, India, China, Mexico foods

Sweet/sour Burukutu, dolo, pito, talla West Africa opaque beers

Sour opaque Marisa, busaa, merissa, urwaga, mwenge, Sudan, South Africa, India beers munkoyo, utshwala, utywala, ikigage

Non-alcoholic Mehewu, amaheu, marewa, magou, leting, Cameroon, South Africa, beverages abrey, husawa Sudan, Uganda, Zambia, parts of Tanzania

1. Nixtamalization is an Aztec word that refers to the cooking of maize and sorghum in lime solution or leachate of wood ash. The resulting product is called masa, which is pressed into circles and cooked into flat unleavened breads. It originated in southern part of North America. This process increases the bioavailability of calcium and niacin.

Processing for food purposes

Traditional methods

I n I n d i a , t r a d i t i o n a l g r i n d i n g stones w e r e used t o prepare f lour from sorghum a n d m i l l e t s . B u t nowadays t h e grains are c u s t o m m i l l e d i n m e c h a n i z e d disc m i l l s l o c a t e d even i n r e m o t e villages i n t h e country. W e t m i l l i n g o f these grains

173 is done traditionally by soaking the grains overnight. The soaked grains are g r o u n d b e t w e e n t w o stones t o f o r m a b a t t e r o r paste instead o f f l o u r . T h i s method is usually adopted when products requiring ferme ntation have to be prepared. Traditionally, in most places of Africa, so rghum is first debranned by hand pounding after sprinkling sufficient quantity of w a t e r o n t h e grains, followed by winnowing or sieving to remove bran and f ine grain particles. Subsequently, dry, moistened or wet grains are pounded with a wooden pestle in a w o o d e n or stone m o r t a r . U s u a l l y grains are m o i s t e n e d by adding 10% w a t e r w h i c h results i n m o i s t f l o u r . I t i s e s t i m a t e d t h a t one woman must spend a n h o u r t o m i l l 1.5 k g grain, w h i c h m a y b e r e q u i r e d f o r t h e p r e p a r a t i o n o f t h e day's f o o d f o r t h e f a m i l y (Perten 1 9 8 3 ) . P o u n d i n g gives a n o n - u n i f o r m p r o d u c t w i t h p o o r k e e p i n g quality.

Recent advances in processing and value addition

Milling and decortication Milling of sorghum and millet results in decortication o r d e b r a n n i n g o f t h e kernels f o r use s i m i l a r t o t h a t o f rice, a n d also i n r e d uction of size similar to that of wheat for semolina, grits and flour. The grains are normally pulverized a n d a s m a l l p o r t i o n o f coarse b r a n i s sieved o f f t o use t h e f l o u r f o r t r a d i t i o n a l foods such as u n l e a v e n e d b r e a d (roti), thin porridge (ambali) a n d s t i f f p o r r i d g e (mudde) (Pushpamma et al. 1972). Sorghum milling has receive d considerable attention and it has been reported that i ncipient moist c o n d i t i o n i n g o f t h e grain facilitates separation o f t h e seed coat in the abrasive o r f r i c t i o n t y p e m i l l s t o prepare d e c o r t i c a t e d grains ( D e s i k a c h a r 1 9 7 5 ) . O n the other hand, by incipient moist conditioning fragme ntation of the seed coat is minimized and hence, major portion of the bran can b e separated by sifting o r aspiration o f t h e p u l v e r i z e d m a t e r i a l . T h i s p r i n c i p l e is utilized to produce r e f i n e d f l o u r s f r o m s o r g h u m a n d m i l l e t s i n r o l l e r m i l l s a t industrial scale in N i g e r i a a n d also f o r c u s t o m m i l l i n g purpose. The M i n i G r a i n M i l l , d e v e l o p e d at the Central Food Technological Research Institute (C FTRI), Mysore, India i s a s m a l l capacity m i l l t h a t w o r k s o n t h i s p r i n c i p l e t o prepare refined flour and semolina from sorghum and millets (Shankara et al. 1985 ) (Fig. 2 ) . D e c o r t i c a t i o n of s o r g h u m is also c a r r i e d o u t by abrading the kernels in a series o f emery-coated discs ( D e s i k a c h a r a n d M a l l e s h i 1 9 8 7 ) . H o w e v e r , decortication of sorghum with or without moist conditi o n i n g does n o t separate the embryo efficiently and the presence of emb ryo affects the storage

174 s t a b i l i t y o f t h e s o r g h u m p r o d u c t s a l t h o u g h t h e p r o p o r t i o n o f e m b r y o i n sorghum is insignificant. Recent studies a t C F T R I have s h o w n t h a t t h e decortication or debranning of sorghum o r m i l l e t w i t h o u t any p r e - t r e a t m e n t i s possible i n a n abrasive t y p e m i l l (such as carborandum discs). Decortication o r d e b r a n n i n g after i n c i p i e n t m o i s t conditioning is achieved effectively in a f r i c t i o n t y p e m i l l . A l t h o u g h m o i s t conditioning grinding and sieving minimize pulverization of the seed coat, t h e m e t h o d has l i m i t a t i o n s because t h e g e r m also gets p u l v e r i z e d a n d m i x e d w i t h t h e m i l l i n g fractions Figure 2. A mini grain mill w h i c h affect t h e s h e l f l i f e o f t h e developed at CFTRI, Mysore, India. p r o d u c t ( H a d i m a n i 1 9 9 4 ) . I n p e a r l m i l l e t , especially i n t r a d i t i o n a l varieties, g l umes form part of t h e seed coat, a n d b e i n g a n o n - e d i b l e c o m p o n e n t of t h e k ernel, necessitates its separation. Hence, pearl millet decortication involves d e g l u m i n g i n addition to debranning. While the millet could be deg lumed in friction type mills (huller), debranning could be efficiently achiev ed using an abrasive or f r i c t i o n t y p e m i l l . V e r y recently, a n e w m e t h o d for i m p r o v i n g t h e shelf life of sorghum and millet products has been developed at CFTRI (Meera et al. 2002). The process involves m o i s t heating o f t h e grains f o l l o w e d b y d r y i n g to about 10-12% moisture content and decortication to the desired degree, or pulverization as such. This process improves the milling characteristics of sorghum and pearl millet varieties even with high proportion of floury endosperm and also enables to prepare grits/semolina from the grains which may serve as a substitute for w h e a t semolina. T h e m e a l o r t h e f l o u r prepared f r o m these grains by following this process has a longer shelf life. Figure 3 shows t h e changes in t h e d e v e l o p m e n t o f free f a t t y acids ( F F A ) o f t h e f l o u r f r o m s orghum and pearl m i l l e t w i t h o r w i t h o u t p r i o r w e t heat t r e a t m e n t o f t h e grains, packed in low density p o l y e t h y l e n e ( L D P E ) bags and stored at a m b i e n t conditions. The flour from wet heat treated and decorticated sorghum could be stored for about 8-10

175 Figure 3. Development of free fatty acids (FFA) during storage (at ambient conditions) in flour of raw and treated sorghum and pearl millet grains.

176 m o n t h s , a n d t h a t f r o m pearl m i l l e t f o r about 3 - 4 m o n t h s , during which the FFA content remained below limit of perceptible deteriora tive condition (10%). The o x i d a t i v e r a n c i d i t y also r e m a i n e d low, as t h e flours are refined. The technology can be a d o p t e d at i n d u s t r i a l level and is s i m p l e enough f o r a d o p t i o n at h o u s e h o l d level as w e l l . T h e process was d e m o n s t r a t e d to a large n u m b e r of consumers and entrepreneurs. This method makes it possible to market the flour/semolina commercially, particularly in urban areas. Lack of such shelf- stable a n d m a r k e t a b l e f l o u r / g r i t s m a y b e one factor, w h i ch forces the people to s w i t c h over t o readily available f l o u r / s e m o l i n a f r o m w h e at. Further, this d e v e l o p m e n t also m a k e s it possible to prepare a variety of p r o d u c t s f o r c o m m e r c i a l m a r k e t i n g . A n o t h e r advantage o f t h i s process is that the microbial l o a d on t h e grain surface is drastically r e d u c e d . Table 2 shows the effect of wet heat t r e a t m e n t o n t h e level o f m i c r o b i a l i n f e s t a t i o n b e f ore the treatment and also at various stages of processing after t r e a t m e n t . I n p e a r l m i l l e t , t h e c h a r a c t e r i s t i c o d o r and t h e d a r k gray p i g m e n t s also hinder the acceptability of the products. Improvements have been made possible b y t r e a t i n g t h e p a r t i a l l y d e c o r t i c a t e d m i l l e t w ith mild organic acids such as acetic, f u m a r i c a n d t a r t a r i c acids, a n d also by t he extracts of natural acidic m a t e r i a l such as t a m a r i n d (Tamarindus indica) (Hadimani and Malleshi 1 9 9 3 ) . Soaking t h e grains f o r a f e w m i n u t e s i n t h e aqueous t a m a r i n d e x t r a c t , o r s u c h o t h e r organic acids i m p r o v e s t h e p r o d u c t q u a l i t y b y r e d u c i n g p o l y p h e n o l s a n d o t h e r a n t i - n u t r i t i o n a l factors and t h u s increases t h e consumer acceptability (Fig. 4). W e t m i l l i n g of s o r g h u m is p r a c t i c e d to a small e x t e n t as c ompared to maize, m a i n l y t o prepare starch, t h a t t o o f r o m low-grade sorghum b u t w e t m i l l i n g o f pearl m i l l e t is scanty. Since w e t m i l l i n g facilitates separation of the germ, which is

Table 2. Effect of processing on fungal infestation (%) in grain of two sorghum varieties1.

CSH 5 CSH 5 Process (A)2 (B)2 M 35-1

Raw, as is 100 15 1 Raw pearled 12 2 Nil Steamed 5 min, pearled 3 Nil Nil Steamed 15 min, pearled Nil Nil Nil Steamed 25 min, pearled Nil Nil Nil

1. After surface sterilization tested by blotter method. 2, Samples are from two different sources, A and B.

177 an o i l - and m i n e r a l - r i c h c o m p o n e n t , as a separate entity, it m a y be a valuable b y p r o d u c t t h a t c o u l d f i n d application in various f o o d industries. E v e n t h o u g h I n d i a i s one o f t h e m a j o r p r o d u c e r s o f s o r g h u m a n d p e a rl m i l l e t , t h e r e are n o dedicated custom/industrial level Figure 4. Pearl millet grains: m i l l s f o r these c o m m o d i t i e s . T h i s whole grain, untreated (left); milled, untreated (center); aspect needs a t t e n t i o n t o i m p r o v e and milled, treated with tamarind t h e e c o n o m y a n d m a r k e t a b i l i t y o f extract (right). these crops.

Flaking Flaking o f cereals i s one o f t h e t r a d i t i o n a l m e t h o d s for p r e p a r a t i o n o f convenience foods i n t h e I n d i a n s u b c o n t i n e n t and t o i m p r o v e the digestibility of feed in t h e d e v e l o p e d countries. Flaking essentially involves h y d r a t i n g grains f o l l o w e d b y steaming a n d b u m p i n g o r pressing o f t h e steamed grains. Extensive w o r k has been carried o u t o n s o r g h u m f l a k i n g a t C F T R I a n d various process parameters such as soaking t i m e a n d t e m p e r a t u r e , a n d also t h e c o n d i t i o n s of w e t heat o r d r y heat t r e a t m e n t have b e e n standardized ( C F T R I 1 9 8 5 ) . T h e grain soaked t o its e q u i l i b r i u m m o i s t u r e c o n t e n t i s steamed o r roasted t o f u l l y gelatinize t h e starch, d r i e d t o about 1 8 % m o i s t u r e c o n t e n t , conditioned, d e c o r t i c a t e d a n d t h e n f l a k e d i m m e d i a t e l y by passing t h r o u g h a pair of heavy- d u t y rollers. Efforts t o h a n d p o u n d o r flaking i n a n edge r u n n e r (used i n cottage level i n d u s t r y for flaking o f rice i n India) have achieved little success. The thickness o f s o r g h u m flakes c o u l d b e adjusted t o 0 . 4 - 1 m m , d e p e n d i n g o n t h e e n d use. Proper d r y i n g after f l a t t e n i n g m i n i m i z e s t h e b u c k l i n g and retains t h e shape of t h e flakes w i t h o u t any fissuring or breakage. T h e t h i n n e r flakes are suitable for p r e p a r a t i o n of t r a d i t i o n a l snack foods l i k e uppitu after b o i l i n g a n d seasoning. T h e t h i c k e r flakes c o u l d b e d e e p - f r i e d o r d r y toasted t o prepare e x p a n d e d c r u n c h y snack p r o d u c t s . T h e flakes c o u l d also b e coated w i t h requisite additives i n c l u d i n g v i t a m i n s and minerals t o i m p rove their nutritional quality. T h e o i l absorption o f s o r g h u m flakes i s comparable t o t h a t o f rice flakes. T h e d e e p - f r i e d s o r g h u m flakes, seasoned w i t h spices, is an excellent snack a n d scores higher t h a n a similar p r o d u c t f r o m maize.

178 W e t heat t r e a t m e n t o f s o r g h u m i s k n o w n t o l o w e r its d i g e s t i b ility. This c h a r a c t e r i s t i c f e a t u r e c o u l d perhaps be u s e d to m a r k e t s o r g h u m flakes as d i a b e t i c flakes. D u r i n g f l a k i n g process, t h e starch undergoes r e t r o g r a d a t i o n l e a d i n g t o f o r m a t i o n o f resistant starch o r enhancing t h e d i e t a r y f i b e r c o n t e n t s ( M a n g a l a e t al. 1 9 9 9 ) . T h i s a d d e d advantage m a y have great p o t e n t i a l i n e x p l o i t i n g s o r g h u m flakes i n t h e d i e t a r y m a n a g e m e n t f o r t h e d i a b e t i c s . Results o f e x p l o r a t o r y studies o n f l a k i n g o f pearl m i l l e t f o l l o w i n g t h e m e t h o d a d o p t e d f o r s o r g h u m have been p r o m i s i n g . M i l l e t flaking w o u l d b e a n e w avenue for its w i d e s p r e a d utilization, since t h e m i l l e t flakes w i l l have b e t t e r s h e l f l i f e d u e t o stabilization o f t h e o i l d u r i n g flaking. Also, the bran separated as a b y p r o d u c t of t h e f l a k i n g i n d u s t r y c o u l d serve as a source of t h e e d i b l e o i l s i m i l a r t o t h a t o f rice b r a n o i l . D e o i l e d bran f r o m m i l l e t and s o r g h u m w o u l d have less ash a n d silica c o n t e n t as c o m p a r e d to t h a t of d e o i l e d rice bran and hence c o u l d be e f f i c i e n t l y used as a source of dietary fiber. Unlike s o r g h u m b r a n , pearl m i l l e t b r a n contains h i g h p r o p o r t i o n o f soluble dietary fiber a n d c o u l d b e t a p p e d f o r h y p o c h o l e s t o m i c and h y p o g l y caemic effects. H e n c e , f i b e r regulated s o r g h u m a n d m i l l e t flakes, e x p a n d e d by h o t air or sand, c o u l d be an ideal snack or s u p p l e m e n t a r y f o o d for t h e obese and calorie conscious p e o p l e ( H a d i m a n i and M a l l e s h i 1 9 9 3 ) .

Popping G r a i n p o p p i n g is one of t h e ancient technologies to process t h e cereals by d r y heat (roasting) m e t h o d s . Generally, fine sand is used as heat transfer m e d i u m for p o p p i n g at household- a n d cottage-level industries. A l t h o u g h h o t sand as a heat transfer m e d i u m is v e r y effective in expansion, it affects t h e consumer acceptability because of t h e adherence of fine sand in the crevices of the e x p a n d e d e n d o s p e r m . Popped sorghum is also m a r k e t e d in Maharashtra and Rajasthan states of I n d i a as a p r o p r i e t a r y f o o d . Since p o p p i n g involves f o r m a t i o n o f steam and d e v e l o p m e n t o f pressure inside t h e kernel, o p t i m u m m o i s t u r e level and p o p p i n g t e m p e r a t u r e play a n i m p o r t a n t role i n quality o f t h e p o p p e d cereal. Varietal variations exist largely w i t h respect to p opping characteristics and special sorghum varieties, viz, 'pop sorghum', are c u l t i v a t e d and m a r k e t e d . M o s t o f t h e s o r g h u m varieties c o u l d b e p o p p e d t o a n expansion v o l u m e o f about 2 0 m l g - 1 b y suitable pre-treatments. T h e o p t i m u m conditions for grain p o p p i n g are e q u i l i b r a t i n g s o r g h u m and m i l l e t to about 16% m o i s t u r e and subjecting t h e grains to h i g h t e m p e r a t u r e ; ie, short t i m e t r e a t m e n t at about 2 3 0 ° C for a

179 fraction of a m i n u t e in an air p o p p e r d e v e l o p e d at CFTRI (CFTRI 1985). The machine is highly suitable for value a d d i t i o n t o s o r g h u m and m i l l e t by p o p p i n g (Fig. 5 ) . Popping of pearl millet is not very popular b u t t h e p o p p e d m i l l e t is a g o o d source of energy, fiber and carbohydrates and the expansion v o l u m e o f t h e p o p p e d m i l l e t i s about 7 - 1 0 m l g-1 . The varieties with hard endosperm and medium t h i c k pericarp (Fig. 6 ) e x h i b i t superior p o p p i n g q u a l i t y ( H a d i m a n i e t al. 2 0 0 1 ) . T h e l i p o l y t i c enzymes are denatured during the process of popping. The nutritional advantage of the popped Figure 5. Popping machine m i l l e t is u t i l i z e d in developing f o r m u l a t i o n s for developed at CFTRI, s u p p l e m e n t a r y foods or w e a n i n g foods for Mysore, India. c h i l d r e n a n d lactating m o t h e r s (Bhaskaran et al. 1999). Popped millet could be consumed in the form of laddu or sattu and chikki. Popped millet flour blended with popped or toasted legumes, such as p u f f e d chickpea (Cicer arietinum), and jaggery or sugar makes delicious and nutritionally balanced convenience foods for growing ch ildren and lactating mothers. The product has the advantage of low cost and p e r m i t s a d d i t i o n o f other flavoring ingredients [eg, groundnut (Arachis hypogaea) and c o c o n u t (Cocos nucifera)] for improving the taste and nutritional quality. Nutritious food supplements based on popped sorghum and m i l l e t s c o u l d be served to mothers and children in the nutrition interve ntion program. Since sorghum and pearl m i l l e t are r i c h sources of m i c r o n u t r i e nts and phytochemicals, such products m a y score over similar products f r o m rice and wheat.

Figure 6. Pericarp thickness in different varieties of pearl millet: (a) thick pericarp; (b) medium pericarp; and (c) thin pericarp.

180 A n u t r i t i o u s b l e n d , containing p o p p e d sorghum or pearl m i l l e t , w i t h chickpea, soybean (Glycine max) and jaggery and pressed i n t o a pellet or burfi- l i k e p r o d u c t was developed at C F T R 1 , and has p r o v e d to be a convenient n u t r i t i o u s f o o d . A b o u t 7 0 g o f t h e p r o d u c t supplied i n t h e f o r m o f 3 pieces o f burfies provides 3 0 0 calories and 12 g p r o t e i n , w h i c h is r e c o m m e n d e d as t h e nutritional supplement to undernourished children. Popped sorghum and m i l l e t s c o u l d also be u t i l i z e d as adjuncts in b r e w i n g . As p o p p i n g largely destroys seedborne m i c r o f l o r a , it m a y be advantageous to utilize the technique to process m i c r o b i a l l y i n f e c t e d s o r g h u m and m i l l e t ( K u m a r et al. 1992).

Malting M a l t i n g is one of t h e early b i o t e c h n o l o g i c a l processes t h a t m a n a d o p t e d for cereal processing for f o o d and b r e w i n g . A l t h o u g h barley (Hordeum vulgare) m a l t i n g is c o m m o n , s o r g h u m m a l t i n g is also p r a c t i c e d at h o u s e h o l d and i n d u s t r i a l scale i n A f r i c a , especially for t h e p r e p a r a t i o n o f lactic acid f e r m e n t e d b r e w . T h e ratio of a- to -amylases elaborated d u r i n g germination of sorghum is l o w e r t h a n that of barley. Hence, sorghum m a l t requires supplementation of amylases f r o m external source to prepare yeast f e r m e n t e d lager beers. Alternatively, sorghum m a l t is used as an adjunct in industrial b r e w i n g based on barley. W i d e varietal variations have been reported for m a l t i n g characteristics of sorghum. M a l t e d sorghum has better n u t r i t i o n a l characteristics t h a n the native sorghum (Malleshi and Desikachar 1986). However, caution is needed for use of sorghum m a l t for f o o d purposes because of the presence of d u r r i n , a cyanogenic c o m p o u n d in the rootlets. H e n c e it is necessary to remove the rootlets c o m p l e t e l y f r o m the sprouted sorghum. Moreover, sorghum is susceptible to m o l d infestation d u r i n g germination; thus it may require application of chemical or natural anti-microbial agents during steeping and germination. Use of sorghum m a l t (prepared after r e m o v i n g the rootlets and the pericarp) in f o r m u l a t i o n of weaning f o o d has been successfully demonstrated (Malleshi et al. 1989). Weaning foods based on m a l t e d sorghum e x h i b i t good g r o w t h p r o m o t i n g qualities c o m p a r e d to those f r o m roller d r i e d and p o p p e d sorghum. Pearl m i l l e t m a l t i n g has n o t been promising because of the presence of the active lipase enzyme and due t o m o l d g r o w t h d u r i n g germination. However, the ratio o f a - and -amylase in m i l l e t m a l t is highly favorable in comparison to other tropical cereals. If malting conditions are suitably adopted, m i l l e t m a l t c o u l d be a good raw material for n u t r i e n t dense specialty foods. U t i l i z a t i o n of m a l t e d sorghum in bakery products has also been reported.

181 Application of modern processing technologies

Extrusion cooking

Extrusion cooking is a very versatile, modern food processing technology followed throughout the world for preparation of snacks, supplementary foods as w e l l as p e t foods. V o l u m i n o u s l i t e r a t u r e is available on extrusion cooking of maize, wheat and rice, but such information o n s o r g h u m a n d millets is scanty. The available data reveal that sorgh u m grits as w e l l as m i l l e t flour could be extruded to prepare ready-to-eat product s. Since the seed coat o r t h e b r a n affects t h e e x p a n s i o n r a t i o a n d also t h e eating q u a l i t y o f t h e p r o d u c t s , i t i s desirable t o use grits a n d f l o u r , p r e f e r a b l y o f less t h a n 4 0 m e s h size, prepared from decorticated or debranned grain. Eq uilibrating the flour to a b o u t 1 8 % m o i s t u r e c o n t e n t a n d e x t r u d i n g i n a single- o r t w i n - s c r e w e x t r u d e r a t a b o u t 1 5 0 ° C a n d 2 0 0 r p m , p r o d u c e s p r o d u c t s w i t h a n e x p a n s i o n o f 1.5-2 times. The products have crunchy texture and could be coated with traditional ingredients to prepare sweet or savory snacks. Alternatively, the grits c o u l d b e m i x e d w i t h spices a n d c o n d i m e n t s p r i o r t o e xtrusion to obtain ready-to-eat snacks of desirable taste. Acid-treated p earl millet yields products of better acceptability as compared to those f r o m d e c o r t i c a t e d millet. Sorghum and millets, blended with soybean or pr otein-rich ingredients such as legumes or groundnut cake, on extrusion give nu tritionally balanced supplementary foods (Malleshi et al. 1996). The low-c ost dedicated extruders used in nutrition intervention programs in several deve loping countries could be conveniently utilized for the preparation of divers ified, value-added extruded products from these grains. The dietary bulk c ould be reduced and t e x t u r e o f t h e e x t r u d e d f o o d s c o u l d b e i m p r o v e d b y m i x i n g a small proportion o f cereal m a l t a n d w a r m i n g t h e slurry. T h i s i m p r o v e s t h e taste o f t h e p r o d u c t also. Although the investment on extrusion cooking mac hinery is high, the low processing cost a n d s m a l l c a p a c i t y e x t r u d e r s t h a t are n o w a d a y s r e a d i l y available, m a k e s t h e process viable f o r c o m m e r c i a l e x p l o itation. This technology could be utilized to prepare pellets which can be flaked to yield h i g h q u a l i t y flakes f r o m these grains.

Vermicelli-noodles

Noodles and pasta-like products, in spite of their ancient origin, have undergone considerable evolution and migration as the products became increasingly globalized. T h e r e is a p h e n o m e n a l increase in t h e c o n s u m p t i o n of noodles in I n d i a

182 also. While wheat noodles are very common throughout th e country, rice noodles are popular i n southern India. U t i l i z a t i o n o f sorghum and pearl millet for vermicelli-noodles is very rare. Sorghum and millet are unique with respect to taste and aroma and also p r o v i d e dietary fiber. Research work was undertaken on t h e i r use for noodles and a process has been successfully developed (Sowbhaghya and A l i 2001a). T h e noodles o n c o o k i n g i n w a t e r retained t h e t e x t u r e o f t h e i r strands and firmness without disintegration and the solid loss was less t h a n 6% (Sowbhaghya and A l i 2 0 0 1 b ) (Table 3 ) . N o o d l e s f r o m b o t h sorghum and pearl m i l l e t w e r e readily acceptable in t h e f o r m of savoury and sweet. Since the present t r e n d of t h e p o p u l a t i o n is t o w a r d s l o w fat and h i g h fiber foods, noodles f r o m these cereals have a great f u t u r e n o t only in t h e domestic m a r ket but also for export to other developed countries.

Conclusion and future perspective

Being mainly rainfed crops and grown with marginal agri cultural inputs, the value of sorghum and millets for stretching the availab i l i t y o f f o o d i s w e l l established. With increasing realization that water is b e c o m i n g a l i m i t e d resource, these crops w i l l assume higher significance in future. Considerable crop production knowledge base has been created for fu ture application. The knowledge base on grain quality, processing and value a d d i t i o n needs t o b e

Table 3. C o m p o s i t i o n a n d p h y s i c o - c h e m i c a l properties of s o r g h u m a n d pearl millet flour a n d n o o d l e s1 . Texture2 Crude Elastic fiber Fat Ash Protein Amylose Solid Firmness recovery Samples (%) (%) ( % ) ( % ) (%) loss (%) (%) (%) Pearl millet Flour, whole 0.57 5.24 1.35 12.2 25.8 Flour, debranned 0.19 3.34 0.92 9.8 29.6 Noodles 0.18 1.58 2.12 8.6 26.8 9.7 45 20 Sorghum Flour, whole 1.38 3.36 1.42 10.4 26.8 Flour, debranned 0.26 2.45 1.11 10.2 29.1 Noodles 0.12 0.88 2.12 8.3 28.7 6.5 50 30

1. Composition based on as is condition. 2. Chopin-lnra Viscoelastograph, an instrument, used to measure the texture.

183 addressed a l t h o u g h e f f o r t s i n t h i s d i r e c t i o n are n o w increasing w i t h r e c e n t R & D w o r k across t h e w o r l d . Special features o f s o r g h u m a n d p e a r l m i l l e t , i n c o m p a r i s o n t o rice a n d w h e a t , have b e e n established t h a t c o u l d f o r m t h e basis f o r t h e i r f u t u r e e x p l o i t a t i o n f o r value a d d i t i o n a n d w i d e ning the scope of their utilization. Feasibility of production of shelf-stable f l o u r f r o m p e a r l m i l l e t a n d s o r g h u m has b e e n established w h i c h w o u l d pave t h e w a y f o r c o m m e r c i a l p r o d u c t i o n o f f l o u r a n d s e m o l i n a f o r p r o m o t i o n o f b u l k usage f o r u r b a n a s w e l l as r u r a l p o p u l a t i o n . T h e r e is a great scope f o r these grains to be u t i l i z e d f o r increased a l t e r n a t i v e f o o d uses.

References

Beneto P and Miller D. 1998. I r o n absorption and bioavailability: an updated review. N u t r i t i o n Research 18:581-603.

Bhaskaran V, Mahadevamma, Malleshi N G , Shankara R and Lokesh BR. 1999. Acceptability of supplementary food based on popped cereals and legumes suitable for rural mothers and children. Plant Foods and H u m a n N u t r i t i o n 53:237-247.

Birzer DM and Klopfenstein CF. 1988. The pearl millet goitrogens. Cereal Foods W o r l d 3 3 : 2 2 9 - 2 3 1 . CFTRI. 1985. Annual Report 1984-85. Mysore, India: C F T R I . 11 pp.

Desikachar H S R . 1975. Processing of maize, sorghum and millets for food uses. Journal of Scientific and Industrial Research 34:231-237.

Desikachar H S R and Malleshi NG. 1987. Milling of jowar (sorghum) for culinary uses. Pages 3 7 - 4 4 in proceedings of the National Seminar on Technology Applications for Alternative Uses of Sorghum (Ingle U M , Kulkarni DN and Thorat SS, eds.). Parbhani, India: Marathwada Agricultural University.

Doherty C A , Faubion, JM and Rooney LW. 1982. Semi-automated determination of phytate in sorghum and sorghum products. Cereal Chemistry 59:373-377.

Doherty C A , Rooney LW and Faubion JM. 1981. Phytin content of sorghum and sorghum products. Pages 3 2 8 - 3 3 3 in Proceedings of the International Symposium on Sorghum Grain Quality, 2 8 - 3 1 October 1981, ICRISAT, Patancheru, India (Rooney LW and M u r t y D S , eds.). Patancheru 502 324, A n d h r a Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

FAO. 1995. Sorghum and millets in human n u t r i t i o n . F A O Food and N u t r i t i o n Series N o . 27. Rome, Italy: FAO. pp. 4 9 - 8 6 .

Gaitan E, Linsay R H , Reichert R D , Ingbar S H , Cooksey R C , Legan J, Meydrech EF, H i l l J and Kubota K. 1989. Anti-thyroid and goiterogenic effects of millet: Role of C- glycosylflavones. Journal of Clinical and Endocrinological Metabolism 68:707-714.

184 Glueck JA and Rooney LW. 1980. Chemistry and structure of grain in relation to m o l d resistance: Pages 119-140 in Sorghum diseases - A w o r l d review: proceedings of the International Workshop on Sorghum Diseases, 11-15 December 1978, ICRISAT, Patancheru, India (Williams RJ, Fredricksen RA and Mughogho LK, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi- A r i d Tropics.

Hadimani N A . 1994. Studies on pearl m i l l e t grain quality w i t h special emphasis on m i l l i n g and popping of m i l l e t . P h D thesis, University of Mysore, Mysore, India, pp. 122-179.

Hadimani NA and Malleshi N G . 1993. Studies on milling, physico-chemical properties, nutrient composition and dietary fibre content of millets. Journal of Food Science and Technology 30:17-20.

Hadimani N A , M u r a l i Krishna G , Tharanathan R N and Malleshi N G . 2001. Nature of carbohydrates and proteins in three pearl millet varieties varying in processing characteristics and kernel texture. Journal of Cereal Science 32:17-25.

Kumar LS, Daodu M A , Shetty HS and Malleshi N G . 1992. Seed mycoflora and malting characteristics of some sorghum cultivars. Journal of Cereal Science 15:203- 209.

Kumar LS, Prakash H S , Shetty HS and Malleshi N G . 1991. Influence of seed mycoflora and harvesting conditions on milling, popping and malting qualities of sorghum (Sorghum bicolor). Journal of Science of Food and Agriculture 55:617-625. Lasztity R and Lasztity L. 1990. Phytic acid in cereal technology. In: Advances in cereal science and technology, Vol. X (Pomeranz Y, ed.). St. Paul, Minnesota, USA: American Association of Cereal Chemists. Malleshi N G , Daodu M A and Chandrashekhar A. 1989. Development of weaning food formulations based on malting and roller drying of sorghum and cowpea. International Journal of Food Science and Technology 24:511-519.

Malleshi NG and Desikachar HSR. 1986. Nutritive value of malted millet flours. Qualitas Plantarum Plant Foods and H u m a n N u t r i t i o n 36:191-196.

Malleshi N G , Hadimani N A , Chinnaswamy R and Klopfenstein CF. 1996. Physical and nutritional qualities of extruded weaning foods containing sorghum, pearl millet, or finger m i l l e t blended w i t h mung beans and non fat dried m i l k . Plant Foods and Human Nutrition 49:181-189.

Mangala SL, Malleshi N G , Mahadevamma and Tharanathan RN. 1999. Resistance starch f r o m differently processed rice and ragi (finger m i l l e t ) . European Food Research and Technology 209:32-37.

M e e r a M S , A l i SZ, Narasimha H V , Bhashyam M K , Srinivas A and Sathyendra Rao BV. 2002. A process for the preparation of sorghum and pearl m i l l e t grain based

185 product having enhanced shelf life. Patent filed in India and Egypt. Indian Patent 306/DEL/02.

M u r t y DS and Kumar K A . 1995. Traditional uses of sorghum and millets. Pages 185— 221 in Sorghum and millets: Chemistry and technology (Dendy D A Y ed.). St. Paul, Minnesota, U S A : American Association of Cereal Chemists.

O k e O L . 1977. The potential of m i l l e t and sorghum as food in Nigeria. Pages 121-124 in Proceedings of the Symposium on Sorghum and Millets for H u m a n Food, Congress of International Association for Cereal Chemistry, 11-12 May 1976, Vienna (Dendy DAV, ed.). London, U K : Tropical Products Institiute.

O p o k u A R , Ohenhen S O and Ejiofor N. 1981. N u t r i e n t composition o f m i l l e t (Pennisetum typhoides) grains and malt. Journal of Agricultural Food Chemistry 29:1247-1248.

Osman AK and Fatah A A . 1981. Factors other than iodine deficiency contributing to the endemicity of goitre in Darfur province, Sudan. Journal of H u m a n N u t r i t i o n 35:302-309.

Perten H. 1983. Practical experience in processing and use of m i l l e t and sorghum in Senegal and Sudan. Cereal Foods W o r l d 28:680-683. Pushpamma S, Parrish DB and Deyoe C W . 1972. Improving protein quality of millet, sorghum and maize diets by supplementation. N u t r i t i o n Report International 5:93.

Rao SV, Swaminathan M and Parpia H A B . 1964. M u t u a l supplementation of dietary proteins for meeting protein needs and overcoming proteins shortage in developing countries. Journal of Nutrition and Dietetics 1:128-136. Reddy V P , Faubion JM and Hoseney R C . 1986. Odour generation in ground, stored pearl m i l l e t . Cereal Chemistry 63:403-406. Rooney LW and Waniska R D . 2000. Sorghum food and industrial utilization. Pages 6 8 9 - 7 3 0 in Sorghum: Origin, history, technology and production (Smith CW and Fredriksen RA, eds.). N e w York, U S A : John W i l e y & Sons, Inc. Serna-Saldivar SO and Rooney LW. 1997. Structure and chemistry of sorghum and millets. Pages 6 9 - 1 2 4 in Sorghum and millets: Chemistry and technology (Dendy DAV, ed.). St. Paul, Minnesota, U S A : American Association of Cereal Chemists.

Shankara R , Malleshi N G , Krishnamurthy H , Narayana M N and Desikachar H S R . 1985. Development of m i n i grain m i l l for dehusking and grinding of cereals. Journal of Food Science and Technology 22:91-93. Sowbhagya CM and Ali SZ. 2001a. Vermicelli noodles and their quality characteristics. Journal of Food Science and Technolology 38:423-432.

Sowbhagya CM and Ali SZ. 2001b. A process for manufacturing high fibre l o w fat vermicelli noodles f r o m millets. Indian Patent 1 1 2 8 / D E I V 9 9 .

186 Varriano-Manston E and Hoseney R C . 1983. Barriers to increased utilization of pearl m i l l e t in developing countries. Cereal Foods W o r l d 28:392-395.

Waniska RD and Rooney LW. 2000. Structure and chemistry of the sorghum caryopsis. Pages 649-688 in Sorghum: Origin, history, technology and production (Smith CW and Fredriksen RA, eds.). N e w York, U S A : John Wiley & Sons, Inc.

Whitney E N , Cataldo CB and Rolfes SR. 1987. Understanding normal and clinical nutrition. 2n d edition. N e w York, U S A : West Publishing Co.

187 Alternative Uses of Sorghum - M e t h o d s and Feasibility: Indian Perspective

CV Ratnavathi, PK Biswas, M Pallavi, M Maheswari, BS Vijay Kumar and N Seetharama1

Abstract

In India, sorghum is traditionally consumed in the form of unleavened flat bread (roti). In southern India, it is consumed in the form of sankati, annam and ganji (thin porridge). Popped sorghum and sorghum noodles are eaten as breakfast or snack foods. The rainy season grain sorghum consumption has declined during the last decade mainly due to grain deterioration by molds. Therefore, rainy season sorghum grain is priced lower than maize; hence it can replace maize as a raw material in many of the alternative uses. The possible promising alternative food products from sorghum are bakery products, maltodextrins as fat replacers in cookies, liquid or powder glucose, high fructose syrup and sorbitol. Malted sorghum can be a good alternative for baby weaning foods. The industrial products made from sorghum grain include alcohol (potable grade) and lager beer. Commercialization of alcohol production from grain is already in practice. Other technologies such as production of glucose, maltodextrins, high fructose syrup and cakes from sorghum are yet to be scaled up. The sweet sorghum with its juicy sweet stalk has potential as a bio-energy crop. Ethanol can also be produced from sweet sorghum stalk juice. Sweet sorghum products like syrup and jaggery have received good attention from dryland farmers. Shelf life and nutritive value of syrup and jaggery made from sweet sorghum and sugarcane are similar. Attempts for scaling up the technology for alcohol production from sweet sorghum were successful, but more work is needed to integrate the current production with potential market.

S o r g h u m (Sorghum bicolor) is an i m p o r t a n t f o o d a n d f o d d e r c r o p of t h e s e m i - a r i d t r o p i c s ( 1 4 - 2 4 ° N t o 7 0 - 8 2 ° E ) . I n d i a i s t h e t h i r d largest p r o d u c e r ( 7 . 0 6 m i l l i o n t ) o f s o r g h u m i n t h e w o r l d after U S A a n d N i g e r i a ( F A O S T A T 2 0 0 2 ) , a n d has t h e largest area u n d e r t h i s c r o p (9.5 m i l l i o n ha ). T h e r a i n y season s o r g h u m grain i s o f t e n d a m a g e d d u e t o m o l d ; s o i t fetches a l o w p r i c e i n t h e m a r k e t . H o w e v e r , i t has h i g h p o t e n t i a l f o r use i n t h e n o n - f o o d a n d i n d u s t r i a l sectors f o r various v a l u e - a d d e d p r o d u c t s .

1. National Research Centre for Sorghum (NRCS), Rajendranagar, H y d e r a b a d 5 0 0 0 3 0 , A n d h r a Pradesh, I n d i a .

188 A t present, m o s t o f t h e s o r g h u m p r o d u c e d i n I n d i a i s c o n s u m e d a s h u m a n f o o d in t h e f o r m of roti, bhakri or chapati (unleavened flat b r e a d ) . T h e s w e e t s o r g h u m w i t h j u i c y s w e e t stalk has e n o r m o u s p o t e n t i a l as a b i o - energy c r o p . S o r g h u m i s k n o w n t o have h i g h d r y m a t t e r p r o d u c t i v i t y rate ( 5 0 g m- 2 day-1) a n d is r e p o r t e d to surpass t h e p r o d u c t i v i t y of sugarcane

(Saccharum officinarum), another C4 p l a n t ( S o m a n i et al. 1 9 9 7 ) . A l t e r n a t i v e uses o f s o r g h u m encompass u t i l i z a t i o n o f grain and sweet stalk i n f o o d a n d n o n - f o o d sectors for t h e p r o d u c t i o n o f c o m m e r c i a l l y v a l u e d p r o d u c t s , such as alcohol (potable a n d i n d u s t r i a l grade), syrups (natural a n d h i g h fructose), glucose ( l i q u i d a n d p o w d e r ) , m o d i f i e d starches, maltodextrins, jaggery, s o r b i t o l a n d c i t r i c a c i d ( d o w n s t r e a m p r o d u c t s f r o m starch). G l o b a l a n d d o m e s t i c d e m a n d f o r a n i m a l a n d p o u l t r y f e e d i s r a p i d l y r i s i n g . S o r g h u m can b e a p r o m i n e n t energy source i n p o u l t r y a n d a n i m a l f e e d ( K l e i h e t al. 2 0 0 0 ) . S i m i l a r l y , d e m a n d f o r starch a n d i n d u s t r i a l a n d p o t a b l e a l c o h o l i s increasing. H o w e v e r , s o r g h u m always has c o m p e t i t i o n f r o m m a i z e (Zea mays) for various i n d u s t r i a l uses. D e m a n d can also be c r e a t e d f o r s o r g h u m i n beverage i n d u s t r i e s a s m a l t a n d a d j u n c t ( u n m a l t e d cereal c o m p o n e n t used f o r beer p r e p a r a t i o n ) . T h e gradual shift f r o m t r a d i t i o n a l uses t o p o t e n t i a l use o f s o r g h u m a s v a l u e - a d d e d f o o d a n d n o n - f o o d i n d u s t r i a l p r o d u c t s is discussed.

T r a d i t i o n a l f o o d p r o d u c t s o f s o r g h u m a n d t h e i r commercialization

T h e m o s t p r e f e r r e d t r a d i t i o n a l f o o d f o r m of s o r g h u m is roti, bhakri or chapati ( u n l e a v e n e d f l a t b re a d ) m a i n l y i n t h e states o f M a h a r a s h t r a , K a r n a t a k a a n d parts o f A n d h r a Pradesh i n I n d i a . Roti can b e s t o r e d f o r several days i n t h e crisp d e h y d r a t e d f o r m w i t h o u t loss i n q u a l i t y . I t i s c o n s u m e d along w i t h d i f f e r e n t k i n d s o f dishes ( f o o d ) d e p e n d i n g o n t h e s o c i o e c o n o m i c status o f t h e c o n s u m e r ( S u b r a m a n i a n a n d J a m b u n a t h a n 1 9 8 0 ) . T h e r e i s a d e c l i n e i n t h e c o n s u m p t i o n p a t t e r n o f s o r g h u m m a i n l y d u e t o t h e u r b a n i z a t i o n a n d a v a i l a b i l i t y of s u b s i d i z e d rice (Oryza sativa) a n d w h e a t ( T r i t i c u m aestivum) at a cheaper p r i c e . In t h e r e c e n t past, t h e r e is a g r o w i n g awareness a m o n g t h e u r b a n p o p u l a t i o n t h a t s o r g h u m i s a n e x c e l l e n t h e a l t h f o o d f o r diabetics. A survey c o n d u c t e d i n 2 0 0 3 b y t h e N a t i o n a l Research Centre for Sorghum (NRCS), Hyderabad, Andhra Pradesh has i n d i c a t e d t h a t nearly 2 0 t o f g r a i n m o n t h- 1 are b e i n g c o n s u m e d i n t h e f o r m o f roti i n s m a l l

189 hotels i n H y d e r a b a d . T h e o t h e r t r a d i t i o n a l s o r g h u m p r e p a r a t i o n s l i k e annum ( c o o k e d , same as r i c e ) , sankati (toh) a n d ganji (gruel) are popular with f a r m e r s a s a p r e f e r r e d d i e t ( M u r t y a n d S u b r a m a n i a n 1 9 8 1 ) . N o o d l e s m a d e f r o m s o r g h u m are n o t v e r y c o m m o n . A l t h o u g h t h e a c c e p t a b i l i t y o f s o r g h u m noodles was n o t a p r o b l e m , i t was n o t g i v e n adequate a t t e n t i o n . T h e t e c h n o l o g y f o r n o o d l e p r e p a r a t i o n f r o m s o r g h u m m a k e s t h e p r o d u c t cheaper a n d h e a l t h i e r a s s o r g h u m p r o d u c t s are k n o w n t o have h i g h e r levels o f v i t a m i n B a n d d i e t a r y f i b e r ( H u l s e et al. 1 9 8 0 ) .

Alternative commercial grain products of sorghum

T h e a l t e r n a t i v e c o m m e r c i a l p r o d u c t s i n c l u d e b o t h f o o d a n d n o n - f o o d p r o d u c t s . T h e m a i n f o o d p r o d u c t s are b a k e r y a n d i n d u s t r i a l p r o d u c t s .

Bakery products

C o m m o n b a k e r y p r o d u c t s such a s b r e a d , cakes a n d biscuits w e re prepared a n d t e s t e d a t N R C S . F i n e l y g r o u n d s o r g h u m f l o u r e q u a l t o t h e consistency o f f i n e w h e a t f l o u r (maida) was m a d e f r o m p e a r l e d rainy season s o r g h u m grain using 3 0 0 u m sieve. T h i s f l o u r i n c o m b i n a t i o n w i t h maida was used f o r t h e p r e p a r a t i o n o f various b a k e r y p r o d u c t s l i k e b r e a d ( m a d e o n l y f r o m s o r g h u m ) , m i x e d b r e a d [ f r o m s o r g h u m , finger m i l l e t (Eleusine coracana) a n d p e a r l m i l l e t (Pennisetum glaucum) in 2:1:1 r a t i o ] , cakes a n d biscuits. T h e m e t h o d o l o g y f o r t h e p r e p a r a t i o n o f these b a k e r y p r o d u c t s i s s i m i l a r t o t h a t u s e d w i t h w h e a t f l o u r .

Bread F i n e l y g r o u n d s o r g h u m f l o u r was m i x e d w i t h maida, salt, sugar, fat a n d b r e a d i m p r o v e r s a n d was m a d e i n t o d o u g h . Baker's yeast was a d d e d t o t h e d o u g h a n d a l l o w e d f o r f e r m e n t a t i o n f o r a longer t i m e ( 1 0 - 1 2 h ) t h a n f o r t h e n o r m a l w h e a t bread; after f e r m e n t a t i o n , t h e d o u g h was b a k e d f o r a n h o u r . For i m p r o v e d leavening a n d softness o f t h e bread, c o m p a r e d t o w h e a t b rea d, m o r e yeast a n d e x t e r n a l g l u t e n w e r e a d d e d . A m i x t u r e o f 3 0 t o 4 0 % maida a n d 6 8 % s o r g h u m f l o u r r e s u l t e d i n tasty b r e a d ( F i g . 1 ) .

Cakes P r e p a r a t i o n o f s o r g h u m cake i s s i m i l a r t o cake p r e p a r e d f r o m maida. Fine s o r g h u m g r a i n f l o u r was u s e d f o r t h e p r e p a r a t i o n o f cakes. F i n e l y g r o u n d

190 Figure 1. Bakery products from sorghum: bread (left) and plum cake (right). s o r g h u m grain f l o u r was m i x e d w i t h r e q u i r e d q u a n t i t i e s o f sugar, egg, e m u l s i f i e r s a n d fat. T h e d o u g h was m a d e s l i g h t l y soft a n d nuts w e r e used t o decorate t h e t o p . T h e d o u g h along w i t h t h e m o l d was k e p t in an oven for an h o u r f o r p r o p e r b a k i n g (Fig. 1). S o r g h u m f l o u r was c o m p a r atively superior to w h e a t f l o u r ( i n t e r m s o f taste) f o r cake p r e p a r a t i o n . T h e r equirement of sugar was also less as t h e s o r g h u m grain was s we e t er t h a n w h e a t grain.

Biscuits Biscuits were prepared from 80% sorghum flour and 20% maida. S o r g h u m f l o u r was m i x e d w i t h maida, vegetable fat, sugar, baking powder and essence. The mixed dough was then compressed in a mold and baked a t t h e r e q u i r e d t e m p e r a t u r e ( 2 2 5 ° C ) . Studies o n t h e parameters such a s c ompressibility and breaking strength showed that sorghum biscuits had lesser b r e a k i n g s t r e n g t h t h a n w h e a t biscuits. T h e panel score i n t e r m s o f q u a l i t y and taste was high for cakes and biscuits m a d e f r o m s o r g h u m c o m p a r e d t o w h e a t . P i l o t studies are i n progress i n c o l l a b o r a t i o n w i t h M o d e rn Food Industry, Uppal, Hyderabad. Non-stickiness upon eating is a special t r a i t o f s o r g h u m bakery products. Studies on the shelf life, a key factor directly related to the economy of bakery industry, indicated that the shelf li fe varied from 24 to 72 h f o r b re a d , 7 - 1 2 days f o r cakes a n d m o r e t h a n 30 days f o r biscuits a n d was c o m p a r a b l e w i t h w h e a t p r o d u c t s .

Industrial products

T h e various i n d u s t r i a l p r o d u c t s p r e p a r e d f r o m s o r g h u m grain currently are potable alcohol, glucose, high-fructose syrup, modifie d starches, maltodextrins and starch downstream products like sorb itol and citric acid.

191 Alcohol

C o m m e r c i a l l y viable a n d p o t a b l e a l c o h o l can b e p r e p a r e d f r o m m o l d e d g r a i n ( m o l d score above 3.5, on a scale w h e r e 1 = free f r o m m o l d ; a n d 5 = severely m o l d e d g r a i n ) . Severely m o l d e d grain ( m o l d score 4 a n d above) also can be used. T h i s a l c o h o l , g r a d e d as p o t a b l e , is u s e d as l i q u o r a n d in t h e p h a r m a c e u t i c a l i n d u s t r y . A m o n g t h e cereals, s o r g h u m can b e a competitive r a w m a t e r i a l f o r a l c o h o l p r o d u c t i o n because o f its l o w g r a i n p r i c e . A n u m b e r o f i n d u s t r i e s are c u r r e n t l y using s o r g h u m i n a l c o h o l p r o d u c t i o n . T h e use o f s o r g h u m a l c o h o l p r o d u c t i o n i n d i f f e r e n t d i s t i l l e r i e s i s 17520 kl yr- 1 i n K e d i a i n d u s t r i e s , 1 6 0 6 0 k l y r- 1 i n Square D & J Singh, 3 6 5 0 k l y r 1 i n A m a r i n d u s t r i e s a n d 3 5 4 0 k l yr"1 i n G G a l e o n i n d u s t r i e s . W i t h m o d e r n t e c h n o l o g y , t h e i n c l u s i o n o f s o r g h u m i n a l c o h o l p r o d u c t i o n does n o t have any m a j o r t e c h n i c a l c o n s t r a i n t . I n d u s t r i e s b u y m o l d e d g r a i n a t l o w p r i c e . A l c o hol made from grain s o r g h u m , t h o u g h n o t v e r y e c o n o m i c a l w h e n c o m p a r e d w i t h t h a t f r o m molasses, can b e a g o o d a l t e r n a t i v e t o p r o d u c e e t h a n o l f o r b l e n d e d p e t r o l (gasohol); i n a d d i t i o n , t h e g r a i n i s processed i n b r e w i n g i n d u s t r y t o p r o d u c e a l c o h o l i c beverages. T h e a l c o h o l r e c o v e r y f r o m grain i s 4 0 0 - 4 1 0 L t - 1 a n d t h e b y p r o d u c t can b e u s e d a s c a t t l e feed. S o r g h u m varieties o r h y b r i d s w i t h h i g h starch a n d m o d e r a t e p r o t e i n c o n t e n t i n t h e grains are m o s t d e s i r e d b y t h e i n d u s t r y . A s t u d y c o n d u c t e d b y N R C S w i t h Seagram R & D I n s t i t u t e , N a s i k , M a h a r a s h t r a r e v e a l e d t h a t C S H 1 6 a n d C S H 1 8 are t h e s u p e r ior hybrids for a l c o h o l p r o d u c t i o n ( S e e t h a r a m a e t al. 2 0 0 2 ) . The alcohol industry is quite eager to explore alternat ive sources of raw m a t e r i a l f o l l o w i n g t h e G o v e r n m e n t o f In d ia 's p o l i c y t o i n c l u d e e t h a n o l i n p e t r o l ( i n i t i a l l y 5 % a n d m a y increase u p t o 1 0 % o r m o r e ) . S o far, sugarcane molasses i s t h e m a j o r r a w m a t e r i a l f o r e t h a n o l p r o d u c t i o n , f o r b o t h p o t a b l e a n d i n d u s t r i a l purposes. I t i s p r o j e c t e d t h a t t h e r e w o u l d b e a s h o r t s u p p l y o f molasses in s o m e states, a n d s o r g h u m f i n d s a n i c h e .

Starch and starch byproducts

Sorghum grain contains 63.4-72.5% starch, 17.8-21.9% amylase, 7 . 9 - 1 1 . 5 % p r o t e i n , 1 . 8 6 - 3 . 0 8 % fat a n d 1 . 5 7 - 2 . 4 1 % f i b e r ( R a t n a v a t h i a n d Bala Ravi 2 0 0 0 ) . T h e r e c o v e r y o f s t a r c h f r o m s o r g h u m grain i s 5 - 8 % less t h a n m a i z e , b u t i s e q u a l l y g o o d i n q u a l i t y . Increasing grain size a n d r e d u c i n g p r o t e i n a n d f i b e r contents can increase t h e recovery. S o r g h u m b e i n g a cheaper source f o r t h e p r o d u c t i o n o f starch a n d s t a r c h b y p r o d u c t s can s u b s t a n t i a l l y replace m a i z e . L i q u i d glucose a n d h i g h - f r u c t o s e s y r u p can b e p r e p a r e d f r o m starch.

192 M a l t o d e x t r i n s p r e p a r e d f r o m s o r g h u m starch are used i n t h e p r e p a r a t i o n o f l o w - c a l o r i e l o w - f a t cookies i n t h e b a k i n g i n d u s t r y ( A n o n y m o u s 2 0 0 2 ) .

Sorbitol S o r b i t o l is u s e d as a s y r u p base in t h e p h a r m a c e u t i c a l i n d u s t r y . S t a r c h is h y d r o l y z e d a n d c h e m i c a l l y c o n v e r t e d i n t o s o r b i t o l using Raney N i c k e l a s catalyst. T h e c o n v e r s i o n percentage f r o m glucose t o s o r b i t o l i s 9 0 % ( A n o n y m o u s 2 0 0 3 ) . H o w e v e r , a t t e m p t s are b e i n g m a d e t o use m i c r o - organisms t o c o n v e r t starch i n t o s o r b i t o l (Rainer a n d Silveira 2003).

High-fructose syrup H i g h - f r u c t o s e s y r u p can be p r e p a r e d f r o m s o r g h u m grain. T h i s is a h i g h l y v a l u e d p r o d u c t i n t h e p h a r m a c e u t i c a l i n d u s t r y . I t i s 1.6 t i m e s sweeter t h a n sucrose ( c o m m o n sugar). It can be u t i l i z e d as a s w e e t e n e r in pharmaceutical, soft d r i n k a n d f o o d processing i n d u s t r i e s . I t was successfully p r e p a r e d b y using n a t i v e invertase e n z y m e i n N R C S laboratory. T h e sweet s o r g h u m v a r i e t y R S S V 9 was best s u i t e d for t h e p r e p a r a t i o n o f h i g h - f r u c t o s e s y r u p ( A n o n y m o u s 2 0 0 3 ) . T h e s t a n d a r d i z e d t e c h n o l o g y i s available w i t h t h e Marathwada Agricultural University, Parbhani, Maharas h t r a .

Glucose

L i q u i d a n d p o w d e r glucose can b e p r e p a r e d e c o n o m i c a l l y f r o m s o r g h u m grain. G l u c o s e also can b e p r o d u c e d f r o m starch enzymatically. T h e standardized t e c h n o l o g y i s available w i t h A g r o - P r o d u c t D e v e l o p m e n t C e n tre, Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra and the Department of Food Technology, Marathwada Agricultural University, Parbhani ( A n o n y m o u s 2 0 0 3 ) .

Malt C o m m e r c i a l l y , m a l t i s p r e p a r e d f r o m s o r g h u m g r a i n a n d t h i s m a l t i s used i n t h e p r e p a r a t i o n o f b a b y f o o d a n d beverages. M i l o i s a s o r g h u m d r i n k p r e p a r e d f r o m s o r g h u m m a l t . T h e d i a s t a t i c a c t i v i t y o f s o r g h u m i s 8 0 % o f t h a t o f b a r l e y (H o r d e u m vulgare). T h e o p t i m i z a t i o n o f c o n d i t i o n s f o r s o r g h u m m a l t p r e p a r a t i o n was c a r r i e d o u t a t N R C S (Bala Ravi a n d R a t n a v a t h i 1 9 9 1 ) . T h e d i a s t a t i c a c t i v i t y m e a s u r e d i n S o r g h um Diastatic U n i t s ( S D U ) v a r i e d w i t h g e n o t y p e s t e s t e d : 1 4 4 . 5 S D U i n I S 1 4 3 8 7 , 1 5 1 S D U i n S P V 8 2 4 a n d 2 0 0 S D U i n W S 1 2 9 7 . A m a l t i n g loss o f 2 7 - 3 9 %

193 r e c o r d e d i n these g e n o t y p e s can b e m i n i m i z e d b y r e d u c i n g air a n d w a t e r supply. M i c r o - m a l t i n g t e c h n i q u e o f s o r g h u m g r a i n ( s a m p l e 1 0 g ) w a s e s t a b l i s h e d f o r r a p i d s c r e e n i n g o f g e r m p l a s m lines a n d e l i t e b r e e d i n g lines f o r d i a s t a t i c a c t i v i t y (Jaya e t al. 2 0 0 1 ) .

Adjunct

G r a i n s o r g h u m flakes are u s e d a s a n a d j u n c t i n t h e b r e w i n g i n d ustry. Sorghum can be a cheaper r a w m a t e r i a l c o m p a r e d to m a i z e . Presently m a i z e flakes or b r o k e n r i c e i s b e i n g used i n t h e b r e w i n g i n d u s t r y . A s t u d y c o n d u c t e d b y N R C S i n c o l l a b o r a t i o n w i t h t h e I n t e r n a t i o n a l C r o p s Research I n s t i t u t e f o r t h e S e m i - Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh revealed t h a t s o r g h u m c u l t i v a r s C S V 1 1 , C S V 1 3 a n d C S H 5 are best s u i t e d a s adjuncts (Ratnavathi a n d Bala Ravi 2 0 0 0 ) . A f u r t h e r s t u d y i n c o l l a b o r a t i o n w i t h a c o m m e r c i a l b r e w e r y a t M u m b a i , M a h a r a s h t r a r e v e a l e d t h a t t h r e e r e c e n t l y released c u l t i v a r s o f s o r g h u m ( C S H 13, C S H 1 4 a n d C S H 17) can b e used a s e f f i c i e n t adjuncts a n d p i l o t studies i n t h i s d i r e c t i o n w o u l d d e f i n i t e l y encourage h i g h e r s o r g h u m grain usage i n b r e w e r i e s .

Alternative uses of sweet-stalk sorghum

S w e e t - s t a l k s o r g h u m i s a p o t e n t i a l r a w m a t e r i a l f o r t h e p r e p a r a t i o n o f jaggery, s y r u p a n d e t h a n o l . P r o d u c t i o n o f jaggery f r o m sweet s o r g h u m i s i d e n t i c a l t o sugarcane a n d t h e jaggery o b t a i n e d f r o m s w e e t s o r g h u m i s c o m p a r a b l e t o sugarcane jaggery. C u l t i v a t i o n o f s w e e t s o r g h u m i s e c o n o m i c a l i n r a i n f e d areas w h e r e sugarcane c u l t i v a t i o n i s n o t possible. T h e seed rate a n d s o w i n g p a t t e r n r e c o m m e n d e d f o r grain s o r g h u m can be a d o p t e d . H o w e v e r , a fertilizer dosage 1 - 1 o f 1 2 0 k g n i t r o g e n ha" a n d 6 0 k g P 2 O 5 ha i s suggested f o r increasing t h e s w e e t s o r g h u m cane y i e l d . T h e v a r i e t y S S V 84 has y i e l d i n g a b i l i t y of 4 0 . 4 t ha"1 green cane ( w i t h an average b r i x value of 18.4%) a n d 1.38 t ha- 1 grain. Sweet sorghum cane juice has 5 pH, 12 to 1 3 % sucrose, 0.8 to 1.8% r e d u c i n g sugars a n d 0.6 to 1.8% starch. T h u s , i t c o n s i s t e n t l y p r o d u c e d a m i n i m u m o f 1 2 % sucrose o r a t least 1 5 % t o t a l f e r m e n t a b l e s w i t h 5 0 - 6 0 % j u i c e recovery.

Ethanol as biofuel S w e e t s o r g h u m stalk w i t h 6 5 % j u i c e r e c o v e r y i s a c o m p e t i t i v e r a w m a t e r i a l f o r t h e p r o d u c t i o n o f e t h a n o l . M o s t o f t h e s w e e t s o r g h u m varieties m a t u r e b e t w e e n 115 a n d 125 days d u r i n g r a i n y season. Stalks can be h a r v e s t e d along

194 w i t h grain, o r 4 - 5 w e e k s after harvest o f panicles for grain. The green cane y i e l d varies f r o m 30 to 50 t ha"1 and grain yield from 0.8 to 2.0 t ha"1 w i t h a b r i x value o f 1 6 t o 2 3 % . S w e e t s o r g h u m varieties a n d h y b r i d s bred at NRCS have p o t e n t i a l to p r o d u c e biomass up to 48 t ha-1, 1.5 to 2.9 t ha- 1 grain with b r i x value o f 1 4 t o 1 8 % (Table 1). S w e e t s o r g h u m can b e grown throughout the year, with minimum irrigation requirements and purchased inputs, which is an advantage over sugarcane. Five sweet sorghum genotypes [Keller, SSV 84, BJ 248, W r a y (varieties); NSSH 104 (hybrid)] were evaluated for tota l sugar, a l c o h o l production and fermentation efficiency (Fig. 2). Extrac table juice and sugar c o n t e n t results s h o w e d v a r i e t a l d i f f e r e n c e s . E x t r a c t a b l e j u i c e ( p e r five plants) varied from 1080 ml (Wray) to 1790 ml (SSV 84) . Total sugar c o n t e n t v a r i e d f r o m 4 . 6 6 t ha- 1 to 7.35 t ha-1. Among the five genotypes, SSV 84 showed high juice extractability (34.4 kl ha-1). The brix value was high in Keller, and therefore high ethanol production was o b t a i n e d f r o m t h e j u i c e o f t h i s variety. R e d u c i n g sugar c o n t e n t o f t h e j u i c e varied from 1.10 to 2 . 8 0 % ( w / v ) .

Table 1 . P r o m i s i n g s w e e t s o r g h u m g e n o t y p e s for e t h a n o l p r o d u c t i o n .

Plant Cane Grain height yield yield Extraction Brix TSS1 RS2 Sucrose -1 -1 Genotype (cm) (tha ) (tha ) (%) (%) (%) (%) (%) RSSV 59 317.8 48.44 2.24 50.1 17.7 15.1 1.5 13.6 RSSV 46 293.9 47.68 2.80 42.5 16.2 13.1 1.7 11.3 RSSV 24 343.5 45.67 1.50 46.7 16.1 13.1 1.4 11.2 RSSV 45 347.6 45.48 2.01 39.1 16.8 14.1 1.8 11.9 RSSV 57 317.1 45.29 2.48 45.7 16.6 13.7 1.3 12.0 RSSV 44 276.4 44.49 2.63 43.1 15.9 13.2 1.3 12.3 SSV 84 273.9 43.58 1.77 47.1 16.5 14.1 2.1 11.8 RSSV 58 299.8 42.42 2.17 46.1 17.2 13.3 1.4 11.9 NSS 219 282.2 40.51 2.05 42.3 16.6 14.1 2.0 12.0 NSS 216 306.4 39.16 2.74 41.3 16.2 13.8 1.9 11.7 NSS 218 279.7 38.57 2.24 39.4 16.9 13.0 2.2 10.6 NSS 209 293.3 38.11 1.76 46.3 16.9 13.6 1.5 11.6 NARISS 41 295.5 34.49 1.94 48.8 14.2 12.9 1.3 9.5 AKSS 01-03 282.3 28.72 2.91 44.8 14.9 11.6 1.9 9.6 NARISS 83 238.7 27.85 2.28 41.1 16.2 14.4 1.9 12.3

1. TSS = Total soluble sugars. 2. RS = Reducing sugars.

195 50

Keller

40 SSV 84

BJ 248 30 NSSH 104

Wray 20

10

0 Juice Extractable -1 Total sugar Ethanol juice (%) (kg ha ) (t ha-1) (kl ha-1)

Figure 2. Total sugar and ethanol production yields fro m f i v e sweet s o r g h u m v a r i e t i e s .

T h e presence o f r e d u c i n g sugars i n s w e e t s o r g h u m p r e v e n t s crystallization. Fermentation of juice from SSV 84 yiel ded 4.5 kl ha- 1 e t h a n o l whereas high fermentation efficiency (ie, the efficien cy of yeast to produce a l c o h o l p e r u n i t o f j u i c e ) o f 9 1 % was o b s e r v e d w i t h g e n o type Keller. High biomass production was observed with variety BJ 248.

The finished product of the fermentation, ie, ethyl alc ohol (C2 H 5 OH) has high commercial value. Ethanol is a 'clean burning fuel' with high octane rating and the existing automobile engines can be opera ted with petrol b l e n d e d w i t h 2 0 % e t h a n o l ( 8 0 % p e t r o l ) w i t h o u t n e e d f o r engine modification. The sweet sorghum juice can be used as a raw material to p r o d u c e a l c o h o l . A p i l o t s t u d y i n c o l l a b o r a t i o n w i t h a sugar f a c t o r y i n K arnataka was conducted successfully for the production of alcohol using sweet sorghum j u i c e f r o m v a r i e t y S S V 8 4 . T o t a l f e r m e n t a b l e sugars w e r e enough to achieve maximum fermentation efficiency for alcohol productio n. Sweet sorghum cultivars have 90% fermentation efficiency. Pilot studies showed that recovery o f a l c o h o l f r o m s w e e t s o r g h u m cane j u i c e e c o n o m i c a l l y i s about 9%. Pilot p r o d u c t i o n studies are e n c o u r a g i n g a n d i n d i c a t e cost effectiveness o f s w e e t s o r g h u m r a w m a t e r i a l f o r e t h a n o l p r o d u c t i o n .

196 Natural syrup

S w e e t s o r g h u m cane j u i c e i s c o n c e n t r a t e d a n d s t e r i l i z e d t o make natural s y r u p , w h i c h c a n b e u s e d i n c o n f e c t i o n e r y i n d u s t r y a s a s w e e t e n e r . T h e s y r u p c a n also b e u s e d i n s t e a d o f h o n e y w i t h b r e a k f a s t f o o d s ( F i g . 3 ) . S y r u p f r o m s w e e t s o r g h u m j u i c e was also p r e p a r e d c o m m e r c i a l l y i n K e n t u c k y a n d A l a b a m a i n U S A ( U n i v e r s i t y o f K e n t u c k y 2 0 0 3 ) . ' M A D H U R A , s y r u p f r o m s w e e t s o r g h u m j u i c e , i s b e i n g m a r k e t e d b y Nimbkar Agricultural Research Foundation, Phaltan, Mah a r a s h t r a a t U S $ 1 f o r 4 0 0 m l . T h e c h e m i c a l c o m p o s i t i o n o f s w e e t s o r g h u m s y r u p i s n u t r i t i o n a l l y e q u a l t o t h a t o f h o n e y . I t i s v e r y r i c h i n c a l c i u m a n d i r o n ( A n o n y m o u s 2 0 0 3 ) .

Jaggery

S w e e t s o r g h u m j u i c e can b e c o n c e n t r a t e d t o m a k e j a g g e r y u s i n g t h e same t e c h n o l o g y u s e d f o r m a k i n g sugarcane j a g g e r y ( F i g . 4 ) . T h e y i e l d i s 3 t o 3.5 t ha- 1 and is economical compared to sugarcane jaggery. Jaggery p r e p a r a t i o n i s m a i n l y d e p e n d e n t o n t h e i n v e r t a s e a c t i v i t y . S o m e g e n o t y p e s w i t h v e r y l o w i n v e r t a s e i n t h e stalks d o n o t get i n v e r t e d . T he genotypes N S S V 6 , N S S V 7 a n d N S S V 8 have b e e n i d e n t i f i e d a s g o o d f o r j a g g e r y c r y s t a l l i z a t i o n . Jaggery f r o m s o r g h u m m a y b e b e t t e r f o r diabetic patients d u e t o r i c h f i b e r c o n t e n t . Sugars i n s w e e t s o r g h u m stalk i n c l u d e sucrose, g l u c o s e a n d f r u c t o s e . A m o n g t h e six c u l t i v a r s o f s w e e t s o r g h u m e v a l u a t e d f o r j a g g e r y q u a l i t y , N S S V 6 y i e l d e d g o o d q u a l i t y jaggery w i t h b e s t c r y s t a l l i z a t i o n f o l l o w e d b y N S S V 7 . Jaggery p r e p a r e d f r o m N S S H 1 0 4 a n d

Figure 3. Syrup from sweet sorghum. Figure 4. Jaggery from sweet sorghum.

197 S S V 8 4 h a d g o o d c o n f e c t i o n e r y t a s t e . H o w e v e r , m a x i m u m j a g g e r y w a s p r o d u c e d f r o m S S V 8 4 ( 7 . 6 7 % o f cane w e i g h t ) f o l l o w e d b y N S S V 6 ( 5 . 8 8 % o f cane w e i g h t ) .

Institutional alliances necessary for scaling-up technology

T h e m a i n i n d u s t r i e s t h a t can use e i t h e r grain s o r g h u m o r sweet s o r g h u m are f o o d i n d u s t r i e s f o r b a k e r y p r o d u c t s , starch i n d u s t r y , b r e w i n g i n d u s t r y a n d a l c o h o l i n d u s t r y ( b o t h grain-based a n d molasses-based). M a i z e i s t h e m a i n c o m p e t i n g g r a i n f o r starch a n d f o o d p r o d u c t s . Sugarcane molasses i s t h e c o m p e t i n g r a w m a t e r i a l t o s w e e t s o r g h u m f o r a l c o h o l p r o d u ction. Industries are generally i n t e r e s t e d i n cheaper r a w m a t e r i a l w i t h o u t losing t h e b e n e f i t s o f b y p r o d u c t s a n d q u a l i t y o f t h e f i n a l p r o d u c t . I n case o f grain-based a l c o h o l i n d u s t r y , t h i s i s q u i t e possible. H o w e v e r , f o r t h e scaling-up o f any t e c h n o l o g y t h e f o l l o w i n g aspects s h o u l d b e c o n s i d e r e d : • N e e d f o r m a c h i n e r y m o d i f i c a t i o n • L o c a t i o n o f i n d u s t r y near r a w m a t e r i a l available zone • C o o r d i n a t i o n b e t w e e n i n d u s t r y , research i n s t i t u t e a n d t h e f a r m e r s C o n t r a c t f a r m i n g m a y b e t a k e n u p b y i n d u s t r i e s t o ensure t h e assured s u p p l y o f s o r g h u m a t reasonable p r i c e . T h i s w o u l d b e n e f i t b o t h t h e farmers a n d i n d u s t r i e s . Price i n c e n t i v e s s i m i l a r t o sugarcane s h o u l d b e g i v e n t o f a r m e r s t o encourage t h e m t o g r o w s w e e t s o r g h u m f o r e t h a n o l p r o d u c t i o n . T h e r e i s a p r o p o s a l f r o m t h e i n d u s t r y t o p r o c u r e g r a i n f r o m t h e f a r m e r s f o r a f i x e d p r i c e w i t h t h e s u p p o r t o f R & D organizations a n d state a g r i c u l t u r a l u n i v e r s i t i e s i n v o l v e d i n s o r g h u m research. T h i s t y p e o f a liaison f r o m t h e i n d u s t r y i s m u c h n e e d e d f o r t h e b e n e f i t o f f a r m e r s . F o o d i n d u s t r i e s are m o s t l y b a s e d i n t h e states o f K a r n a t a k a a n d T a m i l N a d u i n I n d i a . G r a i n s o r g h u m u p t a k e b y f o o d i n d u s t r i e s i n t h e s e states w o u l d c e r t a i n l y e n h a n c e t h e u t i l i z a t i o n o f s o r g h u m . T h e u p t a k e o f s o r g h u m b y i n d u s t r i e s a t c h e a p e r p r i c e c o m p a r e d t o m a i z e w o u l d c e r t a i n l y i m p r o v e t h e f a r m e r ' s n e t r e t u r n s a n d u l t i m a t e l y t h e loss o f s o r g h u m area t o s o m e o t h e r c o m p e t i n g c r o p s c a n b e a r r e s t e d . P u b l i c institutions should encourage technological development s w i t h n e c e s s a r y s u p p o r t e i t h e r t o f a r m e r s o r i n d u s t r i e s t o e n c o u rage prosperity t o p o o r f a r m e r s i n d r y areas.

198 References Anonymous. 2002. Developing sorghum as an efficient biomass and bio-energy crop and providing value addition to the rain damaged kharif grain for creating industrial demand. Annual report of the project NATP-RNPS-24 report. 2002, India: NATP. 18 pp.

Anonymous. 2003. Developing sorghum as an efficient biomass and bio-energy crop and providing value addition to the rain damaged kharif grain for creating industrial demand. Annual report of the project NATP-RNPS-24 report, 2003. India: NATP. 24 pp.

Bala Ravi S and Ratnavathi CV. 1991. Effect of different durations of steeping and malting on the production of aplha-amylase in sorghum. Journal of Cereal Science 14:287-296.

FAOSTAT. 2002. Statistics database, 2002. (www.fao.org) Rome, Italy: FAO.

Hulse J M , Laing EM and Pearson O E . 1980. Sorghum and millets: their composition and nutritive value. London, U K : Academic Press. 521 pp. Jaya K, Ratnavathi C V , Suresh K, Bala Ravi S and Bhalla S C . 2 0 0 1 . Poster presented at the International Conference on N e w Horizons in Biotechnology ( N H B T - 2001) organized by CSIR, Trivandrum, India, 16-20 A p r i l 2 0 0 1 . Kleih U, Bala Ravi S, Dayakar Rao B and Yogananad B. 2000. Industrial utilization of sorghum in India. Working Paper Series no. 4. Patancheru 502 324, Andhra Pradesh, India: Socioeconomics and Policy Program, International Crops Research Institute for the Semi-Arid Tropics. 44 pp.

M u r t y DS and Subramanian V. 1981. Sorghum roti: I. Traditional methods of consumption and standard procedures for evaluation. Pages 73-78 in Proceedings of the International Symposium on Sorghum Grain Quality, 2 8 - 3 1 O c t 1981, I C R I S A T Center, Patancheru, India. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Rainer J and Silveira M M . 2003. The biotechnological production of sorbitol. In International Conference on Emerging Frontiers at the Interface of Chemistry and Biology ( I C B - 2003), CSIR, Trivandrum, India, 2 8 - 3 0 A p r i l 2003. Trivandrum, India: Regional Research Laboratory, CSIR. Ratnavathi CV and Bala Ravi S. 2000. A study on the suitability of unmalted sorghum as a brewing adjunct. Journal of Institute of Brewing 106(6):383-387. Seetharama N, Dayakar Rao B, Ratnavathi C V , Shahid Parwez M d , Binu Mathew and Bharath Kumar KA. 2002. Sorghum as raw material for alcohol production. Presented at Distillers Association of Maharashtra, 25 August 2002, M u m b a i , India.

Somani RB, Almodares A, Pandrangi RB and Sepahi A. 1997. Potential of sweet sorghum in India and Iran for alcohol and sweeteners production. Pages 701-711 in

199 Proceedings of the First International Sweet Sorghum Conference, 14-19 September 1997, Beijing, China (La Dajne, ed.). Beijing, China: Institute of Botany, Chinese Academy of Sciences.

Subramanian V and Jambunathan R. 1980. Traditional methods of processing sorghum (Sorghum bicolor) and pearl millet (Pennisetum americanum) grains in India. Reports of the International Association of Cereal Chemistry 10:115-188.

University of Kentucky. 2003. www.ca.uky.edu/agc/pubs/agr/agrl22/agrl22.htm. Kentucky, U S A : University of Kentucky.

200 Alternative Uses of Sorghum - M e t h o d s and Feasibility: Chinese Perspective

Li Guiying1, Lu Qingshan2 and Zou Jianqiu2

Abstract China, one of the major sorghum producers in the world, ranked fifth in harvested area and sixth in production during 2000-02. According to incomplete statistics, there are more than 40 types of traditional sorghum foods in China. Now sorghum is grown mainly for liquor and vinegar production, and only a small part is used as staple food. Around 2.6 million t of sorghum per year is used for liquor production. New products such as popped food and sorghum pigment are being commercialized. Rut more attention needs to be paid to the development of other products. Archaeological research shows that sorghum (Sorghum bicolor) has been c u l t i v a t e d for at least 4 0 - 5 0 centuries in China. It used to play an i m p o r t a n t role in p r o m o t i n g crop p r o d u c t i o n and guaranteeing f o o d security, especially in t h e arid, semi-arid and waterlogged areas in C h i n a . In t h e early 2 0t h century, sorghum area accounted for 1 0 - 2 6 % of t h e t o t a l crop area, and r a n k e d t h i r d after rice (Oryza sativa) and w h e a t (Triticum aestivum) (Song Renben et al. 2 0 0 2 ) . Since t h e f o u n d i n g o f t h e People's R e p u b l i c o f C h i n a i n 1 9 4 9 , great changes have t a k e n place i n s o r g h u m p r o d u c t i o n , w i t h t h e i m p r o v e m e n t o f living standard, readjustment of agricultural productio n s t r u c t u r e , a n d t r a n s f o r m a t i o n f r o m p l a n n e d e c o n o m y t o m a r k e t e c o n o m y . S o r g h u m area and p r o d u c t i o n has also b e e n changing w i t h social d e m a n d s . I n 1 9 5 2 , s o r g h u m area was h i s t o r i c a l l y highest ( 9 . 4 m i l l i o n ha), a c c o u n t i n g for 7.5% o f t h e c u l t i v a t e d area o f all crops. T h e average y i e l d o f s o r g h u m was 1.19 t ha-1. Since t h e n s o r g h u m area gradually decreased, d r o p p i n g b y 3 4 . 4 % i n 1965 c o m p a r e d t o 1 9 5 2 . D u r i n g t h i s p e r iod, sorghum h a d b e e n g r o w n m a i n l y f o r staple f o o d . D u r i n g 1 9 6 6 - 7 6 , s o r g h u m area f u r t h e r decreased t o 4.33 m i l l i o n h a i n 1 9 7 6 , d e c l i n i n g b y 2 9 . 6 % c o m p a r e d t o 1 9 6 5 . B u t p r o d u c t i o n increased greatly (8.7 million t), and yield was around 2.0 t ha-1. Sorghum was still grown m a i n l y for staple f o o d , b u t a h i g h e r p r o p o r t i o n was used as feed or r a w m a t e r i a l f o r l i q u o r p r o d u c t i o n .

1. Institute of C r o p Science, Chinese A c a d e m y of Agricultural Sciences, Beijing 100081, China. 2. I n s t i t u t e o f S o r g h u m , Liaoning A c a d e m y o f A g r i c u l t u r a l Sciences, Shenyang 110161, China.

201 D u r i n g 1 9 7 7 - 8 8 w h e n C h i n a r e f o r m e d a n d was o p e n t o t h e o u t s i d e w o r l d , a g r i c u l t u r a l p r o d u c t i o n d e v e l o p e d q u i c k l y a n d l i v i n g standards i m p r o v e d greatly. S o r g h u m area decreased sharply a l t h o u g h i t s l i g h t l y increased in s o m e years. H o w e v e r , y i e l d c o n t i n u e d increasing a n d was 3.15 t ha- 1 i n 1 9 8 8 . P r o p o r t i o n o f s o r g h u m u s e d f o r staple f o o d decreased gradually u n t i l 1 9 8 8 w h e n its uses f o r f o o d , f e e d a n d b r e w e r y was a l m o s t similar. S o r g h u m area c o n t i n u e d t o decrease d u r i n g 1 9 8 9 - 2 0 0 0 . A l s o , t h e production decreased; however, yield increased. More a n d m o r e s o r g h u m was u s e d f o r p r o d u c i n g l i q u o r . C u r r e n t l y s o r g h u m area i s a r o u n d 0 . 7 - 0 . 8 m i l l i o n ha, w i t h a slight increase i n p r o d u c t i o n (Fig. 1). A b o u t 9 0 % s o r g h u m i s used f o r b r e w e r y , a n d less t h a n 1 0 % f o r f o o d or feed. It is an indispensable raw m a t e r i a l f o r p r o d u c i n g h i g h q u a l i t y C h i n e s e l i q u o r a n d t h e m o s t i m p o r t a n t source o f i n c o m e f o r f a r m e r s i n s o r g h u m p r o d u c t i o n areas.

T r a d i t i o n a l s o r g h u m g r a i n p r o d u c t s a n d t h e i r commercialization

Since a n c i e n t t i m e s s o r g h u m grain has b e e n u s e d in C h i n a as f o o d a n d as r a w material for Chinese liquor, starch, vinegar and Kaolia n g Y i ( c a r a m e l ) . For m a n y c e n t u r i e s , s o r g h u m was staple f o o d f o r t h e p o p u l a t i o n i n t h e a r i d a n d

12000

Area 10000 ('000 ha) 8000

Yield 6000 (kg ha1)

4000

Production ('000 t) 2000

0

Year

Figure 1. Changes in area, yield and production of sorghum in China (1952-2002) (Source: FAO 2003).

202 s e m i - a r i d areas. Later, f o r m a n y years p e o p l e d i d n o t eat s o r g h u m . Increasing n u m b e r of p e o p l e are n o w eating i t , n o t as staple f o o d , b u t as h e a l t h y foods for b a l a n c e d n u t r i t i o n .

Traditional foods

T h e r e are m a n y t r a d i t i o n a l s o r g h u m foods i n C h i n a , w i t h various processing m e t h o d s . A c c o r d i n g t o Z h a o S h u k u n ( 1 9 8 7 ) , i t was f o u n d t h a t t h e r e w e r e a r o u n d 4 0 t r a d i t i o n a l s o r g h u m foods, w h i c h c o u l d b e s o r t e d i n t o t h r e e groups based o n r a w materials a n d processing m e t h o d s : p o l i s h e d grain foods, f l o u r foods a n d p o p p e d foods (Table 1). S o m e o f t h e i m p o r t a n t foods are: s o r g h u m hele (a k i n d of v e r m i c e l l i ) , c u t noodles, p l a n e d noodles, s t e a m e d bread, dumpling, sorghum-vegetable roll, leavened cake and bat ter cake (Lu Q i n g s h a n 1 9 9 9 ) .

Table 1. Traditional f o o d p r o d u c t s of s o r g h u m grain in C h i n a .

Category Description Typical products

Polished Cooked grain meal Cooked sorghum with less water, cooked sorghum grain foods washed with cold water, cooked sorghum with other cereal grain or legumes

Conjee Conjee of whole polished grain, conjee of mashed grain, conjee of sorghum grain and legumes, alkali conjee

Flour foods Dough made with Hele (a kind of vermicelli made from sorghum cold water powder), fried dumpling, Chinese pancake, cut noodle, planed noodles

Dough made with Dumpling, steamed bread, steamed roll, fish-like hot water noodle, lump soup, flapjack

Glue flour paste Fried dumpling, fried bread, batter cake

Dried flour Parched flour, conjee

Moist flour Soft cake

Leavened dough Cake (steamed or toasted), sour soup, rolled bread three-color cake

Sticky flour Sticky cake, sticky steamed bun filled with bean paste, sticky baked cake, sticky fried cake

Popped Popped grains Popped shortbread, puffed sorghum grain products

203 Cooked foods Sorghum hele.

• Prepare d o u g h w i t h 5 kg s o r g h u m f l o u r , 0.25 kg e l m b a r k p o w d e r , a l i t t l e w h e a t f l o u r a n d 2.5 L w a t e r . • B o i l w a t e r in a p o t . • Place a hele-bed [a wooden board with many holes (3 mm in diameter)] above t h e p o t w i t h b o i l i n g w a t e r . Press p r e p a r e d d o u g h o n t h e hele-bed t o form noodles, which directly drop into boiling water. T he cooked noodles are c a l l e d hele in C h i n e s e . • Prepare t h i c k gravy of personal f a v o r i t e . • M i x c o o k e d noodles w i t h t h i c k gravy a n d serve.

Cut noodles.

• Prepare d o u g h w i t h 5 kg s o r g h u m f l o u r a n d 2.5 L w a t e r (as above). • R o l l t h e p r e p a r e d d o u g h w i t h a r o l l i n g p i n i n t o a flat shape. • C u t w i t h a k n i f e i n t o noodles. • F o l l o w t h e steps as in hele preparation for cooking and serving.

Planed or flat noodles.

• Prepare d o u g h as above w i t h s o r g h u m f l o u r . • H o l d t h e d o u g h w i t h one h a n d , a n d c u t t h e d o u g h w i t h a sharp knife into t h i n , flat n o o d l e s • F o l l o w t h e steps as in hele preparation for cooking.

Steamed foods Steamed bread.

• Prepare d o u g h as above w i t h s o r g h u m f l o u r . • Make the dough into a bun-like shape with a hole in t h e b o t t o m . • S t e a m t h e shaped d o u g h .

Dumpling.

• T h e p r e p a r a t i o n i s s i m i l a r t o w h e a t d u m p l i n g . • Prepare d o u g h w i t h s o r g h u m f l o u r and c o l d w a t e r o r h o t w a t e r . • Take a s m a l l piece of d o u g h a n d r o l l it using a r o l l i n g pin into a round flat shape ( 8 - 1 0 c m i n d i a m e t e r ) . • Prepare f i l l i n g w i t h various vegetables, m e a t a n d seasoning.

204 • M a k e d u m p l i n g s b y p l a c i n g t h e f i l l i n g i n t h e flat d o u g h and covering the f i l l i n g . • C o o k or steam as d e s i r e d .

Leavened cake.

• B l e n d s o r g h u m f l o u r (5 kg) w i t h w a t e r ( a p p r o x i m a t e l y 3 L), then leaven it. • A d d a p p r o p r i a t e dose o f s o d i u m b i c a r b o n a t e and m i x t h o r o u g h l y . • P u t t h e d o u g h in a s t e a m i n g b o x , 6 - 7 cm t h i c k , and steam.

Steamed twisted vegetable-sorghum flour roll.

• Prepare d o u g h w i t h s o r g h u m f l o u r . • Prepare vegetable f i l l i n g . • R o l l t h e d o u g h t o a b o u t 2 - 3 m m t h i n pieces. • Spread a layer of o i l and vegetable f i l l i n g . • Roll u p t h e d o u g h , c u t i n t o segments w i t h f i l l i n g a n d t h e n steam.

Baked foods Batter cake.

B a t t e r cake i s one o f t h e m o s t p o p u l a r foods i n C h i n a . T h e ingredients used are: 5 kg p o l i s h e d s o r g h u m grain, 0.25 kg maize (Zea mays) flour, a l i t t l e soybean (Glycine max) flour, a little cooked rice and 3.5 L water. The preparation process involves the following steps: • Soak polished sorghum grain in water overnight and discard t h e water. • M i x soaked grain w i t h o t h e r i n g r e d i e n t s . • G r i n d w i t h m i l l s t o n e i n t o a paste. • Pre-heat a cake pan a n d spread a layer of o i l . • Take a scoop of paste o n t o t h e p r e - h e a t e d cake pan, a n d then swiftly extend i t o n t h e f u l l surface. • A f t e r 1-2 m i n u t e s , t h e cake is ready for eating, e i t h e r plain or with filling.

Traditional secondary products of sorghum grain

Chinese liquor C h i n a has thousands o f years o f h i s t o r y i n p r o d u c i n g l i q uor with sorghum; a characteristic taste has been formed since a long time. Experience of liquor making shows that only sorghum grain can turn out highest quality liquor. All famous Chinese liquors are produced by using sorghum as main raw material.

205 I n r e c e n t years, a r o u n d 2.6 m i l l i o n t o f s o r g h u m has b e e n u s e d a n n u a l l y t o p r o d u c e l i q u o r . T h u s , s o r g h u m has p l a y e d a n i m p o r t a n t r o l e n o t o n l y i n revenue b u t also i n p r o v i d i n g e m p l o y m e n t . I t i s e s t i m a t e d t h a t t h e r e are a b o u t 4 0 , 0 0 0 b r e w e r i e s across C h i n a , w h i c h e m p l o y m o r e t h a n t w o m i l l i o n w o r k e r s , m o s t o f t h e m f a r m e r s . T h e f o l l o w i n g characteristics o f s o r g h u m m a k e i t a n ideal r a w m a t e r i a l t o p r o d u c e h i g h quality liquor: (1) h i g h starch content; (2) t a n n i n and anthocyanin c o u l d be t u r n e d i n t o fragrant aroma t h a t is characteristic in t h e liquors; and (3) crushed sorghum grain remains loose after cooking, w h i c h is good for production. T h r o u g h years o f p r a c t i c e , C h i n e s e l i q u o r s have b e e n m a d e w i t h d i f f e r e n t special t e c h n o l o g i e s, b y w h i c h d i f f e r e n t f l a v o r a n d b r a n d t y p e s o f p r o d u c t s have b e e n f o r m e d . T h e m o s t f a v o r i t e brands are: Maotai, Wuliangye, Fenjiu, Luzhoulaojiao, Yanghe, Jiannanchun and Dongjiu. T h e features o f f o u r t o p brands o f l i q u o r s are discussed.

M a o t a i . M a o t a i i s w e l l k n o w n a t h o m e a n d a b r o a d . T h e earliest b r e w e r y was b u i l t i n 1 7 0 4 . I t u s e d t o b e a n a t i o n a l l i q u o r served a t r e c e p t i o n s o f senior f o r e i g n guests. I t i s m a d e w i t h l o c a l s o r g h u m a s m a i n r a w m a t erial, through f e r m e n t a t i o n using w h e a t starter. M a o t a i i s sauce-fragrant t y p e w i t h c o m p l i c a t e d a r o m a c o m p o n e n t s ; t o t a l a l d e h y d e c o n t e n t i s h i g h e r t h a n o t h e r f a m o u s b r a n d l i q u o r s a n d a l c o h o l c o n t e n t i s a r o u n d 5 3 % ( v / v ) .

W u l i a n g y e . W u l i a n g y e l i q u o r i s b e i n g p r o d u c e d f o r m o r e t h a n 1 0 0 0 years. I t i s m a d e f r o m s o r g h u m m i x e d w i t h rice, s t i c k y rice, w h e a t a n d m aize through f e r m e n t a t i o n f o r a l o n g p e r i o d o f 7 0 - 9 0 days. T h e f e r m e n t a t i o n silos n o w used w e r e b u i l t d u r i n g M i n g dynasty. T h i s l i q u o r has e x c e l l e n t q u a l i t y w i t h special flavor a n d color. I t tastes p u r e m e l l o w a n d i s sweet a n d refreshing. I t belongs t o s t r o n g fragrant t y p e w i t h h i g h c o n t e n t o f e t h y l b u t y r a t e .

Fenjiu. F e n j i u l i q u o r i s b e i n g p r o d u c e d f o r m o r e t h a n 1 5 0 0 years. I t i s m a d e w i t h l o c a l c o m m o n s o r g h u m a s r a w m a t e r i a l , using barley (H o r d e u m vulgare) or pea (Pisum sativum) starter. T h e m a i n a r o m a c o m p o n e n t is e t h y l succinate ( 1 . 3 6 mg 1 0 0 m l-1 , t h r i c e as h i g h as in M a o t a i ) . Fenjiu is colorless, fragrant a n d refreshing. I t belongs t o t r a d i t i o n a l d e l i c a t e fragrant t y p e .

Luzhoulaojiao. L u z h o u l a o j i a o l i q u o r i s b e i n g p r o d u c e d f o r m o r e t h a n 4 0 0 years. I t i s m a d e f r o m s t i c k y ( g l u t i n o u s ) s o r g h u m using w h e a t starter, a n d

206 f i l l i n g w i t h rice husk. I t i s strong m e l l o w t y p e w i t h m a i n a r o m a c o m p o n e n t o f e t h y l hexanoate. I t i s c o o l a n d refreshing, w i t h strong apple fragrance.

Vinegar

V i n e g a r is a t r a d i t i o n a l c o n d i m e n t in C h i n a . In s o u t h e r n C h i n a , edible vinegar i s m a d e f r o m s t i c k y r i c e . I n t h e n o r t h , e d i b l e vinegar i s usually m a d e f r o m cereals. S o r g h u m is one of t h e best r a w m a t e r i a l s . S o r g h u m vinegar is v e r y p o p u l a r i n n o r t h e r n C h i n a .

Kaoliang Yi (caramel) K a o l i a n g Yi is c a r a m e l m a d e f r o m s o r g h u m starch a n d sugar. It is a t r a d i t i o n a l s o r g h u m f o o d .

Alternative commercial products of sorghum grain

Chinese sorghum beer

C h i n e s e s o r g h u m beer was first m a d e w i t h s o r g h u m a s m a i n r a w m a t e r i a l i n t h e I n s t i t u t e o f S o r g h u m , S h a n x i A c a d e m y o f A g r i c u l t u r a l Sciences i n early 1980s based o n t r a d i t i o n a l t e c h n o l o g y f o r barley beer. A m i n o acid c o n t e n t i n s o r g h u m beer is higher t h a n c o m m o n beer, especially lysine c o n t e n t , w h i c h is 3 0 % h i g h e r t h a n c o m m o n beer. Total sugar a n d l a c t o f l a v i n c o n t e n t s are same a s c o m m o n beer, w i t h flavor t y p i c a l o f c o m m o n beer.

Popped food

P o p p e d s o r g h u m i s a n e w l y d e v e l o p e d f o o d i n r e c e n t years. C r i s p a n d p o p p e d s o r g h u m m a d e w i t h special p o p p i n g m a c h i n e i s popular.

Sorghum pigment

S o r g h u m p i g m e n t ( r e d ) i s c h e m i c a l l y a d e r i v a t i v e o f fl a v o n e-l i k e c o m p o u n d , w h i c h i s a n a t u r a l p i g m e n t w i t h n o t o x i c i t y o r flavor. U s u a l l y i t i s a r e d p o w d e r or l u m p y s o l i d , a n d can also be processed i n t o l i q u i d or paste as needed. It can b e dissolved i n w a t e r . S o r g h u m p i g m e n t can b e w i d e l y used for c o l o r i n g processed meat and fish, soybean products, cake, drinks , candy, medical capsules, etc.

207 Potential for commercializing alternative sorghum grain products

Sorghum beer

T h e r e is a great p o t e n t i a l f o r t h e d e v e l o p m e n t of s o r g h u m beer. Beer is b e c o m i n g increasingly p o p u l a r i n C h i n a w i t h t h e i m p r o v e m e n t o f l i v i n g standard. B u t i n r e c e n t years, barley, m a i n l y i m p o r t e d , has been used i n beer p r o d u c t i o n . T h e cost o f beer p r o d u c t i o n i s increasing, w h i c h has a f f e c t e d beer m a r k e t . Research has s h o w n t h a t s o r g h u m can s u b s t i t u t e barley, k e e p i n g flavor s i m i l a r t o c o m m o n beer b u t w i t h higher n u t r i t i o n . S o r g h u m i s m u c h cheaper t h a n barley, so it c o u l d be p r e d i c t e d t h a t s o r g h u m beer w o u l d have a great p o t e n t i a l i n t h e f u t u r e .

Sorghum pigment

S o r g h u m p i g m e n t has b e e n u s e d i n f o o d i n d u s t r y a n d p a r a m e d i c a l i n d u s t r y . Because i t can b e p r o d u c e d w i t h s i m p l e t e c h n o l o g y , t h e p r o d u c t i o n cost i s r e l a t i v e l y l o w . S o r g h u m p i g m e n t i s a n a t u r a l p r o d u c t w i t h n o t o x i c i t y a n d n o side e f f e c t . S o i t i s m o r e p o p u l a r t h a n a r t i f i c i a l l y synthesized pigments.

Institutional alliances necessary for technology up-scaling

Because s o r g h u m has n o t d r a w n as m u c h a t t e n t i o n as rice a n d w h e a t , i n s t i t u t i o n a l alliances b e c o m e m o r e i m p o r t a n t f o r research a n d t e c h n o l o g y u p - scaling. In C h i n a , an i n s t i t u t e alliance has b e e n f o r m e d since 1960s. Research f u n d m a i n l y c o m e s f r o m t h e g o v e r n m e n t , w i t h a l i m i t e d p r o p o r t i o n c o m i n g f r o m i n d u s t r i e s . F u n d shortage has a f f e c t e d t h e r o u t i n e research w o r k o n s o r g h u m . Because s o r g h u m is n o t as p o p u l a r as r i c e a n d w h e a t , a n d seed c o m p a n i e s are r e l u c t a n t t o m a n a g e s o r g h u m seed, i t i s n o t easy f o r f a r m e r s t o get n e w s o r g h u m v a r i e t i e s o r r e l e v a n t t e c h n o l o g i e s t h a t are d e s i r e d . S o m e t i m e s research results c a n n o t m e e t r e q u i r e m e n t s o f w i n e r y . S o i t i s necessary t o establish a c o a l i t i o n o f research i n s t i t u t e s , producers and processing companies.

208 Significance for improved livelihood and income generation

I n t h e past, s o r g h u m was g r o w n m a i n l y for staple f o o d . B u t n o w i t i s a n i m p o r t a n t i n d u s t r i a l c r o p and p e o p l e c o n s u m e i t a s h e a l t h y f o o d . A l t h o u g h i t is n o t as p o p u l a r as rice a n d w h e a t , it s t i l l plays an i m p o r t a n t role in t h e i m p r o v e m e n t o f l i v e l i h o o d s o f farmers i n t h e a r i d a n d s e m i - a r i d areas. S o r g h u m has even b e c o m e an e c o n o m i c m a i n s t a y in some s o r g h u m - g r o w i n g areas. I n r e c e n t years, local g o v e r n m e n t s i n some regions have a t t a c h e d m u c h i m p o r t a n c e t o s o r g h u m p r o d u c t i o n d u e t o its h i g h y i e l d , resistance t o d r o u g h t , a n d h i g h e r p r i c e t h a n m a i z e . For e x a m p l e , i n W a n z h o u d i s t r i c t a n d Jiangjin city, S i c h u a n p r o v i n c e a n d X i n z h o u d i s t r i c t , S h a n x i p r o v i n c e , t h e local g o v e r n m e n t s have p u t s o r g h u m p r o d u c t i o n o n t h e i r w o r k agenda. B u t s o r g h u m p r o d u c t i o n i s far f r o m w h a t i t s h o u l d be. T o p r o m o t e its d e v e l o p m e n t , w i d e i n t e r n a t i o n a l c o o p e r a t i o n i s n e e d e d i n breeding, crop p r o d u c t i o n a n d d e v e l o p i n g n e w p r o d u c t s .

References FAO. 2003. FAO statistics databases. (http://apps.fao.org/cgi-bin/nph- db.pl?subset=agriculture&language=Chinese) Rome, Italy: FAO.

Lu Qingshan. 1999. Utilization of sorghum. Pages 466-492 in Sorghum ( L u Qingshan, ed.). Beijing, China: China Agricultural Press.

Song Renben, Lu Feng, Lu Qingshan and Sun Guomin. 2002. Producing evolution and developing prospect of sorghum in china. Rain Fed Crops 22(4):216—218. Zhao Shukun. 1987. Traditional sorghum foods in China. Liaoning Agricultural Sciences, no. 2, pp. 55-57.

209 Alternative Uses of Cereals - Methods and Feasibility: Pakistani Perspective SR Chughtai, J Fateh, MH Munawwar, M Aslam and HN Malik1

Abstract

The six cereals produced in Pakistan are wheat, rice, maize, sorghum, millet and barley. Wheat is in the leading position while sorghum and millet rank fourth and fifth, respectively. Sorghum and millet contribute 3% in area and less than 1 % in total cereal production. In the dryland areas, however, they are the leading food and fodder crops. Sorghum production remained unchanged while its area slightly declined in the last two decades. Millet area and production also slightly declined. The yields have shown marginal improvements. Sorghum is mainly consumed as a food grain (87%) while only 5% of it goes into feed. Sorghum is the most important summer fodder crop with increasing importance in the irrigated areas near towns. Millet is also an important fodder crop specially in the dryland areas. About 45% of millet is used in human food while about 50% is used in rural poultry and cattle feeding but not in commercial poultry rations. Both the commodities are utilized at the village level and are not industrially processed, and thus have no alternative uses. The fodder utilization of both can be improved further provided ensilage is adopted by the rural farmers. With the current level of production and utilization in Pakistan, there is not much scope of industrial processing and non-conventional utilization of sorghum and millet in the near future. They will continue to play a significant role in fulfilling the food, feed and fodder requirements in the dryland areas. Therefore, they deserve more attention by researchers, extension workers and policy makers.

In Pakistan, six cereals are p r o d u c e d . W h e a t (Triticum aestivum) is in t h e leading p o s i t i o n f o l l o w e d by rice (Oryza sativa) a n d m a i z e (Zea mays) (Table 1). S o r g h u m (Sorghum bicolor) a n d m i l l e t r a n k f o u r t h a n d f i f t h , respectively. I n t h e s e m i - a r i d regions, these are t h e m o s t important staple foods. Because o f t h e i r a b i l i t y t o g r o w i n harsh e n v i r o n m e n t s w h e r e o t h e r crops d o n o t g r o w w e l l o r p r o d u c e p o o r yields, t h e y w i l l c o n t i n u e t o s i g n i f i c a n t l y c o n t r i b u t e t o t h e h o u s e h o l d f o o d s e c u r i t y a n d n u t r i t i o n o f t h e i n h a b i t a n t s o f these areas. T h e s e crops are s t i l l t h e p r i n c i p a l sources o f energy, protein, vitamins and minerals for millions of t h e p o o r e s t a n d t h e

1. I n s t i t u t e o f F i e l d & H o r t i c u l t u r a l C r o p s , N a t i o n a l A g r i c u l t u r a l Research C e n t r e , Islamabad, Pakistan.

210 Table 1 . A r e a , p r o d u c t i o n a n d yield o f t h e cereals g r o w n i n Pakistan i n 2 0 0 2 . Share in Share in Area total Production total Yield Cereal ('000 ha) area (%) ('000 t) production (%) (kg ha1 )

Wheat 7983 67.39 18475 69.86 2314 Rice 2040 17.22 5776 21.84 2831 Maize 992 7.95 1664 6.29 1766 Sorghum 357 3.01 222 0.84 632 Millet 417 3.52 216 0.82 531 Barley 107 0.90 92 0.35 860 Total 11846 26445 m o s t f o o d - i n s e c u r e p e o p l e i n these areas. T h e r e f o r e , i m p r o v e m e n t s i n production, utilization a n d o t h e r aspects o f these p o o r people's crops w i l l s i g n i f i c a n t l y i m p r o v e t h e l i v e l i h o o d o f m a n y s m a l l h o l d e r farmers i n t h e l o w rainfall a n d d r o u g h t - a f f e c t e d agro-ecoregions i n Pakistan a n d o t h e r s i m i l a r regions. T h i s paper presents a n o v e r v i e w o f t h e p r o d u c t i o n a n d u t i l i z a t i o n o f cereals i n Pakistan w i t h special reference t o s o r g h u m a n d m i l l e t . I t also reflects o n t h e a l t e r n a t i v e uses o f these cereals i n Pakistan.

Area and production trends

L i k e m a n y d e v e l o p i n g c o u n t r i e s , t h e available data o n p r o d u c t i o n a n d u t i l i z a t i o n o f s o r g h u m a n d m i l l e t i n Pakistan are less accurate because these are p r i m a r i l y g r o w n i n o u t l y i n g areas a s subsistence crops. A l s o , i n t h e h o t a n d d r y agro-ecoregions, t h e y are g r o w n as dual-purpose crops, where both grain a n d stover are h i g h l y v a l u e d o u t p u t s . T h i s f u r t h e r c o m p l i c a t e s t h e s i t u a t i o n m a k i n g i t even d i f f i c u l t t o accurately r e c o r d t h e grain a n d f o d d e r p r o d u c t i o n o f these t w o crops. Because o f t h e i r least c o n t r i b u t i o n i n t o t a l cereal p r o d u c t i o n , no specific surveys have b e e n c o n d u c t e d for accurate e s t i m a t i o n o f t h e area, p r o d u c t i o n , p r o d u c t i v i t y a n d u t i l i z a t i o n . S o r g h u m , locally k n o w n as jowar, is an i m p o r t a n t kharif (rainy) season c r o p g r o w n i n m o s t d i s t r i c t s s o u t h o f l a t i t u d e 3 4 ° N . I t i s p articularly i m p o r t a n t i n t h e d i s t r i c t s o f D G K h a n , R a h i m Yar K h a n , R a w alpindi, Attock and Jehlum (Punjab); Sukkar, Khairpur, Dadu, Nawabshah a n d Sanghar (Sindh); Nasirabad, Lasbela, Kacchi, Kalat and Sibbi (Baluchistan); a n d D I K h a n , B a n n u a n d K o h a t ( N W F P ) ( K a m b a l 1 9 8 8 ) . G r a i n s o r g h u m i s g r o w n o n 3 7 5 , 0 0 0 h a o f l a n d w i t h a t o t a l p r o d u c t i o n o f 2 2 2 , 0 0 0 t a n d a n average

211 y i e l d o f 6 3 2 k g h a- 1 (FAO 2002). Sorghum production in Pakistan has lite r a l l y remained unchanged during the last two decades (Fig. 1). During the same p e r i o d , s o r g h u m area has d e c l i n e d f r o m 3 9 0 , 0 0 0 t o 3 5 0 , 0 0 0 ha. Sorghum yields have s h o w n signs o f m a r g i n a l increase f r o m 5 6 9 t o 622 kg ha"1 in the last t w o decades ( A n o n y m o u s 1 9 8 1 - 2 0 0 2 ) . Millet is grown in Pakistan on an area of 417,100 ha, w ith a total p r o d u c t i o n o f 2 1 6 , 4 0 0 t , and a y i e l d o f 5 1 9 k g h a- 1 (Fig. 2 ) ( F A O 2 0 0 2 ) . M i l l e t i n Pakistan i s a d o m i n a n t c r o p i n t h e d i s t r i c t s o f T h a r p a r k e r , Sanghar a n d H y d e r a b a d ( S i n d h ) , D I K h a n a n d K a r a k ( N W F P ) ; D G K h a n , Sargodha and R a w a l p i n d i (Punjab); and K a c c h i , S i b b i and G o w a d e r ( Baluchistan). D u r i n g t h e last t w o decades, m i l l e t area a n d p r o d u c t i o n have shown a slight decline from 438,000 to 418,000 ha and 220,000 to 216, 000 t, respectively. The yields during the same period slightly improved fro m 502 to 517 kg ha- 1 (Anonymous 1981-2002). The contribution of both sorghum and millet towards tot a l cereal production in Pakistan has been progressively decreasing. T h i s is in contrast t o annual increases i n t h e area, p r o d u c t i o n a n d p r o d u c t i v i t y o f o t h e r m a j o r cereals, ie, wheat, rice and maize (Fig. 3) (Anonymous 1981-2002).

700 Area ('000 ha) Production ('000 t) Yield (kg ha-1) 600

500

400

300

200

100

0 1980-85 1985-90 1990-95 1995-00 2000-01 2001-02 Years

Figure 1. Trends in area, production and yield of sorghum in Pakistan.

212 700

Area ('000 ha) 600 Production ('000 t) Yield (kg ha-1) 500

400

300

200

100

0 1980-85 1985-90 1990-95 1995-00 2000-01 2001-02 Years

Figure 2. Trends in area, production and yield of millet in Pakistan.

2000

1800 Area ('000 ha)

1600 Production ('000 t) Yield (kg ha-1) 1400

1200

1000

800

600

400

200

0 1980-85 1985-90 1990-95 1995-00 2000-01 2001-02 Years

Figure 3. Trends in area, production and yield of maize in Pakistan.

213 C u r r e n t l y s o r g h u m a n d m i l l e t , each c o n t r i b u t e a b o u t 3 % o f t h e cereal area a n d s l i g h t l y less t h a n 1 % o f cereal p r o d u c t i o n (Table 1 ) . T h u s , w i t h m a r g i n a l y i e l d i m p r o v e m e n t s a n d s l i g h t l y d e c l i n i n g areas, t h e t o t a l p r o d u c t i o n o f s o r g h u m a n d m i l l e t i n Pakistan i s stagnant. D u e t o t h e i m p r o v e m e n t s i n t h e c o m p e t i n g crops especially maize, p r o d u c t i o n o f s o r g h u m a n d m i l l e t i s s h i f t i n g t o m o r e m a r g i n a l areas w h e r e subsistence n a t u r e o f these crops f u r t h e r l i m i t s t h e i m p r o v e m e n t i n production. P r o d u c t i o n a n d p r o d u c t i v i t y o f s o r g h u m a n d m i l l e t are l i k e l y t o i m p r o v e i n t h e near f u t u r e i n Pakistan, u n t i l a n d unless m o r e e f f o r t s o n research a n d e x t e n s i o n are m a d e . T h e t r e n d has t o b e c h a n g e d i n t h e p o s i t i v e d i r e c t i o n i f t h e f o o d s e c u r i t y a n d n u t r i t i o n a l levels a n d t h e l i v e l i h o o d o f t h e s m a l l p o o r e s t f a r m e r s i n t h e h o t a n d d r y agro-ecoregions o f t h e c o u n t r y are t o b e i m p r o v e d .

Utilization

Cereals are m a i n l y u s e d as h u m a n f o o d in Pakistan (Table 2 ) . C e r e a l grains a n d green a n d d r y f o d d e r are also used i n l i v e s t o c k f e e d i n g .

Human food

W h e a t i s t h e m o s t i m p o r t a n t cereal i n Pakistan because i t i s t h e staple f o o d a n d i s t h e largest cereal c r o p i n t e r m s o f its p r o d u c t i o n . T h e average w h e a t c o n s u m p t i o n a s f o o d was 1 0 m i l l i o n t i n 1 9 8 1 - 8 5 a n d increased t o 1 9 m i l l i o n t i n 1 9 9 5 - 2 0 0 0 . T h e o v e r a l l g r o w t h rate o f w h e a t ( 1 9 8 1 - 2 0 0 0 ) i n f o o d was 4 . 2 8 % . A b o u t 9 1 % o f w h e a t i s u s e d f o r f o o d w h i l e t h e r e m a i n i n g 9 % i s used f o r f e e d a n d o t h e r uses (Table 2 ) . Per capita c o n s u m p t i o n o f w h e a t progressively increased f r o m 113 k g i n 1 9 8 1 - 8 5 t o 1 4 4 k g i n 1 9 9 5 - 2 0 0 0 (Anonymous 1981-2002). F o o d c o n s u m p t i o n o f m a i z e i n Pakistan was 5 7 , 0 0 0 t i n 1 9 8 1 - 8 5 w h i c h increased t o 9 0 7 , 0 0 0 t i n 1 9 9 6 - 2 0 0 0 w i t h a n overall g r o w t h rate o f 2 . 9 7 % . Per capita c o n s u m p t i o n o f m a i z e increased f r o m 6 k g i n 1 9 8 1 - 8 5 t o 7 k g i n 1996-2000 (Anonymous 1981-2002). F o o d c o n s u m p t i o n o f s o r g h u m i n Pakistan was 1 9 0 , 0 0 0 t i n 1 9 8 1 - 8 5 w h i c h s l i g h t l y increased t o 2 0 0 , 0 0 0 t i n 1 9 9 6 - 2 0 0 0 . T h e share o f s o r g h u m i n food almost remained stagnant (86-87%) during the past t w o decades b u t has r e c e n t l y d e c l i n e d ( - 2 . 5 4 ) . C o n s e q u e n t l y , per capita c o n s u m p t i o n o f s o r g h u m decreased f r o m 2 k g i n 1 9 8 1 - 8 5 t o 1.5 k g i n 1 9 9 6 - 2 0 0 0

214 Table 2. Consumption ('000 t) of cereals in Pakistan.

Year Total Food (%) Feed (%) Others (%)

Wheat 1981-85 11283 10051 (89.08)1 231 (2.05) 1001 (8.87) 1986-90 13582 12248(90.18) 260(1.91) 1074(7.91) 1991-95 16607 15086(90.84) 314(1.89) 1207 (7.27) 1996-2000 20739 18915(91.20) 385(1.86) 1438(6.93) Growth rate (%) 4.22 4.28 3.41 2.10 (1981-2000)

Maize 1981-85 988 570 (57.69) 197(19.94) 220 (22.27) 1986-90 1126 662 (58.79) 226 (20.07) 238(21.14) 1991-95 1226 722 (58.89) 244(19.90) 260(21.21) 1996-2000 1565 907 (57.96) 344(21.98) 314(20.06) Growth rate (%) 2.90 2.97 3.45 2.27 (1981-2000)

Sorghum 1981-85 220 190(86.36) 11.2(5.09) 19.2(8.73) 1986-90 229 198(86.46) 11.4(4.98) 19.4(8.47) 1991-95 235 204(86.81) 11.8(5.02) 19.2(8.17) 1996-2000 231 200 (86.58) 11.6(5.02) 19.0 (8.23) Growth rate (%) 0.47 0.48 0.31 -0.46 (1981-2000)

Millet 1981-85 250 107(42.80) 125(50.00) 19.0(7.56) 1986-90 206 87 (42.23) 103(50.00) 15.8(7.67) 1991-95 181 76(41.99) 91 (50.28) 13.8(7.62) 1996-2000 178 74(41.57) 89 (50.00) 15.0(8.15) Growth rate (%) -2.0 -2.2 2.11 -1.5 (1981-2000)

1. Percentage values are given in parentheses.

(Anonymous 1981-2002). The traditional use of sorghum f l o u r for f o o d purposes is m a i n l y in t h e f o r m of roti or chapati (unleavened flat bread). It is e s t i m a t e d t h a t a s i n I n d i a ( M u r t y a n d S u b r a m a n i a n 1 9 8 2 ) about 7 0 % o f t h e s o r g h u m g r o w n in Pakistan c o u l d also be u s e d f o r m a k i n g roti. S o r g h u m f l o u r can b e b l e n d e d w i t h w h e a t f l o u r u p t o 1 0 % w i t h o u t seriously a f f e c t i n g t h e b a k i n g q u a l i t y o f t h e c o m p o s i t e f l o u r . S u c h b l e n d i n g could help in easing the food situation in the country and help to save the

215 w h e a t f o r e x p o r t purposes. I n parts o f S i n d h a n d Punjab, s o r g h u m grains are p o p p e d a n d s o m e t i m e s m i x e d w i t h r a w sugar a n d u s e d a s snacks ( K a m b a l 1 9 8 8 ) . F o o d use o f m i l l e t i n Pakistan was 1 0 7 , 0 0 0 1 i n 1 9 8 1 - 8 5 a n d d e c l i n e d t o 7 4 , 0 0 0 t i n 1 9 9 6 - 2 0 0 0 (Table 2 ) . T h e share o f m i l l e t a s f o o d ranged f r o m 4 2 t o 4 4 % o f its t o t a l c o n s u m p t i o n d u r i n g t h e past t w o decades. T h e per capita c o n s u m p t i o n o f m i l l e t has s i g n i f i c a n t l y d e c l i n e d f r o m 1.2 k g i n 1 9 8 1 - 8 5 t o 0.4 k g i n 1 9 9 6 - 2 0 0 0 ( A n o n y m o u s 1 9 8 1 - 2 0 0 2 ) . S o r g h u m a n d m i l l e t are b o t h u s e d b y t h e r u r a l c o m m u n i t y a s p a r t o f t h e i r f o o d . A decrease i n t h e per capita c o n s u m p t i o n m a y b e d u e t o t h e p r e f e r e n c e o f p e o p l e i n Pakistan t o use m o r e w h e a t i n t h e i r diets.

Animal feed

W h e a t , m a i z e , r i c e , s o r g h u m a n d m i l l e t are basically g r o w n f o r h u m a n d i e t a r y needs b u t t h e y are also u s e d a s a n i m a l f e e d . B e f o r e t h e d e v e l o p m e n t o f c o m m e r c i a l p o u l t r y f e e d i n d u s t r y , t h e grains o f these crops w e r e basically u s e d t o f e e d l i v e s t o c k a n d r u r a l p o u l t r y . H o w e v e r , w i t h t h e a d v a n c e m e n t o f p o u l t r y i n d u s t r y , t h e grains o f these crops are b e i n g e f f e c t i v e l y u t i l i z e d a s i n g r e d i e n t s o f c o m m e r c i a l r a t i o n s m o r e p r e c i s e l y i n t h e p o u l t r y f e e d . M a i z e grains arc u s e d u p t o 4 0 % i n t h e p o u l t r y r a t i o n s . H o w e v e r , w h e n t h e m a i z e p r i c e increases i t i s s u b s t i t u t e d w i t h o t h e r cereal grains o r t h e i r b y p r o d u c t s . W h e a t i s also u s e d i n p o u l t r y f e e d i n g a n d i n c o m m e r c i a l d a i r y f a r m i n g s y s t e m . H o w e v e r , w h e a t use i n p o u l t r y f e e d f o r m u l a t i o n s does n o t e x c e e d 1 5 % because i t has adverse effects o n egg l a y i n g . S o r g h u m i s u s e d u p t o 5 % l e v e l i n c o m m e r c i a l p o u l t r y feed. Millets are n o t u s e d i n c o m m e r c i a l p o u l t r y feeds b u t are u s e d f o r l i v e s t o c k f e e d i n g . A l t h o u g h m i l l e d r i c e i s n o t i n c o r p o r a t e d i n t h e l i v e s t o c k a n d p o u l t r y r a t i o n s , its b y p r o d u c t s ( r i c e b r a n , r i c e t i p s , r i c e p o l i s h ) are u t i l i z e d f o r c o m m e r c i a l p o u l t r y a n d l i v e s t o c k feeds. Since t h e d e v e l o p m e n t o f l i v e s t o c k a n d p o u l t r y f e e d i n d u s t r i e s i n Pakistan i n t h e m i d - 1 9 7 0 s , t h e annual use o f cereal grains i n f e e d increased a t a rate o f 2 . 5 3 % a n d t h e i r b y p r o d u c t s a t a rate o f 3%. A l t h o u g h w h e a t i n f e e d represents a smaller p r o p o r t i o n ( 2 % ) o f its t o t a l p r o d u c t i o n , i t i s s t i l l t h e largest cereal grain u t i l i z e d f o r t h i s p u r p o s e (Table 3 ) . W h e a t grain used f o r l i v e s t o c k f e e d was 2 3 1 , 0 0 0 1 i n 1 9 8 1 - 8 5 a n d increased t o 3 8 5 , 0 0 0 t i n 1 9 9 6 - 2 0 0 0 a t a n annual g r o w t h rate o f 3 . 4 1 % . T h e p r o j e c t e d f e e d use o f w h e a t i n 2 0 1 0 i s 6 5 4 , 0 0 0 t .

216 Table 3. Utilization ('000 t) of cereal grains in livestock feed in Pakistan.

Year Wheat Maize Millet Sorghum Total 1981-85 231 197 125 11 564 1986-90 260 226 103 11 600 1991-95 314 244 91 12 661 1996-2000 385 344 89 12 830 Projected 2010 654 489 89 11 1243 Growth rate (%) (1981-2000) 3.41 3 4 5 2.11 0.31 2.53

M a i z e i s t h e second m o s t i m p o r t a n t cereal i n livestock feed i n Pakistan. U t i l i z a t i o n o f maize i n f e e d was 1 9 7 , 0 0 0 t i n 1 9 8 1 - 8 5 a n d increased t o 344,000 t in 1996-2000 (Table 3). The average annual gr o w t h rate o f maize i n f e e d ( 3 . 4 5 % ) is t h e highest a m o n g t h e cereals. Its p r o j e c t e d d e m a n d for feed is 4 8 9 , 0 0 0 t f o r 2 0 1 0 . M a i z e i n l i v e s t o c k feed i s used u p t o 2 2 % o f its p r o d u c t i o n . C u r r e n t l y , i n p o u l t r y feed rations, t h e cereal c o m p o n e n t i s c o m p o s e d o f 4 0 % maize, 4 0 % rice ( b y p r o d u c t s ) , 1 8 % w h e a t a n d 2 % s o r g h u m w i t h n o m i l l e t a n d barley (Hordeum vulgare) i n c l u d e d i n c o m m e r c i a l p o u l t r y rations ( M Sadiq, Sadiq B r o t h e r s Poultry, R a w a l p i n d i , Pakistan, personal communication). M i l l e t i s t h e t h i r d m o s t i m p o r t a n t cereal i n l i v e s t o c k f e e d i n Pakistan. T h e use o f m i l l e t i n f e e d shows a c o n s t a n t l y d e c l i n i n g t r e n d . I n 1 9 8 1 - 8 5 , 1 2 5 , 0 0 0 t o f m i l l e t was u s e d i n f e e d w h i l e i n 1 9 9 6 - 2 0 0 0 o n l y 8 9 , 0 0 0 t was u s e d (Table 3 ) . I t is e s t i m a t e d t h a t t h e use o f m i l l e t i n f e e d w i l l n o t increase i n f u t u r e . T h u s , t h e p r o j e c t e d d e m a n d for m i l l e t in feed i s 8 9 , 0 0 0 t for 2 0 1 0 . T h e use o f m i l l e t i n f e e d i s very c o n v e n t i o n a l , and for t h e last t w o decades 5 0 % o f t h e m i l l e t p r o d u c e d has b e e n u t i l i z e d for t h i s purpose. I t i s a m a j o r c o n t r i b u t o r i n t h e f e e d i n g o f r u r a l cattle a n d p o u l t r y b u t i t i s n o t used i n c o m m e r c i a l p o u l t r y rations. I n Pakistan, m i l l e t i s t h e m o s t p o p u l a r b i r d seed c o m m o n l y f e d t o p e t b i r d s . S o r g h u m grain has b e e n c o n v e n t i o n a l l y u t i l i z e d for l i v e s t o c k feed. H o w e v e r , a v e r y s m a l l p o r t i o n of t h e t o t a l s o r g h u m p r o d u c e (about 5% or less) goes i n t o t h e feed. T h e average s o r g h u m c o n s u m p t i o n i n f e e d was 1 1 , 2 0 0 t i n 1 9 8 1 - 8 5 w h i c h s l i g h t l y increased t o 1 1 , 6 0 0 t i n 1 9 9 6 - 2 0 0 0 w i t h a n average g r o w t h rate o f 0 . 3 1 % (Table 3 ) . A l s o , t h e p r o j e c t e d s o r g h u m d e m a n d f o r f e e d for 2 0 1 0 is o n l y 1 0 , 5 0 0 t w h i c h is slightly less t h a n its c u r r e n t u t i l i z a t i o n . A m o n g t h e i n d u s t r i a l b y p r o d u c t s o f cereals, w h e a t a n d r i c e brans, rice t i p s a n d p o l i s h , m a i z e o i l cake a n d g l u t e n 2 0 % a n d g l u t e n 6 0 % are u s e d i n

217 livestock and poultry feeds (Rasool et al. 1996). The use o f a l l these b y p r o d u c t s has b e e n i n c r e a s i n g a t a n average a n n u a l g r o w th rate of 2 to 3% since early 1980s. T h i s t r e n d c o n t i n u e s a n d w i t h increase in industrial processing o f these m a j o r cereals, t h e u t i l i z a t i o n o f t h e b y p r o d u c t s i s expected to increase. In case of rice, only the industr ial byproducts and not the grain itself are used in livestock and poultry feed products. Since sorghum, millet and barley are currently not industria lly processed in Pakistan, their byproducts are not likely to be utiliz ed in the feed industry in near f u t u r e .

Animal fodder

T h e s t o v e r o f s o r g h u m a n d m i l l e t , a f t e r t h e h a r v e s t o f grains, i s u s e d a s a dry fodder, particularly during winter when feeds are usually scarce. S t o v e r r e p r e s e n t s u p t o 5 0 % o f t h e t o t a l v a l u e o f t h e c r o p s a n d its v a l u e and contribution increases in drought years. The percen t a g e o f t h e t o t a l area o f s o r g h u m a n d m i l l e t d e v o t e d t o f o d d e r p r o d u c t i o n i s n o t k n o w n . A c c o r d i n g t o s o m e e s t i m a t e s ( P A R C 1 9 7 7 ) , a t least 5 0 % o f the irrigated a n d 2 5 % o f t h e r a i n f e d s o r g h u m area i s h a r v e s t e d f o r f o d d e r before the grains are formed. However, it is generally believed no w t h a t t h e area harvested for fodder is increasing rapidly, particularl y near t o w n s . I n a d d i t i o n , b o t h t h e s e c r o p s are s p e c i f i c a l l y g r o w n f o r p r o d u c t i o n o f g r e e n f o d d e r . I n f a c t , s o r g h u m i s t h e m o s t i m p o r t a n t kharif f o d d e r c r o p i n P a k i s t a n a n d i t s f o d d e r u t i l i z a t i o n i s i n c r e a s i n g p a r t i c ularly in irrigated areas near t o w n s (Table 4 ) .

Table 4. A r e a , p r o d u c t i o n a n d yield of kharif fodder crops in Pakistan.

Share in Fodder Share in Fodder Area total production total fodder yield Crop ('000 ha) area (%) ('000 t) production (%) (t ha-1)

Sorghum 515 35.85 7877 39.08 15.29 Millet 105 7.36 758 3.75 7.21 Guar 311 21.67 3545 17.58 11.38 Maize 48 3.34 961 4.76 19.96 Moth 1 0.10 17 0.10 12.15 Others 45 31.68 6997 34.71 15.37

Source: Coordinated Programme on Fodder Crops, National Agricultural Research Centre, Islamabad, Pakistan.

218 Large q u a n t i t i e s o f maize, s o r g h u m a n d m i l l e t c r o p residues are available i n Pakistan, w h i c h are o f g o o d n u t r i t i v e value a n d can b e b e t t e r u t i l i z e d b y ensiling. H o w e v e r , t h e t e c h n o l o g y o f m a k i n g silage i s c u r r e n t l y n o t i n p r a c t i c e . A g r o - i n d u s t r i a l b y p r o d u c t s are i m p o r t a n t sources o f p r o t e i n s u p p l y b u t t h e i r availability is l i m i t e d a n d a m a j o r p a r t is used in p o u l t r y feed industry. Forage s o r g h u m h y b r i d s have y i e l d e d u p t o 7 8 % higher green f o d d e r a n d 7 5 % higher d r y m a t t e r t h a n t h e i m p r o v e d o p e n - p o l l i n a t e d v a ri e ty ( H u s s a i n e t al. 1 9 9 6 ) . I m p r o v e d varieties o f s o r g h u m y i e l d u p t o t h r e e - f o l d higher t h a n t h e local variety (Rasool et al. 1996). However, these varieties and h y b r i d s c o u l d n o t b e e x t e n d e d t o t h e f a r m e r s w h o s t i l l g r o w t h e c o n v e n t i o n a l l o w - y i e l d i n g local landraces a n d varieties.

Alternative uses

W h e a t , maize, s o r g h u m , m i l l e t and barley are used for f o o d , feed a n d o t h e r purposes. T h e b y p r o d u c t s f r o m w h e a t a n d rice are m a i n l y used for livestock feeding and also i n p o u l t r y feeding. M a i z e i s processed i n w e t m i l l i n g i n d u s t r i e s basically t o p r o d u c e starch f o r t e x t i l e industries. The other major p r o d u c t s are l i q u i d glucose a n d c o o k i n g o i l . A m o n g o t h e r p r o d u c t s , maize o i l cakes and g l u t e n are u s e d i n c o m m e r c i a l p o u l t r y rations a n d i n livestock feeding. S o r g h u m and m i l l e t are b o t h u t i l i z e d a t t h e village level and t h u s n o b y p r o d u c t s are p r o d u c e d . T h e c o n t r i b u t i o n o f cereals i n livestock feeding over t h e last t w e n t y years ranged f r o m 6 t o 9 % w h i l e i n p o u l t r y feed i t ranged f r o m 3 1 t o 3 4 % . T h u s , cereal grains are used m o r e i n p o u l t r y feeds t h a n i n l i v e s t o c k feeds. T h e c o n t r i b u t i o n o f cereal grains especially maize i n c o m m e r c i a l p o u l t r y f e e d i s e x p e c t e d t o increase since w i t h i m p r o v i n g i n c o m e s a n d lifestyles, t h e p o u l t r y i n d u s t r y is going to f l o u r i s h in f u t u r e at a rate o f 4 . 5 % annually. T h e r u m i n a n t f e e d c o n s u m p t i o n i n Pakistan i s p r o j e c t e d to increase annually at a rate of about 7.0% by 2 0 1 0. However, the c o n t r i b u t i o n o f cereals i n r u m i n a n t f e e d i n g i s p r o j e c t e d t o decline t o about 2 % b y 2 0 1 0 . V e r y insignificant a m o u n t s o f m i l l e t are used i n bakery p r o d u c t s i n c o m b i n a t i o n w i t h o t h e r cereals. W i t h i m p r o v e m e n t s i n f l o u r processing o f s o r g h u m a n d m i l l e t , t h e i r n o n - c o n v e n t i o n a l u t i l i z a t i o n i n h u m a n f o o d , p e t foods a n d h e a l t h foods m a y b e i n i t i a t e d . H o w e v e r , c u r r e n t l y n o n - c o n v e n t i o n a l f o o d u t i l i z a t i o n a n d i n d u s t r i a l processing o f these cereals are n o t feasible.

219 References

Anonymous. 1981-2002. Agricultural statistics of Pakistan. Islamabad, Pakistan: Government of Pakistan, M i n i s t r y of Food, Agriculture and Cooperative, pp. 9-23.

FAO. 2002. F A O S T A T database results 2002. Rome, Italy: FAO. Hussain A, M u f t i M U , Khan S and Bhatti MB. 1996. H y b r i d seed and fodder production in sorghum. Pages 150-165 in Fodder production in Pakistan (Bhatti MB and Khan S, eds.}. Islamabad, Pakistan: Pakistan Agricultural Research Council; and Rome, Italy: Food and Agriculture Organization of the U n i t e d Nations.

Kambal A E . 1988. Sorghum improvement in Pakistan. Islamabad, Pakistan: Pakistan Agricultural Research Council; and Rome, Italy: Food and Agriculture Organization of the U n i t e d Nations. 67 pp.

Murty, DS and Subramanian V. 1982. Sorghum roti. I. Traditional methods of consumption and standard procedures for evaluation. Page 38 in Proceedings of the International Symposium on Sorghum Grain Quality, Hyderabad, India, 2 8 - 3 1 October 1981 (Rooney LW and M u r t y D S , eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the S e m i - A r i d Tropics.

PARC. 1977. Jowar production plan 1977. Islamabad, Pakistan: PARC. 46 pp. Rasool S, Ahmed G and Abdullah M. 1996. Fodder conservation, crop residues and by- products in livestock production systems. Pages 176-186 in Fodder production in Pakistan (Bhatti MB and Khan S, eds.). Islamabad, Pakistan: Pakistan Agricultural Research Council; and Rome, Italy: Food and Agriculture Organization of the U n i t e d Nations.

220 Alternative Uses of Cereals - M e t h o d s and Feasibility: Thailand Perspective

Prasit Jaisil1

Abstract Methods and feasibility on alternative uses of sorghum in Thailand are discussed. The use of sweet sorghum for ethanol production is proposed. As sorghum is one of the most efficient crops in terms of producing fermentable sugars as well as grain, it is one of the most ideal crops for the simultaneous production of energy and food. Technology for ethanol production adapted from the sugarcane industry can be utilized almost directly to produce ethanol from sweet sorghum. Comparative studies on various raw materials available in Thailand for ethanol production are analyzed. Minor uses of various types of sorghum are also discussed. S o r g h u m (Sorghum bicolor) is an i m p o r t a n t cereal c r o p g r o w n in T h a i l a n d a n d ranks t h i r d f o l l o w i n g rice (Oryza sativa) a n d m a i z e (Zea mays). It is c u l t i v a t e d f o r its grain a n d p r i m a r i l y u s e d f o r a n i m a l f e e d i n g . I n 2 0 0 2 , t o t a l p r o d u c t i o n o f s o r g h u m i n T h a i l a n d was 3 0 0 , 0 0 0 t f r o m a n area o f a b o u t 1 6 0 , 0 0 0 ha; t h e y i e l d was a b o u t 1,875 k g ha"1 ( F A O 2 0 0 2 ) . T h e r e are f o u r classes o f s o r g h u m c o m m o n l y g r o w n i n T h a i l a n d : g r a i n s o r g h u m , f o d d e r s o r g h u m , s w e e t s o r g h u m a n d b r o o m c o r n . M a j o r e m p h a s i s i s o n g r a i n s o r g h u m p r o d u c t i o n . T h i s p a p e r focuses o n t h e a l t e r n a t i v e uses of s o r g h u m as a r e n e w a b l e re s o u rc e f o r e t h a n o l p r o d u c t i o n a n d t h e p o t e n t i a l o f g r o w i n g s w e e t s o r g h u m a s a n alternative cash c r o p f o r T h a i f a r m e r s . O t h e r uses o f various t y p e s o f s o r g h u m are also discussed.

Direct use of sorghum grain

I n T h a i l a n d , s o r g h u m grain i s p r i m a r i l y u t i l i z e d f o r t h e l i v e s t o c k f e e d i n d u s t r y . H o w e v e r , h i g h t a n n i n s o r g h u m grains are n o t e f f i c i e n t l y u t i l i z e d b y m o n o g a s t r i c animals. Vast q u a n t i t i e s of s o r g h u m stover have a h i g h p o t e n t i a l f o r use a s r u m i n a n t diets t o m a i n t a i n l i v e w e i g h t s d u r i n g t h e d r y season. H o w e v e r , t h e u t i l i z a t i o n i n t h i s f o r m i s s t i l l v e r y l o w i n T h a i l a n d because a large a m o u n t o f rice s t r a w i s available f o r b e e f a n d d a i r y f a r m e r s .

1. D e p a r t m e n t o f A g r o n o m y , Faculty o f A g r i c u l t u r e , K h o n K a e n U ni v e rs i t y , K h o n K a e n 4 0 0 0 2 , T h a i l a n d .

221 Sweet sorghum as a source of fermentable sugars for energy

S w e e t s o r g h u m has a l o n g h i s t o r y o f c u l t i v a t i o n i n Asia, E u r o p e a n d A m e r i c a . Recently, high-sucrose sweet sorghum cultivars have bee n developed with potential as a sugar crop. Because of the rapid increase in crude oil prices that o c c u r r e d d u r i n g t h e 1970s, sweet s o r g h u m has been investigated as a p o t e n t i a l source o f f e r m e n t a b l e sugars f o r e t h a n o l fuel p r o d u c t i o n . T h i s i s because o f t h e crop's h i g h sugar c o n t e n t a n d biomass p r o d u c t i o n , w i d e geographic and climatic adaptation, and relatively low water and fert ilizer requirements ( N a t h a n 1 9 7 8 ) . I t has b e e n g r o w n for m a k i n g sweet s y r u p in the United States. It is also suitable f o r feeding to animals as forage, silage a n d hay. Despite the long history of cultivation in many countr ies, little attention has b e e n p a i d t o s o r g h u m i n T h a i l a n d because o f its m i n o r e c o n o m i c importance, and there has been little improvement made i n t h i s c r o p . Although many promising varieties of sweet sorghum have been introduced to T h a i l a n d m o r e t h a n 2 0 years ago, t h e i r u t i l i z a t i o n i s s t i l l l i m i t e d . Following the energy crisis of the world, which started in 1973 when the petroleum cartel OPEC (Organization of the Petroleum E xporting Countries) in Vienna, Austria initiated a series of price increases and later mounting political instability among several OPEC members, much emphasis has been placed on alternate and renewable energy resources and energy independence. In the developing countries, one alternative to the energy crisis is t h e p r o d u c t i o n of bioenergy from biomass. Ethanol is an appropriate alternative fuel. Traditionally, ethanol has been produced mainly from sugarcane (Saccharum officinarum) molasses. Sweet sorghum provides grain from the panicles a n d sugar ( a n d hence e t h a n o l ) f r o m its stalks; t h e bagasse is an e x c e l l e n t f o d d e r f o r animals. T h u s i t p r o v i d e s f o o d , f u e l and fodder. No other c r o p y i e l d s all these p r o d u c t s t o g e t h e r . Recently, the Thai government promoted the use of gasohol (gasoline + 10% of 99.5% ethanol) and also tried to promote the use of diesohol (diesel + 1 0 % e t h a n o l ) i n t h e f u t u r e . D a i l y d o m e s t i c c o n s u m p t i o n of 20 million L of gasoline and 55 million L of diesel imply the need for huge quantity of ethanol. Mixing 10% of ethanol in both gasoline and diesel results i n t h e requirement of 7.5 million L day- 1 o f e t h a n o l . Of t h e r a w materials, ie, rice, cassava (Manihot esculenta), sugarcane, molasses and sweet sorghum for producing ethanol in Tha iland, only cassava and molasses were cost effective (Table 1). Use of cassava and molasses as r a w

222 materials for producing ethanol can generate more inco me than selling as cassava chips, cassava pellets and raw molasses. Production of ethanol from rice and sugarcane w i l l decrease the value of the crops. Selling rice and sugarcane i n t e r m s o f grain and sugar w i l l generate more income than using these t w o crops as r a w materials for p r o d u c i n g ethanol. It is impossible to use all exported cassava and molasses for p r o d u c i n g ethanol because of competition with permanent markets. Many experiments on sweet sorghum production have been done at Khon Kaen U n i v e r s i t y , K h o n K a e n , T h a i l a n d . I t i s already p r o v e d t h a t sweet s o r g h u m i s one o f t h e suitable crops f o r use as an energy resource. It can g r o w in a w i d e range of geographical areas. It has a p r o d u c t i o n capacity equal or s u p e r i o r to sugarcane. It is a short- m a t u r i n g c r o p a n d a t least t w o crops p e r year can b e p r o d u c e d u n d e r r a i n f e d c o n d i t i o n s . It has a p o t e n t i a l f o r l o w u n i t costs because it requires less w a t e r a n d f e r t i l i z e r t h a n sugarcane.

On-shelf technologies

E t h a n o l f r o m cassava and molasses has been p r o d u c e d in p i l o t runs at t h e T h a i l a n d Institute of Science and Technology, Bangkok about 25 years ago. Recently, the Thai government announced the new policy on energy. Th e N a t i o n a l Ethanol Committee approved eight ethanol production plants as large-scale for energy. Sweet sorghum can be used for ethanol production by adopting the technology available for sugarcane industry (Schaffert and Gourley 1 9 8 2 ) . In Thailand, the normal harvesting period for sugarcane i s f r o m November to April while the proposed harvesting period f o r sweet s o r g h u m

T a b l e 1. A n a l y s i s of c o s t e f f e c t i v e n e s s of v a r i o u s existing r a w materials for e t h a n o l production.

Production Export value Estimated ethanol Estimated value (million t) (million production of ethanol2 Difference3 Raw materials1 Domestic Export US$) (million L) (million US$) (million US$) Rice 8.9 6.7 1783.8 2513 658.4 -1125.4 (-63.1) Cassava 4.1 14.5 543.6 2610 683.8 140.2(25.8) Sugarcane 15.9 36.6 833.3 2562 671.2 -162.1 (-19.5) Molasses 1.4 1.0 33.3 260 68.1 34.8 (104.5)

1. One ton of rice, cassava, sugarcane and molasses yielded 375, 180, 70 and 260 L of ethanol, respectively. 2. Cost of ethanol = US$0,262 L-1. 3. Percentage values are given in parentheses.

223 is from June to October with planting beginning at the onset o f r a i n f a l l i n M a r c h o r A p r i l . I n t h i s case the two crops supplement each other and when used together increase the period of industrial operati on, decrease the unit cost o f e t h a n o l p r o d u c t i o n , a n d increase t h e t o t a l a m o u n t o f e t h a n o l t h a t can be p r o d u c e d by a d i s t i l l e r y in one year. T h e same e q u i p m ent is used to process b o t h sugarcane stalks a n d s w e e t s o r g h u m stalks. C o n s e q u e n t l y , l i t t l e i n t e r e s t i s g i v e n t o t h e s u p e r i o r p r o d u c t i v i t y o f sugarcane o r s w e e t s o r g h u m . H o w e v e r , the economic production of both sugarcane and sweet s orghum are considered i m p o r t a n t .

Sweet sorghum productivity and quality

Sweet s o r g h u m is a relatively u n k n o w n c r o p in T h a i l a n d . It is considered an u n d e r u t i l i z e d c r o p and never g r o w n as a c o m m e r c i a l crop. Few researchers work o n this c r o p . A t K h o n K a e n University, some i m p r o v e d varieties o f sweet s o r g h u m i n t r o d u c e d f r o m t h e International C r o p s Research I n s t i t u t e for t h e S e m i - A r i d Tropics (ICRISAT), Patancheru, India and USA yielded 4 0 - 6 2 t h a 1 . T h e q u a l i t y o f j u i c e f r o m s o r g h u m i s usually s l i g h t l y i n f e r i o r t o j u i c e f r o m sugarcane. T w o t y p e s o f s w e e t s o r g h u m have b e e n d e v e l o p e d : ( 1 ) s y r u p varieties which contain invert sugars in the juice to p revent crystallization; and (2) sugar varieties which contain mostly sucrose and ve ry little invert sugars in t h e j u i c e f o r c r y s t a l l i z a t i o n . B o t h t y p e s o f s w e e t s o r g h u m p r o d u c e e t h a n o l . B u t good types that produce ethanol need not be associated with high sucrose p u r i t y o f t h e sugar t y p e s o r t h e q u a n t i t y a n d q u a l i t y o f syrup produced per ton o f stalks o f t h e s y r u p t y p e s . T h e t o t a l a m o u n t a n d e x t r a c t i o n o f t o t a l i n v e r t sugars ( f e r m e n t a b l e sugar) is i m p o r t a n t f o r e t h a n o l p r o d u c t i o n .

Economics of producing ethanol from sweet sorghum

The Thailand Ministry of Industry reported the product i o n costs o f e t h a n o l i n various raw materials (Table 2). Based on production cost, only cassava, sweet sorghum and molasses are the most suitable raw material s f o r p r o d u c i n g ethanol. The production costs should not be higher than US$0.15 L- 1 otherwise it cannot compete with the fossil energy.

Significance for improving livelihood and income generation

S o r g h u m g r a i n i s m a i n l y u s e d i n T h a i l a n d f o r a n i m a l f e e d i n g . I n 2 0 0 2 , t h e production of sorghum grain was 300,000 t, valued US$99 0 million at farm

224 Table 2 . E s t i m a t e d p r o d u c t i o n c o s t s o f e t h a n o l f r o m v a r i o u s raw materials.

Cost of raw Ethanol yield Production cost of -1 Raw material material (US$ t-1) (L t-1) ethanol (US$L ) Molasses 37.5 260 0.144 Sugarcane 14.6 70 0.209 Sweet sorghum 10.0 70 0.143 Cassava 25.0 180 0.139 Maize 87.5 375 0.233 Rice 200.0 375 0.533

Source: Modified from Thailand Ministry of Industry (2001). l e v e l . A l t h o u g h i t gave less value c o m p a r e d t o rice a n d maize, t h e c r o p i s d r o u g h t t o l e r a n t , has v e r y g o o d a d a p t a b i l i t y a n d can g r o w o n m a r g i n a l lands. These t r a i t s w i l l be o f great b e n e f i t t o t h e p o o r f a r m e r s i n d r y areas. H o w e v e r , an a l t e r n a t i v e use of s o r g h u m grain as h u m a n f o o d is v e r y less in T h a i l a n d because rice is s t i l l surplus. T h e energy crisis, w h i c h s t a r t e d i n 1 9 7 3 , i n i t i a t e d t h e e m e r g e n c e o f bioenergy. A n i n t e g r a t e d f o o d , feed, b i o f e r t i l i z e r a n d energy p r o d u c t i o n s y s t e m using sweet s o r g h u m m a y b e a n e c o n o m i c a l a n d logical response f o r energy p r o d u c t i o n . A t present, sweet s o r g h u m i s n o t p r o d u c e d b y t h e T h a i farmers. After the establishment of eight approved etha n o l p r o d u c t i o n plants, sweet s o r g h u m has v e r y h i g h p o t e n t i a l f o r use as a r a w m a t e r i a l . In t h i s case, we e s t i m a t e d at least 4 0 , 0 0 0 ha of p l a n t i n g area c o u l d p r o d u c e 1.8 m i l l i o n t of fresh stalks w h i c h v a l u e d a b o u t U S $ 1 9 m i l l i o n a t f a r m l e v e l .

Minor utilization of sorghum

Sorghum panicles as ornamental flowers

A c c o r d i n g t o T h a i l a n d p o l i c y o n generating i n c o m e f o r T h a i farmers t h r o u g h t h e p r o m o t i o n ' O n e T a m b o n O n e P r o d u c t ' ( T a m b o n c o m p r i s e s m a n y villages), s o r g h u m was i n c l u d e d i n t h i s p r o j e c t . V a l u e - a d d i t i o n o f s o r g h u m panicles (heads) can b e d o n e b y m a k i n g o r n a m e n t a l f l o w e r s ( A r e e e t al. 1 9 9 5 ) . S o r g h u m panicles are c u t at 5 days after f l o w e r i n g , d r i e d at r o o m t e m p e r a t u r e f o r 1 - 2 w e e k s , b l e a c h e d i n 5 0 % h y d r o g e n p e r o x i d e s o l u t i o n f o r 1 0 m i n u t e s a n d d r i e d again f o r 1-2 w e e k s . T h e panicles are t h e n d y e d w i t h different colors. Sorghum panicles as ornamental flower s can generate m o r e m o n e y t h a n selling g r a i n .

225 Broomcorn

B r o o m c o r n i s g r o w n a l m o s t e n t i r e l y f o r t h e e l o n g a t e d branches t o t h e panicle, w h i c h are u s e d f o r t h e m a n u f a c t u r e o f b r o o m s . T h e c r o p i s g r o w n o n a s m a l l area. T h e p r i c e o f t h e b r o o m s d e p e n d s o n h o w b e a u t i f u l , i n n o v a t i v e a n d c r e a t i v e t h e p r o d u c t s are. T h e b r o o m s are usually e x p o r t e d .

Using sorghum grain as fungal medium for mushroom production

M u s h r o o m p r o d u c e r s i n T h a i l a n d p r e f e r t o use s o r g h u m g r a i n a s t h e fungal m e d i u m stock. M u s h r o o m can g r o w v e r y w e l l o n s t e a m e d s o r g h u m grain. S o r g h u m plays a n i m p o r t a n t r o l e i n m u s h r o o m p r o d u c t i o n , since a large a m o u n t o f grain i s used.

Forage sorghum

Forage s o r g h u m also offers great p o t e n t i a l f o r s u p p l e m e n t i n g f o d d e r resources a n d a great o p p o r t u n i t y f o r p r o d u c i n g b o t h silage a n d hay. H o w e v e r , v e r y f e w researchers w o r k o n forage s o r g h u m i n T h a i land. There i s o n l y one seed c o m p a n y w h i c h p r o m o t e s forage s o r g h u m using ' S u d a x ' ( s o r g h u m X sudangrass) as a c o m m e r c i a l h y b r i d . T h i s c o m p a n y also p r o m o t e s p e a rl m i l l e t (Pennisetum glaucum) as a fodder resource. However, the u t i l i z a t i o n o f forage s o r g h u m a n d p e a rl m i l l e t i s l i m i t e d since t h e y face h i g h competition with forage grasses, cassava and maize (Zea mays).

Conclusion

A l t h o u g h s o r g h u m p r o d u c t i o n i n T h a i l a n d i s l o w c o m p a r e d t o o t h e r cereals (rice a n d maize), it has very high p o t e n t i a l to e x p a n d p r o d u c t i o n . Sweet s o r g h u m as an energy source is t h e m o s t attractive for alternative uses of sorghum. If the large- scale p r o d u c t i o n of ethanol for fuel f r o m sweet s o r g h u m becomes a reality, t h e f u t u r e o f t h e c r o p w i l l be bright. It w i l l p r o d u c e reasonable yields o f ethanol per hectare o n m a r g i n a l lands w i t h m i n i m u m p r o d u c t i o n costs. A t present, w e use surplus crops as w e l l as d i v e r t some of t h e c u r r e n t c r o p p r o d u c t i o n to ethanol fuel programs. F u t u r e programs w i l l b r i n g n e w marginal lands i n t o p r o d u c t i o n o f sweet s o r g h u m t h o u g h t h e area w i l l be very less c o m p a r e d t o t h a t o f o t h e r i n d u s t r i a l crops. Research on sweet s o r g h u m breeding, c u l t u r a l practice i m p r o v e m e n t a n d t h e process for ethanol p r o d u c t i o n are u r g e n t l y needed.

226 References

Aree K, Suchato W, Chomphunich W and Chuyod R. 1995. Study on t i m i n g of sorghum head cutting for production of ornamental flowers. Pages 395-403 in Proceedings of the 26t h National C o r n and Sorghum Research Conference, August 29-September 1, 1995, Phitsanulok, Thailand. Bangkok, Thailand: Kasetsart University Press.

FAO. 2002. F A O production year book. Rome, Italy: FAO.

Nathan RA. 1978. Fuels f r o m sugar crops: systems study for sugarcane, sweet sorghum and sugar beets. Oak Ridge, Tennessee, U S A : U n i t e d States Department of Energy, Technical Information Center. 137 pp.

Schaffert RW and Gourley LM. 1982. Sorghum as an energy source. Pages 605-623 in Sorghum in the eighties: Proceedings of the International Symposium on Sorghum, 2- 7 November 1981, I C R I S A T Center, Patancheru, India. Volume 2. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

227 Strategy for Commercialization of Sorghum

IR Nagaraj1

Abstract The paper discusses the need for a business model for commercialization and recommends the use of 'Product centric' and 'Value chain' approaches to enhance impact of technologies. The possible derivatives of the sweet stalk sorghum are used to describe the stages in product development, the use of tools to analyze the cost-benefits and the steps for building a value chain to create alternative livelihoods for the poor in the semi-arid tropics. T h e r e i s a great o p p o r t u n i t y f o r R & D centers, w o r k i n g i n the development- o r i e n t e d p r o g r a m s , t o a d o p t t h e business m o d e l f o r c o m m e rcialization for enhancing impact of improved technologies. Two such business concepts are discussed i n t h i s paper: (1) P r o d u c t c e n t r i c a p p r o a c h ; a n d (2) V a l u e chain a p p r o a c h . Scientists work on solving problems related to crops, f o o d , n u t r i t i o n a n d p o v e r t y a n d r o l l o u t p r o d u c t s o r t e c h n o l o g i e s t h a t can h e lp solve the target problem. These products include high-yielding, drought o r pest resistant varieties, analytical reports and policy guidelines on problems of the poor. In many instances though these are referred to as product s , in real sense t h e y m a y n o t q u a l i f y a s ' p r o d u c t s ' w h e n c o m m e r c i a l rules are a p p l i e d .

Characteristics of a product

In t h e c o m m e r c i a l parlance, a p r o d u c t is one t h a t p r o v i d e s a tangible value and also provides a satisfying experience to the customer. I n t o d a y ' s c o n t e x t o f customer-driven markets both have to co-exist in a pro d u c t . For every p r o d u c t t h e c u s t o m e r p r o v i d e s a feedback. T h e r e are two types o f feedback: ( 1 ) 'sales-feedback' f o r t h e p r o d u c t ; a n d ( 2 ) ' p r o f i t - f e e d b a c k ' f o r t h e e n t e r p r i s e . H i g h sale indicates t h a t t h e c u s t o m e r likes the product. The s e c o n d e l e m e n t o f feedback, ie, p r o f i t , i s a r e c o g n i t i o n f o r t h e effectiveness o f t h e p r o d u c t . H i g h e r p r o f i t i s a result of higher satisfaction of the customer due t o t h e h i g h effectiveness o f t h e p r o d u c t . N o w let u s a p p l y t h i s p r i n c i p l e t o o u r w o r k i n d e v e l o p m e n t o f n e w varieties of crops. When varieties are released, rate a n d e x t e n t o f a d o p t i o n i s t h e

1. ICRISAT, Patancheru 502 324, Andhra Pradesh, India.

228 equivalent to sales feedback. Large-scale a d o p t i o n of a variety indicates the preference o f t h e f a r m e r t o t h e c r o p . I f this large-scale adoption and the effectiveness o f t h e v a ri e t y b r i n g higher yields and profits t o t h e farmer, t h e n t h a t is t h e feedback on i m p r o v e m e n t in livelihoods. T h i s is equivalent to t h e feedback of p r o f i t for c o m m e r c i a l p r o d u c t s discussed earlier. Scientists producing new varieties with unique traits should ponder: Are we successful in commercializing the products we create to enhance the livelihoods of the poor? Though there are some success stories of commercializat ion, there is scope for improvements. Adoption of the product centri c approach and value chain approach in product development for commercializa tion can enhance the success rates. The ultimate objective of any produc t development initiative is creating competitive advantage for the pr o d u c t . T h i s can b e a c h i e v e d i n t w o ways; p r o v i d e a h i g h e r value t h a n t h e c o m peting products ( v a r i e t y ) for t h e same p r i c e . A l t e r n a t i v e l y , p r o v i d e t h e same value of the c o m p e t i n g p r o d u c t s a t l o w e r costs t h a n t h e c o m p e t i n g p r o d u c t o r variety.

P r o d u c t d e v e l o p m e n t

A system approach to product development will be a very effective method to tackle all the dimensions of product development and its i m p a c t i n t h e m a r k e t . A p r o d u c t d e v e l o p m e n t process m o d e l i s given i n Figure 1 . A l l product development processes are linked to the missio n of the organization o r a n o b j e c t i v e o f t h e p r o g r a m . A t each o f t h e stages f r o m planning to production ramp-up, we have to do sensitivity and tra d e - o f f analysis t o h e l p u s in moving forward or to exit the product development cycle.

Go/No-go decision gates

Sensitivity and trade-off analysis

Figure 1. Schematic representation of a product development process m o d e l .

229 W h i l e a l l t h e c o m p o n e n t s o f t h e above process are i m p o r t ant, 'concept development' stage w i l l be discussed in detail, as it is very c r i t i c a l f o r t h e success o f any p r o d u c t .

Who is the customer?

Traditionally, we target the farm community as our cust o m e r . I t i s p e r f e c t a s long as the consumption of the product is at the farm l e v e l . I f o u r o b j e c t i v e i s to create a livelihood value, then the product we provi de to the farmer is only a n i n p u t i n t h e value c h a i n , a s t h e p r o d u c e w i l l b e t r a d ed to reach the ultimate c u s t o m e r - t h e c o n s u m e r . The challenge in commercialization is to identify multi ple customers along a v a l u e c h a i n . T h e i n t e r e s t i n g aspect of a p r o d u c t is that the perceived value ( t r a i t ) b y t h e scientist n e e d n o t b e t h e r e a l i z e d value (higher yield) or commercial value (marketability) to the farmer. Establishing the sync between the perceived value, realized value and commer c i a l value i s t h e process for establishing a value chain for a product.

Case study of value chain model for sweet stalk sorghum

Figure 2 e x p o u n d s t h e m o d e l of value c h a i n f o r s w e e t stalk s o r g h u m (Sorghum bicolor). F r o m t h i s m o d e l , w e can a p p r e c i a t e t h a t t h e r e are m a n y players w i t h d i f f e r e n t set o f c o m p e t e n c i e s a n d resources n e e d e d t o b u i l d a value c h a i n . B u i l d i n g these t y p e s o f value chains f o r t h e p r o d u c t s w e p roduce provides greater chance of success in enhancing the livelihood of the poor. Establishing s u c h a c o a l i t i o n o f p a r t n e r s a n d players requires c a r e f u l planning and identifying the right segment and intermediate custome r s .

T h e c o n c e p t d e v e l o p m e n t p r o c e s s

F i g u r e 3 i n d i c a t e s t h e various stages a n d processes r e q u i r e d f o r a successful c o m m e r c i a l i z a t i o n o f a p r o d u c t . H e r e , w e n e e d t o elaborate the economic analysis process, w h i c h w i l l help us to determine the v i a b i l i t y o f t h e p r o d u c t . This process is also referred to as Business Case Analy s i s or P r o d u c t E c o n o m i c s . T h e m o s t c o m m o n m e t h o d u s e d i s N e t Present V a lue (NPV). The process is e x p l a i n e d in F i g u r e 4.

230 Industry I Objectives

Research Program Farm Objectives Industry II Mission Objectives Objectives To enhance Increase stalk/ Enhance grain yield Fine chemicals livelihood commercial traits and syrups from in sorghum High sugar sorghum content in stalk

Community Industry III Objectives Objectives Save organic Alcohol fuel, clean blended environment fuel

Figure 2. A model value chain for sweet stalk sorghum.

T h e r e are t w o d i s t i n c t t i m e span stages i n a p r o d u c t c o m mercialization process: (1) Development time; and (2) Payback time. D uring these two stages money is invested for product development and ma rketing. The pace of investment, though high during development stage, evens o u t later. W h e n t h e sales revenue surpasses the investment curve, operati n g p r o f i t is achieved. H o w e v e r , n e t p r o f i t i s a c h i e v e d o n l y w h e n sales revenues go up and the revenues cover all operating costs resulting in cash surplus.

Figure 3. Schematic representation of concept development process.

231 Revenues

Operating costs

Operating profit Investments

Time Development Payback time time

Breakeven time

Figure 4. Product development cash flow.

T h e c r i t i c a l f a c t o r is to p r e d i c t as closely as possible t h e c u r r e n t i n v e s t m e n t s , t h e f u t u r e cost a n d t h e a n t i c i p a t e d r e t u r n s o f t h e p r o d u c t a n d its associated services. B o t h cost a n d t i m e d i m e n s i o n s d e t e r mine the profitability a n d e v e n t u a l success o f t h e p r o d u c t . Besides t h i s t h e s e n s i t i v i t y a n d t r a d e - o f f analysis will support the product development decisions. For e x a m p l e t h e social o r p o l i t i c a l aspects o f t h e e c o n o m y w h e r e t h e p r o d u c t i s t o b e d e p l o y e d can b e w e l l analyzed i n t h e s e n s i t i v i t y analysis.

Conclusion

W h e r e t h e r e are c o n s t r a i n t s f o r f i n a n c i a l resources, i t i s i m p o r t a n t f o r d e v e l o p m e n t i n s t i t u t i o n s t o a d o p t business m o d e l s t o p l a n , d e v e l o p a n d commercialize products. The concepts and models dealt above w i l l p r o v i d e a b e t t e r u n d e r s t a n d i n g f o r scientists w o r k i n g o n i n t e r n a t i o n a l p u b l i c goods t o enhance t h e l i v e l i h o o d s o f t h e p o o r .

232 The Commercialization of Sorghum and Pearl Millet in Africa: Traditional and Alternative Foods, Products and Industrial Uses in Perspective

DD Rohrbach1 and AB Obilana2

Abstract Sorghum and millets are primarily grown as subsistence food crops in Africa. Less than 5% of annual production is commercially processed by industry. The expansion of agro-processing and industrial utilization depends on the growth of per capita incomes and urbanization. However, for sorghum and pearl millet to be competitive with alternative grains, gains are also required in farm productivity and market efficiency. High marketing costs represent a particular problem in many regions of Africa where market density is low and production levels are unstable. Entrepreneurs need assistance in evaluating the trade-offs in using alternative grain inputs. They also need more information about alternative processing technologies and end uses of these crops. The varied experiences with sorghum and pearl millet commercialization that are evident in diverse regions of Africa need to be publicized. A strategic framework of public and private sector partnership is proposed as a basis for addressing these challenges.

S o r g h u m (Sorghum b i c o l o r ) a n d m i l l e t s are m a j o r f o o d crops in Sub-Saharan A f r i c a . T h e t w o grains a c c o u n t f o r 5 6 % o f t h e area p l a n t e d t o cereals i n t h i s r e g i o n , a n d 4 1 % o f cereal p r o d u c t i o n . I n c o m p a r i s o n , maize (Zea mays) accounts f o r 3 6 % of cereal grain p r o d u c t i o n . Rice (Oryza sativa) a n d w h e a t (Triticum aestivum) m a k e up m o s t of t h e r e m a i n i n g 2 3 % . Postharvest processing and u t i l i z a t i o n ( P P U ) o f s o r g h u m and m i l l e t s are m a j o r ingredients for f o o d and feed security; a n d w h e n done appropriately, b e c o m e a significant strategy for cash i n c o m e and diversification of l i v e l i h o o d of people i n t h e s e m i - a r i d t r o p i c s ( S A T ) o f A f r i c a . Together w i t h increased production and productivity, appropriate PPU responds t o a n d enhances m a r k e t demands within the different village/community-nationa l-regional level continuum. Processing technologies and equipment for ut i l i z a t i o n o f s o r g h u m a n d m i l l e t s for several i n t e r m e d i a t e and e n d p r o d u c t s s h o u l d b e a p p r o p r i a t e t o t h e specific needs o f consumers a n d processing industries i n A f r i c a . W e have t o

1. I C R I S A T , Box 7 7 6 , B u l a w a y o , Z i m b a b w e . 2. I C R I S A T , P O Box 3 9 0 6 3 , N a i r o b i , Kenya.

233 acknowledge the co-existence of these postharvest technologies at t h e t h r e e socioeconomic levels: communal/cottage industry, the me dium scale/service level, a n d t h e large i n d u s t r i a l scale. T h e status of these PPU technologies varies and at present m o r e c o m m u n a l / c o t t a g e - l e v e l and m e d i u m - s c a l e industries serve t h e c o m m u n i t y a n d p e r i - u r b a n needs. I t i s necessary for u s i n A f r i c a t o develop f r o m t h i s scenario a n d t i l t t h e balance o f P P U t o w a r d s m o r e o f m e d i u m - t o large-scale industries. T h i s w i l l enhance t h e g r o w t h o f t h e industries a n d increase q u a n t i t y a n d q u a l i t y o f e n d p r o d u c t s a s w e l l a s a llow R & D responses to n e w innovations i n t h e use o f s o r g h u m and m i l l e t s . I n S o u t h e r n A f r i c a , t h e s o r g h u m i n d u s t r y d i v e r s i f i e d f r o m t h e o r i g i n a l l y c o m m o n use i n b r e w i n g o p a q u e beer i n t o p r o d u c t s o f m e a l , f l o u r , t h i n p o r r i d g e s , energy d r i n k s a n d o t h e r cereal p r o d u c t s . H o w e v e r , these are p r o d u c t areas associated w i t h o t h e r cereal crops l i k e m a i z e a n d w h e a t . A s i m i l a r scenario o f i n d u s t r i a l change i s n o w o c c u r r i n g i n W e s t A f r i c a a n d K e n y a , a n d b e g i n n i n g i n o t h e r c o u n t r i e s o f East a n d C e n t r a l A f r i c a (Tanzania, R w a n d a a n d U g a n d a ) . T h i s d i v e r s i f i c a t i o n necessitated t h e development and use o f s o r g h u m varieties a n d h y b r i d s w i t h a p p r o p r i a t e p r o p e r t i e s , acceptable t o b o t h processors a n d c o n s u m e r s . I t also p i t c h e d s o r g h u m i n c o m p e t i t i o n w i t h t h e c o m m o n l y u s e d cereals, m a i z e a n d w h e a t i n t h e r e g i o n . T h i s d e v e l o p m e n t n o w requires s o r g h u m as a cereal c r o p to be seen a n d used for its uniqueness i n d e v e l o p i n g o r m o d i f y i n g t e c h n o l o g i e s relevant t o a p p r o p r i a t e p r o d u c t s . Producers, c o n s u m e r s , processors a n d traders n o w have t o i n t e r a c t m o r e closely w i t h m a r k e t situations. T h r o u g h o u t A f r i c a , t h e r e is a huge resource of genetic materials a n d expertise i n s o r g h u m a n d m i l l e t u t i l i z a t i o n . T h e huge natural and i m p r o v e d genetic resources n e e d t o b e i d e n t i f i e d a n d enhanced for uniqueness a n d e n d use properties. A n a t t e m p t a t t h i s started i n t h e S o u t h e r n A f r i c a region i n t h e 1980s, a n d earlier i n t h e W e s t A f r i c a region. S o m e progress was reported t h r o u g h databases generated on grain q u a l i t y assessments ( O b i l a n a 1985, 1 9 9 4 , 1998, Okon and Uwaifo 1985, Gomez et al. 1997, Murty e t al. 1 9 9 7 , M a n f u l e t al. 2 0 0 1 ) . E x p e r t i s e i n s o r g h u m a n d m i l l e t processing a n d u t i l i z a t i o n also exist a n d have been r e p o r t e d i n several p u b l i c a t i o n s ( F I I R O 1976, O k a f o r and A n i c h e 1980, A i s i e n 1 9 9 0 , B o g u n j o k o 1 9 9 2 , Taylor 1 9 9 2 , 1 9 9 3 , S o o l i m a n 1 9 9 3 , D a i b e r a n d Taylor 1 9 9 5 , N i c h o l s o n a n d Taylor 1 9 9 7 , N d o y e 2 0 0 1 ) . Available literature shows that expertise in postharvest processing technology and utilization lies with indigenous knowled ge, small enterprises, large-scale f o o d a n d f e e d processors, research i n s t i t u t e s a n d u n i v e r s i t i e s .

234 H o w e v e r , t h e r e is a m a j o r p r o b l e m of i n f o r m a t i o n d i s s e m i n a t i o n , access a n d r e t r i e v a l for use. I n A f r i c a researchers have n o t b e e n able t o capitalize o n t h e available i n f o r m a t i o n r e g a r d i n g t h i s expertise. T h i s is because t h e y are scattered a n d b u r i e d i n R & D r e p o r t s w i t h i n d i v i d u a l s i n f a r m e r groups, i n s t i t u t i o n s , organizations and i n d u s t r i e s w i t h i n c o u n t r i e s a n d across t h e regions o f A f r i c a . T h e y are n o t shared, r e s u l t i n g i n l i t t l e o r n o awareness o f such e x p e r t i s e . T h e s i t u a t i o n m u s t change i f A f r i c a i s t o progress i n increased p r o d u c t i o n a n d c o m m e r c i a l i z a t i o n o f s o r g h u m a n d m i l l e t s t h r o u g h i m p r o v e d postharvest processing and u t i l i z a t i o n science a n d technologies. T h e r e m u s t b e linkages across the continuum of producers-processors-traders/markets- c o n s u m e r s f o r A f r i c a t o achieve these P P U objectives i n a market-oriented goal a n d e n v i r o n m e n t . D e s p i t e t h e i r r e l a t i v e i m p o r t a n c e i n regional f o o d systems, very l i t t l e s o r g h u m or pearl m i l l e t (Pennisetum glaucum) is c o m m e r c i a l l y processed. R o u g h estimates suggest less t h a n 3% of Sub-Saharan A f r i c a ' s s o r g h u m p r o d u c t i o n i s used i n t h e f o r m a l f o o d a n d f e e d industries; t h e r e m a i n i n g > 9 0 % i s t r a d i t i o n a l l y processed i n t o foods and beverages. Industrial u t i l i z a t i o n o f p e a rl m i l l e t i s rare. T h e relative i m p o r t a n c e o f these crops i n A f r i c a ' s t r a d i t i o n a l f o o d systems suggests substantial opportunities should exist for t h e i r commercialization. In the first instance, commercial processing can p r o v i d e u r b a n m i g r a n t s f r o m s o r g h u m o r pearl m i l l e t p r o d u c t i o n zones w i t h a f a m i l i a r f o o d p r o d u c t . A s i n c o m e s grow, d e m a n d w i l l evolve t o w a r d m o r e processed f o o d p r o d u c t s . I n t h e longer t e r m , t h e d o m i n a n t share o f s o r g h u m a n d pearl m i l l e t m a y b e c o n s u m e d i n A f r i c a a s a n i m a l feed. H o w e v e r , m a n y factors w i l l i n f l u e n c e t h e level a n d speed o f t h i s t r a n s i t i o n . I n d u s t r i a l processing o f t h e crops i s c u r r e n t l y c o n s t r a i n e d b y l o w a n d variable levels o f p r o d u c t i o n , h i g h assembly a n d processing costs, a n d uncompetitive grain prices. Further, many commercial grain processors r e m a i n u n f a m i l i a r w i t h t h e use o f these grains. T h e y t h e n q u e s t i o n c o n s u m e r preferences f o r s o r g h u m - a n d p e a r l m i l l e t - b a s e d f o o d a n d f e e d p r o d u c t s . These grains m u s t c o m p e t e f o r a t t e n t i o n w i t h b e t t e r - k n o w n c o m m e r c i a l i n p u t s such as maize, w h e a t and r i c e . T h i s paper r e v i e w s t h e t r a d i t i o n a l s o r g h u m a n d pearl m i l l e t p r o d u c t s , t h e i r c o m m e r c i a l i z a t i o n a n d i n d u s t r i a l u t i l i z a t i o n i n A f r i c a . I t starts w i t h t h e status and d e v e l o p m e n t needs o f processing a n d u t i l i z a t i o n technologies, a n d p r o v i d e s a b r i e f o v e r v i e w o f available data o n t h e c u r r e n t levels o f c o m m e r c i a l u t i l i z a t i o n o f these grains. I t t h e n h i g h l i g h t s p r o d u c t i o n a n d m a r k e t i n g

235 c o n s t r a i n t s l i m i t i n g t h e g r o w t h o f i n d u s t r i a l processing. Several strategies are proposed, including strategic, public and private group /institutional partnerships, for resolving these constraints.

Sorghum and pearl millet production

A c c o r d i n g t o F A O ( F o o d a n d A g r i c u l t u r e O r g a n i z a t i o n o f t h e U n i t e d N a t i o n s ) data ( F A O 2 0 0 3 ) , Sub-Saharan A f r i c a a n n u a l l y p r o d u c e s a b o u t 1 8 m i l l i o n t o f s o r g h u m a n d 1 3 m i l l i o n t o f m i l l e t (Table 1 ) . T h e p u b l i s h e d data d o n o t d i s t i n g u i s h b e t w e e n various species o f m i l l e t . W e e s t i m a t e t h a t a p p r o x i m a t e l y 8 7 % of t h i s is p e a rl m i l l e t , 1 0 % is finger m i l l e t (Eleusine coracana) a n d t h e r e m a i n d e r c o m p r i s i n g f o n i o (Digitaria exilis) a n d t e f f (Eragrostis tef), m o s t l y ( I C R I S A T a n d F A O 1 9 9 6 ) . T h i s c o m p a r e s w i t h t h e p r o d u c t i o n o f a b o u t 2 7 m i l l i o n t o f m a i z e , t h e closest cereal g r a i n s u b s t i t u t e i n b o t h p r o d u c t i o n a n d commercial processing systems. E q u a l p r o d u c t i o n areas are p l a n t e d t o s o r g h u m , m i l l e t a n d m a i z e . B u t since m a i z e t e n d s t o b e g r o w n i n h i g h e r r a i n f a l l zones, i t offers higher average yields. S o r g h u m a n d m i l l e t y i e l d s t e n d t o r e m a i n l o w because these crops are m o s t l y a d a p t e d t o , a n d g r o w n i n drier, d r o u g h t - p r o n e regions. C o r r e s p o n d i n g l y , s o r g h u m a n d p e a r l m i l l e t are b e t t e r k n o w n a s f o o d s e c u r i t y crops. T h e lack o f a c o m m e r c i a l m a r k e t f o r s o r g h u m a n d pearl m i l l e t has d i s c o u r a g e d i n v e s t m e n t i n t h e d e v e l o p m e n t a n d a d o p t i o n o f n e w varieties a n d c r o p m a n a g e m e n t practices. A t least 5 % o f t h e s o w n area o f s o r g h u m i s s t i l l planted to traditional, landrace varieties. More than 9 0 % o f p e a rl m i l l e t area s o w n i n Sub-Saharan A f r i c a i s s i m i l a r l y s o w n t o t r a d i t i o n a l varieties. Fertilizer use on these crops is rare a n d m a n y f a r m e r s do n o t even use available m a n u r e . A s a result, t h e r e has b e e n v i r t u a l l y n o g r o w t h i n average g r a i n y i e l d s o f s o r g h u m a n d p e a r l m i l l e t i n Sub-Saharan A f r i c a d u r i n g t h e past 2 0 years.

Table 1. Area, yield and production of major coarse grains in Sub-Saharan Africa, 1999-2001.

Crop Area (million ha) Yield (t ha-1) Production (million t) Sorghum 21.8 0.8 18.1 Millets 20.0 0.7 13.1 Maize 21.0 1.3 27.2

Source: FAO (2003).

236 On-shelf technologies

Postharvest processing begins with threshing of the grain ( r e m o v a l o f grain f r o m panicle a n d separation f r o m g l u m e ) , w i n n o w i n g and cleaning ( r e m o v a l o f sand, stone a n d e x t r a n e o u s m a t t e r ) , f o l l o w e d b y p r i m a r y ( d ehulling) and secondary processing ( m i l l i n g a n d m a l t i n g ) . For each of these stages, m e c h a n i c a l t h r e s h i n g a n d m i l l i n g s h o u l d b e t h e n o r m . H a n d o r draft power t h r e s h i n g , usually result i n t h e grain b e c o m i n g d i r t y and c o n t a m i n a t e d w i t h sand a n d o t h e r m i c r o b e s ( l i k e m o l d ) . Because sand and m i c r o b i a l c o n t a m i n a n t s are d i f f i c u l t t o e l i m i n a t e , m a c h i n e r y can b e d a m a g e d re s u l tin g i n u n p a l a t a b l e a n d g r i t t y f o o d p r o d u c t s , w h i c h c o u l d also have t o x i n s d u e t o m o l d s . Each o f these stages, e x c e p t f o r w i n n o w i n g a n d cleaning, have i m p l i c a t i o n s o n genetic v a r i a t i o n and grain q u a l i t y o f t h e varieties. These v a r i e t a l differences have b e e n d o c u m e n t e d i n grain q u a l i t y e v a l u a t i o n data generated i n S o u t h e r n A f r i c a f o r pearl m i l l e t ( M o n y o 1 9 9 8 ) a n d for s o r g h u m ( O b i l a n a 1 9 9 4 , 1 9 9 8 ) . G r a i n q u a l i t y p a r a m e t e r s r e l a t e d t o a n d o f i m p o r t a n c e i n t h e processing technologies have b e e n i d e n t i f i e d t o i n c l u d e : grain hardness, w a t e r a b s o r p t i o n , f l o u r y i e l d ( m i l l i n g q u a l i t y ) , t a n n i n c o n t e n t , p a r t i c l e size i n d e x , p e r i c a r p thickness, seed coat (testa), e n d o s p e r m t e x t u r e , k e r n e l w e i g h t , size a n d shape, diastatic p o w e r , g e r m i n a b i l i t y a n d g e r m i n a t i o n v i g o r (all r e l a t e d t o m a l t i n g q u a l i t y ) ( G o m e z et al. 1 9 9 7 ) . Tables 2 a n d 3 s h o w t h e grain q u a l i t y t r a i t s in d i f f e r e n t s o r g h u m (database o f over 5 0 0 samples) a n d pearl millet (database o f over 1 0 0 samples) lines. T h e databases generated i n c l u d e data f o r b o t h i m p r o v e d a n d f a r m e r varieties. Recently, the importance of using appropriate equipment i n p r i m a r y a n d secondary processing f o r t h e p r o m o t i o n o f s o r g h u m p r o d u c t s i n Senegal was d o c u m e n t e d b y N d o y e ( 2 0 0 1 ) . A s m u c h a s t h e r e are several types o f cereal threshers, d e h u l l e r s a n d m i l l s m a n u f a c t u r e d i n E u r o p e , t h e issues o f processing technologies a n d e q u i p m e n t have to t a k e a n e w p e r s p e c t i v e for Africa. This approach focuses on the use of successful s o r g h u m a n d m i l l e t processing t e c h n o l o g i e s a n d e q u i p m e n t , w h i c h have b e e n locally m a n u f a c t u r e d t o address t h e p r o b l e m s faced w i t h using i m p o r t e d E u r o p e a n / A m e r i c a n e q u i p m e n t . P r o b l e m s w i t h a p p l i c a t i o n o f such machines a n d t e c h n o l o g i e s f r o m t h e d e v e l o p e d w o r l d i n c l u d e : h i g h cost, v e r y h i g h m a t e r i a l throughput, high complexity, sophisticated maintenance requirements and lack o f robustness ( J R N Taylor, U n i v e r s i t y o f Pretoria, Pretoria, S o u t h A f r i c a , 2 0 0 2 , personal c o m m u n i c a t i o n ) .

237 Table 2. Grain quality traits related to processing and utilization for different sorghum types from Southern Africa.

Range of values

Grain trait White sorghums Red sorghums Brown sorghums

Testa Absent Absent Present Hardness score1 2.6-4.8 1.7-4.7 1.4-3.8 Flour/milling yield (%) 72.60-90.82 69.23-88.20 64.20-86.20 Water absorption (%) 3.8-11.8 4.2-13.1 5.1-14.8 100-seed mass(g) 1.57-3.88 1.44-3.32 1.25-2.95 Grain size2 Medium to large Medium to large Small to large Floaters (%) 11-85 23-100 55-100 Flour color3 Dry Agtron reading 68.2-82.5 59.5-76.8 50.7-72.1 Wet Agtron reading 48.8-63.6 32.2-55.4 24.4-48.8 Malting quality (SDU values) 14.68-73.34 15.90-72.62 28.28-74.17 Tannin content (% ce) 0 0.0-0.5 0.5-5.0 Crude protein (%) 10.9 10.9 10.9

1. Score on a 1-5 scale where 1.0—2.5 = soft, 2.6-3.4 = intermediate, 3.5-4.5 = hard, and 4.6-5.0 = very hard. 2. Grain size: Large = >4.00 mm, medium = 2.60-4.00 mm, small = <2.60 mm. 3. The higher the reading the lighter is the product color. Source: Modified from Obilana (1998).

Table 3. Grain quality traits related to processing and utilization of some pearl millet cultivars in Southern Africa.

Grain traits Range of values

Visual hardness score1 2.4-3.3 Proportion of floury endosperm 0.25-0.53 Particle size index 9.17-12.14 100-seed mass(g) 0.92-1.41 Floaters (%) 53-93 Dehulling loss (%) 4.60-11.90 Milling yield (%) 81.00-93.50 Water absorption (%) 8.50-12.80 Size fractions2 Large 8.51-72.07 Medium 27.71-91.18 Small 0.15-1.79 Flower color (Agtron reading) (dry) 48.00-56.40

1. Score on 1-5 scale where 1 = very soft and 5 = very hard. 2. Large = >2.6 mm; Medium = 1.77-2.6 mm; Small = <1.7 mm. Source. Modified from Monyo (1998).

238 Threshing and dehulling process

To increase and diversify sorghum and millet utilizatio n, mechanical threshing and dehulling has become the norm. We are aware of some machines t h a t have been developed or modified and put into use in Souther n Africa. In Namibia, f o r e x a m p l e , a n a g r i c u l t u r a l m a c h i n e c o m p a n y m a n u f a c t u r e s small p o r t a b l e petrol-powered pearl millet threshers. The same Namibi a n c o m p a n y i s t r y i n g t o m o d i f y a larger t r a c t o r P o w e r Take O f f ( P T O ) maize thresher for pearl m i l l e t and s o r g h u m . M o d i f i c a t i o n i s s t i l l c o n t i n u i n g w i t h r e p l a c e m e n t o f t h e larger m e s h screen i n t h e P T O b y a smaller screen o f 6 - m m m e s h , a n d t h e t h r e s h e r f a n w h i c h i s t o o p o w e r f u l f o r t h e smaller grains. Several threshing machines imported from developed countries, specific f o r t h r e s h i n g w h e a t , barley (H o r d e u m vulgare) a n d oats (Avena sativa), can also b e m o d i f i e d f o r t h r e s h i n g s o r g h u m a n d p e a rl m i l l e t . T h i s i s already happening in Zimbabwe. In Senegal, mechanical threshers made in France and specifically a d a p t e d f o r p e a r l m i l l e t are used. These m o dified threshers range i n o u t p u t o f 3 0 0 k g h - 1 (small) to 1000 kg h- 1 (large). D e h u l l e r s suitable f o r s o r g h u m a n d m o d i f i a b l e for pearl m i l l e t are manufactured in Botswana and Zimbabwe. The dehuller is manufactured by t h e R u r a l I n d u s t r i e s I n n o v a t i o n C e n t e r ( R I 1 C ) , K a n y e , Botswana. The t h r o u g h p u t speed i s 1 0 k g m i n - 1 and 400-600 kg h-1. A significant d e v e l o p m e n t w i t h t h i s s o r g h u m d e h u l l e r i s t h a t i t has b e e n combined to a h a m m e r m i l l b y t h e R I I C t o create a dehulling-milling package/chain to ease milling process and make it more time and cost efficie nt. The dehuller on its o w n can b e used f o r b o t h c o m m e r c i a l and service operations. For the purpose of adapting these dehullers to West Afr i c a , i t s h o u l d b e noted that current dehulling technology is not yet very efficient for sorghum a n d p e a r l m i l l e t . Research a n d d e v e l o p m e n t e f f o r t i s s t i l l needed to develop a d e h u l l i n g t e c h n o l o g y t h a t r e m o v e s t h e g e r m clean f r o m s o r g h u m a n d p e a r l millet grains. The theoretical and scientific reasoning behind this r e c o m m e n d a t i o n is t h a t b o t h grains ( s o r g h u m averages 2.8 g fat 100g-1) have large oil-rich germs (more so in pearl millet, 3.0 g fat l O O g-1 ) . For e x a m p l e , t o p r o d u c e s o r g h u m m e a l o f l o w fat c o n t e n t ( < 1.0 g fat 1 00g-1) , u p t o 4 0 % o f t h e g r a i n m u s t b e d e c o r t i c a t e d b y d e h u l l i n g . W i t h such amount of loss, excessive d e h u l l i n g o f s o r g h u m a n d m i l l e t s m a y b e c o m e a n uneconomical process a n d m a y n o t b e v i a b l e . T o m a k e t h e d e h u l l i n g process v i a b l e , t h e m a r k e t f o r t h e b y p r o d u c t , w h i c h i s b r a n , m u s t b e p u t i n place f o r a n i m a l f e e d p r o d u c t i o n .

239 Milling

I n general, s o r g h u m ( d e h u l l e d o r u n d e h u l l e d ) i s m i l l e d using e i t h e r t h e h a m m e r m i l l o r r o l l e r m i l l . T h e h a m m e r m i l l , a l t h o u g h a v e r y s i m p l e a n d effective technology for breaking up whole or dehulled g r a i n i n t o m e a l , i s n o t adequate t o p r o d u c e m e a l a n d f l o u r o f u n i f o r m p a r t i c l e size r e q u i r e d t o p r o d u c e q u a l i t y b a k e d (eg, b r e a d o r biscuits) o r s t e a m e d products. The h a m m e r m i l l p r o d u c e s r o u g h m e a l f o r sadza or bogobe (stiff porridge) and tchwala ( t h i n p o r r i d g e ) i n S o u t h e r n A f r i c a . These p r o d u c t s are r o u g h i n t e x t u r e a n d r e q u i r e larger grain m i l l e d p r o d u c t o f 5 0 0 - 8 0 0 u m g r a n u l a t i o n . T h e h a m m e r m i l l f a b r i c a t e d a t R I I C has t h r e e m e s h sizes f o r different grades o f m e a l . H o w e v e r , f i n e r m e a l a n d f l o u r f o r same f o o d p r o d u c t s ( s t i f f a n d t h i n p o r r i d g e s ) are o b t a i n e d f r o m r o l l e r m i l l . T h e f i n e r m e a l p r o d u c t s o f g r a n u l a t i o n 3 0 0 - 5 0 0 u m are s o l d f o r higher prices i n t h e m a r k e t . W h e n t h e grains are c o n d i t i o n e d t o a b o u t 1 6 % m o i s t u r e a n d r o l l e r m i l l e d , t h e q u a l i t y a n d y i e l d o f t h e f l o u r i s better, f i n e r a n d s m o o t h e r . D e h u l l e d grain t h a t i s r o l l e r - m i l l e d also gives close t o t h e q u a l i t y o b t a i n e d w i t h m o i s t u r e - c o n d i t i o n e d r o l l e r m i l l i n g . I t i s t h i s t y p e o f f i n e f l o u r o f 250-500 um g r a n u l a t i o n t h a t is r e q u i r e d f o r m a k i n g t h e s m o o t h p r o d u c t of to or tuwo ( s t i f f p o r r i d g e ) and ogi/akamu ( t h i n p o r r i d g e ) c o m m o n l y c o n s u m e d i n W e s t a n d C e n t r a l A f r i c a . For c o m p o s i t e f l o u r ( w i t h w h e a t ) a n d b a k i n g f l o u r f o r flat o r semi-leavened breads (k i s r a , injera) and biscuits, superfine flour of <250 um g r a n u l a t i o n is r e q u i r e d .

Milling equipment

T h e r e are several g o o d d e h u l l i n g a n d m i l l i n g m a c h i n e s t h a t have b e e n f a b r i c a t e d o r m o d i f i e d i n S o u t h e r n A f r i c a ( S o u t h A f r i c a , Botswana and Z i m b a b w e ) a n d East A f r i c a ( K e n y a ) . A m u l t i - c o m p o n e n t m i l l i n g l i n e f o r t h e p r o d u c t i o n o f s o r g h u m m e a l was established b y t h e K e n y a I n d u strial Research a n d D e v e l o p m e n t I n s t i t u t e ( K I R D I ) i n 1 9 8 5 a n d 1 9 9 1 a s p i l o t a n d small-scale commercial production plant, respectively. Its viabili t y a n d p r e s e n t status needs i n v e s t i g a t i o n . A t t h e t i m e o f e s t a b l i s h m e n t , i t f u n c t i o n e d a s a s e m i - d e t a c h e d f o u r - m a c h i n e r y s y s t e m l i n k e d w i t h i n t e n s i v e labor o pe ra t i o n s . I t was inefficient. The Millrite grinding mill from Zimbabwe i s m o b i l e ( w h e e l s can b e a t t a c h e d o r d e t a c h e d ) a n d p o r t a b l e w i t h f i n e sieves, a n d can b e m o u n t e d o n p i c k u p v e h i c l e m a k i n g i t possible t o m o v e a r o u n d t h e village o r m a r k e t

240 centers. T h u s i t can b e used f o r b o t h service a n d c o m m e r c i a l m i l l operations. T h e s o r g h u m d e h u l l e r - h a m m e r m i l l c o m b i n e d m a c h i n e f r o m R I I C i s u n i q u e a n d can b e set u p i n a line system f o r d e h u l l i n g and m i l l i n g i n one process. I t c o u l d be a b e t t e r a n d m o r e p r a c t i c a l m a c h i n e for testing and a d a p t a t i o n for s m a l l - a n d m e d i u m - s c a l e m i l l e r s i n t h e rest o f A f r i c a . A l s o i t can b e f a b r i c a t e d at RIIC to buyers'/users' specifications, and 85% of its parts are available i n B o t s w a n a o r W e s t A f r i c a . T h e M a x i m i l l e q u i p m e n t can b e o b t a i n e d w i t h f u l l parts f r o m S o u t h A f r i c a . O n e o u t s t a n d i n g d e v e l o p m e n t i n t h e processing e q u i p m e n t research i s t h e small-scale, d o u b l e r o l l e r m i l l f r o m N a m i b i a . I t p r o d u c e s s o r g h u m grits a n d m e a l o f h i g h quality. T h e r e i s n e e d f o r R & D t o adapt i t t o p r o d u c e m e a l f r o m m i l l e t , a n d f i n e m e a l a n d f l o u r f r o m b o t h s o r g h u m a n d m i l l e t . O n e o f t h e latest i n n o v a t i o n s i n processing e q u i p m e n t f a b r i c a t i o n i s t h e d e v e l o p m e n t o f a f o n i o d e h u l l e r i n Senegal. T h e d e h u l l e r seems t o b e v e r y e f f e c t i v e a n d can b e a d a p t e d f o r d e h u l l i n g o ther smaller m i l l e t grains l i k e finger m i l l e t .

Malting

S o r g h u m and m i l l e t s have been t r a d i t i o n a l l y used for b r e w i n g c l o u d y a n d opaque beers in S o u t h e r n , Eastern and C e n t r a l A f r i c a . T h e grains are used b o t h i n t h e f o r m o f m a l t and u n m a l t e d adjunct. I n S o u t h e r n and C e n t r a l A f r i c a , t r a d i t i o n a l beer b r e w i n g has long been a large-scale c o m m e r c i a l enterprise (Taylor 1992, 1 9 9 3 ) . M o r e recently in Nigeria, technologies have been d e v e l o p e d t o c o m m e r c i a l l y b r e w clear lager beer and dark stout w i t h s o r g h u m m a l t and s o r g h u m grain as adjunct ( F I I R O 1976, O k a f o r and A n i c h e 1980, O b i l a n a 1985, O k o n and U w a i f o 1985, A i s i e n 1990, Bogunjoko 1992, M u r t y e t al. 1 9 9 7 ) . These latter technologies o f u t i l i z a t i o n i n c l u d i n g p r o d u c t i o n o f n o n - alcoholic s o r g h u m m a l t beverages by t h e breweries, a n d f o o d beverages by agro- f o o d industries i n N i g e r i a a n d S o u t h A f r i c a , have great p o t e n t i a l t h r o u g h o u t S A T for w i d e s p r e a d c o m m e r c i a l i z a t i o n and i n c o m e diversification. I n r e c e n t t i m e s , m u c h e f f o r t i s b e i n g m a d e t o i m p r o v e t h e q u a n t i t y a n d q u a l i t y of cereal p r o t e i n s by using processing t e c h n i q u e s such as m a l t i n g a n d f e r m e n t a t i o n . E n h a n c i n g these e f f o r t s w o u l d p o s i t i v e l y r e s p o n d t o t h e increasing n e e d f o r raising t h e overall n u t r i t i o n a l status a n d h e a l t h o f c o n s u m e r s o f s o r g h u m a n d m i l l e t s , especially i n t h e SAT. M alting, which s i m p l y involves t h e l i m i t e d g e r m i n a t i o n o f cereals i n m o i s t air u n d e r c o n t r o l l e d c o n d i t i o n s , is a t e c h n i q u e t h a t can p o s i t i v e l y affect t h e p h y s i c o - c h e m i c a l c o m p o s i t i o n o f cereals b y i m p r o v i n g t h e i r n u t r i t i o n a l value. T w o

241 m e t h o d s have b e e n used i n t h e c o m m e r c i a l m a l t i n g process i n S o u t h e r n A f r i c a , namely, f l o o r m a l t i n g (large-space o p e n air g e r m i n a t i o n a n d d r y i n g o f steeped grains) a n d p n e u m a t i c m a l t i n g . S t e e p i n g ( i n c o n i c a l steel vats or rectangular containers) i s c o m m o n t o b o t h m e t h o d s , b u t g e r m i n a t i o n a n d d r y i n g are d i f f e r e n t . I n any o f these m a l t i n g processes ( m o r e s o i n t h e f l o o r m a l t i n g ) i t i s v e r y d i f f i c u l t t o r e m o v e o r r e d u c e t h e heavy c o n t a m i n a t i o n w i t h m o l d s , w h i c h are serious p r o b l e m s faced w i t h m a l t i n g a n d k n o w n t o p r o d u c e m y c o t o x i n s i n m a l t s . T h e t e c h n o l o g y o f m a l t i n g process has b e e n p e r f e c t e d i n S o u t h A f r i c a a n d u s e d on a large c o m m e r c i a l scale. These m a l t i n g processes r e s u l t i n g i n o p a q u e beers have b e e n d e s c r i b e d i n d e t a i l b y D a i b e r and Taylor ( 1 9 9 5 ) . I n efforts t o enhance use o f m a l t e d s o r g h u m a n d m i l l e t b y processors f o r f o o d , d r i n k a n d h e a l t h o f c o n s u m e r s , c o l l a b o r a t i v e research i s r e q u i r e d t o d e v e l o p a n d i m p l e m e n t s i m p l e t e c h n o l o g i e s t o p r o d u c e grain o f g o o d m i c r o b i a l q u a l i t y a n d t o p r e v e n t m o l d g r o w t h d u r i n g m a l t i n g .

Traditional sorghum and millet products and their commercialization

To increase and diversify sorghum and millet utilizatio n , it is no g o o d c o p y i n g existing p r o d u c t s m a d e f r o m o t h e r cereals, eg, pasta. Generally, these p r o d u c t s , i f m a d e f r o m s o r g h u m a n d m i l l e t s , b e c o m e i n f e r i o r a n d unfavorable t o c o m p e t e w i t h those m a d e f r o m cereals w i t h t h e desirable f u n c t i o n a l characteristics. I t t h e r e f o r e f o l l o w s t h a t such substitute p r o d u c t s w i l l reflect b a d l y o n s o r g h u m and m i l l e t s . T h e emphasis s h o u l d t h e r e f o r e b e o n e x p l o i t i n g t h e p o t e n t i a l l y useful i n t r i n s i c qualities o f s o r g h u m and m i l l e t s , a n d hence d e v e l o p and p r o d u c e u n i q u e and alternative value-added p r o d u c t s . P r o d u c t i o n o f substitute p r o d u c t s using s o r g h u m and m i l l e t s , f o r w h i c h these cereals have no desirable traits, has been one o f t h e reasons for l i m i t e d c o m m e r c i a l successes i n using t h e m for c o m p o s i t e b r e a d a n d b a k e d o r e x t r u d e d p r o d u c t s . O n e o t h e r c o n c e r n i s t h e general e x p e c t a t i o n t h a t s o r g h u m a n d m i l l e t s s h o u l d b e cheaper t h a n o t h e r cereals f o r t h e m t o b e c o m m e r c i a l l y u t i l i z e d i n d i f f e r e n t e n d p r o d u c t s . I t i s n o t c o r r e c t t o t h i n k t h a t m i l l e t a n d s o r g h u m w i l l be a cheap f i l l e r f o r o t h e r cereals. M i l l e t a n d s o r g h u m w i l l a n d s h o u l d always be at least expensive as o t h e r cereal grains. T h e cost o f p r o d u c t i o n w i l l always b e similar, a n d a t t e m p t s t o sell at l o w e r prices t h a n o t h e r cereals w i l l be disadvantageous a n d f u r t h e r i m p o v e r i s h t h e r e s o u r c e - p o o r f a r m e r s o f t h e SAT. I t w i l l also r e n d e r t h e i r p r o d u c t i o n u n e c o n o m i c a l and n o t viable. Research i n t o

242 t h e i r p r o d u c t i v i t y to encourage prices a n d enhance use as raw materials in i n d u s t r y is increasing a n d s h o u l d be h i g h l y p r i o r i t i z e d across Africa.

Primary foods: meal, flour, baked and steamed products

A s stated earlier, f o o d uses m u s t b e a p p r o p r i a t e t o t h e p a r t i c u l a r characteristics o f m i l l e t and s o r g h u m . I n S o u t h e r n a n d C e n t r a l A f r i c a , v e r y l i t t l e s o r g h u m a n d m i l l e t s f l o u r a n d m e a l i s used i n s t i f f porridges (except in B o t s w a n a as bogobe a n d in N a m i b i a as mhunga m e a l ) . T h i s is c o n t r a r y to t h e s i t u a t i o n i n W e s t A f r i c a w h e r e s t i f f a n d t h i n porridges o f s o r g h u m a n d m i l l e t s ( w i t h couscous) are staple foods. In K e n y a , h o w e v e r , a u n i q u e s i t u a t i o n exists w h e r e t h i n porridges (uji m i x e s ) o f s o r g h u m , pearl m i l l e t a n d finger m i l l e t are v e r y c o m m o n and c o m m e r c i a l l y available i n s u p e r m a r k e t s , i n well-packaged f o r m s on t h e shelf. S o m e t i m e s , these are also f o r t i f i e d w i t h soybean {Glycine max), o r c o m p o s i t e d w i t h w h e a t o r maize f l o u r . W e believe t h a t m o r e i n t e n s i v e research i n t o t h e i m p r o v e m e n t o f processing and development of already e x i s t i n g s t i f f (to/tuwo) a n d t h i n (k a m u , ogi) p o r r i d g e flours, w i t h b e t t e r packaging i n t o r e a d y - m a d e p r o d u c t s o n t h e shelf, w i l l enhance c o m m e r c i a l i z a t i o n o f such f o o d p r o d u c t s i n W e s t A f r i c a . N e i t h e r sorghum nor m i l l e t grains possess gluten. T h u s they cannot substitute d i r e c t l y for w h e a t i n bread and other baked goods. H o w e v e r , w i t h good m i l l i n g technologies (and appropriate handling o f the amylose and a m y l o p e c t i n i n t h e grains) to produce suitable flour, meal and grits, a w i d e range of excellent t e x t u r e d baked and steamed f o o d products can be p r o d u c e d , for example, couscous, steamed and deep-fried dumplings, flat breads such as chapati and t o r t i l l a , and even semi-leavened breads such as injera and kisra. Networking t h r o u g h o u t A f r i c a w i l l bring these products and the technologies to produce them t o t h e a t t e n t i o n o f people i n different parts o f the continent w h o had n o t been familiar w i t h t h e m . A n example i s t h e interchange b e t w e e n N a m i b i a and Senegal. In N a m i b i a , pearl m i l l e t porridge is a staple, and t h e concept of using pearl m i l l e t to m a k e couscous as is done in Senegal has elicited great interest.

Levels of industrial utilization: processing of secondary foods and products

Estimates o f t h e q u a n t i t i e s o f grain b e i n g i n d u s t r i a l l y processed are difficult to o b t a i n . A p a r t i a l s u m m a r y o f available estimates for s o r g h u m a n d p e arl m i l l e t i s o u t l i n e d i n Table 4 . T h i s i n c l u d e s estimates f o r Botswana, K e n y a , M a l i , N i g e r i a , R w a n d a , S o u t h A f r i c a , Tanzania, U g a n d a a n d Z i m b a b w e .

243 Table 4. Examples of commercial utilization of sorghum a n d pearl millet in S u b - S a h a r a n Africa annually.

Country Sorghum Pearl millet

South Africa (2001/02) 113,000 t malt ; No significant commercial 66,000 t meal; utilization 11,300 t grits; 16,200 t animal feed Nigeria (1992 estimates) 120,000 t brewing (malt No significant commercial and adjunct); utilization; but about 1,000,000 t 17,000 t malt/malt extracts informally exported to five for food and beverages; sorrounding countries annually 25,000 t animal feed in cross border trading (19S5 estimates) 200,000 t brewing; 25,000 t food industry (2005 projections) 1,500,000 t both brewing and food industries Botswana 60,000 t meal; No significant commercial (1999 estimates) 4,000 t malt utilization Zimbabwe 17,500 t brewing (mostly 75 t animal feed; (2000 estimates) malt); 30 t brewing 1,800 t animal feed; 150 t meal Tanzania 1000 t brewing (mostly No significant utilization (2002 estimates) adjunct); 80 t meal; 800 t school feeding program; 5 t animal feed Kenya 100 t meal-based food 15 t food products; (2003 estimates) products 50 t finger millet for breakfast porridge mixes Niger 50 t biscuit flour No significant utilization (2000 estimates) < 5 1 for couscous Rwanda 2000 t brewing (mainly No significant production; (1998 estimates) adjunct) finger millet informally used Uganda <50 t brewing (mainly No significant production; (2002 estimates) adjunct) 100 t finger millet for composite flour beverage/food products

Source: Bogunjoko (1992), Rohrbach et al. (1993), Rohrbach (2000), Rohrbach et al. (2000), Rohrbach and Kiriwaggulu (2001), SAGIS (2003); and ICRISAT data files.

244 In general, t h e level of industrial processing appears m o r e closely related to per capita i n c o m e levels t h a n to t h e quantities of grain p r o duced. Nigeria, Sudan, Ethiopia, B u r k i n a Faso and Tanzania are t h e largest producers of sorghum in Sub- Saharan Africa, accounting for about 7 5 % of t h e region's p r oduction. However, S o u t h A f r i c a is t h e largest c o m m e r c i a l processor of this grain. It has one of t h e highest per capita i n c o m e levels in Sub-Saharan Africa, and one of t h e strongest agro-industrial bases. It also has one of t h e highest levels of urbanization. S o u t h A f r i c a a n n u a l l y p r o d u c e s 2 0 0 , 0 0 0 - 3 0 0 , 0 0 0 t o f s o r g h u m , f r o m w h i c h u p t o 2 0 6 , 5 0 0 t can b e c o m m e r c i a l l y processed (Table 4 ) . A n a d d i t i o n a l 5 0 , 0 0 0 t o 6 0 , 0 0 0 t o f g r a i n was e x p o r t e d . V i r t u a l l y all o f t h i s grain was o b t a i n e d f r o m less t h a n 1 0 0 0 large-scale c o m m e r c i a l farmers. A b o u t 9 0 % of S o u t h Africa's c o m m e r c i a l l y processed sorghum is used for f o o d products. T h e m a j o r i t y o f this i s allocated t o t h e p r o d u c t i o n o f opaque beer m a l t . This includes grain m a l t e d for sale as beer p o w d e r as w e l l as grain m a l t e d and used d i r e c t l y by t h e industrial breweries. A p p r o x i m a t e l y 6 5 , 0 0 0 t is m i l l e d and sold as s o r g h u m meal. T h e remaining 10% of industrial u t i l i z a t i o n is accounted for by t h e animal feed industry. Pearl m i l l e t is g r o w n c o m m e r c i a l l y in S o u t h A f r i c a as a forage grass and v i r t u a l l y none of t h e grain is c o m m e r c i a l l y processed. T h e second largest c o m m e r c i a l processor f o r w h i c h data are available is N i g e r i a . T h i s c o u n t r y annually produces a b o u t 7.5 m i l l i o n t o f s o r g h u m a n d 5.8 m i l l i o n t o f m i l l e t . Estimates d e r i v e d f r o m a survey c o n d u c t e d b y t h e International Crops Research Institute for the Semi-Ari d Tropics ( I C R I S A T ) in 1 9 9 2 suggest about 1 5 0 , 0 0 0 t of s o r g h u m is c o m m e r c i a l l y processed - a b o u t 2 % o f annual p r o d u c t i o n . M o s t o f t h i s i s used a s a source o f starch i n t h e b r e w i n g o f lager beer, o r a s a source o f m a l t i n t h e p r o d u c t i o n o f n o n - a l c o h o l i c m a l t d r i n k s . A residual of about 1 7 , 0 0 0 t a n d 2 5 , 0 0 0 t are e s t i m a t e d to be used i n t h e a g r o - f o o d a n d a n i m a l f e e d industries, respectively. Later estimates f r o m t h e b r e w e r i e s a n d f o o d i n d u s t r i e s i n 1995 a n d p r o j e c t i o n s for 2 0 0 5 s h o w increases i n use o f s o r g h u m a s m a l t a n d adjunct t o b e about 2 0 0 , 0 0 0 t b r e w i n g ( m a l t a n d a d j u n c t ) , 2 5 , 0 0 0 t f o o d beverages a n d 1 m i l l i o n t b r e w i n g a n d f o o d beverages. However, 90% of sorghum production, and vir t u a l l y all p e a r l m i l l e t p r o d u c t i o n , i s s t i l l c o n s u m e d w i t h o u t c o m m e r c i a l processing. B o t s w a n a i s t h e t h i r d largest c o m m e r c i a l processor o f s o r g h u m . A n e s t i m a t e d 6 0 , 0 0 0 t o f s o r g h u m i s c o m m e r c i a l l y processed b y t h e m i l l i n g i n d u s t r y i n t o s o r g h u m m e a l , despite t h e fact t h a t t h i s c o u n t r y o n l y p r o d u c e s a b o u t 1 1 , 0 0 0 t o f grain annually. T h e c o m b i n a t i o n o f rising i n c o m e s a n d r a p i d u r b a n i z a t i o n has l e d to a sharp increase in t h e d e m a n d f o r c ommercially

245 processed m e a l . In a d d i t i o n , t h e g o v e r n m e n t has p e r i o d i c a l l y p u r c h a s e d a s o r g h u m - b a s e d w e a n i n g f o o d f o r use i n d r o u g h t r e l i e f p r o g r a m s . A n e s t i m a t e d 4 , 0 0 0 t o f s o r g h u m i s used a s m a l t f o r t h e c o m m e r c i a l p r o d u c t i o n o f o p a q u e beer. T h i s is e n t i r e l y i m p o r t e d as processed m a l t . V i r t u a l l y no s o r g h u m is used i n a n i m a l feeds. S m a l l a m o u n t s o f p e a rl m i l l e t are p r o d u c e d i n B o t s w a n a , b u t n o t c o m m e r c i a l l y processed. Z i m b a b w e annually produces about 1 0 0 , 0 0 0 t of sorghum and 4 5 , 0 0 0 t of pearl m i l l e t . A b o u t 2 0 % of t h e sorghum is c o m m e r c i a l l y processed, m o s t l y for use as m a l t i n t h e opaque beer industry. T h e animal feed i n d u s t r y w i l l use sorghum i f this is available at prices substantially l o w e r t h a n t h e price of maize. However, average levels of u t i l i z a t i o n r e m a i n small. Several millers have expressed interest i n t h e c o m m e r c i a l p r o d u c t i o n o f s o r g h u m m e a l . B u t investments here have recently been constrained by grain price and m o v e m e n t controls. Small quantities of pearl m i l l e t are also used for beer m a l t and animal feed. Tanzania annually produces about 7 5 0 , 0 0 0 t of sorghum, b u t commercially processes less t h a n 2,000 t on an annual basis. A p p r o x i m a t e l y one-half of this is used for t h e p r o d u c t i o n of opaque beer, t h o u g h entirely as a source of starch. T h e single, c o m m e r c i a l opaque beer b r e w e r in t h e c o u n t r y i m p o r t s its m a l t r e q u i r e m e n t s f r o m S o u t h A f r i c a . A p p r o x i m a t e l y 100 t of grain are processed each year for sale as s o r g h u m meal. In 2 0 0 2 , 8 0 0 t of sorghum grain was processed, for t h e first t i m e , for school feeding programs. Tanzania produces about 1 7 5 , 0 0 0 t of pearl m i l l e t , b u t v i r t u a l l y none of this is industrially processed. K e n y a p r o d u c e s a b o u t 1 3 0 , 0 0 0 t o f s o r g h u m a n n u a l l y b u t i n d u s t r i a l l y processes o n l y a b o u t 1 0 0 t yr- 1 i n t o meal-based p r o d u c t s such as breakfast foods. Less t h a n 15 t of t h e c o u n t r y ' s 3 0 , 0 0 0 t pearl m i l l e t is i n d u s t r i a l l y processed. N i g e r a n n u a l l y p r o d u c e s a b o u t 5 0 0 , 0 0 0 t o f s o r g h u m . B u t here also, commercial processing remains extremely limited. One baker has r e c e n t l y e x p e r i m e n t e d w i t h t h e use o f a b o u t 5 0 t o f s o r g h u m i n t h e p r o d u c t i o n o f s w e e t biscuits. A s m a l l a m o u n t of grain is processed a n d c o m m e r c i a l l y s o l d as couscous. V i r t u a l l y n o n e of t h e c o u n t r y ' s 1.5 m i l l i o n t pearl m i l l e t is industrially processed. B o t h R w a n d a a n d U g a n d a also c o m m e r c i a l l y process s o r g h u m , b u t i n v e r y s m a l l q u a n t i t i e s . I n R w a n d a , f r o m t h e b r e w e r y ' s 1 9 9 8 estimates, about 2 0 0 0 t of s o r g h u m is u s e d as a d j u n c t f o r lager beer b r e w i n g . Uganda's use of s o r g h u m c o m m e r c i a l l y is o n l y j u s t b e g i n n i n g a n d is s t i l l less t h a n 50 t a d j u n c t , annually.

246 Major industrial products and potential for increased commercialization

T h e i n d u s t r i a l processing o f s o r g h u m a n d pearl m i l l e t i n A f r i c a has largely d e v e l o p e d as a c o m m e r c i a l i n v e s t m e n t in t h e s u p p l y of t r a d i t i o n a l f o o d a n d beverage p r o d u c t s .

Beers and malt drinks

T h e m o s t c o m m o n c o m m e r c i a l use of sorghum, south of the Sahara, is in the p r o d u c t i o n of opaque beer (sorghum beer), clear lager beer and m a l t products. O p a q u e sorghum beer is a t r a d i t i o n a l d r i n k in m u c h of Eastern and Southern A f r i c a . T h i s is c o m m o n l y b r e w e d by f a r m households seeking to supplement their i n c o m e or by small-scale traders associated w i t h peri-urban markets. As incomes have increased, sorghum beer p r o d u c t i o n has been commercialized. This provides urban consumers a m o r e convenient and consistent p r o d u c t . In some countries, particularly in So u t h e rn Afri c a , p o w d e r e d beer m a l t is sold to households seeking to produce t h e i r o w n beer. In Nigeria, w h e r e clear lager beer and stout are pioneered using sorghum m a l t or adjunct, non-alcoholic m a l t drinks offer a related beverage to pregnant women, lactating mothers, convalescents, invalids and the M o s l e m populations. These m a l t drinks are n o w also being sold in Eastern A f r i c a . Preferences for sorghum-based beer a l l o w some b r e w e r s to o f f e r a p r e m i u m p r i c e for s o r g h u m used f o r m a l t i n g . H o w e v e r , t h e r e are l i m i t s t o t h i s advantage. Shortages o f clean s o r g h u m have l e d opaque b r e w e r s i n Z a m b i a a n d Tanzania to p r o d u c e 1 0 0 % maize beer using i n d u s t r i a l enzymes as m a l t . B r e w e r s u n w i l l i n g to invest in m a l t i n g m a y use s o r g h u m s i m p l y as a starch source a d d i n g a t r a d i t i o n a l flavor a n d c o l o r t o t h e i r beer. T h e q u a n t i t y o f s o r g h u m used, c o m p a r e d w i t h a l t e r n a t i v e sources o f starch such a s maize, depends o n t h e r e l a t i v e grain prices. S o r g h u m use as m a l t or starch source (adjunct) in t h e p r o d u c t i o n of lager beer a n d s t o u t is increasing in W e s t A f r i c a , t h o u g h remains relatively rare in Eastern and Southern Africa. Breweries in Nigeria started using s o r g h u m a s m a l t ( w i t h 1 0 0 % r e p l a c e m e n t of barley m a l t ) as far back as 1 9 8 7 , a n d as a d j u n c t later w h e n t h e p r i c e d r o p p e d b e l o w t h a t o f maize a n d also w h e n i m p o r t e d enzymes w e r e b e i n g used i n t h e b r e w i n g process. H o wever, brewers i n m o s t Eastern a n d S o u t h e r n A f r i c a n c o u n t r i e s have been r e l u c t a n t t o pursue such e x p e r i m e n t a t i o n , e x c e p t i n R w a n d a a n d U g a n d a w h e r e s o r g h u m i s n o w b e i n g u s e d m a i n l y as a d j u n c t in clear lager beer p r o d u c t i o n .

247 Milling

T h e m a i n t r a d i t i o n a l use o f s o r g h u m a n d pearl m i l l e t i s a s a thin or thickened p o r r i d g e . H o w e v e r , i n d u s t r i a l processing o f s o r g h u m a n d p e a r l m i l l e t m e a l has been relatively limited. Maize is the most common indus trially milled grain in Sub-Saharan Africa, and wheat processing is rapidly gro w i n g as p u r e or c o m p o s i t e f l o u r s f o r b a k i n g . The dominance of maize milling, particularly in Eastern and Southern Africa, can be attributed, in part, to the relatively higher productivity of maize g r o w n i n t h e region's higher rainfall zones. H o w e v e r , c o m mercial investments in maize production and processing have also been reinfor ced by historical market supports favoring this crop. These include price supports and p u b l i c stockholding arrangements. In regions of West Africa where sorghum and pearl millet are dominant, industrial grain milling systems are simply less developed. O n e o f t h e m a i n constraints t o i n d u s t r i a l m i l l i n g o f s o r g hum and pearl millet is the contamination of grain with sand and stones. T h i s results f r o m t h e common practice of threshing the grain on the ground, and then sweeping the t h r e s h e d p r o d u c t i n t o grain bags d e s t i n e d f o r t h e m a r k e t . T h e cleanliness o f sorghum grain supplied to the milling industries in Sou th Africa and Botswana is assured because this grain is all mechanically harve sted and threshed. Experimentation with the use of small-scale threshers, h o w e v e r , f a i l e d i n Zimbabwe because millers could still not assure that all grain bags delivered to t h e f a c t o r y gate w e r e clean. T h i s has l e d t o m o r e successful e x p e r i m e n t a t i o n with mechanical grain cleaning systems involving screens, aspiration systems a n d destoners. B u t t h e cost o f t h i s e q u i p m e n t re m a i n s p r o h ibitive without t h r o u g h p u t o f a t least 5 , 0 0 0 t o 1 0 , 0 0 0 t y r-1 . Nonetheless, once grain supply constraints are resolved, t h e experiences o f S o u t h A f r i c a a n d B o t s w a n a s h o w t h a t s o r g h u m m e a l can be sold at prices competitive with maize meal on the retail market. Simil a r i n d u s t r i e s can b e e x p e c t e d t o d e v e l o p i n o t h e r parts o f t h e c o n t i n e n t a s i n c o m e s g r o w a n d c o u n t r i e s b e c o m e m o r e u r b a n i z e d . T h e prospects f o r c o m m e rcial production o f p e a rl m i l l e t m e a l are less c e r t a i n because o f t h e higher cost a n d less consistent s u p p l y o f t h i s c r o p .

Livestock feed

M o r e t h a n 9 5 % o f t h e s o r g h u m p r o d u c e d i n higher i n c o m e , i n dustrialized c o u n t r i e s , a n d t h e m a j o r i t y o f m i l l e t are used f o r a n i m a l feed (ICRISAT and

248 F A O 1 9 9 6 ) . I n contrast, t h e levels o f s o r g h u m a n d m i l l e t use for f e e d i n Sub- Saharan A f r i c a r e m a i n e x t r e m e l y l i m i t e d . T h e j u s t i f i c a t i o n s for t h i s l i m i t e d u t i l i z a t i o n m e r i t f u r t h e r i n v e s t i g a t i o n . Part of the problem is that animal feed manufacturers lack consistent access to l o w p r i c e d grain. C h e a p grain m a y be w i d e l y available after a p a r t i c u l a r l y favorable rainy season. B u t t h i s grain becomes, p r o h i b i t i v e l y expensive following drought. Since drought is most comm o n i n s o r g h u m and p e a rl m i l l e t g r o w i n g regions, p r i c e f l u c t u a t i o n s are c o m m o n . Such v a r i a b i l i t y of grain s u p p l y also d e m a n d s f l e x i b i l i t y in feed f o r m u l a t i ons, a practice easier f o r large e x p e r i e n c e d feed m a n u f a c t u r e r s t h a n smaller, n e w e r operations. Nonetheless, grain price c o m p e t i t i v e n e s s m a y be less of a problem than c o m m o n u n c e r t a i n t y a b o u t t h e f e e d value o f s o r g h u m a n d pearl millet. Informal ICRISAT interviews with animal feed manufactur e r s i n Botswana, N i g e r i a , Tanzania a n d Z i m b a b w e reveal c o m m o n m i s c o n c e p t i o n s about tannins. W e have h e a r d a r g u m e n t s t h a t ' t h e tannins i n s o r g h u m k i l l e d m y c h i c k e n s ' or t h a t 'all s o r g h u m has t a n n i n ' . Related questions arise about t h e risks o f m y c o t o x i n s . S o m e argue t h a t t h e d i g e s t i b i l i t y o f sorghum is 25-30% l o w e r t h a n t h a t o f m a i z e . O t h e r s c o m p l a i n a b o u t l o w p r o t e i n levels o r t h e lack o f a m i n o acids. D a t a a b o u t f e e d values f r o m u n i v e r s i t y laboratories and research trials are d i s c o u n t e d . M a n u f a c t u r e r s argue t h a t t h e y n e e d p r o o f o f the value of these grains from other feed manufacturers i n A f r i c a . I n a d d i t i o n , feed m a n u f a c t u r e r s c o m p l a i n t h a t s o r g h u m , i n particular, does n o t m i l l w e l l . W h e r e a s maize can be c r a c k e d i n a h a m m e r m i l l , softer s o r g h u m grains m i l l t o p o w d e r ; t h i s i s said t o f u r t h e r r e duce feed efficiency. W e k n o w , h o w e v e r , t h a t t h e r e are varieties and types o f s orghum that have v e r y h a r d grains w i t h h i g h m i l l i n g yields, especially t h e w h i t e - g r a i n e d s o r g h u m s a n d some r e d - g r a i n e d varieties, b o t h o f w h i c h have n o t a n n i n s (Table 2 ) . Since t h e f e e d m i l l e r s ' and f a r m e r s ' beliefs are erroneous, m o r e research data a n d i n f o r m a t i o n need t o b e generated i n c o l l a b o r a t i o n w i t h t h e f e e d m a n u f a c t u r e r s a n d m a d e w i d e l y available t o t h e users. I n f o r m a t i o n o n t h e use o f s o r g h u m and m i l l e t s for livestock feed i n ruminants, monogastrics and poultry is scanty but available in disaggregated f o r m s . We believe, however, t h a t animal scientists and c ommercial farmers have precise data about t h e feed value o f d i f f e r e n t types o f s o r g h u m grain ( w h i t e , r e d or b r o w n ) , w h o l e plant (forage, silage or c r o p residue), and m i l l i n g / m a l t i n g byproducts (bran/brewers waste/spent grain) for differ ent feeding applications. Such k n o w - h o w a n d precision i n f o r m a t i o n need t o b e effectively shared a m o n g R&D specialists and other processors/farmers in Africa t o b e able t o m o v e u p

249 f r o m t h e p l a t e a u o f l i t t l e r e s t r i c t e d use t o larger scale and wider use of sorghums in livestock feed to achieve crop diversification of ra w m a t e r i a l s a n d commercialization goals. The level of expert know-ho w about feed value of various m i l l e t s is p r e s u m a b l y g o o d b u t less precise a n d less k n o w n . A two-pronged effort is required to increase sorghum use as l i v e s t o c k f e e d . Firstly, f a r m e r s a n d f e e d s t o c k m a n u f a c t u r e r s m u s t b e m a d e aware of and t r a i n e d i n t h e use o f 'alkali-bleach t e s t ' , a s i m p l e test f o r d i s t i n g u i s h i n g b e t w e e n tannin (brown) and condensed tannin-free (white and red ) s o r g h u m grain. Secondly, animal scientists must collaborate and run fe e d i n g trials using s o r g h u m a n d m i l l e t s w i t h f a r m e r s a n d f e e d s t o c k m a n u f a c t u r e r s t o s h o w t h e m t h e t r u e f e e d value o f m i l l e t a n d s o r g h u m t y p e s i n various applications. O n e such e x a m p l e i s t h e cattle f e e d p r o g r a m c o n s i d e r e d b y cattle producers i n Z i m b a b w e d u r i n g t h e m i d - 1 9 9 0 s w h e n t h e r e was d e f i c i t o f t h e p o p u l a r l y u s e d maize c r o p (in f o o d a n d f e e d ) . T h e cattle f e e d p r o g r a m , developed by the Cattle Producers Association (CPA), Zimbabwe has a ratio of 50 % maize: 5 0 % s o r g h u m ( D i e t A ) . T h e cattle equivalence ( f e e d value) o b t a i n e d i n the use of this feed r a t i o n c o m p a r e d t o w h o l e maize ( D i e t B ) i s s h o w n i n Table 5 . T h e f e e d p r o g r a m r a t i o n ( D i e t A) gave higher daily gains of steers (8.6%) a n d equal feed conversion ratio compared with whole maize ration (Diet B). Accor d i n g t o t h e C P A , t h e f a r m e r using this t e s t e d cattle f e e d i n D i e t A , n e e d o n l y put the sorghum through a hammer mill, without using the screen (this will ensure t h a t t h e grain is j u s t c r u s h e d a n d n o t m i l l e d i n t o a m e a l ) a n d o u t i n t o t h e f e e d . T h e C P A has observed t h a t b o t h r e d a n d w h i t e sorghums are suitable f o r r u m i n a n t stockfeed (cattle and sheep) b u t w h i t e i s b e t t e r s u i t e d f o r monogastric (pigs a n d poultry) requirements. T h i s i s ' f e e d f o r t h o u g h t ' f o r t h e rest o f A f r i c a i n t h e development and promotion o f s o r g h u m a n d m i l l e t i n livestock (animals a n d p o u l t r y ) f e e d use.

Table 5. Cattle equivalence resulting from feeding trials using two diets in Zimbabwe1 .

Components/Observations Diet A Diet B

Maize (%) 32.23 63.9 Sorghum (red) (%) 32.23 0 No. of steers in trial 20 21 Initial liveweight (kg) 276 281 84-day daily gain (kg day1) 1.65 1.52 Feed conversion ratio (kg kg1) 7.25 7.22

1. Diet A contains 50% maize and 50% sorghum; Diet B contains 100% maize. Source: Anonymous (1998).

250 Food products

Conventional food products like stiff and thin porridges o f various t y p e s from different processes are already available in Afr ica. Indigenous knowledge and industrial technologies in its rudimentar y stages are also available. T h i s e x p e r t i s e , as earlier stated, is h i g h l y disaggregated and compartmentalized in large-scale and small-scale indu stries and enterprises, f a r m e r g r o u p s , a n d research organizations, p r i v a t e o r p u blic, and also cuts across countries and regions. Complicating this problem i s t h e lack o f awareness o f e x p e r t i s e t h a t exists w i t h o t h e r s . V e r y close collaboration and linkages will need to be forged among all stakeholders f o r d e v e l o p i n g , testing, improving existing ones and promoting end-use f o o d p r o d u c t s f r o m sorghum and millets. Information flow and technology exchange process s h o u l d b e i m p r o v e d a n d s t r e n g t h e n e d . T h e r e w i l l b e a n e e d f o r c o n t i n u e d i n t e n s e t r a i n i n g o f f o o d scientists a n d t e c h n o l o g i s t s i n A f r i c a . E f f e c t i v e networking among regional networks and related organizations, p u b l i c a n d private, is imperative. The Namibian Ministry of Higher Education with assistance o f F A O i s i m p l e m e n t i n g a v e r y i n d i g e n o u s p r o j e c t f o r t h e d e v e l o p m e n t and promotion o f n e w p e a r l m i l l e t p r o d u c t s . T h e C o u n c i l f o r S c i e n t i f i c and Industrial Research in South Africa are producing sample quantiti e s o f a range o f concept products, such as instant porridges and snack foo d s . T h e s e w i l l be consumer evaluated in Namibia to determine the prefer red concept p r o d u c t s . A t t h e same t i m e a p e a r l m i l l e t f o o d p r o d u c t m a n u f a c t u r i n g training facility is being constructed in northern Nam ibia. Food technologists at t h e f a c i l i t y w i l l t r a i n entrepreneurs to manufacture these p r o d u c t s . T h i s p r o j e c t s h o u l d serve a s a m o d e l f o r o t h e r m i l l e t a n d s o r g h u m p r o d u c i n g c o u n t r i e s t o f o l l o w .

Novel food products and traits

There are novel food products which could be vehicles for improving nutrition a n d h e a l t h o f c o n s u m e r s a n d d i v e r s i f y i n c o m e sources o f p r o d u c e r s a n d processors. They could also be sufficiently attractiv e for resource mobilization. Some of these novel foods are already being looked into in South Africa, like Power Flow otherwise known as Amylase Rich Flour. T h i s f l o u r i s used t o t h i n w e a n i n g porridges t o m a k e t h e m m o r e palatable and increase their nutrient density. Others include: Maltabela (a ma lted sorghum baby

251 p o r r i d g e ) , I n s t a n t M a g e u / M a h e u ( w h i t e o r r e d s o r g h u m n o n - a l c o h o l i c d r i n k w h i c h can b e f l a v o r e d , M o r v i t e ( p r e - c o o k e d s o r g h u m a n d m a i z e f o r i n s t a n t d r i n k ) a n d K i n g s B r e w Beer P o w d e r ( r e d s o r g h u m m a l t - a l c o h o l i c ) . These are c o n v e n i e n c e foods and d r i n k s w e l l p r e s e n t e d i n g o o d packages a n d c o m m e r c i a l l y available. A n e w p r o d u c t is t h e P o p s o r g h u m w h i c h is v e r y s i m p l e to p r o d u c e a n d serves as a n u t r i t i v e c o n v e n i e n c e f o o d t h a t can be w e l l - packaged. T h e i n t r i n s i c uniqueness o f s o r g h u m and m i l l e t s , a d d e d t o t h e fact t h a t t h e y o r i g i n a t e f r o m A f r i c a a n d are genetically d i v e r s i f i e d , m a k e t h e t w o crops a h a v e n o f n o v e l t r a i t s . M o s t o f these t r a i t s are s t i l l n o t t apped. Intense r e s e a r c h - f o r - d e v e l o p m e n t using b o t h a g r o n o m i c a n d b i o t e c hnological/ m o l e c u l a r t o o l s w o u l d b e r e q u i r e d f o r basic i n f o r m a t i v e science a n d a p p l i e d research t o b e u n d e r t a k e n t o u n r a v e l t h e goodness o f these t r a i t s , a n d i m p r o v e t h e i r q u a n t i t i e s a n d q u a l i t y . S o m e o f these n o v e l t r a i t s r e l a t e d t o foods a n d h e a l t h i n c l u d e : • y e l l o w e n d o s p e r m ( o c c u r r i n g m o s t l y i n t h e i n d i g e n o u s ' K a u r a ' s o r g h u m s o f N i g e r i a ; a n d s o m e f a r m e r varieties o f p e a r l m i l l e t i n N i g e r ia, Togo, Burkina Faso a n d M a l i ) for p r o - v i t a m i n A (beta-carotene) levels • glossy seedling leaves for h i g h a m y l o p e c t i n in g r a i n • stay-green for t e r m i n a l d r o u g h t stress ( f o r p r o d u c t i v i t y increase u n d e r d r o u g h t ) a n d f o r a g e / c r o p residue q u a l i t y ( f o r a n i m a l feed) • polyphenols (mostly tannins, and other phenolic compo u n d s l i k e a n t h o c y a n i n a n d a n t h o c y a n i d i n s ) f o r a n t i o x i d a n t s a n d i m p r o v e d h e a l t h w i t h n u t r i t i o n • g e r m o i l c o n t a i n i n g l i p i d s w i t h 0 . 0 1 % c h o l e s t e r o l a n d 0 . 5 4 % s i t o s t e r o l ( b o t h sterols), a n d 6 8 % t r i a c y l g l y c e r o l s ( n e u t r a l l i p i d s ) • s w e e t s t e m in s o r g h u m s f o r sugar a n d molasses [ r e p l a c i n g sugarcane (Saccharum officinarum) in drought/semi-arid areas], and ethanol p r o d u c t i o n • m a l t i n g q u a l i t y f o r d e v e l o p m e n t a n d p r o m o t i o n o f m a l t foods, m a l t d r i n k s a n d beverages, glucose and m a l t c o n f e c t i o n e r i e s , and b r e w i n g p r o d u c t s l i k e lager beer • m i c r o n u t r i e n t s l i k e c a l c i u m , zinc a n d i r o n i n t h e grain for e n h a n c e d p l a n t , a n i m a l a n d h u m a n n u t r i t i o n a n d h e a l t h • use o f h y d r o p h o b i c p r o t e i n s o f s o r g h u m i n b i o f i l m s f o r f r u i t a n d vegetable p r o t e c t i o n i n e x p o r t t r a d e

252 Uncompetitive grain prices

T h e c o m b i n a t i o n o f p r o b l e m s o f grain availability, cleaning and processing, along w i t h u n c e r t a i n t y r e g a r d i n g c o n s u m e r d e m a n d , place s o r g h u m a n d p e a r l millet at a distinct disadvantage relative to alternati ve grain inputs in Sub- Saharan Africa's agro-industrial sector. These relati o n s h i p s are h i g h l i g h t e d i n r e c e n t data c o l l e c t e d o n i n d u s t r y prices f o r a l t e r n a t i v e grains i n Z i m b a b w e (Table 6 ) . Prices f o r s o r g h u m a n d p e a r l m i l l e t are generally heavily d i s c o u n t e d compared with those for maize - the closest grain subst itute. Uncertainty about these inputs also leads to large variation in the f a c t o r y gate prices o f f e r e d w i t h i n t h e same i n d u s t r y . T h e o p a q u e b e e r i n d u s t r y i n S o u t h e r n A f r i c a t e n d s t o o f f e r i n t a k e p r i c e s f o r s o r g h u m a n d p e a r l m i l l e t t h a t are m a r g i n a l l y l o w e r t h a n t h o s e f o r m a i z e . I f t h e i n d u s t r y i s p a r t i c u l a r l y s h o r t o f s o r g h u m , t h e s e p r i c e s m a y rise m a r g i n a l l y a b o v e t h o s e f o r m a i z e . A g a i n , t h i s i s because s o r g h u m i s v i e w e d a s a necessary i n g r e d i e n t f o r o p a q u e b e e r p r o d u c t i o n . Y e t i f s o r g h u m costs rise t o o h i g h , t h e i n d u s t r y w i l l s h i f t t o u s i n g i m p o r t e d e n z y m e s i n s t e a d o f s o r g h u m m a l t . S o r g h u m a n d p e a r l m i l l e t t e n d t o b e m o s t h e a v i l y d i s c o u n t e d i n t h e animal feeds industry. These prices range around 70 to 80% of the prices o f f e r e d f o r m a i z e . T w o o f t h e t h r e e m i l l e r s p r o c e s s i n g s o r g h u m i n Zimbabwe similarly indicated they would purchase sorghu m o r p e a r l m i l l e t i f t h e p r i c e d r o p p e d less t h a n 7 5 % t h e p r i c e o f m a i z e . T h e m i l l e r

Table 6. C o a r s e grain b u y i n g prices (Z$ t-1) offered by industry at t h e factory g a t e in Z i m b a b w e , J u n e 2 0 0 1 .

Industry Buyer/company Maize Sorghum Pearl millet

Brewing Chibuku 7500 7000 No purchases Ingwebu 7500 6500 7000 Milling Jati Millers 8500 5557 No purchases Blue Ribbons 8000 No purchases No purchases National Foods 8200 8000 7000 Animal feed Feeds & Feeds 7500 5500 5000 National Foods 8200 8000 7000 Agrifoods 8400 6900 8000 Premier Milling 8300 6000 6500 Grain trading Grain Marketing Board 7500 5500 5000

Source: ICRISAT surveys.

253 o f f e r i n g t h e h i g h e s t p r i c e w a s t h e c o m p a n y m o s t e x p e r i e n ced with these g r a i n s . These discounts are reflected in the government set prices o f f e r e d b y t h e national Grain Marketing Board. While government pric e s are s u p p o s e d t o establish a f l o o r u n d e r t h e m a r k e t , t h e s e s t r o n g l y i n f l u ence the prices offered b y t h e p r i v a t e sector. Such prices place sorghum and pearl millet producers at a large d i s a d v a n t a g e . N o t o n l y d o t h e y r e c e i v e a l o w e r p a y m e n t a t t h e f a c t o r y gate, b u t i n a d d i t i o n , m a r k e t i n g costs f o r s o r g h u m a n d p e a r l m i llet are commonly h i g h e r t h a n t h o s e f o r m a i z e . I n m a n y c o u n t r i e s t h e s e grains are b e i n g d r a w n f r o m o u t l y i n g s e m i - a r i d regions a n d t h u s face h i g h e r t r a nsport costs. But in addition, farmgate prices are influenced by low trade v o l u m e s w h i c h l e a d t o h i g h e r m a r k e t i n g costs p e r u n i t o f g r a i n s o l d . T h e s e v e r i t y o f t h i s r e l a t i o n s h i p i s a p p a r e n t i n a r e c e n t assessment of marketing margins in Tanzania (Table 7). Here it ma y t a k e a t r a d e r a week or more to collect enough grain to fill a 15 t tru ckload. Each bag must be checked for contamination and grain quality. Lo cal village taxes m u s t b e p a i d . U l t i m a t e l y , t h e f a r m e r e a r n s o n l y 6 0 % o f t h e cost of grain delivered to the nearest business center. And the farme r e a r n s o n l y 4 2 % o f t h e f a c t o r y g a t e p r i c e f o r g r a i n d e l i v e r e d t o a n a g r o - p r o c e s s o r i n D a r e s S a l a a m .

Table 7. E x a m p l e of grain t r a d i n g m a r g i n s in central Tanzania, 2 0 0 2 .

Trading margin Description Unit (Z$ per unit)

Grain Bucket (16 kg) 900 (52.94)1 Grain bag 1 bag 300 (3.00) Village stay 1 week 2000 (0.33) Village storage Room 8000(1.33) Guard 2 per week 2500 (0.42) Tax levy Bag 300 (3.00) Labor for filling bags Week 1500(0.25) Loading Bag 150(1.50) Truck hire to Dodoma Bag 2150(21.50) Unloading Bag 150(1.50) Grain cost Bag 8577 (85.77)

1. Margin in Z$ kg-1 is given in parentheses. Source: ICRISAT surveys, 2002.

254 In these circumstances, farmers complain that they do n o t earn e n o u g h to justify expanding production. But given such high m arketing costs, grain processors can barely afford to pay more. The prices on offer are c a p p e d b y t h e p r e v a i l i n g prices f o r m a i z e g r o w n i n higher p o t e n t i a l regions o f t h e c o u n t r y where trading volumes are higher, and market infrastr u c t u r e i s m o r e d e v e l o p e d .

G r a d e s a n d s t a n d a r d s

The present commercialization trends are not too encouraging, except for t h e i n d u s t r i a l uses i n S o u t h A f r i c a , N i g e r i a , B o t s w a n a a n d Z i m b a b w e , w h i c h also n e e d a l o t of up-scaling. As a b e g i n n i n g , t h e r e is need for strong documentation of data and information on alternative uses a n d processing technologies o f t h e crops. A c r i t i c a l analysis o f these w ould help identify further gaps, assess the needs and rationalize the way f o r w a r d .

Grain end-use quality

As emphasized earlier, in order to diversify and increase millet and sorghum utilization, it is essential that grain with known and suitable end-use quality c h a r a c t e r i s t i c s is always available f o r processing. O b v i ously, since grain crops availability in individual countries fluctuate between a surplus a n d d e f i c i t situation, there must be greatly increased regional tra d e i n m i l l e t a n d sorghum. This demands internationally accepted standards f o r m i l l e t a n d sorghum grain end-use quality and appropriate methods f o r d e t e r m i n i n g ' i n trade' whether batches of grain meet these standards. I C R I S A T has m a d e a large contribution to this area through the publication in 1997 on methods for evaluation of sorghum and pearl millet quality (Go m e z e t al. 1 9 9 7 ) . A project sponsored by the United States Agency for Inter n a t i o n a l Development (USAID) in 2001 was undertaken in Southe rn Africa and entitled 'Development of Simple, Common Grain Quality Standards f o r Sorghum to Facilitate Grain Trade in Southern Africa'. This resulted in five standards for sorghum grain and simple methods to measu re them. These w e r e : • Detection of tannin sorghum by the alkali-bleach test • D e t e r m i n a t i o n o f defects i n s o r g h u m grain, i n c l u d i n g w e e v i l damage • Classification of sorghum grain according to color (w hite, red and b r o w n )

255 • E s t i m a t i o n o f s o r g h u m grain hardness (very soft, i n t e r m ediate and very h a r d ) • D e t e r m i n a t i o n o f g e r m i n a t i v e energy o f s o r g h u m The methods have been included in the draft sorghum standards f o r B o t s w a n a and have b e e n s u b m i t t e d t o t h e I n t e r n a t i o n a l A s s o c i a t i o n f o r C e r e a l Science a n d T e c h n o l o g y f o r a p p r o v a l as d r a f t i n t e r n a t i o n a l standards m e t h o d s (JRN Taylor, University of Pretoria, Pretoria, South Af rica personal communication and consultancy report). Obviously, these a c t i v i t i e s o n l y represent i n i t i a l steps i n w h a t has t o b e a n o n g o i n g process t o d e v e l o p a n d implement comprehensive trading standards for sorghum a n d m i l l e t grain, a s these exist for other grains. However, in the short-ter m it is proposed that the developed methods and standards should be applied to I C R I S A T a n d s o r g h u m b r e e d i n g p r o g r a m s i n A f r i c a a n d t h a t s i m i l a r m e t h o d s a n d standards b e developed and applied for millets. The baseline data o n c u l t i v a r end-use q u a l i t y d e v e l o p e d w i l l h e l p ensure the constant availability o f grain o f suitable quality for utilization and lead to an ongoing improve ment in grain end-use q u a l i t y .

Food products quality

I t i s suggested t h a t a n A f r i c a - w i d e database o f t r a d i t i o nal, new, alternative and improved millet and sorghum food products and full details o f t h e processing technologies used to produce them be create d. The availability of such data w i l l encourage entrepreneurs and institutions in countri e s t o test m i l l e t a n d s o r g h u m f o o d p r o d u c t s t h a t are n o v e l t o t h e m . The example of t h e i n t e r e s t i n p e a r l m i l l e t couscous i n N a m i b i a has b e e n m e n t i o n e d .

Packaging

I n S o u t h e r n A f r i c a , s o r g h u m a n d m i l l e t f o o d s a n d beverages are p a c k e d i n d i v e r s e (plastic bags, j u t e sacks, f o o d c a r d b o a r d boxes and bottles) and convenient containers of different shapes, strength, color, sizes and with logos of manufacturers. Packing is done mostly by full o r p a r t i a l mechanization. In West Africa, only plastic and jute bags are u s e d m o s t l y , a n d p a c k i n g i s also m o s t l y m a n u a l . For e f f e c t i v e a n d w i d e r commercialization in West Africa, we need to start usi ng convenient and a t t r a c t i v e p a c k a g i n g o f t h e f o o d p r o d u c t s (as i s p r e s e n t l y being done for beverages f r o m t h e b r e w e r i e s ) .

256 Public and private partnerships

The successful commercial processing of sorghum in countries l i k e S o u t h A f r i c a a n d B o t s w a n a suggests p o t e n t i a l for t h e d e v e l o p m e n t o f these m a r k e t s . However, available evidence from neighboring countries also suggests t h e n e e d t o resolve a n u m b e r o f i n t e r - l i n k e d constraints t o industrial processing. Improvements in production productivity are essential for s o r g h u m o r p e a r l millet to become more competitive with grain inputs lik e maize. Larger quantities of grain must be consistently sold by farmers i n o r d e r t o b o t h r e d u c e per u n i t m a r k e t i n g costs, a n d assure i n d u s t r y o f a reliable input. Grain d e s t i n e d f o r f o o d processing m u s t b e cleaned. I n d u s t r i a l processors need to be educated about the processing characteristics of these inputs, and the food or feed value. Entrepreneurs must be willing to take risks i n d e v e l o p i n g n e w m a r k e t s . T h e p u r s u i t o f this c o m b i n e d set o f solutions requires n e w partnerships between public and private agencies willing to combine i n v e s t m e n t s i n t h e development of these markets. These are best defined in the context of specific investment strategies targeting the expansion o f p a r t i c u l a r agro- i n d u s t r i a l o u t p u t s .

Institutional alliances

The importance of technology exchange in increasing and diversifying millet and sorghum utilization cannot be overemphasized. As stated in the i n t r o d u c t i o n , t h e r e i s a huge resource i n A f r i c a o f m i l l e t a n d s o r g h u m expertise; the problem is how to create the necessary synergies to fully exploit t h i s resource. T h e idea o f a database o f t r a d i t i o n a l and d e v e l o p e d m i l l e t a n d sorghum food products and the full details of the processing technologies used t o p r o d u c e t h e m has already b e e n m e n t i o n e d . One most effective way for technology exchange to take place would be for organizations involved in the promotion of mille t a n d s o r g h u m s u c h as ICRISAT, the USAID supported INTSORMIL, regional and sub- regional forums like CORAF (West and Central African Co u n c i l f o r Agricultural Research in Eastern and Central Africa) an d CILSS; advanced research institutes like CIRAD (Centre de internacionale en r e c h e r c h e a g r n o m i q u e p o u r l e ) (all in West Africa region) t o o b t a i n a n d p r o v i d e f u n d i n g f o r t e c h n i c a l a n d i n f o r m a t i on exchange visits

257 f o r m i l l e t a n d s o r g h u m s c i e n t i s t s , t e c h n o l o g i s t s a n d t e a c h e r s b e t w e e n i n s t i t u t e s i n t h e v a r i o u s m i l l e t a n d s o r g h u m p r o d u c i n g c o u n t r i e s i n A f r i c a . S u c h a c t i v i t i e s w i l l b e s t be regional or cross-regional in nature i n v o l v i n g t h e three regional forums, CORAF, ASARECA (Association for Strengthening Agricultural Research in Eastern and Central Africa) a n d S A C C A R (Southern African Center for Coordination of Agricultur al Research), through their respective networks. T h e t r a i n i n g o f f o o d / f e e d scientists, n u t r i t i o n i s t s and t e c h n o l o g i s t s , a n d fostering their networking with public and private sector organizations o r i n d u s t r i e s can b e set t o enhance postharvest processing and utilization in Africa. A concrete mass of food/feed processing and mar keting scientists and nutritionists, including engineers/equipment fabricators a n d i n f o r m a t i o n t e c h n o l o g y specialists i s s t i l l a r e q u i r e m e n t i n A f r i c a , for promotion of commercialization of underutilized and under researched, though nutritional, cereal crops.

Premium market

O n e o p t i o n i s t o p u r s u e a f e w p r e m i u m o r n i c h e m a r k e t s w h e rein sorghum o r p e a r l m i l l e t grains have u n i q u e values; f o r e x a m p l e , t h e production of m a l t f o r m a l t beverages a n d d r i n k s , o p a q u e beer, f o r w e a n ing foods or glucose manufacture. In these circumstances, traders an d processors may b e w i l l i n g t o p a y a p r e m i u m p r i c e f o r h i g h q u a l i t y g r a i n s pecially suited to their manufacturing process. This premium price may at least p a r t l y o f f s e t the higher costs of finding, assembling and cleaning th ese grains, or o r g a n i z i n g t h e g r a i n m a r k e t . T h e p r e m i u m m a r k e t c o u l d e n c o u r a g e f a r m e r s t o i n v e s t i n n e w t e c h n o l o g i e s p r o m o t i n g t h e e x p a n s i o n o f t h e i r production. I n o r d e r t o s u p p o r t t h i s o p t i o n , c r o p b r e e d e r s n e e d t o d e velop varieties with traits specifically suited to the target niche ma rket. Breeders and seed p r o d u c e r s n e e d t o b e sure these v a r i e t i e s are m u l t i p l i e d and distributed to farmers capable of producing for the commercial market n i c h e . F a r m e r s a n d i n d u s t r y m a y also b e n e f i t f r o m p u b l i c s u p p o r t f o r g r a i n s t o c k h o l d i n g necessary t o assure a c o n s i s t e n t p r o d u c t i o n a n d s u p p l y o f high quality grain. However, the justifications for such public investment s m a y b e r e d u c e d b y t h e l i m i t e d n u m b e r o f b e n e f i c i a r i e s . P r i v a t e i n v e s t o r s s h ould be encouraged t o p a r t i c i p a t e .

258 Low cost market

A l t e r n a t i v e l y , t h e d e v e l o p m e n t o f s o r g h u m a n d pearl m i l l e t markets may be p u r s u e d b y t a r g e t i n g deliveries o f l o w cost grain - f o r e x a mple, for animal feed. T h i s m a r k e t p r o b a b l y has t h e highest p o t e n t i a l f o r growth in Africa as i n c o m e s rise a n d t h e d e m a n d for l i v e s t o c k p r o d u c t s c o r r e s pondingly increases. The logical primary target would be the expansion of th e poultry feed i n d u s t r y . I n t h e i n i t i a l stages o f m a r k e t d e v e l o p m e n t , s o r g h u m and pearl millet m a y o n l y b e used w h e n available a t substantial ( 2 0 - 4 0 % ) price discounts r e l a t i v e to maize. T h i s , at least, c o u l d h e l p establish a f l o o r p r i c e u n d e r grain prices w h e n rains are favorable. H o w e v e r , over t i m e , as t h e a n i m a l feed industry gains greater familiarity with these grains, such discounts s h o u l d decline and eventually fade away. Public support for this strategy could involve the coll e c t i o n o f grain stocks following favorable harvests, and sale of these stocks later in t h e year. Public investment could also encourage industry exper imentation with the processing a n d f e e d use of these grains. O n - f a r m trials are n o w a c o m m o n component of publicly funded agricultural research. Factory trials c o u l d similarly be a component of research programs encouraging t h e g r o w t h o f commercial grain processing. Industry should be encouraged to articulate w h a t research a n d t r i a l p r o g r a m s are needed. A g a i n , h o w e v e r , t h e p r o b l e m w i t h t h i s strategy i s its l i m ited scope. Farmers m a y b e n e f i t f r o m higher grain prices f o l l o w i n g favorable rainfall seasons. H o w e v e r , i t is u n l i k e l y t h a t t h i s w i l l be enough to encourage i n v e s t m e n t s in b e t t e r varieties a n d c r o p m a n a g e m e n t necessary to develop a more commercially competitive agro-industrial enterprise. The scenario could change with appropriate policy interventions in relevant c ou nt ri es .

Economies of scale

A third market development option would encompass efforts t o p r o m o t e t h e use of s o r g h u m or pearl m i l l e t as a c o m m o n , i n d u s t r i a l l y processed, food p r o d u c t - f o r e x a m p l e s o r g h u m m e a l o r s o r g h u m breakfast p o r r i d g e . I f grain d e m a n d i s assured i n m o s t seasons, farmers m a y b e m o r e w i l l i n g t o invest i n b e t t e r varieties o r c r o p m a n a g e m e n t practices. Larger, a nd more consistent t r a d e v o l u m e s can lead t o r e d u c t i o n s i n per u n i t m a r k e t i n g costs w i t h consequent gains in farmgate prices, and a possible r e d u ction in the costs of

259 grain at t h e f a c t o r y gate. T h e average search a n d assembly costs for grain w i l l d e c l i n e . M o r e consistent d e m a n d m a y also encourage traders t o h o l d larger i n v e n t o r i e s , r e d u c i n g seasonal p r i c e f l u c t u a t i o n s , a n d assuring c o m m e r c i a l processors o f a consistent f l o w o f grain t h r o u g h o u t t h e year. G o v e r n m e n t s can d o m a n y t h i n g s t o f a c i l i t a t e such p r i v a t e i n v e s t m e n t s necessary to d e v e l o p these m a r k e t s . A s t a r t i n g p o i n t is to e x a m i n e w h e r e g o v e r n m e n t s are already f a c i l i t a t i n g t h e p r o d u c t i o n a n d t r a d e o f a l t e r n a t i v e c o m m o d i t i e s such as m a i z e or r i c e . In m a n y c o u n t r i e s , strategic grain stocks are s t i l l h e l d a n d subsidized b y g o v e r n m e n t s . I n Tanzania, f o r e x a m p l e , t h e n a t i o n a l Strategy G r a i n Reserve i s m a d e u p e n t i r e l y o f m a i z e . T h e r e p l a c e m e n t o f 1 0 % o f t h i s m a i z e reserve w i t h s o r g h u m c o u l d t r i p l e commercial market flows overnight. Currently, governmen t - s u p p o r t e d school f e e d i n g p r o g r a m s o n l y use maize, even i f these are o p e r a t i n g i n s o r g h u m a n d p e a r l m i l l e t g r o w i n g regions. T h e c o n v e r s i o n o f these p r o g r a m s t o 5 0 % s o r g h u m o r pearl m i l l e t c o u l d lead t o a d o u b l i n g o f c o m m e r c i a l d e m a n d for grain f r o m t h e c e n t r a l p a r t o f t h e c o u n t r y . I n Botswana, grain i m p o r t c o n t r o l s designed t o p r o t e c t d o m e s t i c p r o d u c e r s l e d t o a r a p i d d e c l i n e i n s o r g h u m c o n s u m p t i o n d u r i n g t h e 1980s. T h e r e m o v a l o f i m p o r t c o n t r o l s , a n d t h e p r o m o t i o n o f s m a l l grants t o e n t r e p r e n e u r s i n t e r e s t e d i n establishing small-scale s o r ghum mills, stimulated a t e n - f o l d increase i n c o m m e r c i a l s o r g h u m m i l l i n g i n t h e m i d - l a t e 1990s. I n Z i m b a b w e , a n e w e x p e r i m e n t a l p r o g r a m i s encouraging c o m m e r c i a l m i l l i n g o f s o r g h u m f o r f o o d r e l i e f p r o g r a m s t a r g e t i n g u r b a n consumers. T h e miller involved recognizes the potential market for sor g h u m m e a l , b u t w a n t s m o r e p r o o f o f t h e p o t e n t i a l size o f t h i s m a r k e t b e f o r e h e expands his o w n i n v e s t m e n t s i n s o r g h u m m i l l i n g . T h e a i d p r o g r a m m a y b e adequate t o p r o v i d e t h i s p r o o f . I n s u m , w e c o m m o n l y accept t h e n e e d t o subsidize farmers w i t h p u b l i c i n v e s t m e n t s i n t h e d e v e l o p m e n t o f p r o d u c t i o n t e c h n o l o g i e s . Yet t h e i n c e n t i v e t o a p p l y these technologies c o m m o n l y depends o n t h e d e m a n d f o r t h e g r a i n product in the commercial market. Similar investments i n t h e d e v e l o p m e n t o f p r o d u c t m a r k e t s , o r i n l i n k i n g t e c h n o l o g y f l o w w i t h efforts t o f a c i l i t a t e m a r k e t d e v e l o p m e n t , can o f f e r substantially larger i m p a c t s o n farmer, processor a n d c o n s u m e r w e l f a r e i n t h e l o n g r u n . H i s t o r i c a l l y , these p u b l i c i n v e s t m e n t s have f a v o r e d crops such a s m a i z e a n d rice i n A f r i c a . Stronger i n v e s t m e n t s i n m a r k e t facilitation may benefit larger numbers of poorer farm ers if directed toward c o m m o d i t i e s such a s s o r g h u m a n d p e a r l m i l l e t .

260 References

Aisien A O . 1990. Utilization of sorghum in brewing lager beer in Nigeria. Page 24 in Industrial utilization of sorghum: summary proceedings of a Symposium on the Current Status and Potential of Industrial Uses of Sorghum in Nigeria, 4-6 Dec 1989, Kano, Nigeria. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Anonymous. 1998. Sorghum as cattle feed. The Farmer, 28 May 1998, p. 22. (Published by the Commercial Farmers' U n i o n , Zimbabwe.) Bogunjoko JST. 1992. Industrial uses of sorghum in Nigeria. Pages 115-119 in Utilization of sorghum and millets (Gomez M I , House LR, Rooney LW and Dendy DAV, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. Daiber KH and Taylor J R N . 1995. Opaque beers. Pages 299-323 in Sorghum and millets: Chemistry and technology (Dendy D A Y ed.). St. Paul Minnesota, USA: American Association of Cereal Chemists.

FAO. 2003. FAOSTAT. http://apps.fao.org. FIIRO. 1976. Production of malt from Nigerian sorghum. Technical Information Bulletin for Industries. Lagos, Nigeria: F I I R O . Gomez M I , Obilana A B , Martin DF, Madzvamuse M and Monyo ES. 1997. Manual of laboratory procedures for quality evaluation of sorghum and pearl millet. Technical Manual no. 2. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 116 pp.

I C R 1 S A T and FAO. 1996. The w o r l d sorghum and millet economies: facts, trends and outlook. Patancheru 502 324, Andhra Pradesh, India: ICRISAT; and Rome, Italy: FAO. 68 pp. Manful JT, Atokple I D K and Gayin J. 2001. Evaluation of agronomic and nutritional characteristics of released/recommended sorghum varieties in Ghana. In Towards sustainable sorghum production, utilization and commercialization in West and Central Africa: proceedings of a Technical Workshop of the West and Central Africa Sorghum Research N e t w o r k , 19-22 A p r i l 1999, Lome, Togo (Akintayo I and Sedgo J, eds.). Bamako, M a l i : West and Central Africa Sorghum Research Network; and Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Monyo ES. 1998. 15 years of pearl m i l l e t improvement in the S A D C region. International Sorghum and Millets Newsletter 39:17-33. M u r t y D S , Bello SA and Nwasike C C . 1997. Status and breeding requirements for sorghum utilization in beverages in Nigeria. Pages 538-567 in Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl M i l l e t , 23-27 September 1996, Lubbock, Texas, U S A . USA: I N T S O R M I L .

261 Ndoye A. 2001. Importance des equipments de transformation primare et secondaire dans la p r o m o t i o n des produits a base de sorgho - experience de l ' I T A du Senegal. In Towards sustainable sorghum production, utilization and commercialization in West and Central Africa: proceedings of a Technical Workshop of the West and Central African Sorghum Research N e t w o r k , 19-22 A p r i l 1999, Lome, Togo (Akintayo I and Sedgo J, eds.). Bamako, M a l i : West and Central Africa Sorghum Research N e t w o r k ; and Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Nicholson NF and Taylor J R N . 1997. Sorghum and millet for food. In Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl M i l l e t , 2 3 - 2 7 September 1996, Lubbock, Texas, U S A . U S A : I N T S O R M I L .

Obilana A B . 1985. Sorghum breeding and selection for brewing industry in Nigeria. Presented at the National Symposium on the Brewing Industry: N o w and in the 21st Century - Problems, Challenges and Prospects, 29 M a y - 1 June 1985, O w e r r i , Nigeria.

Obilana A B . 1994. I C R I S A T Southern and Eastern Africa Regional Program. Page 17 in Annual Report 1993. PO Box 776, Bulawayo, Zimbabwe: S A D C / I CRISAT Sorghum and M i l l e t Improvement Program ( S M I P ) .

Obilana A B . 1998. Sorghum improvement. International Sorghum and Millets Newsletter 39:4-17.

Okafor N and Aniche G N . 1980. Brewing a lager beer from Nigerian sorghum. Brewing and Distillation International 10:32-35.

O k o n E U and Uwaifo A O . 1985. Evaluation o f malting sorghums. I . The malting potential of Nigerian varieties of sorghum. Brew Digest 60(12):27-29.

Rohrbach D D . 2000. Commercialization of sorghum and pearl millet in Zimbabwe. Pages 1-15 in Proceedings of the Workshop to Develop a Strategy for the multiple use of Mahangu and Sorghum in Namibia, 2 7 - 2 8 June 2000, Windhoek, Namibia. Namibia: Centre for Research Information A c t i o n in Africa.

Rohrbach D D , Baidu-Forson J and Ajayi O. 1993. Sorghum utilization in the bewing and malting industry of Nigeria: a case study of distributive impact and research needs. Bulawayo, Zimbabwe: International Crops Research Institute for the Semi-Arid Tropics. ( M i m e o . ) Rohrbach DD and Kiriwaggulu JAB. 2001. Commercialization prospects for sorghum and pearl millet in Tanzania. Working Paper Series no. 7. Bulawayo, Zimbabwe: Socioeconomics and Policy Program, International Crops Research Institute for the Semi-Arid Tropics. 28 pp.

Rohrbach D D , Mupanda K and Seleka T. 2000. Commercialization of sorghum in Botswana: trends and prospects. Working Paper Series no. 6. Bulawayo, Zimbabwe: Socioeconomics and Policy Program, International Crops Research Institute for the Semi-Arid Tropics. 24 pp.

262 SAGIS. 2003. www.sagis.org.sa.

Sooliman A O G . 1993. Sorghum processing at the crossroads in South Africa. Pages 4 9 7 - 5 0 7 in Cereal science and technology: Impact on a changing Africa (Taylor JRN, Randall PG and Viljoen J H , eds.). Pretoria, South Africa: CSIR.

Taylor J R N . 1992. Brewing w i t h malted grain sorghum. Journal of American Society of Brew Chemistry 50:13-18.

Taylor J R N . 1993. Sorghum malt: Its current use and future potential for breeding in Southern Africa. Pages 4 1 3 - 4 3 1 in Cereal science and technology: Impact on a changing Africa (Taylor JRN, Randall PG and Viljoen J H , eds.). Pretoria, South Africa: CSIR.

263 Sorghum and Pearl Millet for Poultry Feed

A Rajashekher Redely1, VLK Prasad1, CLN Rao2 and D Sudhakar3

Abstract

This paper reviews the chemical composition, nutritive value and utilization of sorghum and pearl millet. Sorghum is almost comparable to maize but pearl millet has better protein value. The energy source of these ingredients is lower than that of maize. However, these can be used as energy ingredients for poultry, replacing maize partly or completely in poultry diets. Hence alternative energy ingredients like sorghum and pearl millet can share the increased demand of maize. Further, there is a need to study the nutritive value and utilization of sorghum and pearl millet cultivars developed in recent years.

S o r g h u m (Sorghum bicolor) and pearl m i l l e t (Pennisetum glaucum) have f o o d value f o r h u m a n c o n s u m p t i o n p a r t i c u l a r l y b y r u r a l p e o p l e . T h e q u a l i t y o f t h e grain d e p e n d s o n t h e season, varieties a n d a g r o n o m i c practices. U s e o f s o r g h u m i n p o u l t r y f e e d i s discouraged m a i n l y d u e t o t h e presence o f tannins a n d grain m o l d s . T h e c h e m i c a l c o m p o s i t i o n and n u t r i t i v e value o f t h e grain varies a n d i s d e p e n d e n t o n m a n y factors. Recently, m a n y c u l tivars with i m p r o v e d y i e l d a n d grain q u a l i t y have b e e n d e v e l o p e d . P o u l t r y feeds c o n t a i n cereal grains t o t h e e x t e n t o f 4 0 - 6 0 % a n d these i n g r e d i e n t s contribute energy. A m o n g t h e cereals, y e l l o w maize [Lea mays) a n d w h e a t [Triticum aestwum) are c o m m o n l y u s e d d e p e n d i n g on t h e i r availability. M a i z e - s o y b e a n (Glycine max) i n g r e d i e n t s are e x t e n s i v e l y u s e d t o m e e t t h e c o m p l e t e n u t r i e n t requirement of poultry diets. Alternatively, sorghum an d pearl m i l l e t are also u s e d i n p o u l t r y feeds o n t h e basis o f least cost f o r m u l a t i o n .

Grain structure

A b r i e f r e v i e w has b e e n a t t e m p t e d o n t h e use o f s o r g h u m a n d p e arl millet in poultry feed. Genetic and environmental factors play si gnificant roles in d e t e r m i n i n g t h e g r a i n c o m p o s i t i o n . A n e x t e n s i v e r e v i e w was m a d e o n s o r g h u m a n d p e a r l m i l l e t ( F A O 1 9 9 5 ) . S o r g h u m a n d p e a r l m illet grains show c o n s i d e r a b l e d i v e r s i t y i n color, shape, size a n d c e r t a i n a n a t o m i c a l

1. A c h a r y a N G Ranga A g r i c u l t u r a l U n i v e r s i t y , Rajendranagar, H y d e r a b a d 5 0 0 0 3 0 , A n d h r a Pradesh, I n d i a . 2. Janaki Feeds, Pavani Estates, Himayatnagar, H y d e r a b a d 5 0 0 0 2 9 , A n d h r a Pradesh, I n d i a . 3. A P P o u l t r y Federation, H y d e r g u d a , H y d e r a b a d 5 0 0 0 2 9 , A n d h r a Pradesh, I n d i a .

264 c o m p o n e n t s (Table 1). G r a i n s t r u c t u r e i s s i m i l a r i n s o r g h u m a n d p e a r l millet. The principal components are pericarp, endospe r m a n d g e r m . Pericarp i s t h e o u t e r m o s t layer c o m p r i s i n g o f sub-layers, namely epicarp, m e s o c a r p a n d e n d o c a r p . T h e p e r i c a r p consists o f t h e e p i d e r m i s , w h i c h i s o f t e n p i g m e n t e d a n d h y p o d e r m i s , w h i c h possesses t h r e e layers o f t h i c k n e s s . Mesocarp thickness is associated with mold resistance a n d i t varies w i d e l y among the genotypes. Grains with thick mesocarp are pre f e r r e d f o r dehulling by hand-pounding. The seed sub-coat or testa lies j u s t b e l o w t h e endocarp and its color and pigments are variable and ge netically controlled. B r o w n s o r g h u m s have d a r k seed sub-coat. I f t h e c u l t i v a r s contain tannin, m o s t o f i t i s i n t h e testa. Endosperm is the major storage tissue comprising the aleurone layer and peripheral corneous and floury zones. Aleurone cells are r i c h i n B - complex vitamins, minerals and oil and contain hydroly z i n g enzymes. T h e p r o t e i n b o d i e s i n t h e e n d o s p e r m o f s o r g h u m a n d p e a r l m i l l et are spherical. I n s o r g h u m , t h e n u m b e r o f p r o t e i n b o d i e s decreases w i t h t h e rise in starch content from peripheral zone to the central core where t h e f l o u r y endosperm is located. In pearl millet the protein bodi e s are m o r e n u m e r o u s i n t h e f l o u r y zone t h a n i n t h e c o rn e ous zone. N o v e l l i e a n d Liebenberg (1976) have reported the presence of several enzymes su c h as protease, 3- glucosidases, 3-galactosidase and phosphatase in the p r o t e i n b o d i e s o f s o r g h u m . T h e g e r m c o m p r i s e s t h e s c u t e l l u m a n d i s r i c h i n l i p i d s , p r o t e i n , e n z y m e s a n d m i n e r a l s . T h e r a t i o o f e n d o s p e r m t o g e r m i s larger i n s o r g h u m t h a n i n p e a r l m i l l e t (Table 1).

Table 1. Structural features of sorghum and pearl millet grains. Parameter Sorghum Pearl millet Grain color White, yellow, red, brown Gray, white, yellow, brown, purple Grain type Caryopsis Caryopsis Grain shape Spherical Globular, hexagonal, globose 1000-seed mass(g) 25-30 2.5-14 Seed coat or testa Single layer, sometimes Single layer, sometimes pigmented pigmented (brown sorghum is dark colored) Starch granules 20-30 urn diameter 10-12 um diameter Protein matrix size 0.3-3 urn 0.6-0.7 urn Endosperm:germ ratio 8.4:1 4.5:1

Source: FAO (1995).

265 Chemical composition

C h e m i c a l c o m p o s i t i o n a n d n u t r i t i v e value o f maize, s o r g h u m and pearl m i l l e t r e p o r t e d i n N u t r i t i o n a l Research C o u n c i l ( 1 9 9 4 ) and r e v i e w e d b y Rama Subba R e d d y ( 1 9 9 8 ) a n d R a m a Subba R e d d y a n d Nageswara Rao ( 2 0 0 0 ) are p r e s e n t e d in Tables 2 to 4.

Protein

S o r g h u m a n d pearl m i l l e t c o n t a i n h i g h p r o t e i n levels c o m p a r e d t o m a i z e (Tables 2 a n d 3 ) . G r a i n p r o t e i n s are b r o a d l y classified i n t o f o u r fractions a c c o r d i n g t o t h e i r s o l u b i l i t y characteristics. These are a l b u m i n ( w a t e r s o l u b l e ) , g l o b u l i n (salt s o l u b l e ) , p r o l a m i n ( a l c o h o l soluble) a n d g l u t e l i n (alkali

Table 2. Chemical composition and nutritive value of different cereals used as feed.

Parameter Sorghum Pearl millet Maize

Dry matter (%) 87 89 89 Metabolizable energy (kcal kg-1) 3288 2675 3350 Crude protein (%) 8.8 14 8.5 Fat (%) 2.9 4.3 3.8 Crude fiber (%) 2.3 3.0 2.2 Linoleic acid (%) 1.13 0.84 2.20 Calcium (%) 0.04 0.05 0.02 Total phosphorus (%) 0.30 0.32 0.28 Non-phytin phosphorus (%) 0.09 0.12 0.08

Source: Nutritional Research Council (1994).

Table 3. Chemical composition of sorghum and pearl millet on dry matter basis.

Parameter Sorghum Pearl millet Maize

Dry matter (%) 88.4-99.2 88-89.3 88.4-89.6 Crude protein (%) 10.0-14.1 7.1-14.4 8.8-10.4 Crude fiber (%) 1.5-5.9 2.3-3.0 2.3-2.8 Fat (%) 1.8-5.7 4.3-5.1 1.8-3.8 Total ash (%) 1.77-3.60 2.6-6.2 1.8-3.2 Nitrogen-free extract (%) 65.3-84.2 64-90 Calcium (%) 0.01-0.36 0.03-0.31 0.02-0.07 Phosphorus (%) 0.13-0.69 0.11-0.77 0.11-0.45 Available carbohydrates (%) 56-63 60.8 -

Source: Rama Subba Reddy (1998), Rama Subba Reddy and Nageswara Rao (2000).

266 Table 4. Chemical composition and nutritive value of sorghum cultivars and maize on dry matter basis.

Sorghum cultivars

Parameter CSV 15 CSH 16 PSV 16 S 35 Maize Dry matter (%) 93 92 93 92 92 Crude protein (%) 9.40 10.32 10.80 11.90 9.3 Fat (%) 3.01 2.85 2.40 3.73 3.8 Crude fiber (%) 3.20 2.48 2.81 4.02 2.20 Ash (%) 1.13 1.30 1.37 1.53 1.30 Nitrogen-free extract (%) 83.26 83.05 82.62 79.22 83.4 Metabolizable energy (kcal kg-1) 3422 3196 3402 3238 3700

Source: Laxmi Tulasi (2003). and acid e x t r a c t a b l e ) . S o l u b i l i t y f r a c t i o n a t i o n studies indicated higher levels of albumin plus globulin in pearl millet varieties than i n s o r g h u m , w h i l e a m o u n t s o f t h e cross-linked p r o l a m i n , -prolamin, were higher in sorghum t h a n i n pearl m i l l e t (Table 5 ) . Studies on amino acid composition of the protein fracti o n s o f s o r g h u m grain ( A h u j a e t al. 1 9 7 0 ) s h o w e d t h a t t h e a l b u m i n a n d g l o b ulin fractions c o n t a i n e d h i g h a m o u n t s o f lysine a n d t r y p t o p h a n a n d i n general w e r e w e l l balanced in their essential amino acid composition. On t h e o t h e r h a n d , t h e p r o l a m i n f r a c t i o n was e x t r e m e l y p o o r i n lysine, arginine, histidine and tryptophan and contained high amounts of proline, gluta m i c a c i d a n d leucine. Present in the form of protein bodies, prolam in was found to be the predominant protein fraction directly associated with t h e p r o t e i n c o n t e n t o f

Table 5. Distribution of protein fractions (% of total protein) in sorghum and pearl millet grains. Sorghum Pearl millet

Fraction Range Mean Range Mean Albumin + globulin 17.1-17.8 17.4 22.6-26.6 25.0 Prolamin 5.2-8.4 6.4 22.8-31.7 28.4 Cross-linked prolamin 18.2-19.5 18.8 1.8-3.4 2.7 Glutelin-like 3.4-4.4 4.0 4.7-7.2 5.5 Glutelin 33.7-38.3 35.7 16.4-19.2 18.4 Residue 10.4-10.7 10.6 3.3-5.1 3.9

Source: FAO (1995).

267 t h e g r a i n . G l u t e l i n , t h e s e c o n d m a j o r p r o t e i n f r a c t i o n , i s a structural c o m p o n e n t t h a t r e p r e s e n t s t h e p r o t e i n m a t r i x i n t h e p e r i p h e r a l a n d i n n e r e n d o s p e r m o f t h e s o r g h u m k e r n e l . S o r g h u m c o n t a i n e d h i g h t r y p t o p h a n , w h i l e pearl m i l l e t c o n t a i n e d h i g h e r levels o f essential a m i n o acids a s c o m p a r e d t o m a i z e (Table 6 ) . A m i n o a c i d c o m p o s i t i o n v a r i e d w i t h c u l t i v a r s . T h e c u l t i v a r S 3 5 has h i g h essential a m i n o a c i d c o n t e n t . T h e a m i n o a c i d d i g e s t i b i l i t y in s o r g h u m is s l i g h t l y less as c o m p a r e d t o m a i z e (Table 6 ) .

Carbohydrates

S o r g h u m a n d pearl m i l l e t s l i g h t l y d i f f e r i n characteristics of starches (Table 7) a n d c o m p o s i t i o n o f souble sugars (Table 8 ) . I n m a n y sorghums, starch d i g e s t i b i l i t y i s l o w a n d starch c o n t e n t m o r e variable (Wagner 1 9 8 2 ) .

Fat

C r u d e f a t c o n t e n t o f s o r g h u m i s 3 % , w h i c h i s l o w e r t h a n t h a t of maize and pearl millet. The germ and aleurone layers are the main c o n t r i b u t o r s t o t h e l i p i d f r a c t i o n . T h e g e r m i t s e l f p r o v i d e s a b o u t 8 0 % o f t h e total fat. Average f a t t y a c i d c o m p o s i t i o n o f s o r g h u m a n d m a i z e i s g i v e n i n Table 9 .

Table 6. Amino acid composition (% of protein) of sorgh um (SG) and maize and their digestibility coefficients.

Digestibility SG cultivars coefficient (%) Pearl Amino acid SG millet Maize S 35 PSV 16 CSV 15 CSH 16 SG Maize Methionine 0.17 0.25 0.18 0.17 0.17 0.15 0.16 88 91 Cystine 0.16 0.24 0.19 0.19 0.16 0.17 0.18 80 88 Lysine 0.24 0.45 0.27 0.22 0.20 0.20 0.20 78 82 Threonine 0.31 0.48 0.32 0.33 0.30 0.27 0.29 80 84 Tryptophan 0.10 0.08 0.07 0.12 0.11 0.09 0.10 85 80 Arginine 0.37 0.74 0.44 0.40 0.36 0.33 0.34 78 90 Isoleucine 0.34 0.37 0.31 0.40 0.36 0.31 0.35 88 89 Leucine 0.99 1.14 1.07 1.31 1.19 0.79 1.16 93 93 Valine 0.44 0.49 0.42 0.51 0.47 0.46 0.45 86 88 Histidine 0.20 0.39 0.26 - - - - 86 91 Crude protein (%)10.5 15.7 9.0 10.5 9.52 8.27 9.08 - -

Source: Nutritional Research Council (1994), Degussa Feed Additives (2001).

268 T a b l e 7 . C h a r a c t e r i s t i c s o f s t a r c h o f s o r g h u m a n d pearl millet.

Viscosity (amylogragh - Brabend) Water Gelatinization binding Swelling Solubility After Cooled Amylose temperature (°C) capacity at 90°C at 90°C At 93 holding to 35 or Grain (%) Initial Final (%) (%) (%) to 95°C at 95°C 50°C

Sorghum 24.0 68.5 75.0 105 22 22 600 400 580 Pearl millet 21.1 61.1 68.7 87.5 13.1 9.16 460 396 568

Source: FAO (1995).

Table 8. Composition (%) of soluble sugars in sorghum a nd pearl millet grains.

Number of Total Glucose + Grain cultivars sugar Sucrose fructose Raffinose Stachyose

Sorghum 10 2.25 1.68 0.25 0.23 0.10 Pearl millet 9 2.56 1.64 0.11 0.71 0.09

Source: FAO (1995).

T a b l e 9 . A v e r a g e fatty acid c o m p o s i t i o n o f s o r g h u m a n d m a i z e .

Selected fatty acid (% of feed ingredient) Dry Ether

Grain matter extract C12:0 C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3

Sorghum 89 2.8 0.56 0.15 0.03 0.89 1.13 0.06 Maize 89 3.8 0.62 - 0.10 1.17 1.82 0.09

Source: Nutritional Research Council (1994).

Fiber

T h e f i b e r c o n t e n t o f s o r g h u m i s h i g h e r t h a n m a i z e b u t i s q u ite variable (Table 4 ) . K a r i m a n d R o o n e y ( 1 9 7 2 ) r e p o r t e d t h a t t h e p e n t o s a n c o n tent of sorghum v a r i e d f r o m 2 . 5 1 t o 5 . 5 7 % . Pentosans o c c u r i n c e l l w a l l s o f cereal grains a n d are a heterogeneous mixture of polysaccharides; many of which contain p r o t e i n s . E a r p e t al. ( 1 9 8 3 ) i d e n t i f i e d t h e m i x e d l i n k e d -glucans i n s o r g h u m pericarp, aleurone and endosperm. These are water soluble a n d f o r m viscous, s t i c k y s o l u t i o n s . T h i s p r o p e r t y m a y b e i m p o r t a n t i n m a l t ing of sorghum but it i s a disadvantage i n t h e a l i m e n t a r y t r a c t o f b i r d s . C h o l esterol lowering p r o p e r t y i s seen i n glucans i s o l a t e d f r o m s o r g h u m .

269 T h e f i b e r c o n t e n t o f p e a r l m i l l e t i s h i g h e r t h a n s o r g h u m a n d maize (Table 2 ) . Pentosans o f p e a rl m i l l e t represent arabinose, x y l o s e and galactose, follwed b y r h a m n o s e a n d fucose (Bailey e t al. 1 9 7 9 ) . Pearl m i l l e t contains 0 . 6 6 % w a t e r soluble non-starch polysaccharides and 3.88% water inso luble non-starch polysaccharides.

Minerals

M i n e r a l c o m p o s i t i o n o f s o r g h u m i s c o m p a r e d w i t h p e a r l m i l l e t a n d m a i z e (Table 1 0 ) . I n s o r g h u m grain, m i n e r a l s are u n e v e n l y d i s t r i b u t e d a n d are m o r e c o n c e n t r a t e d i n t h e g e r m a n d seed coat.

Vitamins

C h o l i n e , n i a c i n , p a n t o t h e n i c acid and r i b o f l a v i n are h i g h i n s o r g h u m a n d pearl m i l l e t a s c o m p a r e d t o m a i z e (Table 1 1 ) . S o r g h u m c o n t a i n e d higher b i o t i n t h a n m a i z e . Pearl m i l l e t c o n t a i n e d a l m o s t d o u b l e t h e q u a n t i t y o f t h i a m i n e c o m p a r e d t o maize.

Nutritional inhibitors and toxic factors

A n t i n u t r i t i o n a l factors can be classified b r o a d l y as those n a t u r a l l y present in t h e grains a n d those o c c u r r i n g d u e t o c o n t a m i n a t i o n w h i c h m a y b e o f fungal

Table 10. Mineral c o m p o s i t i o n of s o r g h u m , pearl millet a n d maize.

Mineral Sorghum Pearl millet Maize Calcium (%) 0.04 0.05 0.02 Phosphorus (%) 0.30 0.32 0.28 Non-phytin phosphorus (%) 0.09 0.12 0.08 Sodium (%) 0.01 0.04 0.02 Sulfur (%) 0.06 0.13 0.08 Potassium (%) 0.35 0.43 0.30 Chloride (%) 0.09 0.14 0.04 Iron (ppm) 45 25 45 Magnesium (ppm) 0.15 0.16 0.12 Manganese (ppm) 15 31 7 Copper (ppm) 10 22 3 Selenium (ppm) 0.2 - 0.03 Zinc (ppm) 15 13 18

Source: Nutritional Research Council (1994).

270 Table 1 1 . V i t a m i n c o m p o s i t i o n ( p p m ) of s o r g h u m , pearl millet and maize.

Vitamin Sorghum Pearl millet Maize Biotin 0.26 _ 0.06 Choline 668 793 620 Folacin 0.2 _ 0.4 Niacin 41 53 24 Pantothenic acid 12.4 7.8 4.0 Pyridoxine 5.2 - 7.0 Riboflavin 1.3 1.6 1.0 Thiamine 3.0 6.7 3.5 Vitamin E 7 - 22

Source: Nutritional Research Council (1994). origin or may be related to soil and other environmenta l influences. These factors m o d i f y t h e n u t r i t i o n a l value o f grains a n d some of them have serious n u t r i t i o n a l a n d h e a l t h consequences. T h e a n t i n u t r i e n t s and toxic substances associated with sorghum and pearl millet are discussed below.

Phytate P h y t i c acid i s t h e m a i n p h o s p h o r u s store i n m a t u r e grain. It readily forms complexes with minerals and proteins. Most phytate-met a l c o m p l e x e s are insoluble and make several minerals unavailable in animals and birds. Bran and aleurone layers of t h e grain are a m a j o r source of p h y t a t e and total phosphorus in sorghum. The phytate content of sorghum and millet are almost s i m i l a r t o t h a t of maize and it is n o t a serious p r o b l e m in diets for c h i c k e n .

Polyphenols Widely distributed polyphenols in plants are not direct ly involved in any metabolic process and are therefore considered secondary metabolites. Phenolic compounds in sorghum can be classified as phe nolic acids, flavonoids and condensed polymeric phenols known as tannins. Phenolic acids, free or b o u n d a s esters, are c o n c e n t r a t e d i n t h e o u t e r layers o f the grain. They inhibit growth of microorganisms and probably impart resistance against grain mold. Flavonoids in sorghum, derivatives of the monomeric pol yphenol flavon-4-ol are called anthocyanidins. The two flavonoids in sorghu m are luteoforol and apiforol. Jambunathan et al. (1986) observed that resistance to grain molds r a t h e r t h a n t o b i r d s ( S u b r a m a n i a n e t al. 1 9 8 3 ) was associated with flavon-4-ol c o n t e n t o f t h e grain.

271 Tannins are polymers resulting from condensation of fl avon-3-ols. During grain development, flavonoid monomers are synth esized and then c o n d e n s e d t o f o r m o l i g o m e r i c p r o a n t h o c y a n i d i n s o f f o u r t o six units. Tannins, while conferring the agronomic advantage of b ird resistance, adversely affect the grain's nutritional quality (Butle r et al. 1984). Tannins are g e n e r a l l y l o c a t e d o n t h e o u t e r seed coat o f s o r g h u m g r a i n . T h e r e i s n o clear relationship between seed coat color and tannin c o n t e n t . H i g h t a n n i n s o r g h u m s are u s u a l l y d a r k e r i n color, b u t s o m e d a r k c o l o r e d s o r g h u m s are l o w i n t a n n i n s . A quick test was developed to cut the seed and observe presence of p i g m e n t e d t a n n i n i n t h e testa. A b l e a c h t e s t f o r presence o r absence o f p i g m e n t e d testa gives a fair i n d i c a t i o n o f t a n n i n i n grains. A b o u t 2 0 g s o r g h u m i s m i x e d w i t h 5 g p o t a s s i u m h y d r o x i d e a n d 7 5 m l o f h o u s e h o l d b l e a c h . T h e m i x t u r e i s shaken u n t i l p o t a s s i u m h y d r o x i d e dissolves a n d t h e n i t i s set aside f o r 2 0 m i n u t e s . G r a i n s are s t a i n e d a n d r i n sed with water and p l a c e d o n a p a p e r t o w e l . P o t a s s i u m h y d r o x i d e r e m o v e s t h e o u t e r p e r i c a r p a n d s o t h e testa i s e x p o s e d . H i g h t a n n i n grains appear d a rk brown or black w h i l e l o w t a n n i n grains are b l e a c h e d w h i t e o r y e l l o w ( L e eson and Summers 2001). Tannins in grain can be estimated by spectropho tometric method ( B u r n s 1 9 7 1 , P o r t e r e t al. 1 9 8 6 ) . T h e adverse effects o f t a n n i n s are r e d u c e d digestibility and growth retardation in chicken when protein in diet is m a r g i n a l . Different methods have been tried to inactivate or det o x i f y t h e t a n n i n s i n b i r d r e s i s t a n t s o r g h u m s t o i m p r o v e t h e i r n u t r itional quality. S o m e o f t h e s e m e t h o d s are m o i s t u r i z i n g w i t h a l k a l i , d i l u t e a q u e o u s ammonia, Mugadi soda solution, formaldehyde and polyet hylene glycol ( F A O 1 9 9 5 ) .

Digestive enzyme inhibitors Inhibitors of amylases and proteases have been identifi e d i n s o r g h u m a n d some millets (Pattabhiraman 1985). The nutritional significance o f t h e e n z y m e i n h i b i t o r s present i n s o r g h u m a n d m i l l e t s i s n o t clearly understood a n d h e n c e f u r t h e r research is n e e d e d .

Goitrogens Goitrogens were identified in pearl millet (Osman and Fatah 1981). Feeding trials in rats showed that goitrogen inhibited deiodina tion of thyroxine (T4 ) t o

272 triiodothyronine (T3 ) . I o d i n e s u p p l e m e n t a t i o n d i d n o t alleviate t h e goitrogenic effect o f pearl m i l l e t . Y e l l o w c o l o r e d pearl m i l l e t was less goitrogenic t h a n b r o w n o r gray m i l l e t .

Mycotoxins

L i k e o t h e r cereals, s o r g h u m a n d p e a r l m i l l e t are susceptible t o fungal g r o w t h a n d m y c o t o x i n p r o d u c t i o n u n d e r c e r t a i n e n v i r o n m e n t a l c o n d itions. Storage f u n g i , m o s t l y species of Aspergillus and Penicillium are f o u n d on f o o d grain s t o r e d w i t h m o i s t u r e c o n t e n t greater t h a n 1 3 % (Sauer 1 9 8 8 ) . M o l d y s o r g h u m panicles w e r e r e p o r t e d t o b e c o n t a m i n a t e d w i t h aflatoxins B a n d G ( T r i p a t h i 1 9 7 3 ) . I n f e s t a t i o n o f p e a r l m i l l e t b y parasitic f u n g i , Claviceps fusiformis, caused an o u t b r e a k of e r g o t i s m . Fusarium spp on s o r g h u m

released T 2 t o x i n .

S o r g h u m u t i l i z a t i o n i n p o u l t r y d i e t s

T h e i n f o r m a t i o n available o n t h e g r o w t h o f c h i c k s f e d o n s o r g h u m t o replace m a i z e p a r t b y p a r t o r i s o c a l o r i c a l l y have been r e v i e w e d b y Rama Subba R e d d y a n d Nageswara Rao ( 2 0 0 0 ) . D a t a i n d i c a t e d t h a t s o r g h u m can b e i n c l u d e d u p t o 6 0 % i n b r o i l e r diets r e p l a c i n g m a i z e w i t h o u t a f f e c t i n g t h e p e r f o r m a n c e . T h e b r o i l e r s t o l e r a t e d u p t o 0 . 2 6 % t a n n i n s i n t h e i r d i e t . T h e a d d i t i o n o f t a l l o w a t 6 % i m p r o v e d f e e d c o n v e r s i o n r a t i o ( F C R ) a t highest d i e t a r y t a n n i n c o n t e n t ( 0 . 6 5 % ) (Pour-Reza a n d Edriss 1 9 9 7 ) . R e d u c t i o n i n b o d y w e i g h t a n d F C R d u e t o h i g h t a n n i n c o n t e n t i n t a k e can o n l y p a r t i a l l y b e i m p r o v e d b y t h e a d d i t i o n o f a n i m a l fat. I m p r o v e d F C R r e s u l t e d f r o m r e d u c t i o n i n t h e rate o f passage o f digesta (Pour-Reza a n d Edriss 1 9 9 7 ) . I n b r o i l e r c h i c k s , S h a r m a e t al. ( 1 9 7 9 ) o b s e r v e d s u p e r i o r i t y o f p e a r l m i l l e t over m a i z e , w h e a t a n d s o r g h u m . E f f e c t o f feeding s o r g h u m t o b r o i l e r s o n m e a t q u a l i t y was s t u d i e d b y C h e r i a n e t al. ( 2 0 0 2 ) . S o r g h u m feeding m a y i m p r o v e t h e c o l o r s t a b i l i t y o f m e a t by its a n t i o x i d a n t effect. T a n n i n a n d r e l a t e d p h e n o l c o m p o u n d s are as effective as v i t a m i n E as an a n t i o x i d a n t . S u p p l e m e n t a t i o n o f s o r g h u m grain diets w i t h m e t h i o n i n e ( 0 . 1 5 % ) a n d c h o l i n e ( 0 . 2 % o f 2 5 % p u r i t y ) r e s u l t e d i n significant i m p r o v e m e n t i n w e i g h t gain a n d F C R . P o l y v i n y l p y r r o l i d o n e ( 1 % ) c o m p l e t e l y a t t e n u a t e d t h e t a n n i c acid effect i n b r o i l e r s . L a y e r b i r d s o n s o r g h u m diets a t 5 0 a n d 1 0 0 %

273 replacement of maize have resulted in similar performa n c e a s c o m p a r e d t o maize (Rama Subba Reddy and Nageswara Rao 2000).

Pearl m i l l e t u t i l i z a t i o n i n p o u l t r y d i e t s

Inclusion of pearl millet at high rate (47.1%) promoted best e f f i c i e n c y o f protein digestion. Pearl millet replaced total maize i n broiler diet without a f f e c t i n g t h e b r o i l e r p e r f o r m a n c e . Singh a n d Barsaul ( 1 9 7 6 ) have observed i m p r o v e m e n t i n t h e F C R w h e n p e a rl m i l l e t r e p l a c e d maize i n broiler diets. W h e n pearl m i l l e t r e p l a c e d m a i z e p a r t per p a r t o r isocalorically and isoproteinically, the performance of chicks was either comparable or better than those fed with maize (Ayyaluswami et al. 1967, Singh a n d Barsaul 1 9 7 6 , S h a r m a et al. 1 9 7 9 , A s h a Rajani et al. 1 9 8 6 , N a g r a et al. 1987, Satyanarayana R e d d y et al. 1 9 8 9 , P u r u s h o t h a m a n a n d T h i r u m a l a i 1 9 9 5 , Rama Rao et al. 1997). As such, maximum level used in the experiments ( 21.5 to 60%) could b e t a k e n a s t h e m a x i m u m level o f i n c l u s i o n o f p e a r l m i l l et in diet. Pearl millet was i n c l u d e d a t 2 7 . 8 % i n u n g r o u n d f o r m o r g r o u n d f o r m o r a t 27.8% unground form plus 27.8% ground form. The performance was simila r w h e t h e r p e a r l millet was in ground form or unground form. In two studies o n layers, p e a rl m i l l e t was i n c l u d e d at 3 2 % p a r t per p a r t f o r m a i z e a n d at 60%) p a r t per p a r t or isocalorically and isoproteinically at the expense of maize. I n all t h e cases, t h e p e r f o r m a n c e o f layers w i t h p e a rl m i l l e t f e e d was c o m p a r a b l e t o those o n maize d i e t , b u t f o r y o l k c o l o r ( R a m a c h a n d r a R e d d y a n d R e d d y 1 9 7 0 , Srilatha Rani 1 9 9 5 ) . Digestibility of dry matter, ether extract, crude fiber, n i t r o g e n - f r e e e x t r a c t a n d balance o f c a l c i u m a n d p h o s p h o r u s r e m a i n e d u naffected at 3 a n d 9 w e e k s o f age ( S i n g h a n d Barsaul 1 9 7 6 ) . E n e r g y a n d p r otein deposition i n b r o i l e r s w h e n f e d o n p e a r l m i l l e t was o b s e r v e d t o b e b e t t e r t h a n w h e n f e d o n m a i z e d i e t ( S h a r m a e t al. 1 9 7 9 ) . Satyanarayana R e d d y e t al. ( 1 9 9 1 ) o b s e r v e d n o e f f e c t o f p e a r l m i l l e t d i e t o n a b d o m i n a l fat a n d ready to cook y i e l d i n b r o i l e r s w h i l e R a m a Rao e t al. ( 1 9 9 7 ) r e p o r t e d h i g h e r a b d o m i n a l fat w h e n b r o i l e r s f e d o n p e a r l m i l l e t d i e t t h a n o n m a i z e d i e t . Source of energy in the diet did not influence egg production, indicating t hat pearl millet can be u s e d a s a n a l t e r n a t i v e t o y e l l o w m a i z e w i t h o u t a f f e c t i n g egg production in broiler breeder diet. Kumar et al. (1991) and Purushoth a m a n a n d Thirumalai (1995) did not find differences in egg prod uction due to feeding o f p e a r l m i l l e t .

274 References

Ahuja VP, Singh J and Naik M S . 1970. Aminoacid balance of proteins of maize and sorghum. Indian Journal of Genetics and Plant Breeding 30:727-731. Asha Rajini R, Rukmangadhan S, Ravindran R, Mohan B, Muruganghan B and Vedhnayagam K. 1986. Replacing maize with other grains in broiler diet. Indian Journal of Poutlry Science 21:343-344.

Ayyaluswami P, Jagannathan V and Jayaraman VS. 1967. Studies on maize, ragi and cow dung meal in chick mash. Indian Veterinary Journal 44:331-335.

Bailey AV, Sumrell G and Burton GW. 1979. Pentosans in pearl millet. Cereal Chemistry 56:295-298. Burns RE. 1971. Method for estimation of tannin in grain sorghum. Agronomy Journal 63:511-512. Butler L G , Riedl D J , Lebryk DG and Blytt H J . 1984. Interaction of proteins w i t h sorghum tannin: mechanism, specificity and significance. Journal of American Oil Chemists Society 61:916-920. Cherian M G , Stitt PA and Ahn D U . 2002. Effect of dietary sorghum cultivars on the storage stability of broiler breast and thigh meat. Poultry Science 81:1385-1391. Degussa Feed Additives. 2001. Amino acid composition of feedstuffs ( C D - R O M A m i n o D a t ™ 2.0 prepared by Fickler J, Fontaine J, Llames C and Heibeck W ) . Germany: Degussa Feed Additives. Earp CF, Doherty C A , Fulcher RG and Rooney LW. 1983. Beta-glucans in the caryopsis of Sorghum bicolor (L) Moench. Food Microstructure 2:183-188. FAO. 1995. Sorghum and millets in human nutrition. FAO Food and Nutrition Series N o . 27. Rome, Italy: FAO. 64 pp. Jambunathan R, Butler L G , Bandyopadhyay R and Mughogho LK. 1986. Polyphenol concentrations in grain, leaf and callus tissues of mold-susceptible and mold-resistant sorghum cultivars. Journal of Agricultural and Food Chemistry 34:425-429.

Karim A and Rooney LW. 1972. Characterization of pentosans in sorghum grain. Journal of Food Science 3 7 : 3 6 9 - 3 7 1 . Kumar M R A , Reddy V R , Reddy P W S N and Sudhakar Reddy P. 1991. Utilization of pearl millet (Pennisetum typhoides) for egg production. British Poultry Science 32:463-469. Laxmi Tulasi. 2003. Performance of broilers on diets containing certain improved sorghum cultivars (Sorghum bicolor). MVSc thesis submitted to Acharya NG Ranga Agricultural University, Rajendranagar, Hyderabad, Andhra Pradesh, India. 67 pp.

275 Leeson S and Summers J D . 2001. Nutrition of the chicken. 4t h edition. Lucknow, India: International Book Distributing Company. 591 pp.

Nagra SS, Pannu MS and Chawla JS. 1987. Comparative feeding value and economic implications of different cereals for growing white leghorn pullets. Indian Journal of Poultry Science 22:35-39.

Novellie A C A and Liebenberg N V D W . 1976. Biochemical properties and ultrastructure of protein bodies isolated from selected cereals. Cereal Chemistry 53:1-12.

Nutritional Research Council. 1994. N u t r i e n t requirement of poultry. 9t h edition. Washington D C , U S A : National Academy Press. 155 pp.

Osman AK and Fatah A A . 1981. Factors other than iodine deficiency contributing to the endemicity of goitre in Darfur province, Sudan. Journal of H u m a n N u t r i t i o n 35:302-309.

Pattabhiraman T N . 1985. Trypsin/chymotrypsin inhibitors from millets. Advances in Experimental Medical Biology 199:439-448.

Porter LJ, Hrstich LN and Chang B G . 1986. The conversion of procyanidin and prodelphinidin to cyanidin and delphinidin. Phytochemistry 25:223-230.

Pour-Reza J and Edriss M A . 1997. Effects of dietary sorghum of different tannin concentrations and tallow supplementation. Poultry Science 38:512-517.

Purushothaman MR and Thirumalai S. 1995. Feeding value of m i l l e t in chick diet. Indian Veterinary Journal 72:705-708.

Ramachandra Reddy D and Reddy C V . 1970. Influence of source of grain on the performance of egg laying stock. Indian Veterinary Journal 47:157-163.

Rama Rao SV, Shyam Sunder G, Praharaj N K , Reddy MR and Reddy B L N . 1997. Relative utilization of maize, bajra, ragi or jowar in the diets of coloured broilers developed for backyard farming. Rajendranagar, Hyderabad, Andhra Pradesh, India: Project Directorate on Poultry.

Rama Subba Reddy V. 1998. Millets for poultry. Presented at the Technical Seminar on Poultry, 2 A p r i l 1998, held at Acharya NG Ranga Agricultural University ( A N G R A U ) , Hyderabad, India orgainzed by AP Poultry Federation and A N G R A U .

Rama Subba Reddy V and Nageswara Rao A. 2000. Sorghum in poultry feed. Pages 248-257 in Technical and institutional options for sorghum grain m o l d management: proceedings of international consultation, 18-19 May 2000,lCRISAT, Patancheru, India (Chandrashekar A, Bandyopadhyay R and Hall AJ, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Satyanarayana Reddy P W , Ravindra Reddy V, Reddy PS and Bhaskara Vijaya. 1991. Utilization of bajra (Pennisetum sp) in broilers. Indian Journal of Poultry Science 26:202-205.

276 Satyanarayana Reddy P W , Reddy PS and Reddy V R . 1989. Utilization of bajra (Pennisetum typhoides) in broilers. Indian Journal of Poultry Science 24:71-73. Sauer D B . 1988. Mold invasion in relation to grain damage. Cereal Foods W o r l d 33:489-490.

Sharma B D , Sadagopan VR and Reddy V R . 1979. Utilization of different cereals in broiler diets. British Poultry Science 20:371-378.

Singh SD and Barsaul C S . 1976. Replacement of maize by coarse grains for growth production in White Leghorn and Rhode Island Red birds. Indain Journal of Animal Science 46:96-99. Srilatha Rani P. 1995. Effect of replacement of maize with ragi (ground and unground) on growth and egg production in chicken. M V S c thesis submitted to Acharya NG Ranga Agricultural University, Rajendranagar, Hyderabad, Andhra Pradesh, India. 65 pp. Subramanian V, Butler L G , Jambunathan R and Prasad Rao KE. 1983. Some agronomic and biochemical characters of b r o w n sorghums and their possible role in bird resistance. Journal of Agricultural and Food Chemistry 31:1303-1307. Tripathi R K . 1973. Aflatoxins in sorghum grains infected with head moulds. Indian Journal of Experimental Biology 11:361-362. Wagner D G . 1982. Improving sorghum grain. Feed International 3(9):42-45.

277 Potential of Sorghum for Feed Industry in Thailand and Indonesia

B Boonsue1

Abstract Maize has been a traditional feed grain in Thailand and Indonesia for many decades. Recently, there was a big shortage of maize supplies due to increasing demands from the rapidly growing poultry industry. Consequently, large quantities of maize grain have to be imported annually to balance the deficits in both countries. The chance to increase maize production seems limited due to continuous environmental stresses resulting in unfavorable conditions for profitable maize cultivation at subsistence levels. As sorghum is drought tolerant, it may be a good alternative feed grain in these areas. The essential need is to develop a sound breeding program to breed more adaptable varieties and hybrids with better yield and quality. Feed c o n s u m p t i o n i n Southeast Asia has steadily increased d u r i n g t h e last f o u r decades. Since 1 9 6 0 , t h e t o t a l maize (Zea mays) feed c o n s u m p t i o n in t h e r e g i o n increased 1 6 - f o l d f r o m less t h a n 1 m i l l i o n t in 1 9 6 0 to a b o u t 16 m i l l i o n t i n 2 0 0 2 . T h a i l a n d a n d Indonesia c o n s u m e about h a l f o f this quantity. The p o u l t r y i n d u s t r y has been r a p i d l y g r o w i n g i n these c o u n t r i e s . T h a i l a n d , w i t h 6 2 m i l l i o n p e o p l e , i s t h e m a j o r p o u l t r y p r o d u c e r f o r e x p o r t s . I t e x p o r t s about o n e - t h i r d o f its t o t a l annual p r o d u c t i o n w h i l e Indonesia's p o u l t r y p r o d u c t i o n is m a i n l y for d o m e s t i c c o n s u m p t i o n having a p o p u l a t i o n o f 2 2 5 m i l l i o n ( F i g . 1 ) . M a i z e , a t r a d i t i o n a l cereal in t h e region, is t h e o n l y m a j o r grain source for t h e feed i n d u s t r y i n b o t h countries. M o s t maize farmers are still f a r m i n g a t subsistence levels. A l t h o u g h T h a i l a n d has long b e e n k n o w n as a maize exporter, n o w i t i s crucial for T h a i l a n d t o i m p o r t maize t o m e e t t h e increasing d e m a n d o f d o m e s t i c feed c o n s u m p t i o n ( F i g . 2 ) . A similar s i t u a t i o n is t a k i n g place in Indonesia w h e r e m o r e t h a n 1 m i l l i o n t maize is i m p o r t e d annually to m e e t t h e r e q u i r e m e n t o f t h e g r o w i n g d e m a n d o f feed i n d u s t r y ( F i g . 3 ) . I t i s a n t i c i p a t e d t h a t s o r g h u m (Sorghum bicolor) w i t h its u n i q u e a b i l i t y t o b e t t e r w i t h s t a n d e n v i r o n m e n t a l stresses such as d r o u g h t s h o u l d be seriously s t u d i e d t o b e a n a d d i t i o n a l a l t e r n a t i v e f e e d grain f o r t h i s w e t t r o p i c a l r e g i o n .

1. Charoen Pokphand Group, 313 Silom Road, Bangrak, Bangkok, 10500, Thailand.

278 Year

Figure 1. Poultry production and exports in Thailand and Indonesia. (Source: USDA 2003.)

Year

Figure 2. Production (P), feed consumption (FC), exports (E) and imports (I) of maize in Thailand, 1960 to 2002. (Source: USDA 2003.)

279 Year

Figure 3. Production (P), feed consumption (FC) and imports (I) of maize in Indonesia, 1960 to 2002. (Source: USDA 2003.)

T h e m a r g i n a l lands t h a t are n o t s u i t e d for maize m a y b e p o t e n t i a l areas f o r s o r g h u m p r o d u c t i o n .

F e e d g r a i n i m p r o v e m e n t i n T h a i l a n d

In 1 9 6 6 t h e N a t i o n a l C o r n a n d S o r g h u m Research P r o g r a m was organized as a cooperative effort involving Kasetsart University, the Ministry of Agriculture and Cooperatives, and the Rockefeller Foundation. This p r o g r a m p r o v i d e d T h a i f a r m e r s w i t h i m p r o v e d m a i z e a n d s o r g h u m varieties a n d cultivation practices, r e s u l t i n g i n 5 - f o l d increase i n maize p r o d u c t i o n w i t h i n t w o decades. M a i z e was t h e n ( u n t i l 1 9 8 5 ) p r o d u c e d m a i n l y f o r e x p o r t s ( a b o u t 6 0 - 7 0 % o f annual p r o d u c t i o n ) . H o w e v e r , i n t h e last t w o decades m a i z e areas s t e a d i l y d e c l i n e d f r o m m a x i m u m 2.3 m i l l i o n h a t o t h e c u r r e n t 1.1 m i l l i o n ha. B u t its r a t h e r c o n s i s t e n t a n n u a l p r o d u c t i o n o f a b o u t 4 m i l l i o n t was m a i n t a i n e d b y h i g h e r y i e l d s o f m a n y s u p e r i o r h y b r i d s released f r o m p r i v a t e seed c o m p a n i e s (Fig. 4 ) . I n t h e m e a n t i m e , t h e b o o m i n g f e e d i n d u s t r y a b s o r b e d m o s t o f t h e p r o d u c t i o n u n t i l s o m e i m p o r t s s t a r t i n g f r o m 1 9 9 1 t i l l d a t e b a l a n c e d t h e d e f i c i t s ( F i g . 2 ) .

280 Year

Figure 4. Harvested area, production and yield of maize in Thailand, 1960 to 2002. (Source: USDA 2003.)

T h e challenge is h o w to u t i l i z e t h e 1 m i l l i o n ha o l d maize areas for feed grain p r o d u c t i o n again. M o s t of these areas w e r e natural rain forests w h e r e farmers, after deforestation, had e x p l o i t e d v i r g i n soil f e r t i l i t y a n d g o o d rainfall f o r maize c u l t i v a t i o n w i t h p r o f i t a b l e yields i n t h e past several decades. C o n s e q u e n t l y these lands b e c a m e d e p l e t e d i n soil f e r t i l i t y and m o i s t u r e and w e r e unsuitable for g r o w i n g m o r e p r o f i t a b l e maize c r o p . I f suitable s o r g h u m varieties w i t h satisfactory e c o n o m i c r e t u r n s t o farmers c o u l d b e d e v e l o p e d for these m a r g i n a l lands, at least 1-2 m i l l i o n t of feed grain c o u l d be p r o d u c e d to s u b s t i t u t e f o r c u r r e n t maize i m p o r t s . O n t h e contrary, t h e n a t i o n - w i d e s o r g h u m p r o d u c t i o n , m e a n w h i l e , was n o t significantly increased as c o m p a r e d to maize. S o r g h u m area was m a x i m u m i n 1 9 8 5 / 8 6 a n d reached o n l y 2 8 0 , 0 0 0 ha; later, i t drastically d r o p p e d d o w n t o t h e present l e v e l o f 9 0 , 0 0 0 h a ( F i g . 5 } . T h e highest annual p r o d u c t i o n o f about 4 0 0 , 0 0 0 t also r e d u c e d t o a r o u n d 1 5 0 , 0 0 0 t despite t h e average y i e l d increase f r o m 1.25 to 1.75 t ha-1. T h e y i e l d i m p r o v e m e n t was a t t r i b u t a b l e to i m p r o v e d varieties from public institutions and commercial hybrids from private seed companies.

281 Year

Figure 5. Harvested area, production and yield of sorghum in Thailand, 1968 to 2002. (Source: Ministry of Agriculture and Cooperatives 1960-2002.)

The following are some main facts attributable to the above sorghum p h e n o m e n a : • M o s t s o r g h u m s are p l a n t e d as second c r o p after m a i z e on u p l a n d s and d e p e n d o n l y o n residual m o i s t u r e after m a i z e harvest. T h e rest are g r o w n a s main crops in areas where seasonal rains are more irreg ular and risky for m a i z e . • T h e average y i e l d s of s o r g h u m u n d e r above situations are consistently lower (about 50%) than those of maize under good condition a nd are not good choices when farmers have other alternatives. • Farmers n o r m a l l y use less i m p r o v e d p r o d u c t i o n i n p u t s (ie, fertilizers a n d cultural practices) than used for maize to reduce the cost of sorghum production and make more profits. • Price o f s o r g h u m g r a i n i s n o r m a l l y l o w e r ( a b o u t 10%) t h a n t h a t o f m a i z e . • Farmers have m o r e d i f f i c u l t i e s i n h a n d l i n g s o r g h u m c r o p production (ie, bird damage, drying and storage facilities). These pr oblems often result in p o o r grain q u a l i t y a n d f i e l d losses.

282 Feed grain development in Indonesia

M a i z e has l o n g been a t r a d i t i o n a l f o o d and feed c r o p in Indonesia. Since 1 9 6 0 f a r m e r s h a d d e p e n d e d o n u n i m p r o v e d local varieties w i t h a n average y i e l d o f a b o u t 1 t ha-1. A f t e r t h e g o v e r n m e n t ' s p r o m o t i o n on foreign i n v e s t m e n t f o r maize seed i n d u s t r y i n 1 9 8 1 , n o t o n l y h i g h - y i e l d i n g varieties and h y b r i d s w e r e c o m m e r c i a l l y d e v e l o p e d b u t also h i g h q u a l i t y seeds w e r e m a d e available t o farmers on i n d u s t r i a l scale (Boonsue 1 9 8 8 ) . C o n s e q u e n t l y , maize p r o d u c t i o n d o u b l e d i n t h r e e decades f r o m 3 m i l l i o n t in 1975 to m o r e t h a n 6 m i l l i o n t in 2 0 0 2 , w h i l e p l a n t i n g area r e m a i n e d a l m o s t t h e same at about 3 m i l l i o n ha ( F i g . 6 ) . O b v i o u s l y, t h e p r o d u c t i o n increase was d u e m a i n l y t o t h e i m p r o v e d yields o f n e w varieties and h y b r i d s f r o m b o t h p u b l i c a n d p r i v a t e seed enterprises. Four d i s t i n c t maize p r o d u c t i o n systems i n Indonesia are described b y M i n k ( 1 9 8 4 ) . T h e m o s t c o m m o n practice ( 5 5 % ) i s m o n o c u l t u r e o f maize after maize for t w o or t h r e e crops per year by using short-season varieties. T h e second ( 2 4 % ) is a single maize c r o p per year, n o r m a l l y i n t e r c r o p p e d w i t h u p l a n d rice (Oryza sativa) or cassava (Manihot esculenta) for t h e tegal (upland) areas. In

Year

Figure 6. Production, harvested area and yield of maize in Indonesia, 1960 to 2002. (Source: USDA 2003.)

283 t h e t h i r d system ( 1 0 % ) , early maize varieties, m o s t l y i n t e r c r o p p e d w i t h soybean (Glycine max) and m u n g bean (Vigna radiata), are p l a n t e d either before or after rice for t h e r a i n f e d sawah (lowland) areas. The fourth system (about 11%) is t h e m o s t intensive p r o d u c t i o n practice w h e r e m e d i u m to late varieties are c u l t i v a t e d u n d e r i r r i g a t e d sawah, in one or t w o seasons after t h e m a i n rice c r o p . T h e average y i e l d i s about t w i c e t h e national average, d u e m a i n l y t o use o f i m p r o v e d seed a n d c u l t u r a l practices. O b v i o u s l y m o s t Indonesian maize p r o d u c t i o n systems s t i l l d e p e n d o n r a i n f e d situations. It is n o t e d t h a t maize is also used as h u m a n f o o d in rural areas especially w h e r e rice is inadequate. Therefore, Indonesia has to d e p e n d on some i m p o r t s to m e e t balance of t h e rising d e m a n d of feed c o n s u m p t i o n . In t h e last decade annual maize i m p o r t s w e r e close to 1 m i l l i o n t to m e e t t h e feed d e m a n d t h a t rapidly increased f r o m 1 m i l l i o n t in 1984 to m o r e t h a n 1 m i l l i o n t in 2 0 0 2 ( F i g . 3 ) .

Potential for more feed grain from sorghum

A b o u t 2 0 m i l l i o n h a o f c u l t i v a t e d land i s used for f o o d crops i n Indonesia, o f w h i c h 5 m i l l i o n ha (25%) is irrigated and 15 m i l l i o n ha (75%) is rainfed ( T a b l e 1 ) . A conservative e s t i m a t e o f 1 0 % (1.5 m i l l i o n ha) o f t h e 1 5 m i l l i o n h a n o n - i r r i g a t e d l a n d b e i n g m a r g i n a l f o r maize i s q u i t e plausible. I f s o r g h u m c o u l d b e g r o w n successfully on these r i s k y areas, t h e r e w o u l d be at least 2 - 3 m i l l i o n t of a d d i t i o n a l f e e d grain for Indonesia. T h i s a m o u n t c o u l d b e used t o s u b s t i t u t e t h e c u r r e n t i m p o r t e d maize also.

Table 1. Cultivated land ('000) for f o o d c r o p s in I n d o n e s i a d u r i n g 1999.

Wetland Irrigated Non-irrigated Dryland Semi- Non- Garden/Dry Shifting Island Technical technical technical Rainfed Valley field cultivation

Java 1551 392 662 763 3 2862 231 Sumatra 296 282 499 585 274 3351 1646 Bali dan Nusa 130 240 132 93 1 828 370 Tenggara Kalimantan 25 30 185 348 334 933 808 Sulawesi 238 122 247 275 3 1162 577 Indonesia 2240 1067 1726 2064 614 9137 3631

Source. Central Bureau of Statistics (2002).

284 B u t h o w can such s o r g h u m varieties o r h y b r i d s b e d e v e l o p e d , w h i c h c o u l d give c o m p e t i t i v e yields and incomes to farmers and f i t in a sustainable p r o d u c t i o n s y s t e m as w e l l ? T h e chances of achieving these goals are quite high as given b e l o w : • O u r e x i s t i n g c u l t i v a t e d lands have been c o n t i n u o u s l y t h r e a t e n e d by e n v i r o n m e n t a l stresses, especially w a t e r shortages. We are l o o k i n g for m o r e drought tolerant crops to make these lands more produc t i v e . • C o m m e r c i a l l y , s o r g h u m is rather n e w in Indonesia and s t i l l not y e t w e l l k n o w n i n feed i n d u s t r y . • S o r g h u m , k n o w n as a h i g h l y d r o u g h t t o l e r a n t c r o p a m o n g cereals under c u l t i v a t i o n , has m u c h m o r e u n e x p l o i t e d genetic d i v e r s i t y for i m p r o v e m e n t o f various traits r e l a t e d t o its a d a p t a b i l i t y t o d r o u g h t e nvironments and o t h e r b i o t i c hazards. • A b o u t 7 5 % o f c u l t i v a t e d lands for f o o d crops i n Indonesia (15 m i l l i o n ha) are n o n - i r r i g a t e d . T h e r e w i l l be a b i g o p p o r t u n i t y f o r s o r g h u m research and d e v e l o p m e n t t o m a k e use o f t h i s c r o p t o b e t t e r f i t i n these c r o p lands. T h u s , t h e r e i s p l e n t y o f r o o m f o r s o r g h u m i m p r o v e m e n t a n d its u t i l i z a t i o n as alternative feed grain in Southeast Asia, especially T h a i l a n d a n d Indonesia. The future challenge is its genetic improve m e n t (for varieties a n d h y b r i d s ) to c o m m e r c i a l l y f i t in t h e e x i s t i n g areas d e f i n e d as less-favorable e n v i r o n m e n t s (for maize) and t r a d i t i o n a l c r o p p i n g systems of this wet tropical region.

References Boonsue B. 1988. Maize seed production in Southeast Asia. Pages 45-63 in Design and implementation of seed programs: proceedings of the Second F A O - D A N I D A Seminar, 12-16 May 1986, Bangkok, Thailand. Rome, Italy: Food and Agriculture Organization of the U n i t e d Nations.

Central Bureau of Statistics. 2002. Agricultural survey: Land area by utilization in Indonesia. BPS catalogue: 5232. Indonesia: Central Bureau of Statistics. Ministry of Agriculture and Cooperatives. 1960-2002. Year book of agriculture statistics. Thailand: Office of Agricultural Economics, Ministry of Agriculture and Cooperatives. M i n k S D . 1984. Corn production in Indonesia: Systems and economics. Pages IX 1- 93 in The corn economy of Indonesia. Stanford University/Bulog C o r n Project.

U S D A . 2003. Grain and Feed Division, C o m m o d i t y and Marketing Programs. (www.fas.usda.gov/psd/) USA: Foreign Agricultural Service, U S D A .

285 Potential for Sorghum Development in Indonesia

M Dahlan and S Singgih1

Abstract Sorghum area in Indonesia has been constantly decreasing since 1989 because the price of sorghum is lower than that of maize, no government program focuses on intensive cultivation of the crop and the grain is susceptible to storage insects. However, sorghum is a potential crop in drylands where maize frequently suffers from drought. Sorghum grain may be a substitute for maize in feed. Indonesia imports more than 1 million t of maize each year. There are large areas where the rainfall is less than 100 mm per month over a period of nine months. These areas are suitable for cultivation of sorghum. Sorghum grain can be used as food and the stover as feed. Sweet sorghum can be used as grain and also for production of sugar. S o r g h u m [Sorghum bicolor) is a minor crop in Indonesia. It is cultivated in the provinces of Central Java, Yogyakarta, East Java, Sout h Sulawesi, West and East Nusa Tenggara. The harvested area of sorghum was about 6 3 , 4 0 0 h a w i t h a p r o d u c t i o n of 4 2 , 2 2 0 t in 1982; t h e area decreased c o n t i n u o u s l y u n t i l 1 9 8 7 and increased slightly in 1988 and 1989 (Table1). A sim i l a r t r e n d was also noticed in East Java (Table 2), wherein the sorghum area r e d u c e d f r o m 5 5 3 8 h a i n 1 9 8 9 t o 1843 h a i n 2 0 0 0 . Since s o r g h u m i s n o r m a l l y g r o wn by farmers in drought-prone marginal lands without fertilizer, the grain yields are low. In drylands, sorghum is intercropped with upland rice or o t h e r crops. S o r g h u m is g r o w n after rice (Oryza sativa) or m a i z e (Zea mays) in lowlands (rice-rice- sorghum, rice-maize-sorghum and rice-sorghum) (Rusma r k a m a n d S u b a n d i 1 9 9 6 ) . I n W e s t T i m o r , some f a r m e r s s o w s o r g h u m w i t h maize and foxtail m i l l e t (Setaria italica). According to the Agricultural Extension, Wonosari and Demak, Central Java, reduction in sorghum area is attributed to the f o l l o w i n g reasons: • The government program is more concentrated in increasing rice and maize production. • T h e decrease in p r i c e of s o r g h u m as c o m p a r e d to maize after 1980s is h i g h . • Farmers have d i f f i c u l t i e s in s o r g h u m processing. • Sorghum grain is susceptible to storage insects.

1. Indonesian Research Institute for Cereals, Ratulangi 2 7 4 , M a r o s 9 0 5 1 4 , Indonesia.

286 Table 1. A r e a , p r o d u c t i o n a n d yield of s o r g h u m in Indonesia.

Year Area (ha) Production (t) Yield (t ha-1)

1980 38,900 42,900 1.10 1981 60,500 53,600 0.88 1982 63,400 42,220 0.66 1983 37,400 36,130 0.97 1984 23,900 28,810 1.20 1985 32,000 33,160 1.04 1986 19,500 26,100 1.34 1987 12,150 18,900 1.56 1988 22,008 34,900 1.58 1989 25,700 37,900 1.47

Source: BPS (1984,1989).

Table 2. A r e a , p r o d u c t i o n a n d yield of s o r g h u m in East J a v a .

Year Area (ha) Production (t) Yield (t ha-1)

1988 4,849 10,202 2.10 1989 5,538 11,949 2.16 1990 5,052 10,684 2.11 1991 4,399 9,473 2.15 1992 6,405 16,117 2.52 1993 3,683 8,428 2.29 1994 3,368 7,896 2.34 1995 3,859 8,875 2.30 1996 3,609 8,478 2.35 1997 2,819 6,979 2.48 1998 2,239 5,382 2.40 1999 1,751 4,257 2.43 2000 1,843 4,505 2.44

Source: Agricultural Extension, East Java, 2001.

• T h e availability of an alternative a n d m o r e p r o f i t a b l e c r o p is c o m m o n [eg, m u n g bean (Vigna radiata) - t h e p r i c e of seed is h i g h and t h e c r o p m a t u r e s w i t h i n 2 m o n t h s ] . • Farmers' p e r c e p t i o n t h a t rice a n d maize p l a n t e d after s o r g h u m n e e d m o r e fertilizers a n d t h e soil b e c o m e s c o m p a c t . Since m u n g bean i s m o r e p r o f i t a b l e t h a n s o r g h u m a n d maize i n D e m a k , farmers have r e c e n t l y changed t h e c r o p p i n g p a t t e r n f r o m r i c e - r i c e - s o r g h u m t o

287 rice-rice-mung bean. Consequently, sorghum cultivation is negligible in this area contrary to the area of more than 10,000 ha plante d i n 1 9 8 2 . E x p o r t o f s o r g h u m f r o m I n d o n e s i a w a s l o w e r t h a n i m p o r t (Table 3 ) . I n d o n e s i a i m p o r t s s o r g h u m m a i n l y f r o m A u s t r a l i a f o r f o o d i n d u s t r y .

P o t e n t i a l o f s o r g h u m f o r a n i m a l f e e d a n d f o d d e r

I n d o n e s i a i m p o r t s m o r e t h a n 1 m i l l i o n t o f m a i z e each year m a i n l y f o r f e e d (Table 4 ) . T h e d e m a n d f o r m a i z e f e e d has c o n s i s t e n t l y increased. During the dry season, there is shortage of animal fodder. Hence the p r i c e o f m a i z e stover i s expensive. Consequently, fanners in some areas sell th eir cattle at low price due t o severe shortage o f f o d d e r . S o m e f a r m e r s g r o w s o r g h u m for forage mixed with m a i z e a n d r i c e . D u e t o large n u m b e r o f animals i n I n d o n e s i a (Table 5), feed and forage r e q u i r e m e n t is h i g h . Sorghum can be grown for feed to reduce maize import an d d e v e l o p a n i m a l h u s b a n d r y . S o r g h u m a n d m i l l e t r e q u i r e less w a t e r t h a n m a i z e f o r t h e i r g r o w t h a n d d e v e l o p m e n t . T h e s o r g h u m v a r i e t y B a d i k p r o d u c ed 1.8 t ha-1n d e r drought stress (Singgih and Marzuki 1996). Ismail and Ispandi (1996) reported

Table 3. E x p o r t , i m p o r t a n d v a l u e of s o r g h u m in I n d o n e s i a .

Export Import

Year Quantity (t) Value (US$ '000) Quantity (t) Value (US$'000)

1987 - - 27,136 3,059 1988 - - 3,901 520 1989 455 48 - - 1990 - - 22,500 1,430 1991 - - - - 1992 316 43 - - 1993 318 25 430 64 1994 - - 29,684 3,199 1995 540 79 6 32 1996 - - 28,963 5,797 1997 - - - - 1998 7 14 10 71 1999 - - - - 2000 - - 52 72 2001 - - 70 76

Source: FAO (2003).

288 Table 4. Production, import and value of maize in Indonesia. Year Production (t) Import (t) Import value (US$ '000) 1997 8,770,851 1,098,354 171,675 1998 10,169,488 313,463 47,838 1999 9,204,036 618,060 80,320 2000 9,677,000 1,264,575 157,949 2001 9,165,317 1,035,797 125,512

Source: FAO (2003).

Table 5. Number of cattle and other animals in Indonesia during 1997-2001.

Animal 1997 1998 1999 2000 2001 Cattle (head) 11,938,856 11,633,876 11,275,703 11,641,876 11,191,376 Buffaloes (head) 3,064,532 2,829,291 2,503,788 2,405,277 2,287,212 Sheep (head) 7,697,690 7,144,003 7,225,690 7,426,992 7,294,000 Goats (head) 14,162,547 13,560,449 12,701,373 12,585,260 12,456,202 Pigs (head) 8,232,839 7,797,558 7,041,820 5,356,834 5,896,834 Chickens (1000) 972,832 645,518 622,531 859,497 853,832 Ducks (1000) 30,320 25,950 27,552 28,076 29,905 Horses (head) 582,284 566,485 484,285 517,333 430,000

Source: FAO (2003). grain yield of 1.1 t ha"1 in local variety and 1.3 t ha"1 in UPCA SI (improved variety) in Lamongan, and 2.81 ha"1 in local variety and 3.91 ha"1 in UPCA SI in Bojonegoro, East Java when sorghum was grown without irrigation and fertilizer application after rice utilizing the residual soil moisture. In Indonesia the percentage of agricultural land belonging to Oldeman D 3 - E3 agroclimatic zone is large (Table 6). In these areas, crops that follow rice are maize or legumes, but the grain yield of both maize and/or legumes are very low because of terminal drought. Under this condition, sorghum has the potential to yield higher than maize. In low rainfall areas like Sulawesi, Maluku, West and East Nusa Tenggara, sorghum is mixed with other crops and in this island animal husbandry is being practiced. Sorghum is suitable for these areas either as food or feed and stover for silage. Some areas of Java, which are classified under D3 and E3 climatic zones, are suitable for sorghum cultivation (Oldeman 1975). However, the price of sorghum grain will determine its competitiveness with maize. In some areas farmers utilize groundwater to cultivate maize and this increases the production cost. It may be profitable to cultivate sorghum as the price of sorghum grain is similar to that of maize.

289 Table 6. The percentage of agricultural areas in different climate zones of Indonesia having potential for sorghum and pearl millet cultivation.

Percentage of agricultural area (%)

Climate Wet Dry Bali3 zone months1 months2 Java Sumatra Kalimantan Sulawesi Maluku (NTT and NTB) Papua C3 5-6 5-6 14 0 0 4 10 3 2 D1 3-4 <2 0 10 3 10 2 0 3 D2 3-4 2-4 5 2 1 8 5 0 14 D3 3-4 5-6 20 0 0 4 5 40 0 D4 3-4 >6 0 0 0 0 0 30 4 E1 <3 <2 0 - 5 12 5 0 0 E2 <3 2-4 0 2 1 11 5 0 0 E3 <3 5-6 9 0 0 4 5-10 5 0 E4 <3 >6 0 0 0 0 0 0 0 1. Rainfall >200 mm. 2. Rainfall < 100 mm. 3. NTT = East Nusa Tenggara; NTB = West Nusa Tenggara. Source. Oldeman (1975), Oldeman and Syarifuddin (1977), Oldeman et al. (1979,1980).

Sweet sorghum

Sweet sorghum is comparable to sugarcane (Saccharum officinarum) for sugar content. Research has been conducted on identification of sorghum lines w i t h high sugar content. In demonstration plots, the variety Rio produced 1.8 t grain ha-1, 21.6 t stalk ha-1 and 2.2 t sugar (total sugar as invert) ha-1 in East Nusa Tenggara and 1.5 t grain ha-1, 20.01 stalk ha"1 and 2.5 t sugar ha-1 in West Nusa Tenggara (Directorate General Estate Crops 1996). Three varieties of sorghum had high brix content when harvested at 100 days after planting as shown in Table 7 (Sastrowijono 1996). Sweet sorghum juice is also used as a raw material for monosodium glutamate industry.

Table 7. Stalk yield, juice, brix and juice value of three varieties of sorghum harvested 100 days after planting. Variety Stalk yield (t ha-1) Juice factor (%) Brix (%) Juice value (%) TSAI1 (%)

Rio 24.59 48 16.72 11.02 12.46 Roma 20.73 41 15.92 12.18 10.49 Ramada 20.02 43 15.27 11.14 9.74

1. TSAI = Total sugar as invert. Source. Sastrowijono (1996).

290 References BPS. 1984. Statistik Indonesia. Jakarta, Indonesia: Biro Pusat Statistik. BPS. 1989. Statistik Indonesia. Jakarta, Indonesia: Biro Pusat Statistik. Directorate General Estate Crops. 1996. Sweet sorghum, a promising commodity in East part of Indonesia. (In Indonesian.) Pages 6-12 in Risalah Simposium Prospek Tanaman Sorghum untuk Pengembangan Agro-industri (Sudaryono, Sumantri A, Saleh N, Beti JA and Winarno A, eds.). Balitkabi, Malang, Indonesia: Research Institute for Legume and Tuber Crops. FAO. 2003. FAOSTAT-Agriculture. www.fao.org. June, 2003. Ismail C and Ispandi A. 1996. Sorghum technology study for marginal land in East Java. (In Indonesian.) Pages 138-145 in Risalah Simposium Prospek Tanaman Sorghum untuk Pengembangan Agro-industri (Sudaryono, Sumantri A, Saleh N, Beti JA and Winarno A, eds.). Balitkabi, Malang, Indonesia: Research Institute for Legume and Tuber Crops. Oldeman RL. 1975. An agro-climatic map of Java and Madura. No. 17. Bogor, Indonesia: Central Research Institute for Food Crops. 22 pp. Oldeman RL, Las I and Darwis SN. 1979. An agro-climatic map of Sumatra. No. 52. Bogor, Indonesia: Central Research Institute for Food Crops. 35 pp. Oldeman RL, Las I and Muladi. 1980. An agro-climatic map of Kalimantan, Maluku, Irian Jaya, Bali, West and East Nusatenggara. No. 60. Bogor, Indonesia: Central Research Institute for Food Crops. 32 pp. Oldeman RL and Syarifuddin D. 1977. An agro-climatic map of Sulawesi. No. 33. Bogor, Indonesia: Central Research Institute for Food Crops. 30 pp. Rusmarkam S and Subandi. 1996. Prospect of sorghum for food and feed self sufficiency. (In Indonesian.) Pages 93-103 in Risalah Simposium Prospek Tanaman Sorghum untuk Pengembangan Agro-industri (Sudaryono, Sumantri A, Saleh N, Beti JA and Winarno A, eds.). Balitkabi, Malang, Indonesia: Research Institute for Legume and Tuber Crops. Sastrowijono S. 1996. Study of three varieties of sweet sorghum as non sugarcane sweetness. (In Indonesian.) Pages 64-72 in Risalah Simposium Prospek Tanaman Sorghum untuk Pengembangan Agro-industri (Sudaryono, Sumantri A, Saleh N, Beti JA and Winarno A, eds.). Balitkabi, Malang, Indonesia: Research Institute for Legume and Tuber Crops. Singgih S and Marzuki. 1996. Screening sorghum lines to drought. (In Indonesian.) Pages 133-136 in Risalah Simposium Prospek Tanaman Sorghum untuk Pengembangan Agro-industri (Sudaryono, Sumantri A, Saleh N, Beti JA and Winarno A, eds.). Balitkabi, Malang, Indonesia: Research Institute for Legume and Tuber Crops.

291 Forage Potential of Sorghum a n d Pearl Millet G Harinarayana1, NP Melkania2, BVS Reddy3, SK Gupta4 , KN Rai3 and P Sateesh Kumar5

Abstract Sorghum and Pennisetum are two of the gifted genera of the tropical regions that provide food, feed, stover (dry straw) and fuel to millions of poor farmer families and their livestocks. Single-cut sorghum and multi-cut pearl millet varieties are also cultivated for green fodder (forage). In addition, the interspecific sorghum x sudangrass annual multi-cut hybrids are grown for green fodder. The interspecific pearl millet x napiergrass hybrids are perennial and yield green fodder throughout the year. Pearl millet uses less water per unit of forage production, tolerates both lower and higher soil pH and higher aluminium concentration, and is rich in minerals as compared to sorghum. However, sorghum has a wider range of adaptability and is more widely grown. Geographical preferences, limited market demand, variable prices, and lack of private industry and institutional research support have led to limited pearl millet forage research and cultivar adoption. Forage quality is paramount to palatability or acceptability and animal intake. Plant morphology, anatomical components, digestibility, protein, mineral, cellulose and lignin contents, and anti-nutritional factors like hydrocyanic acid in sorghum and oxalic acid in pearl millet determine animal performance - milk and meat production. Development of multi-cut annual forage sorghum and pearl millet hybrids rather than varieties could have a catalytic effect on forage yield and quality. Diversification of sorghum seed parents (white-grained rather than the currently used red-grained male steriles) and development of sudangrass pollinators with high sugar content and foliar disease resistance offer good opportunities for the exploitation of full potential of the interspecific hybrids. Crop scientists, chemical technologists, and animal health and nutrition experts have a role to play in good quality forage research and cultivar development. Inter-institutional partnerships could forge strong interlinks for strengthening sorghum and pearl millet forage research and development.

1. Ganga Kaveri Seeds Pvt Limited, 1406, Babukhan Estate, Bashirbagh, Hyderabad 500 001, Andhra Pradesh, India. 2. AICRP on Forages, Indian Grassland and Fodder Resarch Institute (IGFRI), Gwalior Road, Jhansi 284 003, Madhya Pradesh, India. 3. ICRISAT, Patancheru 502 324, Andhra Pradesh, India. 4. Proagro Seed Company Pvt Limited, 8-1-39, Tolichowki, Hyderabad 500 008, Andhra Pradesh, India. 5. Prabhat Agri Biotech (P) Limited, Panjagutta, Hyderabad 500 082, Andhra Pradesh, India.

292 Sorghum and Pennisetum are two of the gifted grass genera of the tropics. Each genus includes an important species used for food, feed, forage, fuel and as building material in many parts of the world, while the remaining, lesser known species in these genera are important forage producers. Sorghum (Sorghum bicolor) and pearl millet [Pennisetum glaucum) are usually grown for grain in areas where environmental conditions, especially rainfall, temperature and soil fertility are too harsh to grow maize (Zea mays) (Hanna and Cardona 2001). The dry fodder or stover is also used to feed animals. Forage sorghums, by definition, include annual cultivars of sorghum and sorghum-sudangrass (S. bicolor x S. sudanense) hybrids. Sorghum sudanense is also grown for annual forage. Forage Pennisetum, by convention, includes the annual pearl millet and the perennial napier-bajra (P glaucum X P. purpureum) hybrids. As an indispensable grain crop of the arid and semi-arid tropics, pearl millet provides both grain and stover. Dinanath grass (P. pedicellatum) is also cultivated for forage.

Adaptation

Both sorghum and pearl millet make efficient use of soil moisture by remaining semi-dormant during stress and responding rapidly to available moisture (Hanna and Cardona 2001). Drought tolerance capacity measured in terms of water-use efficiency of forage pearl millet (280 kg water kg-1 dry matter) is better than forage sorghum (310 kg water kg-1 dry matter) (Chapman and Carter 1976, de Lima 1998). Pearl millet produces more green and dry fodder yield than sorghum (Table 1) under limited moisture regimes (Singh et al. 1989).

Table 1. Response of different forage crops to irrigation regimes1. Green fodder yield (t ha-1) Dry fodder yield (t ha-1)

Crop 0.252 0.50 0.75 0.25 0.50 0.75 Sorghum 25.7 28.5 28.5 8.1 9.1 10.1 Pearl millet 33.4 32.7 34.7 9.5 10.8 11.4 Maize 38.6 41.7 42.5 8.4 9.2 10.6 Teosinte 37.1 40.0 39.2 7.5 8.0 9.0 Cowpea 19.4 23.3 22.6 4.1 4.9 4.7 Cluster bean 17.9 20.5 17.7 6.3 6.6 6.4

1. Mean response during summer, 1982 and 1983. 2. IW/CPE (irrigation water/cumulative pan evaporation) ratio. Source: Singh et al. (1989).

293 Both sorghum and pearl millet make efficient use of soil fertility by producing higher biomass, and thus take advantage of the growing conditions. Pearl millet roots tolerate lower soil p H and higher Al+ 3 concentration than those of sorghum (Ahlrichs et al. 1991). However, pearl millet does not tolerate waterlogged soils. Sorghum has a wider range of adaptability than pearl millet (Hanna and Cardona 2001). Forage sorghum is recommended for both calcareous and saline soils, while forage pearl millet grows well in calcareous soils (ICAR 1989).

Fodder production

Traditional areas for stover production Sorghum is the third most important grain crop in India, next only to rice (Oryza sativa) and wheat (Triticum aestivum). Maharashtra, Karnataka, Madhya Pradesh, Andhra Pradesh and Rajasthan are the principal sorghum- growing states of India (Table 2). They account for 88.5% of total sorghum area (10.75 million ha), producing an estimated 88.7% of stover (22.52 million t ) . Pearl millet is the fourth most important grain crop in India. It is used as a dual-purpose annual crop mainly in the drier areas of the arid and semi-arid tropics. Rajasthan, Maharashtra, Gujarat, Uttar Pradesh and Haryana are the principal pearl millet-growing states in the rainy season (Table 2). They account for 90.7% of total pearl millet area in the country (9.43 million t ha), producing on an average an estimated 90% of 14.76 million t of stover.

Non-traditional areas for forage production Statistics on sorghum forage area or forage production are not available. But private seed industry produced 36,600 t of sorghum-sudangrass hybrid seed during 2002-03 for supply in packages of 1, 3 and 5 kg. Estimated at 20 kg ha"1, 36,600 t should cover an area of 1.8 million ha which should yield about 90 million t of green fodder or forage. Almost all grain sorghum cultivating states grow forage sorghum varieties, and/or sorghum-sudangrass hybrids during rainy season as well as hot dry (summer) season. Forage sorghums are principally cultivated in Punjab, Haryana, Delhi, western and central Uttar Pradesh and adjoining areas of Madhya Pradesh. Other forage sorghums include sudangrass for which area estimates are not available.

294 Table 2. Area and production of sorghum and pearl millet grain and stover in India, 1995-2000.

Area Grain Stover1 State (million ha) (million t) (million t) Sorghum Maharashtra 5.33 4.82 12.05 Karnataka 1.95 1.67 4.17 Madhya Pradesh 0.85 0.73 1.82 Andhra Pradesh 0.81 0.57 1.42 Rajasthan 0.57 0.21 0.52 Tamil Nadu 0.40 0.38 0.95 Uttar Pradesh 0.39 0.34 0.85 Gujarat 0.28 0.25 0.62 India 10.75 9.01 22.52 Pearl millet Rajasthan 4.35 1.78 3.92 Maharashtra 1.75 1.29 2.84 Gujarat 1.05 1.21 2.67 Uttar Pradesh 0.83 1.07 2.35 Haryana 0.57 0.57 1.25 Karnataka 0.38 0.24 0.53 Tamil Nadu 0.21 0.27 0.59 Madhya Pradesh 0.14 0.13 0.29 Andhra Pradesh 0.12 0.10 0.22 Other states 0.03 0.03 0.07 India 9.43 6.71 14.76 1. Estimated from harvest index. Source: NRCS (2001), Bhatnagar (2003).

Pearl millet is cultivated for forage, but no estimates of either the forage pearl millet area or production are available. While forage hybrids are not produced, no statistics of seed production of forage varieties are available. Considerable scope, therefore, exists for the development of high-yielding and high quality forage hybrids and varieties of pearl millet. Only a few states grow forage pearl millet in summer season: Gujarat, Uttar Pradesh, Uttaranchal, Madhya Pradesh, Haryana and Rajasthan. Interspecific hybrids of napier-bajra, a perennial forage crop, are planted throughout the country for which no statistics are available. Other forages like P purpureum and P pedicellatum are also grown, but area statistics are not available.

295 Silage production

Although sorghum (Kalton 1988) and pearl millet (de Andrade and de Andrade 1982) are excellent for producing silage, particularly in regions w i t h dry spells during the rainy season, pearl millet can produce higher silage yields w i t h higher protein than sorghum (Table 3).

Forage quality

Some of the constituents that affect palatability or acceptability and animal performance include protein and lignin content, lignin type and chemistry, mineral content, plant morphology, anti-nutritional components such as hydrocyanic acid (HCN), anatomical components and forage digestibility (Hanna 1993). Preliminary studies indicate that pearl millet forage is more succulent and has higher crude protein (CP) than sorghum or maize with other chemical constituents being comparable (Table 4). The CP in pearl millet stover is less than in sorghum but more than in wheat and rice straw (Table 5). The dry matter and cell wall digestibility of pearl millet stover is also less than that of sorghum. Pearl millet does not contain HCN but contains oxalic acid, an anti-nutritional component that can have adverse effect on milk production and milk fat in cows (Hanna and Gupta 1999). Lignin concentrations in brown-midrib (bmr) mutants are consistently lower than their normal counterparts in both sorghum (by 21.8%) and pearl millet (by 20%) (Cherney et al. 1988). The in vitro digestibility of bmr sorghum (642 g kg-1 dry matter) and pearl millet (726 g kg-1 dry matter) are higher than the normal genotypes of sorghum (568 g kg-1 dry matter) and pearl millet (659 g kg"1 dry matter). Most digestible and partially digestible tissues in both sorghum leaves and pearl millet stems are degraded by fiber-digesting

Table 3. Silage production and quality of sorghum, pearl millet and maize. Silage quality Silage yield Dry matter Dry matter Crude protein IVDMD1 -1 -1 Crop (t ha ) yield (t ha ) (%) (%) (%) Sorghum 19.2 5.76 30 7.0 58.0 Pearl millet 31.0 8.68 28 12.0 53.4 Maize 27.0 8.10 30 7.8 60.0

1. IVDMD = In vitro dry matter digestibility. Source: Kichel et al. (1999).

296 Table 4. Chemical composition (% of dry matter) of pearl millet, sorghum and maize forages.

Constituent Pearl millet Sorghum Maize Crude protein 8.2 5.9 6.7 Dry matter 19.5 31.6 28.8 Neutral detergent fiber 67.9 70.7 66.4 Acid detergent fiber 38.3 44.4 38.5 - Lignin 7.8 7.6 6.8 - Cellulose 27.7 34.6 28.6 - Silica 2.8 2.2 3.1 Hemicellulose 29.6 26.3 27.9 Cell content 32.1 29.3 33.6 Source: Singh etal. (1977).

Table 5. Chemical composition and in vitro nutrient digestibility (% of dry matter) of pearl millet and sorghum stover compared to other cereals. Constituent Pearl millet Sorghum Rice Wheat Crude protein 3.2 4.3 2.1 2.6 Neutral detergent fiber 79.5 79.5 74.7 76.2 Acid detergent fiber 55.6 54.2 53.6 51.8 - Lignin 12.8 9.0 8.2 9.7 - Cellulose 39.4 41.0 37.0 36.3 - Silica 3.4 4.2 8.4 5.8 Hemicellulose 23.9 25.5 21.1 24.4 Cell content 20.5 20.3 25.3 23.8 In vitro dry matter digestibility 48.9 53.3 51.4 51.9 In vitro cell wall digestibility 35.7 41.2 31.2 36.9

Source: Singh et al. (1977). bacteria to a greater extent in bmr mutants than in normal genotypes. Geneticists are now attempting to incorporate the bmr trait into a range of backgrounds in sorghum and pearl millet (Cherney et al. 1991).

Genetic variability

Success in crop improvement depends largely on the extent of desirable genetic variability available for selection. Therefore, collection, evaluation, documentation, utilization and conservation of genetic resources assume considerable significance.

297 Sorghum

The National Bureau of Plant Genetic Resources (NBPGR) and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India evaluated 1500 accessions from global collection for forage yield and its components under different agroclimatic conditions in India. The results indicated a wide range of variability for forage yield and its component traits (Table 6) besides a few quality traits like stalk juiciness and midrib color, suggesting ample scope for genetic enhancement of forage potential of sorghum. Sorghum improvement at ICRISAT has developed a diversified set of hybrid parents, and grain and dual-purpose varieties. A population improvement program has developed sorghum lines w i t h brown-midrib (bmr), high stem sugar, and grain yield that tiller under stress conditions, such as drought and stem borer infestation (Reddy et al. 1994). Mass selection for bmr gene, tillering, and high grain and biomass yield has produced pure lines which have four to five tillers. These lines were evaluated along w i t h male- sterile lines, restorers and varieties at Patancheru (Table 7). Results indicate that high-tillering varieties combined high forage yield w i t h high stem sugar and good ratoonability

Table 6. Estimates of some quantitative traits of 1500 selected world collections of sorghum during rainy season 1986 in three locations in India. Mean±SE

Character Range1 Delhi Jhansi Akola Plant height (cm) 38.0-373 144.8 + 1.14 206.5 ± 1.54 133.0 ± 1.23 Stem thickness (cm) 1.2-11.60 4.84 ± 0.038 4.34 ± 0.036 - Number of leaves (on main stem) 4.0-25.90 11.23 ± 0.072 13.65 ± 0.086 9.51± 0.067 Length of 5th leaf (cm) 14.0-118.50 51.10 + 0.301 67.05 ± 0.452 55.022 ± 0.395 Width of 5th leaf (cm) 1.4-11.00 5.41 ± 0.04 5.79 ± 0.039 6.12 ± 0.052 Basal tillering - - 1.025 ± 0.007 - Culm branching - - 0.733 ± 0.029 - No. of nodes on main stem 3.00-19.30 9.30 ± 0.069 - - Days to 50% flowering 41.0-191.00 91.40 ± 0.57 102.79 ± 0.87 100.83 ± 0.50 Total leaf area (cm2) on main stem - - - 2517.13 ± 51.82 Forage yield (kg m-2) 0.40-9.88 - 1.79 ± 0.025 - 1. Across three locations. Source: Mathur et al. (1991).

298 Table 7. Performance of the selected sorghum breeding lines for grain yield, fodder yield and quality attributes at ICRISAT, Patancheru, India during rainy season 2002.

Grain Ratooning Breeding Stem sugar1 Fresh fodder yield ability -1 -1 material (%) yield (t ha ) (t ha ) (%) Best lines for stem sugar Hybrid seed 14-18 17-35 0.8-3.3 36-81 ICSB 472 (17.9%), ICSB 401 parents (16.3%), ICSB 405 (16.1%), ICSB 731 (15.9%) Varietal/restorer 13-20 26-46 0.6-4.5 15-77 GD 65003 (20%), Entry #64 lines DTN (19.7%), GD 65080 (19%), ICSV 96143 (18.1%) Dual-purpose 14-20 28-40 0.1-2.8 19-79 S 35 (19.6%), GD 65179 varieties (18.5%), FM 345 (17.5%), GD 65122 (17.3%) High-tillering 13-21 23-52 0.3-1.9 34-95 FM 48 (20.7%), GD 65174-1 varieties (18.3%), GD 65239 (18.1%), FM 665 (18%)

1. As % on fresh stalk basis = 0.1516 x 0.8746 brix degrees.

Pearl millet

ICRISAT has assembled more than 21,000 accessions of pearl millet consisting of landraces and breeders' products. Evaluations by NBPGR and ICRISAT covering large number of accessions from many countries revealed considerable variability for various fodder components such as plant height (49 - 443.3 cm), number of tillers plant-1 (1-9.3), stem thickness (6-31.2 m m ) , number of leaves (4.3-37), leaf length (19.3-130 cm) and leaf w i d t h (1.1-8.6 cm) (Table 8). Gupta (1969) observed considerable variability for desirable fodder quality components such as protein, phosphorus (P), calcium (Ca) and anti-nutritional factors like oxalic acid in a sample of world collections of pearl millet.

Cultivar options

Forage hybrids and varieties of sorghum (Table 9) and pearl millet (Table 10) are popular with the farmers. Until 2000, 53 varieties and hybrids of forage sorghum comprising 40 single-cut and 13 multi-cut types were released in India (Table 11). They include 37 single-cut and 6 multi-cut forage sorghum varieties, 3 single-cut forage sorghum hybrids, 5 sorghum-sudangrass hybrids,

299 Table 8. Variability for forage components in a sample of world collection of pearl millet, at NBPGR, Issapur, New Delhi, India.

19871 19882 Trait Range Mean ± SE Range Mean ± SE Days to 50% flowering 34.0-119.0 76±0.41 34.0-136 75±0.38 Plant height (cm) 49.0-367.0 215 ± 0.92 95.6 - 43.3 273.5±0.98 Number of tillers plant1 1.0-9.3 2.3±0.02 1.0-9.0 2.1±0.03 Number of productive tillers 1.0-6.0 1.7±0.01 1.0-8.6 1.6±0.02 Stem thickness (mm) 6.0-30.8 19.2±0.07 9.5-31.2 15.3±0.01 Number of nodes - - 5.3-37.0 13.5±0.07 Internode length (cm) 3.5-26.3 15.4±0.07 4.0 - 39.0 19.5±0.09 Number of leaves 5.7-22.3 12.6±0.05 4.3-37.0 13.8±0.07 Leaf length (cm) 22.3-130.0 68.9±0.33 19.3-126.3 75.2±0.35 Leaf width (cm) 1.7-8.5 3.6±0.02 1.1-8.6 4.3±0.02 Ear exsertion (cm) 0.0-16.3 2.1 ± 0.06 0.0-43.0 3.1±0.11 Spike length (cm) 8.8-85.3 27.5±0.23 10.0-78.3 24.2 ± 0.18 Spike thickness (mm) 5.7-47.8 20.6±0.10 10.8-47.7 20.2±0.01 1000-seed mass (g) 2.5-19.3 8.6±0.06 - - 1. Based on 1938 accessions from world collections. 2. Based on 2458 accessions from world collections. Source: Mathur et al. (1993a, 1993b).

1 multi-cut sudangrass variety and 1 multi-cut sudangrass hybrid. Compared to forage sorghum, only 10 pearl millet cultivars including 1 multi-cut variety and 3 hybrids have been recommended for forage cultivation. Eleven napier- bajra hybrids are available for perennial forage cultivation. While there is a great demand for sorghum-sudangrass forage hybrids, the non-availability and need for multi-cut sorghum hybrids has been long recognized. Efforts are also required to develop multi-cut forage pearl millet cultivars (both varieties and hybrids). During rainy season, a successful harvest fills granaries, and provides stover, while failed harvests assure forage at least.

Varieties Both sorghum and pearl millet are grown during rainy season (June to September), while only sorghum is cultivated during postrainy season (October to March). A choice of landraces and improved cultivars are available for rainy season, but only a single variety of sorghum (Maldandi) dominates during postrainy season. Forage sorghum and pearl millet are grown

300 Table 9. Product and cultivar preferences of sorghum in India1.

Product Cultivar State Season Grain Stover Forage Grain Forage Maharashtra Rainy P P S H>V V Postrainy P P - V _ Summer - - P H H+V Karnataka Rainy P P S H>V V Postrainy P P - V - Summer - - P H H+V Madhya Pradesh Rainy P P P H>V V Summer - - P - H+V Andhra Pradesh Rainy P P - H>V - Postrainy P S - V - Summer - - s - H+V Rajasthan Rainy P P p H V Summer - - p - H Tamil Nadu Rainy P P - H - Postrainy P s - V - Summer - _ s - H Uttar Pradesh Rainy S p p H H+V Summer - - p - H+V Gujarat Rainy P p p H V Summer - - p - H Punjab Rainy - - p - H>V Summer - - p - H>V Haryana Rainy - - p - H>V Summer - - p - H>V 1. P = Primary importance; S = Secondary importance; H = Hybrid; V = Variety.

during summer season (March to June). High density cultivation of landraces offers a single-cut, and staggered plantings ensure continuous supply of fodder during the off-season. On the other hand, improved varieties are amenable for multi-cut and management practices. Again, many sorghum varieties are available for forage, but the choice is limited for pearl millet - a single variety of pearl millet (Rajko) dominates the multi-cut forage scenario.

Intra-specific hybrids

Covering 54.8% of cultivated sorghum and 53.3% of pearl millet, high- yielding grain hybrids and varieties provide grain and stover during rainy

301 Table 10. Product requirement and cultivar types of pearl millet in India1. Product Cultivar State Season Grain Stover Forage Grain Forage Rajasthan Rainy P P - HV - Summer P - - H - Gujarat Rainy P s - H - Summer P s P H V Uttar Pradesh Rainy P p - H>V V Summer - - P - V Haryana Rainy P p - H>V V Summer - - P - V Karnataka Rainy P s - H - Madhya Pradesh Rainy P p - H>V V Summer - - P - V Tamil Nadu Rainy P p - H - Andhra Pradesh Rainy P p - H>V - 1. P = Primary importance; S = Secondary importance; H = Hybrid; V = Variety.

season. Dual-purpose hybrids of sorghum (Madhya Pradesh and Uttar Pradesh) and pearl millet (Rajasthan, Uttar Pradesh and Tamil Nadu) are preferred in some states of India. During summer, parts of Gujarat grow dual- purpose pearl millet hybrids, while parts of Maharashtra and Rajasthan go for grain hybrids. Multi-cut forage hybrids of sorghum are grown during summer, but not pearl millet multi-cut hybrids. There are indications of the possibility of producing topcross forage hybrids that are comparable in forage yield to sorghum-sudangrass hybrids.

Interspecific hybrids

Unlike sorghum, sorghum-sudangrass hybrids tiller profusely, produce succulent stems, have high leaf to stem ratio, re-grow quickly, withstand multi-cuts, and are low in H C N and tannins. Single and three-way interspecific hybrids have been developed in both public and private sectors. However, three-way cross hybrids are predominantly cultivated because private seed industry produces and supplies the hybrid seed. Red-grained

302 Table 11. Released varieties and hybrids of forage sorghum and pearl millet in India, 1973-2000.

Crop/Type Single-cut Multi-cut Forage sorghum Varieties JS 263, JS 291, JC 6, JC 69, MP Chari, Pusa Chari 9, J Set 3, JJ 4, Pusa Chari 1, Pusa Chari 23, Ruchira, Pusa Chari 6, Pant Chari 3, CO 27, DFJ 1 Pant Chari 4, Pant Chari 5, HC 6, HC 136, HC 171, HC 260, HC 308, SL 44, CSV 13, CSV 14R, SPV 669,SSV 74, K7, CO 8, Jumbo, Speed Feed, UP Chari 1, UP Chari 2, GFS 3, GFS 4, GJ 37, GJ 40, RSLG 262, Improved Ramkel, Parbhani Sweta, Rajasthan Chari 1, Rajasthan Chari 2, Rajasthan Chari 3 Hybrids COH 4, PCH 106, CSH 13 - Sorghum-sudangrass Hybrids Proagro 988, MFSH 3, GFSH 1, Hara Sona, Safed Moti Hybrid

Sudangrass Varieties - SSG 59-3 Hybrids - Punjab Sudax Hybrid Chari 1 Pearl millet Varieties Giant Bajra, PCB 15, DFB-1 PCB 141, Raj Bajra Chari 2, AFB 2, CO 8 Hybrids FMH 3, GHB 15, GHB 235 -

Napier x bajra hybrid Hybrid NB 21, NB 37, CO 1, CO 2, CO 3, PBN 83, PBN 233, Pusa Giant, Yashwant, Annapurna, Swetika

303 three-way sorghum-sudangrass hybrids are cultivated, though there is no difference between white- and red-grained sorghum forage hybrids. Round-the-year supply of green fodder paved the way for developing perennial napier-bajra hybrids in India. The napier-bajra hybrids combine quick re-growth, non-hairiness, narrow long leaves, thin stems, high leaf-stem ratio, high forage quality, low oxalic acid and high forage yield. Above all, napier-bajra hybrids can be grown on a wide variety of soil types, and in mixed, relay and intercropping systems.

Genetic enhancement of forage yield and quality

Forage yield improvement Breeding becomes simpler when the relevant component characters are identified, inheritance patterns understood and effective breeding method(s) are chosen. Khairwal and Singh (1999) reviewed inheritance, heritability, correlations, and general and specific combining ability effects of several economic traits in pearl millet. Tiller number and stem girth were positively related with plant height, indicating that indirect selection could be effective in increasing forage yield. Dry fodder yield is positively correlated with grain yield, indicating that simultaneous selection could be effective. Resistance to rust, a foliar disease, is negatively correlated with green and dry fodder yield which augurs well for improving forage quality. Several forage-related characters like plant height, tiller number, internode number, biomass and growth index are under additive and non-additive genetic control. Also several forage-related traits like quick regeneration, tillering, plant height, thin stems and non-hairy leaves appear to be under Mendelian inheritance. Genetic improvement of forage yield and quality should, therefore, be possible through conventional inbred line development, testing for combining ability, identifying fertility- sterility reaction, developing male-steriles, and breeding varieties and hybrids.

Forage quality improvement

Quantitative traits The primary objectives of forage quality improvement are to increase feed intake and digestibility, and reduce anti-nutritional attributes (Smith et al. 1997). In vitro dry matter digestibility (IVDMD) is under genetic control and is

304 correlated w i t h CP, neutral detergent fiber (NDF), acid detergent fiber (ADF) and water-soluble carbohydrates (WSC). Recurrent and divergent selections have been extensively used to improve I V D M D through decreasing cell wall concentration [measured by NDF, more recently by in vitro fiber digestibility ( I V F D ) ] , reducing lignin concentration (measured by A D F ) , increasing ready energy (measured by WSC) and/or increasing CP. A great deal of forage quality research is being done in other crops which could be adapted to design forage sorghum and pearl millet quality research relevant to the semi-arid tropics. Divergent selection for I V D M D has been reported to result in 1.0 to 4.7% gains per year in several species including grasses and legumes (Casler 2000), suggesting that rapid genetic progress for I V D M D is possible. Divergent selection for I V D M D did not result in correlated response for in vitro digestibility of fiber in smooth bromegrass (Bromus sp) (Casler 1987) or in vitro digestibility of cell wall polysaccharides in alfalfa (Medicago sativa; lucerne) (Jung et al. 1994). Divergent selection for CP increased I V D M D in timothy (Phleum pratense; herd grass) (Suprenant et al. 1990). Divergent selection for Kalson lignin (KL) w i t h high or low EthFA (etherified ferulic acid) revealed that both reduce I V F D , but are independent of each other (Casler and Jung 1999). Recurrent selection for dry matter disappearance in Cynodon dactylon through in situ nylon-bag dry matter digestibility ( N B D M D ) revealed an average genetic gain of 2 g kg-1 yr-1 between 1963 and 1993 ( H i l l et al. 1993). Recurrent selection for combining low A D F and high CP in alfalfa decreased A D F and NDF, and increased CP, I V D M D and I V F D (Vaughn et al. 1990). Selection for WSC in perennial rye grass (Secale cereale) revealed greater genetic variation for WSC than for I V D M D , and large non-additive component and positive correlation with IVDMD than for forage yield (Humphreys 1989a, 1989b). Selection for increased CP led to correlated response for increased digestibility (Suprenant et al. 1990). Genetic progress for increased CP has been documented in several species (Casler 2000). Traditional breeding methods may be useful in improving protein quality; improving degradable proteins is easier and less expensive than non-degradable proteins.

Qualitative traits While several forage yield and quality traits are under polygenic control and quantitatively inherited, few genes w i t h large and direct effects (oligogenes)

305 could be effectively used to improve forage quality, albeit indirectly. Such material could be exploited through pure line, pedigree and backcross breeding or through population improvement.

Dwarfing genes. Dwarfing genes have been isolated in sorghum and pearl millet. Dwarfing genes are recessive. They shorten the internode length and increase the leaf:stem ratio. Burton and Fortson (1966) isolated d1 and d2 dwarfs, while Appa Rao et al. (1986) identified d3 and d4 dwarfs in pearl millet. Burton (1983) incorporated d2 dwarfing gene into forage seed and pollen parents leading to the development of dwarf forage hybrids. This resulted in 1 1 % increase in leafiness and 1 7 - 2 1 % increase in I V D M D , but 30% decrease in forage yield (Burton et al. 1969). While forage pearl millets are used for grazing, and hay and silage production in U S A and elsewhere, they are chaffed and fed to animals in India. Reducing plant stature would, therefore, adversely affect forage yields and commercialization of forage pearl millets in India. Therefore, attempts should be directed at developing semi- dwarf and normal height forage varieties and hybrids w i t h better forage digestibility for wider acceptability.

Trichomeless gene. Genes that affect leaf surface and epidermal features may also affect forage quality. Trichomeless gene in pearl millet increases palatability, but reduces digestibility of intact leaves (Burton et al. 1977). Bloomless gene in sorghum, on the other hand, increases digestibility of intact leaves (Cummins and Dobson 1972). Trichomeless is controlled by a recessive gene. But bloomless is controlled by two non-allelic recessive genes and sparse-bloom by three non-allelic recessive genes, segregating independently (Peterson et al. 1982). It should, therefore, be possible to transfer trichomeless and bloomless genes into elite lines through backcross breeding.

Stay-green genes. Whether grown for grain and stover (dual-purpose) or for forage, the incorporation of stay-green character is a boon for improving the quality of fodder. Stay-green character is governed by a recessive gene, which slows down senescence. Stay-green gene has a pleiotropic effect arresting the decline in protein content of the aging leaves (Humphreys 1994). Stay-green sorghum lines have been developed at ICRISAT through pedigree breeding.

Glossy genes. Appa Rao et al. (1987) identified three different non-allelic genes in pearl millet governing the glossiness of leaves. Seedling marker

306 'glossy' was found to be associated w i t h shoot fly resistance and drought tolerance in sorghum.

Sweet stalks. The value of forage sorghum or pearl millet depends on the sugars left in the stover or accumulated in green forage. This is particularly true of pearl millet stover which has low feeding value and is considered inferior to that of sorghum and several other cereals. Considerable variation was observed for juiciness and sweetness of the stalks of sorghum and pearl millet in germplasm collections from Tamil Nadu (Appa Rao et al. 1982) and Rajasthan in India. Several Cameroon landraces of pearl millet also have sweet stalks. Brix varies from 3 to 16% (Harinarayana 1987). Pearl millet accessions from Tamil Nadu are late and tall, but could be used to improve stored energy of stover or green fodder. Sweetness is controlled by a single recessive gene in sorghum (Bangarwa et al. 1987).

Brown midrib genes. Lignins interfere with digestibility. Low lignin mutants offer an opportunity to increase the overall digestion of plant fiber which comprises 30-80% dry matter (Cherney et al. 1991). Low lignin mutants are characterized by brown midrib. There are four bmr loci in maize, one bmr locus in pearl millet and several bmr loci in sorghum and sudangrass (Cherney et al. 1991). Brown midrib loci have been reported to improve IVDMD by reducing lignin in sorghum stems by 5 1 % and in leaves by 25% (Porter et al. 1978) and N D F concentration by 13% (Fritz et al. 1981). A l l bmr genes are recessive. Selection should, therefore, be done in selfed progenies of backcrosses where bmr genotype is the donor. At ICRISAT, several sorghum lines w i t h high biomass were selected for bmr trait (Table 12). WW Hanna, University of Georgia, Tifton, Georgia, USA (personal communication) has also developed several pearl millet forage seed and pollen parents incorporating the bmr gene. Low lignin lines with bmr gene have also been isolated at ICRISAT

Forage quality improvement through anti-nutritional attributes Sorghum contains tannins, phenolics and HCN that affect forage quality adversely. Tannins in moderate quantities bind w i t h the proteins and prevent bloating in animals, but when in excess, they lower CP and IVDMD. Tannins are negatively correlated w i t h CP, I V D M D and ADF. Plants w ith tan plant color, which is controlled by a recessive gene, have low tannin (8%), while purple plants have 10 to 18% tannins (Gourley and Lusk 1978). Phenolics

307 Table 12. Characteristics of sorghum lines selected for dark midrib color at ICRISAT, Patancheru, India during rainy season 2002.

Fresh Days to Plant Agronomic fodder Grain Head No. of Midrib Brix 50% height desirability2 yield yield length 1 -1 -1 Cultivar entries color (%) flowering (m) (score) (t ha ) (tha ) (cm) B-lines (white grain) ICSB 293 23 1.5 13.8 75 2.0 1.5 20.8 4.0 29.8 ICSB 301 31 1.0 14.3 77 1.7 2.5 15.2 3.2 30.5 ICSB 418 41 1.5 17.3 74 1.4 2.0 19.0 2.5 21.7 ICSB 472 46 1.5 20.3 81 2.1 1.5 27.4 2.5 14.4 ICSB 474 47 1.0 17.5 75 2.6 3.0 15.3 1.6 18.2 ICSB 507 54 1.5 15.5 80 1.7 2.5 24.5 2.0 23.8 ICSB 664 66 1.5 22.9 78 1.4 2.5 26.9 1.7 18.6 ICSB 702 71 1.5 13.8 75 1.8 2.0 23.7 3.4 28.0 ICSB 731 73 1.5 18.0 78 2.4 1.5 34.6 3.3 24.3 ICSB 765 80 1.5 17.0 69 1.4 2.5 15.1 2.3 21.0 B-lines (red grain) IS 10475B 47 1.5 13.8 62 1.1 3.0 9.8 2.9 29.8 Varieties (red grain) ICSV 96114 34 1.5 17.3 69 1.6 2.5 17.6 3.1 25.3 GD 65025 81 1.5 22.0 83 2.3 2.5 34.4 0.6 19.8

1. Score at harvest on a 1 to 5 scale where 1 = more brown and 5 = more white. 2. Score on a 1 to 5 scale where 1 = best and 5 = poor. interfere with the digestion of structural carbohydrates and N D F (Reed et al. 1988). When absorbed into blood, H C N causes cellular asphyxiation and eventual death (Hoveland and Monson 1980). H C N is under genetic control of a major dominant gene, reinforced by multiple genes w i t h additive effects (Duncan 1996). Pearl millet contains lignins that affect palatability and oxalic acid which affects digestibility.

M a n a g e m e n t factors

Improvement of forage productivity and quality is as much amenable to management as to genetics and breeding. Some of these management factors

308 relate to cultural practices while others relate to applied nutrients. Effects of various management factors on sorghum crop residue have been summarized in a recent review (Reddy et al. 2003).

Cultural practices Besides plant population and harvesting time, sowing time and irrigation have been found to have the greatest effects on fodder yield and quality. For instance, significant reduction in green fodder, dry matter content and CP yield was observed w i t h delay in planting from 25 October to 25 November at Urulikanchan, India (Khandale and Relwani 1991). The effects of irrigation during summer on forage yields have been reported to be variable, depending on the genotype, soil type and potential evapotranspiration. Irrigation (7 cm) at different IW/CPE (irrigation water/cumulative pan evaporation) ratios of 0.25, 0.50 and 0.75 revealed that maize yielded the highest green fodder while pearl millet yielded the highest dry fodder when compared to sorghum, teosinte (Euchlaena mexicana), cowpea (Vigna unguiculata) and cluster bean (Cyamopsis tetragonoloba) at all irrigation regimes (Singh et al. 1989). But Singh and Singh (1986) reported that sorghum outyielded maize and pearl millet at IW/CPE ratios of 1.0, 0.6, 0.3 and 0.15. It has also been observed that transplanted pearl millet produces more stover yield than direct-seeded crop, irrespective of the seedling age (Upadhyay et al. 2001). The response increased w i t h increased nitrogen (N) (0 to 80 kg ha-1) application (Singh 1985), but P had no effect (Upadhyay et al. 2001). Jayanna et al. (1986) observed that increased seed rate (20 to 40 kg ha1 ) had no effect on tillering forage sorghum, but the green fodder yield increased w i t h increasing seed rate in non- or low-tillering forage sorghums. Green fodder yield of pearl millet increased up to a seed rate of 12 kg ha-1, after which it declined w i t h increase in seed rate (Sharma et al. 1996). Pearl millet stover yield and plant height increased w i t h increasing plant density (Singh 1985). Highest green fodder and dry matter yields were obtained when harvested at either 60 or 75 days after sowing (DAS) than at 45 DAS. However, opposite trend was observed w i t h crude fiber (%) being lowest when harvested at 45 DAS (Ram and Singh 2001a, 2001b). Compared to single-cut, multi-cut pearl millet produced high forage yield coupled w i t h good quality forage (Chauhan et al. 1990), though the magnitude varied from genotype to genotype (Table 13).

309 Table 13. Nutrient production (t ha1) of pearl millet as influenced by cutting.

Single-cut Multi-cut Component1 Comp 5 Comp 1 PHB 10 Mean Comp 5 Comp 1 PHB 10 Mean Green fodder 61.2 62.2 40.5 54.6 74.1 73.6 56.4 68.0 Dry fodder 9.7 10.1 7.4 9.1 15.5 14.7 11.8 14.0 DDM 5.7 5.5 3.9 5.0 9.1 8.1 6.1 7.8 Crude protein 0.80 0.79 0.55 0.71 1.28 1.16 0.87 1.10 DCP 0.45 0.40 0.26 0.37 0.72 0.59 0.41 0.57 TDN 5.4 5.3 3.8 4.8 8.6 7.7 6.0 7.4 1. DDM = Digestible dry matter; DCP = Digestible crude protein; TDN = Total digestible nutrients. Source: Chauhan et al. (1990).

Intercropping of fodder sorghum with legumes such as cowpea, soybean (Glycine max), horse gram (Dolichos uniflorus), and velvet bean (Mucuna deeringiana) resulted in better green forage, dry matter and CP yields than fodder sorghum alone (Sood and Sharma 1992, Mishra et al. 1997, Ram and Singh 2001a, 2001b). Forage sorghum-chickpea (Cicer arietinum) produced highest green fodder under normal conditions, but under drought, pearl millet- pearl millet ratoon prevailed over sorghum + pigeonpea (Cajanus cajan)-fallow or pearl millet-safflower (Carthamus tinctorius) (Ali and Rawat 1986). Compared to sole crop, pearl millet mixed or intercropped with cowpea or soybean produced more CP, ether extract (EE), minerals, crude fiber and N- free extract (NFE) (Singh and Narwal 1987, Yadav and Sharma 1995).

Nutritional amendments

Nitrogen application has been found to have greatest effect on forage yield and quality. Several studies have shown that forage sorghum responded well to increased levels of N by producing significantly higher green forage, dry matter content and CP (Patel et al. 1992, Sood and Sharma 1992, Vashishatha and Dwivedi 1997, Ram and Singh 2001a, 2001b, Reddy et al. 2003). The response of fodder pearl millet was positive for forage production up to 120 kg N ha-1 (Randhawa et al. 1989, Sharma et al. 1996). Application of N also improved forage quality, CP, mineral matter, EE and NFE (Table 14). Increase in N application was also accompanied by increase in stover production, plant height and tillers plant-1 (Singh 1985). But forage pearl millet following postrainy berseem (Trifolium alexandrinum) required less N application than pearl millet following wheat, oat (Avena sativa) or turnip (Brassica rapa),

310 Table 14. Response of forage pearl millet to nitrogen application1. Plant No. of Leaf: Crude Mineral Ether Crude Genotype/ GFY DFY height tillers stem protein matter extract fiber NFE 1 1 -1 Fertilizer (t ha ) (t ha ) (cm) m ratio (%) (%) (%) (%) (%) Genotype L72 51.1 9.6 241 19.3 0.66 7.0 9.4 1.45 26.5 56.3 C 5 58.3 17.6 266 19.6 0.54 6.6 7.8 1.34 32.1 53.6 PCB 15 53.6 10.0 248 18.3 0.62 7.2 10.0 1.30 9.2 52.9 CD at 5% 4.4 1.2 - - - - 1.1 - - - Nitrogen (kg ha-1) 0 38.3 8.5 230 19.2 0.69 5.3 8.7 1.30 32.1 55.4 50 53.3 12.1 253 18.1 0.64 6.2 8.0 1.31 30.1 55.2 100 63.6 14.0 265 20.0 0.58 7.1 9.9 1.39 26.4 55.5 150 62.4 14.7 266 18.6 0.55 7.6 11.5 1.44 22.4 57.2 CD at 5% 5.1 1.4 - - - - 1.28 - - - 1. GFY = Green fodder yield; DFY = Dry fodder yield; NFE = Nitrogen-free extract. Source: Randhawa et al. (1989). resulting in a saving of 50% N (Harika et al. 1986). Following the application of P, pearl millet produced more green and dry fodder yield than sorghum, maize, cowpea or cluster bean (Ram et al. 1988). Sulfur (S) application increased CP, sugars, methionine, cell contents, S:P ratio, and S:zinc ratio (Tripathi et al. 1992a) and decreased NDF, ADF, N:S ratio and Ca:P ratio up to 40 kg S ha-1 in forage sorghum (Tripathi et al. 1992b). Treatment of forage sorghum with Azospirillum lipoferum (Pahwa 1986) or with Azotobacter (Patel et al. 1992, Reddy et al. 2003) resulted in significant increase in dry matter production than without Azospirillum or Azotobacter. The rhizosphere was enriched with N, and resulted in a saving of 15 kg N ha-1.

Commercialization potential

Economics of seed production

In India, forage sorghum-sudangrass seed is produced during the postrainy season, while grain/forage pearl millet seed is produced during the hot summer season. The chief seed production area is in Nizamabad district of Andhra Pradesh. Some seed production is also evident in Bellary district of Karnataka. Congenial climate, pest-free environment, assured irrigation and

311 the desire to maximize economic returns have all contributed to successful seed production in Nizamabad. A system of one-year rotation, rice-pearl millet in alluvial soils is followed. In the two-year rotation, first year sequence of maize-turmeric (Curcuma domestica) -pearl millet (seed crop) is followed by maize-forage sorghum (seed crop) during the second year. The intensive cropping, particularly seed production, ensures stability and high economic returns to the farmer. Forage sorghum as well as grain pearl millet acreage continue to spread following good monsoon, but tend to shrink following partial failure of monsoon. Forage sorghum seed production is profitable with yields ranging from 2.5 to 4.0 t ha-1 under irrigation. Forage pearl millet seed production is small, compared to sorghum-sudangrass or grain pearl millet seed. Some case studies regarding forage pearl millet hybrids w i l l provide an insight into profitability of seed production. Area planted to pearl millet seed fluctuates widely as water becomes more and more limiting. Secondly, compared to forage sorghum, the seed yields of forage pearl m i l l e t hybrids are significantly lower, and vary between 1.0 and 2.5 t ha-1. Farmers undertake pearl millet seed production with the express understanding that it is a catch crop between postrainy season turmeric and rainy season maize/rice.

Seed trade The sale price of forage sorghum-sudangrass fluctuates between Rs 15 kg-1 and Rs 20 kg-1 (US$0.25-0.45 kg-1), depending on the market demand. Though the margin of profits is not substantial, the volume and the recurring demand sustain the interest of the seed industry. The recent entry of a large number of marginal traders has discouraged the registered seed industry. There is a need to curb unregistered trade firms not supported by scientific and technical personnel, and to encourage seed companies with research, production, processing and marketing support. The sale price of Rs 30-50 kg-1 (US$0.70-1.10 kg-1) of forage pearl millet hybrid seed is not attractive to the farmers in view of limited harvests (cuts) and low forage yield. Low seed yields, limited area and lack of recurring demand are discouraging the seed industry to venture into forage pearl millet research and development.

312 Future outlook

Any-time forage Sorghum and pearl millet either alone or in mixed or intercropping system are cultivated for stover and forage. Sorghum stover scores over pearl millet, but forage pearl millet is rich in protein, Ca, P and minerals, and oxalic acid content is within safe limits. Being any time forage, pearl millet, unlike sorghum, can be grazed, or cut and fed at any growth stage. However, forage sorghum is more popular than forage pearl millet. Low green fodder yield, poor ratoonability (ability to regenerate), limited market demand, variable prices and lack of private industry support and research support have discouraged pearl millet as forage. Concerted efforts are, therefore, required to ameliorate this situation.

Geographical preferences Sorghum and pearl millet green fodder is fed to ruminants in northern India, while stover is common in sorghum and pearl millet growing areas in southern India. Intensive cropping, short growing season, poor growth of perennial grasses during winter, nutritional quality and the need for continuous supply of green fodder created demand for forage sorghum and forage pearl millet in northern India. Sorghum varieties and sorghum-sudangrass hybrids are grown for forage in northern India while in southern India, perennial grasses are cultivated as annual forage is required for supply between harvests, and for supplementing the stover. Development of annual multi-cut high-yielding forage sorghum and pearl millet is needed to correct the regional imbalances.

Multi-cut varieties To overcome limited ratoonability, forage sorghum and pearl millet varieties are repeatedly planted (staggered) for sustaining the green fodder supply chain. High plant density ensures high yields, thinner stems and more palatability. Efforts should, therefore, be directed at designing forage sorghum and forage pearl millet that tiller, grow tall and ensure multi-cuts.

Varietal choice Many forage sorghum varieties are under cultivation, but there are very few forage pearl millet varieties. Recurring demand and/or volume turnover are

313 product-driven, while public and private seed industry are market-driven. Development of multi-cut annual forage sorghum and pearl millet hybrids, rather than varieties, w i l l be of interest to the seed industry. There is also scope for the development of intra- and interspecific forage hybrids.

Forage sorghum Development of multi-cut, intra-specific, single-cross, white-grained forage hybrids would offer the widest choice for realizing forage potential of sorghum. These hybrids provide a better alternative to forage varieties grown during the rainy season. Diversification of interspecific, sorghum-sudangrass hybrids for increased productivity and nutritional quality also requires attention. Sorghum-sudangrass three-way hybrids are by far the most popular forage hybrids, and are based on red-grained sorghum male-sterile lines. Limited variability in red-grained sorghum seed parents, and sudangrass pollinators further impose restrictions on the exploitation of the interspecific forage hybrids. Focused efforts to improve the seed parents and pollinators for forage traits like high tillering, fast growth, stay-green and brown midrib characters, resistance to foliar diseases and stem borer, high stalk sugars, forage intake and digestibility in animals will add further diversity to the forage cultivar development. Large-seeded, red- or white-grained high-density panicles should be deployed in seed parents. The sudangrass pollinators can be improved for resistance to foliar diseases and high sugar content.

Forage pearl millet Single-cut pearl millet varieties with limited forage potential of 30 t ha-1, and 0.27 to 2.24 t day-1 ha-1 are currently dominating the forage market. Development of intra-specific forage hybrids that combine the ability for repeated harvests (multi- cuts), earliness to first harvest (cut), short harvesting intervals, quick regeneration, the built-in tillering potential, high green fodder yield, high quality factors and low anti-nutritional factors like oxalic acid and nitrates has tremendous opportunity to improve pearl millet as a forage crop. Efforts should also be directed at identifying seed parents for high seed yield. Alternatively, the feasibility of F1 male sterile seed parents and three-way forage hybrids should be examined. The interspecific napier-bajra hybrids give year round forage production. Improving the nutritional quality of pearl millet and napier grass could enhance opportunities for clonal selection. The hybrids of P. glaucum x P. purpureum x P. squamulatum developed by GW Burton, Agricultural

314 Research Station, Coastal Plain Experimental Station, Tifton, Georgia, U S A and tested in India (Ramamurty and Shankar 1998) had shown promise for forage yield and quality among perennial grasses. Probably, such tri-species hybrids could be developed in sorghum as well!

N u t r i t i o n a l q u a l i t y

Forage quality as determined by CP, I V D M D , N D F and A D F reflecting degradable and non-degradable proteins, structural and non-structural carbohydrates, lignin and celluloses, and anti-nutritional attributes such as H C N , oxalic acid, tannins and phenolics have received greater research attention elsewhere in the world, but not in the arid and semi-arid tropics. Forage quality research is complex, expensive and laboratory dependent calling for multidisciplinary approach and multi-institutional alliances.

Public-private partnerships Inter-institutional partnerships involving international agricultural research centers (IARCs), national agricultural research systems (NARSs) and private agricultural research systems (PARSs) could forge strong interlinks for sustaining forage sorghum and pearl millet research. Crop scientists, chemical technologists, and animal health and nutrition experts have a role to play in the forage development scenario.

References Ahlrichs SL, Duncan RR, Ejeta G, Hill PR, Baligar V C , Wright RJ and Hanna WW. 1991. Pearl millet and sorghum tolerance to aluminum in acid soil. Pages 947-951 in Plant soil interactions at low pH: proceedings of the Second International Symposium, 24-29 June 1990, Beckley, West Virginia, USA (Wright RJ, Baligar VC and Muarmann RP, eds.). Development in Plant and Soil Sciences, Vol. 45. Dordrecht, the Netherlands: Kluwer Academic Publishers. Ali M and Rawat CR. 1986. Production potential of different fodder-fodder cropping systems under dryland conditions of Bundelkhand. Page 30 in Advances in forage agronomy and future strategy for increasing biomass production: National Seminar, 6- 7 Oct 1986, Jhansi, India. Jhansi, Madhya Pradesh, India: Indian Grassland and Fodder Research Institute. Appa Rao S, Mengesha MH and Rajagopal Reddy C. 1986. New sources of dwarfing genes in pearl millet (Pennisetum americanum). Theoretical and Applied Genetics 73:173-174.

315 Appa Rao S, Mengesha MH and Rajagopal Reddy C. 1987. Glossy genes in pearl millet. Journal of Heredity 78:333-335. Appa Rao S, Mengesha MH and Subramanian V. 1982. Collection and preliminary evaluation of sweet-stalk pearl millet (Pennisetum). Economic Botany 36:286-290. Bangarwa KS, Grewal RPS and Lodhi GP. 1987. A single recessive gene for stem sweetness in sorghum. Euphytica 36:225-226. Bhatnagar SK. 2003. Coordinator's Review, 2002-2003. Mandor, Jodhpur, India: Agricultural Reseaarch Station, AICPMIP (ICAR). 7 pp. Burton GW. 1983. Breeding pearl millet. Plant Breeding Reviews 1:162-182. Burton GW and Fortson JC.1966. Inheritance and utilization of five dwarfs in pearl millet (Pennisetum typhoides) breeding. Crop Science 6:69-72. Burton GW, Hanna WW, Johnson JC Jr, Lueck DB, Monson W G , Powell JB, Wells HD and Widstrom NW 1977. Pleiotropic effects of the tr trichomeless gene in pearl millet on transpiration, forage quality, and pest resistance. Crop Science 17:613-616. Burton GW, Monson W G , Johnson JC Jr, Lowery RS, Chapman HE and Marchant W H . 1969. Effect of the d2 dwarf gene on the forage yield and quality of pearl millet. Agronomy Journal 61:607-612. Casler M D . 1987. In vitro digestibility of dry matter and cell wall constituents of smooth bromegrass forage. Crop Science 27:931-934. Casler M D . 2000. Breeding forage crops for increased nutritional value. Advances in Agronomy 71:51-107. Casler MD and Jung H G . 1999. Selection and evaluation of smooth bromegrass clones with divergent lignin or etherified ferulic acid concentration. Crop Science 39:1866-1873. Chapman SR and Carter LP. 1976. Crop production, principle and practices. San Francisco, California, USA: WH Freeman. 566 pp. Chauhan TR, Sidhu BS and Mehndiratta P. 1990. Comparative nutritional value and nutrient production potential of some strains of pearl millet for buffaloes. Forage Research 16:87-91. Cherney JH, Axtell JD, Hassen MM and Anilker KS. 1988. Forage quality characterization of a chemically induced brown-midrib mutant in pearl millet. Crop Science 28:783-787. Cherney JH, Cherney DJR, Akin DE and Axtell JD. 1991. Potential of brown- midrib, low lignin mutants for improving forage quality. Advances in Agronomy 46:157-198.

316 Cummins DG and Dobson JW Jr. 1972. Digestibility of bloom and bloomless sorghum as determined by a modified in vitro technique. Agronomy Journal 64:682- 683. de Andrade JB and de Andrade P. 1982. Produca de silagem do milheto (Pennisetum americanum (L.) K. Schum.). Boletim de Industria Animal 392:155-165. de Lima GS. 1998. Estudo comparativo da resistencia a' seca no sorgo forrageiro (Sorghum bicolor (L.) Moench) em differentes estadios de desenvolvimento. Recife: UFRPE. 128 pp. Duncan RR. 1996. Breeding and improvement of forage sorghums for the tropics. Advances in Agronomy 57:161-185. Fritz JO, Cantrell RP, Lechtenberg VL, Axtell JD and Hertel JM. 1981. Brown midrib mutants in sudangrass and grain sorghum. Crop Science 21:706-709. Gourley LM and Lusk JW. 1978. Genetic parameters related to sorghum silage quality. Journal of Dairy Science 61:1821-1827. Gupta VP. 1969. Final Research Report, PL 480 Project, A7-CR-137. Ludhiana, Punjab, India: Punjab Agricultural University. 57 pp. Hanna WW. 1993. Improving forage quality by breeding. Pages 671-675 in International crop science I. International Crop Science Congress, Ames, Iowa, USA, 14-22 July 1992 (Buxton DA, Shibles R, Forsberg RA, Blad BL, Asay KH, Paulsen GM and Wilson RF, eds.). Madison, Wisconsin, USA: Crop Science Society of America. Hanna WW and Cardona ST. 2001. Pennisetums and sorghums in an integrated feeding system in the tropics. Pages 193-200 in Tropical forage plants: Development and use (Rios AS and Pitman WD, eds.). Boca Raton, Florida, USA: CRC Press. Hanna WW and Gupta SK. 1999. Breeding for forage. Pages 303-316 in Pearl millet breeding (Khairwal IS, Rai KN, Andrews DJ and Harinarayana G, eds.). New Delhi, India: Oxford & IBH Publishing Co. Pvt. Ltd. Harika AS, Sohi DS, Ganguly TK and Tomer PS. 1986. Response of fodder millet to nitrogen and phosphorus application in relation to preceding crop. Pages 6-7 in Advances in forage agronomy and future strategy for increasing biomass production: National Seminar, 6-7 Oct 1986, Jhansi, India. Jhansi, Madhya Pradesh, India: Indian Grassland and Fodder Research Institute. Harinarayana G. 1987. Pearl millet in Indian agriculture. Pages 5-17 in Proceedings of the International Pearl Millet Workshop, 7-11 April 1986, lCRISAT Center, Patancheru, India. Patancheru, 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. Hill G M , Gates RN and Burton GW. 1993. Forage quality and grazing steer performance from Tifton 85 and Tifton 78 bermuda grass pastures. Journal of Animal Science 71:3219-3225.

317 Hoveland CS and Monson W G . 1980. Genetic and environmental effects on forage quality. Pages 139-168 in Crop quality, storage, and utilization. Madison, Wisconsin, USA: American Society of Agronomy and Crop Science Society of America. Humphreys M O . 1989a. Water-soluble carbohydrates in perennial ryegrass breeding. I. Genetic differences among cultivars and hybrid progeny grown as spaced plants. Grass Forage Science 44:231-236. Humphreys M O . 1989b. Water-soluble carbohydrates in perennial ryegrass breeding. III. Relationships with herbage production, digestibility and crude protein content. Grass Forage Science 44:423-430. Humphreys M O . 1994. Variation in carbohydrate and protein content of ryegrasses: potential for genetic manipulation. Pages 165-172 in Breeding for quality: Proceedings of the 19th EUCARPIA fodder crops section meeting (Reheul D and Ghesquiere A, eds.). Merelbeke, Belgium: Rijksstation Plantenveredeling. ICAR. 1989. Technology for increasing forage production in India. New Delhi, India: ICAR. 40 pp. Jayanna M, Gumaste SK, Babu R, Pallad YB and Patil TC. 1986. Response of promising fodder sorghum cultivars to varying levels of seed rate and fertilizer. In Advances in forage agronomy and future strategy for increasing biomass production: National Seminar, 6-7 Oct 1986, Jhansi, India. Jhansi, Madhya Pradesh, India: Indian Grassland and Fodder Research Institute. Jung H G , Smith RR and Endres CS. 1994. Cell wall composition and degradability of stem tissue from lucerne divergently selected for lignin and in vitro dry matter digestibility. Grass Forage Science 49:295-304. Kalton RR. 1988. Overview of forage sorghums. Pages 1-12 in Report of Forty-third Annual Corn and Sorghum Research Conference (Wilkinson W, ed.). American Seed Trade Association Publication 43. Washington, DC, USA: American Seed Trade Association. Khairwal IS and Singh S. 1999. Quantitative and qualitative traits. Pages 119-155 in Pearl millet breeding (Khairwal IS, Rai KN, Andrews DJ and Harinarayana G, eds.). New Delhi, India: Oxford & IBH Publishing Co. Pvt. Ltd. Khandale DY and Relwani LL. 1991. Effect of sowing date on the forage yields of maize (Zea mays), sorghum (Sorghum bicolor) and oat (Avena sativa) in central India. Indian Journal of Agronomy 36(3):346-350. Kichel A N , Miranda C H B and da Silva JM. 1999. Pearl millet (Pennisetum americanum L. Leek) as a forage plant. Pages 93-98 in Proceedings of International Pearl Millet Workshop, Planaltina, Brazil, 9-10 June 1999 (Farias Neto AL, Amabile RF, Netto D A M , Yamashita T and Gocho H, eds.). Embrapa Cerrados, Planaltina.

318 Mathur PN, Appa Rao S, Agrawal RC, Mengesha MH and Rana BS. 1993a. Evaluation of pearl millet germplasm. Part 1. New Delhi, India: National Bureau of Plant Genetic Resources. 200 pp. Mathur PN, Appa Rao S, Sapra RL, Mengesha MH and Rana RS. 1993b. Evaluation of pearl millet germplasm. Part 2. New Delhi, India: National Bureau of Plant Genetic Resources. 215 pp. Mathur PN, Rao KEP, Thomas TA, Mengesha M H , Sapra RL and Rana BS. 1991. Evaluation of forage sorghum germplasm. Part-I. New Delhi, India: National Bureau of Plant Genetic Resources. 269 pp. Mishra RK, Choudhary SK and Tripathi AK. 1997. Intercropping of cowpea [Vigna unguiculata) and horsegram (Macrotyloma uniflorum) with sorghum for fodder under rainfed conditions. Indian Journal of Agronomy 42(3):405-408. NRCS. 2001. AICSIP Progress Report, 2000-2001. Rajendranagar, Hyderabad, India: NRCS. Pahwa MR. 1986. Azospirillum in the nitrogen economy of forage sorghum. Pages 22- 23 in Advances in forage agronomy and future strategy for increasing biomass production: National Seminar, 6-7 Oct 1986, Jhansi, India. Jhansi, Madhya Pradesh, India: Indian Grassland and Fodder Research Institute. Patel PC, Patel JR and Sodhu AC. 1992. Response of forage sorghum [Sorghum bicolor) to biofertilizer and nitrogen levels. Indian Journal of Agronomy 37(3):466- 469. Peterson GC, Suksayretrup K and Weibel DE. 1982. Inheritance of some bloomless and sparse-bloom mutants in sorghum. Crop Science 22:63-67. Porter KS, Axtell JD, Lechtenberg VL and Colenbrandu VF. 1978. Phenotype fiber composition and in vitro dry matter disappearance of chemically induced brown- midrib (bmr) mutants of sorghum. Crop Science 18:205-208. Ram S, Singh K and Dhukia RS. 1988. The comparative performance of various summer legume and non-legume forages under different levels of phosphorus. Forage Research 14:137-140. Ram SN and Singh B. 2001a. Effect of nitrogen and harvesting time on yield and quality of sorghum (Sorghum bicolor) intercropped with legumes. Indian Journal of Agronomy 46 (1): 32-37. Ram SN and Singh B. 2001b. Productivity and economics of forage sorghum [Sorghum bicolor) in association with legumes under different harvesting times and nitrogen levels. Indian Journal of Agronomy 46(4):611-615. Ramamurty V and Shankar V. 1998. Response of Pennisetum tri-specific hybrid to nitrogen and harvesting dates. Indian Journal of Agronomy 43:533-536.

319 Randhawa NS, Singh J and Sidhu MS. 1989. Response of fodder pearl millet genotypes to nitrogen under irrigated conditions. Forage Research 15:128-131. Reddy BVS, Hash CT, Stenhouse JW, Nigam SN, Laxman Singh and van Rheenen HA. 1994. Crop improvement for livestock crop-residue feed at ICRISAT Asia Center. Pages 85-92 in Proceedings of a workshop on crop improvement and its impact on the feeding value of straw and stovers of grain cereals in India, 21 November 1994, New Delhi, India (Seetharam A, Subba Rao A and Schiera JB, eds.). New Delhi, India: Indian Council of Agricultural Research. Reddy BVS, Sanjana Reddy P, Bidinger F and Blummel M. 2003. Crop management factors influencing yield and quality of crop residues. Field Crops Research 84:57-77. Reed JD, Kebede Y and Fussel LK. 1988. Factors affecting the nutritive value of sorghum and millet crop residues. Pages 233-251 in Plant breeding and the nutritive value of crop residues (Reed JD, Capper BS and Neate PJH, eds.). Addis Ababa, Ethiopia: International Livestock Center for Africa. Sharma BL, Sharma PK and Kumar S. 1996. Effect of nitrogen and seed rate on fodder yield of pearl millet (Pennisetum glaucum). Indian Journal of Agronomy 41:595-597. Singh BK and Singh DP. 1986. Agrophysiological responses of summer cereal fodder to irrigation. Pages 10-11 in Advances in forage agronomy and future strategy for increasing biomass production: National Seminar, 6-7 Oct 1986, Jhansi, India. Jhansi, Madhya Pradesh, India: Indian Grassland and Fodder Research Institute. Singh BP. 1985. Stover yield of transplanted pearl millet as affected by agronomic manangement on drylands. Forage Research 11:107-112. Singh J, Rana DS, Taneja KD and Malik BS. 1989. Effect of irrigation on green and dry matter production in summer forages. Forage Research 15:25-28. Singh R, Gupta PC, Singh K and Pradhan K. 1977. Chemical composition of forages in relation to their nutritive value. Indian Journal of Genetics 37:268-279. Singh S and Narwal SS. 1987. Influence of irrigation and methods of sowing on the forage quality of summer fodders. Forage Research 13:133-138. Smith KF, Reed K F M and Foot JZ. 1997. An assessment of the relative importance of specific traits for the genetic improvement of nutritive value in dairy pasture. Grass Forage Science 52:167-175. Sood BR and Sharma VK. 1992. Effect of nitrogen level on the yield and quality of forage sorghum (Sorghum bicolor) intercropped with legumes. Indian Journal of Agronomy 37(4):642-644. Suprenant J, Michaud R and Allard G. 1990. Effect of one cycle of divergent phenotypic selection for crude protein, digestibility, and digestibility yield in timothy. Canadian Journal of Plant Science 70:757-765.

320 Tripathi SB, Singh RS and Tripathi RK. 1992a. Effect of sulphur fertilization on quality constituents of fodder sorghum cultivar M.P. Chari. Forage Research 18:9-14. Tripathi SB, Singh RS and Tripathi RK. 1992b. Effect of levels and sources of sulphur on forage yield, nutrient content and their uptake by sorghum. Forage Research 18:15- 25. Upadhyay D N , Dixit AG, Patel JR and Chavda JR. 2001. Response of summer pearl millet (Pennisetum glaucum) to time and method of planting, age of seedling and phosphorus grown on loamy sand soils of Gujarat. Indian Journal of Agronomy 46:126-130. Vashishatha RP and Dwivedi DK. 1997. Effect of nitrogen and phosphorus on "MP Chari" sorghum (Sorghum bicolor). Indian Journal of Agronomy 42:112-115. Vaughn DL, Viands DR and Lowe CC. 1990. Nutritive value and forage yield of alfalfa synthetics under three harvest management systems. Crop Science 3:699-703. Yadav GL and Sharma BL. 1995. Effect of intercropping and mixing of cowpea (Vigna unguiculata) with pearl millet (Pennisetum glaucum) on green forage yields. Indian Journal of Agronomy 40:497-498.

321 Utilization of Fermented Moldy Sorghum as Cattle Feed

RV Sudershan, S Vasanthi and RV Bhat1

Abstract Sorghum is subjected to mold damage if rains continue during grain development, maturation and harvest. Mycotoxins such as aflatoxins and fumonisins are produced by some of the molds that are toxic to humans and animals. Various detoxification methods have been proposed. Among these, biotechnological means of detoxification is gaining significance in recent years. A study was carried out to identify a probiotic organism which can be used to detoxify moldy sorghum. The common homemade liquid cattle feed (kudithi) was used as a source for isolation. A total of 11 isolates of Lactobacillus were tested for their ability to detoxify the moldy sorghum. One isolate was selected and used in fermentation of moldy sorghum. Fermentation of moldy sorghum by addition oj inoculum of

Lactobacillus decreased aflatoxin B1 and fumonisin from 42.4 ppb and 5 ppb, respectively to non-detectable level. Feeding trial of fermented moldy sorghum was carried out with the cooperation of farmers at the village level. The study indicated that the feed was acceptable to the animal, milk yield had increased and the farmers were willing to utilize the technology.

Sorghum (Sorghum bicolor) grain is subjected to mold damage if rains continue during grain development, maturation and harvest [Williams and McDonald 1983). These molds have detrimental effects on yield and quality of sorghum grain that include decrease in nutritive value, production of mycotoxins and other secondary metabolites. Many species of Fusarium have been isolated from moldy sorghum and were found to produce T 2 toxin, deoxynivalenol and fumonisins (Rukmini and Bhat 1978, Bhat et al. 1997). Consumption of food and feeds contaminated w i t h these mycotoxins have resulted in food/feed-borne diseases in both human and animal populations (Vasanthi and Bhat 1998). Various detoxification methods have been proposed to combat mycotoxin in grains (Mishra and Chitrangada Das 2003). However, many of these treatments are based on chemical treatments that resulted in residual toxicity and not applicable at the household level. Recently biotechnological means of detoxification of mycotoxins in moldy grains is gaining significance as it does not leave any harmful residues

1. National Institute of Nutrition (NIN), Tarnaka, Hyderabad 500 007, Andhra Pradesh, India.

322 (Karunaratne et al. 1990). Such methods are more relevant in India where people have been using biotechnological approaches in microbial fermentation for making products for consumption. A study was carried out to identify microorganisms that can ferment moldy sorghum and improve its nutritive value. The study has three components: (1) field survey; (2) laboratory experiment; and (3) operational research.

Field surveys To find out a source of microorganism that can be utilized to ferment moldy sorghum, a survey was carried out in Kammala village in Nalgonda district, Andhra Pradesh, India where fermented liquid feed (kudithi) was a common form of animal feed among small farmers. The composition of kudithi was 80% water, 8- 10% rice (Oryza sativa) or wheat (Triticum aestivum) bran and the remaining 10% kitchen waste (remnants of cooked rice, dal and vegetables). The kudithi is fermented for 8-10 h before feeding it to animals. A total of 10 kudithi samples were collected from the village for testing and isolating the microflora.

Laboratory studies Laboratory studies indicated that all the kudithi samples had Lactobacillus sp and yeasts. These isolates were used in fermentation studies with moldy sorghum. Of the 11 isolates of Lactobacillus, only one strain reduced the mycotoxin content and increased the nutritive value. Further, fermentation experiments with isolated strains indicated that fermentation improved all nutrients but more significantly carbohydrates and iron (Table 1). Zinc and fat contents also improved. Energy increased from 340 to 380 calories in 100 g (dry mass) of moldy sorghum grain after fermentation. The initial content of

42.4 ppb of aflatoxin B1 was reduced to non-detectable level and fumonisin could be detoxified within 24 h of fermentation (Table 2). However,

Table 1. Effect of fermentation time on nutritive value of moldy sorghum1.

Nutrients Oh 24 h 36 h Carbohydrate (g%) 72.4 80.4 82.9 Fat (g%) 1.6 2.2 2.3 Iron (mg%) 3.55 4.19 4.36 1. Estimated in 100 g dry mass of moldy sorghum grain.

323 Table 2. Effect of fermentation time on aflatoxin, fumonisin and ergosterol contents in moldy sorghum.

Mycotoxin Oh 24 h 36 h

-1 1 Aflatoxin B1 (ng g ) 42.4 ND ND Fumonisin (ng g-1) 5.0 ND ND Ergosterol (µ g-1) 200.0 50.0 50.0 1. ND = Non-detectable. fermentation had no effect on tannins. Based on the laboratory studies, field studies were planned w i t h milch cattle.

Operational research A field trial was carried out w i t h Lactobacillus sp-fermented kudithi made from moldy sorghum, with three animals chosen from farmers of Masanipalli, a village in Cheekatimamidi Mandal of Nalgonda district with the help of volunteers of PEACE, a non-governmental organization ( N G O) working in this area. One buffalo from each farmer was taken for the study and farmers were asked to collect milk everyday separately from these buffaloes for six consecutive days to arrive at a mean milk yield before starting the feeding of experimental diet. Except the addition of fermented moldy sorghum to the kudithi there was no difference between the diet fed before the experiment and experimental diet. This data formed the baseline data. One hundred ml of liquid culture of Lactobacillus (10-7 cfu) was given to each farmer along with 500 g of moldy sorghum. Five hundred ml of water was added to the moldy sorghum, mixed w i t h 100 ml culture and covered w i t h a lid to create anaerobic conditions. The mixture was kept for 24 h for fermentation. Just before feeding, fermented moldy sorghum was mixed well and 8 to 10 L of kitchen waste (rice washings and stale food) were added and fed to the animals by the farmers. This process was repeated everyday consecutively for a month. Animal preference for the moldy sorghum kudithi was observed through intake of kudithi, milk yield and apparent animal health. Results indicated that animals accepted the fermented kudithi. Milk yield increased (Table 3) and farmers showed keen interest in further use of the technology. Three farmers who have successfully used this technology w i l l in turn share the

324 Table 3. Effect of feeding fermented moldy sorghum on milk output (L day1)1. Buffalo no. Before feeding After feeding 1 0.92 ± 0.062 1.34 ±0.130 2 1.46 ±0.046 1.66 ±0.160 3 3.65 ±0.012 3.83 ± 0.090 1. Data are means of 15 days. inoculum of Lactobacillus culture w i t h 3 other new farmers, and thus the technology w i l l be adopted by all the 52 farmers in the village.

Conclusion Moldy sorghum can be used as cattle feed after fermentation w i t h Lactobacillus sp. Fermentation improves nutritive value and degrades mycotoxins. However, actual economics of the entire operation needs to be calculated before it can be recommended to the farmers.

References Bhat RV, Shetty HPK, Amruth RP and Sudershan RV. 1997. A foodborne disease outbreak due to the consumption of mouldy sorghum and maize containing fumonisin mycotoxins. Journal of Toxicology - Clinical Toxicology 35:249-255. Karunaratne A M , Wezenberg E and Bullerman LB. 1990. Inhibition of mold growth and aflatoxin production by Lactobacillus sps. Journal of Food Production 53:230- 234. Mishra HN and Chitrangada Das. 2003. A review on biological control and metabolism of aflatoxin. Critical Reviews in Food Science and Nutrition 43:245-256.

Rukmini C and Bhat RV. 1978. Occurrence of T2 toxin in Fusarium infested sorghum from India. Journal of Agricultural and Food Chemistry 26:647-649. Vasanthi S and Bhat RV. 1998. Mycotoxins in foods - Occurrence, health and economic significance and food control measures. Indian Journal of Medical Research 168:212-215. Williams RJ and McDonald D. 1983. Grain molds in the tropics: problems and importance. Annual Review of Phytopathology 21:153-178.

325 Cereals in Alcohol Industry: An Industry Perspective

AD Mandke and Mukesh Kapoor1

Abstract Alcohol demand will increase due to its new applications especially as biofuel. Global alcohol production needs to reach 40 billion L by 2010. About 33% of alcohol is produced from grain stocks and maize contributes the largest share. Major alcohol usage is for fuel. Many countries opted for alcohol blend in auto fuel. India plans to blend petrol with up to 10% alcohol in auto fuel. Asia shares 14% of global alcohol production. Asia produces nearly 44.2 million t of sorghum grain per annum, which is mainly used for food, and partly as feed. India produces nearly 10.5 million t of sorghum per annum, mainly in the states of Andhra Pradesh, Karnataka, Madhya Pradesh, Tamil Nadu and Maharashtra. Rainy season sorghum often gets infected with grain mold and is not suitable for human consumption. Praj Industries Ltd., Pune, India was asked to work out a solution to use moldy sorghum. A starch-based ethanol process was designed, thus making alcohol a viable proposal from moldy sorghum grain. Sweet sorghum, which stores sugars in the stalk, can also be used for production of ethanol and has properties comparable with sugarcane. Sugars can be extracted directly from the stalk and fermented for alcohol. Praj has also perfected the technology of alcohol production from sweet sorghum. Praj Industries Ltd., Pune, India (abbreviated as Praj) is a turn-key project- based engineering company. It has completed turn-key projects in 25 countries in five continents. The main core area of business is the supply of plant, machinery and technology for alcohol production, and also the technology and machinery for brewery and waste water treatment plant. Praj has been involved in shaping some of the most challenging agricultural processing applications for alcohol production. We have accumulated vast experience in installing distillery projects involving different cereals. In order to fulfill the world requirement of fuel-grade ethanol, we have identified different crops for ethanol production, including sweet sorghum (Sorghum bicolor) as one of the options.

1. Praj Industries Limited, Praj House, Bavdhan, Pune 411 021, Maharashtra, India.

326 Present scenario The present world industrial production of 33.3 billion L of alcohol is expected to increase beyond 40 billion L by 2010. Currently, alcohol is produced from sugar crops (60% of total alcohol production), grains plus other feed stocks (33% of total alcohol production) (Table 1) and the remaining 7% is from synthetic products. The usage pattern of alcohol produced is 68% in fuel, 2 1 % in industries and 11% in beverages. Use of ethanol for blending in fuel has been taken up by many countries. India has initiated blending of 5% ethanol in petrol; this will increase up to 10% in the second phase.

Table 1. Ethanol yield from various cereal grains.

Cereals/Product Starch content (%) Protein content (%) Ethanol yield (L t-1 grain) Sorghum 66-70 9-11 422 - 48 Moldy sorghum 62-68 8-9 390-435 Broken rice 66-70 2-3 420-445 Maize 58-64 8-10 370-410 Wheat 60-68 10-12 375-425

Rainy and humid conditions during grain filling and after grain setting in sorghum results in heavy infection by several fungi, generally termed as molds. Moldy grain is unfit for feed and food. Therefore, Praj worked out a technically viable solution to use such grains for the production of alcohol (Table 2).

Starch-based process for ethanol The process of ethanol production is described (Fig. 1). Sorghum grains are stored in a dry place to avoid fungal growth. These grains are then taken for milling where they are cleaned and milled to form flour of suitable particle size. Slurry is prepared from this flour using water. This slurry is then subjected to pre-liquefaction stage with enzyme additions. The slurry is

Table 2. Economics for production of ethanol from moldy sorghum grains. Amount/Quantity Description Moldy grain Clean grain Cost of moldy grain (Rs t-1) 3000 5000 Average ethanol yield (L t-1) 410 435 Cost of feed stock (Rs L-1) 7.30 11.50

327 Parallel Storage Pre-liquefaction saccharification and fermentation

Jet cooking

Distillation Cleaning and milling Ethanol Post-liquefaction

Effluent

Partial pre- Slurry saccharification

Figure 1. Ethanol production using starch-based process. heated and maintained at high temperature to gelatinize the starch. This is followed by jet cooking in which the slurry is heated at very high temperature for a short time using high-pressure steam. This slurry is then cooled and again subjected to liquefaction process with enzymes, which is known as post- liquefaction. This process is important in reduction of viscosity, and the starch is broken down from polymeric form to oligomeric forms such as maltose, maltotriose, etc. The liquefied slurry is then subjected to partial pre- saccharification using suitable enzymes and the maltose and maltotriose units of starch are further broken down to glucose units. Glucose is a fermentable form of carbohydrate by yeast and therefore this partially pre-saccharified slurry is then fed to fermentors where the fermentation process begins. However, saccharification still continues simultaneously because of the presence of enzymes and this is known as simultaneous saccharification and fermentation. At the end of fermentation the fermented wash is sent for distillation. Alcohol is separated in the form of rectified spirit or extra-neutral alcohol or absolute alcohol. The effluent may be dried to produce cattle feed or part of the effluent can be recycled back to grain processing as mentioned above.

328 Sweet sorghum - An alternative for ethanol production Some sorghum genotypes have high content of sugar in the stems. These genotypes are referred to as sweet sorghums. Sweet sorghum lines have wider adaptability and produce high biomass and sugar similar to sugarcane (Saccharum officinarum) (Tables 3 and 4). In collaboration with the National Research Centre for Sorghum (NRCS), Hyderabad, India, we tested sweet sorghum variety SSV 84 at 7 locations. The crop was grown in summer with irrigation. Biomass, stripped cane yield and ethanol yields were assessed. Crop samples from different areas at varying crop growth stages were analyzed for various traits (Table 5). Our observations on sugar content in sweet sorghum stalk indicated that sugar level in the stalks decreases rapidly after grain maturity up to 2.5-3.0% w/w. Deheading (removal of earhead) at anthesis initiation stage resulted in

Table 3. Comparison of sugar constituents (% w/w) in sweet sorghum and sugarcane. Constituent Sweet sorghum Sugarcane Total solids 25-30 25-30 Sucrose 6.5-7 11.5-13.5 Reducing sugars 2.5-4 0.5-0.7 Fermentable sugars 9-11 12-14 Fiber 14-16 14-16 Water 70-75 70-75

Table 4. Comparison of ethanol yield and other properties of sugarcane and sweet sorghum. Properties Sugarcane Sweet sorghum Crop duration (months) 10-11 3.5-4 Stripped green stalk yield (t ha-1) 70-80 47-52 (per crop) (95-105 t yr-1) Sugar content (%) 11-13 9-11 Ethanol yield (L t-1) 68-74 55-65 Water requirement (%) 100 30-36 (of sugarcane requirement) Fertilizers requirement (%) 100 0-25 (of sugarcane requirement) Bagasse availability (t ha1) 20-25 12-13 (per crop) (28-32 tyr1)

329 Table 5. Evaluation of sweet sorghum variety SSV 84 at different locations in India.

Crop Stalk Sugar Expected alcohol Expected alcohol age yield (% w/w) yield yield Location (days) (t ha-1) in stalk (L ha-1) (L t-1 stalk) Remarks Pune 107 54 5.71 1854 34.26 Without deheading Kolhapur 115 54 5.76 1870 34.56 Without deheading 115 54 6.70 2176 40.20 With deheading Goa1 117 32 4.70 902 28.20 Without deheading Chittur 115 45 5.82 1546 34.92 Without deheading 115 45 6.70 1780 40.20 With deheading

1. Average of 3 locations.

higher percentage of sugar in stalk 18 days after deheading than without deheaded stalk. Steps involved in the production of alcohol from sweet sorghum stalk are given in Figure 2.

Process of alcohol production from sweet sorghum

The process of alcohol production from sweet sorghum includes the following steps.

Harvesting, transportation and storage of stems

Sweet sorghum stems are harvested mechanically or manually and transported to the alcohol production plant. Maximum storage period allowed (after harvesting) is two days.

Juice extraction operations

Sweet sorghum stems are crushed to extract juice as for sugarcane.

Juice concentration

Dilute juice extracted is evaporated in a multi-stage evaporation unit to convert it to concentrated juice form. This concentrated juice is then fermented to produce ethanol.

Fermentation

The concentrated juice produced as syrup is diluted using effluent recycle from the distillation column and process water. This is then fermented for producing alcohol in a continuous fermentation plant.

330 Sweet sorghum harvesting

Transportation of sweet sorghum stem

Juice extraction Bagasse for boiler

Condensate Juice concentration

Syrup

Fermentation Carbon dioxide

Distillation

Ethanol

Figure 2. Technology for alcohol production from sweet sorghum.

Distillation and dehydration The fermented mash is subjected to distillation so that alcohol is separated and concentrated to 99.6% v/v strength.

331 Salient features of the process offer by Praj • Complete energy sufficiency using own bagasse. • Integrated system for high levels of energy and water conservation. • Extraction of additional fermentable sugars using special chemicals. • M i n i m u m time required for complete extraction and increased rate of extraction. • Integration of available water streams for extraction. • Optimizing of process parameters, viz., temperature, time and p H .

332 A Trial w i t h Sweet Sorghum

RV Huilgol, Ramkrishna and Govind Misale1

Abstract The pilot project involved three units of Shree Renuka Sugars Ltd., Manoli, India: the Cane Department, Sugar Plant and the Distillery Unit. The work done at the field level by the Cane Department is highlighted in the first section of the paper. The trials at the Sugar Plant, which involved crushing of sweet sorghum are discussed in the second section. The fermentation and distillation processes of the project are discussed in the third section. Finally, the results of this pilot project are highlighted. Shree Renuka Sugars Ltd. took up a pilot project on sweet sorghum for ethanol and sugar production at Manoli, Belgaum, Karnataka, India in collaboration with the University of Agricultural Sciences (UAS), Dharwad, Karnataka and National Research Centre for Sorghum (NRCS), Hyderabad, India. Shree Renuka Sugars L t d . is a 2500-TCD (tons crushing daily) sugar factory w i t h a 11.2 MW cogeneration power plant. The sugar plant was commissioned in November 1999 and the cogeneration plant in January 2000. In February 2002 the company commissioned the distillery unit, producing rectified spirit at 60 kl day-1. In February 2003 the ethanol plant was commissioned. Sweet sorghum (Sorghum bicolor) is the only crop that provides both grains and stems that can be used for sugar, alcohol, syrup, jaggery, fodder, fuel and roofing. Shree Renuka Sugars Ltd. initiated this pilot project to find new substrates for producing ethanol for the National Fuel Ethanol program. Another objective was to improve the productivity of the drylands in the factory command area by providing alternative market channel for ethanol production from sorghum.

Work done at field level Shree Renuka Sugars Ltd. selected few farmers and supplied them with seeds procured from national institutions. The sweet sorghum genotypes SSV 74

1. Shree Renuka Sugars L t d , Plant: R.S. 367/1, Manoli 591 117, Saundatti Tq., Belgaum District, Karnataka, India.

333 from UAS, Dharwad, Madhura from Nimbakar Agricultural Research Institute, Pune, Maharashtra and SSV 84 from NRCS were supplied to individual farmers at 7.5 kg ha-1 after treating w i t h Chloropyriphos and captan for protection against shoot fly and fungal diseases, respectively. A total of 273 farmers in Karnataka were given seeds to cover an area of 220 ha (Table 1). Chemical fertilizers like 10:26:26 N P K complex as a basal dose and urea as top dressing 25 days after sowing were arranged. For the control of shoot fly infestation, Chloropyriphos was supplied for spraying the crop. The crop was harvested at physiological maturity about 100-110 days after sowing.

Crop condition The crop was sown in June and performed well without any shoot fly infestation as the seed was treated w i t h Chloropyriphos. Due to the long dry spell and erratic drizzling, aphids were observed. Hence spraying of Chloropyriphos in the infested fields was undertaken as a precautionary measure. Wherever supplementary irrigation facilities were available, care was taken to irrigate the fields.

Yields Under normal conditions the yield was about 25-30 t stalk ha-1 and 2.0-2.5 t grain ha-1. The yield varied from field to field and results were noted during final harvesting. For grain yield, Madhura and for stalk yield, SSV 84 are found to be good.

Table 1. Sweet sorghum varieties grown by farmers in different circles in Karnataka, India.

Madhura SSV 74 SSV 84 Total

No. of Area No. of Area No. of Area No. of Area Circle farmers (ha) farmers (ha) farmers (ha) farmers (ha) Manoli 19 15 3 3 50 38 72 56 Yakkundi 27 25 0 0 24 22 51 47 Yaragatti 1 1 29 18 30 26 60 45 Ramadurg 7 10 23 17 29 27 59 54 Bailhongal 8 4 0 0 23 14 31 18 Total 62 55 55 38 156 127 273 220

334 Trial w i t h sugar division We crushed sweet sorghum in our sugar m i l l without any modification in milling tandem and preparatory devices. Sorghum was unloaded on the feeder tables and fed on to the main cane carrier, which leads it to the m i l l . Sorghum was prepared for crushing by the preparatory devices like chopper, leveler and fibrizer. Juice from mills 1 and 2 was taken for processing after screening. Compound imbibition system was followed; imbibition water was added before last m i l l and juice from the last m i l l was sprayed on the preceding mill and so on. Percentage of imbibition was 35.46% sorghum cane. Due to huge amount of trash (29.45% sorghum stalk), there were problems in preparation. The main carrier slipped frequently, which affected continuous feeding to the mills. We encountered frequent jamming of preparatory devices. The crushing report is given in Table 2 and the analysis of crushed sweet sorghum stalk is given in Table 3. The juice analysis indicates that sweet sorghum juice is very rich in total reducing sugars (TRS) and comparatively poor in sugar content; hence, it is suitable for making alcohol.

Trial at the distillery The sweet sorghum juice extracted from the mills was pumped to the distillery through a separate pipeline. The juice was collected in a tank and was diluted by adding water. The diluted juice quantity kept for fermentation was 66,000 L. The diluted juice had the following properties: juice brix 12.0%; specific gravity 1.048; pH 5; and TRS 8.64%. For fermentation, 10 kg of baker's yeast was added along w i t h nutrients like urea (2 kg) and diammonium phosphate (DAP) (0.5 kg) and antibacterial sodium metabisulphite (1 kg). The diluted juice was fermented for 24 h. The fermented wash quantity was reduced to 56,000 L due to sludge formation.

Table 2. Crushing of sweet sorghum stalk.

Particulars Quantity (t) % Crushed Sorghum stalk crushed 112.00 Juice quantity 66.00 58 Added water quantity 39.71 35 Bagasse quantity (including trash) 85.00 75 Trash 32.92 29 Actual bagasse 52.02 46

335 Table 3. Analysis of crushed sweet sorghum stalk.

Description Amount/Units (%)

Mixed juice Brix 12.00 Pol (sucrose) 4.41 Purity (sucrose % with respect to brix) 36.75 Reducing sugars (RS) 4.19 Total reducing sugars (Pol + RS) 8.60 Total reducing sugars (for 100 brix) 71.67 Bagasse Moisture % bagasse 44.10 Bagasse % Pol 2.58 Fiber % bagasse 45.44 Fiber % sorghum 21.10

The alcohol content in fermented broth was 2.82%. This fermented wash was taken for distillation. The expected yield was 1674 L for 56,000 L of fermented wash, but the actual yield was 1835 L of total spirit. Initial reports from the sugar factory show that 112 t sorghum stalk has 23.47% juice with 8.5% TRS. Therefore, theoretical yield at 94.281% purity = 1361 L of alcohol for 112 t of stalk. Table 4 shows the comparison of the actual results and those reported in literature.

Conclusions

• Due to less rain, crop got affected which resulted in low yield. • Sowing should be completed before mid-June, otherwise pest infestation w i l l increase. Once the crop is affected it is difficult to control pests and diseases.

Table 4. Comparison of the actual results and those reported in literature.

Description Actual results Reports in literature

Stalk production (t ha -1) 25 35 - 40 Total reducing sugars (%) 8.50 16-19 Juice (%) 23.47 45 Alcohol yield (L t -1 stalk) 16.38 66 - 75 Juice brix (%) 12 14-21 Juice pH 5 4.8-5.2

336 • We encountered difficulties in the processing stage. The processing system to handle sorghum has to be studied and worked upon for better extraction and to ensure continuous feeding to the m i l l . • Sorghum stalk juice is more suitable for producing alcohol as it contains more reducing sugars than sugarcane (Saccharum officinarum) juice. • Since this is our first trial of alcohol production from sorghum, we could get actual yield less than 50% of reported yields in literature. • Low juice content and low fermentable carbohydrates may be reasons for low yield.

Acknowledgment Authors are highly thankful to the Management and the technical staff of Shree Renuka Sugars L t d . for the help extended during the trial.

337

Participants

China

Lu Qingshan Phone : +86(24) 88419903 (0), Professor 88419222 (R) Institute of Sorghum Fax : + 86 (24) 88453997 Liaoning Academy of Agricultural Sciences Email : [email protected] No. 84, Dongling Road Shenyang 110161

Zou Jianqiu Phone : + 86(24)88453997(0), Associate Professor/Vice Director 88419695 (R) Institute of Sorghum Fax : +86(24)88453997 Liaoning Academy of Agricultural Sciences Email : [email protected] No. 84, Dongling Road Shenyang 110161

I n d i a

Ali SZ Phone : (0821)2510843(0), Head, Department of Grain Science 2543649 (R) and Technology Fax (0821)2517233 Central Food Technological Research Email gst@[email protected] Institute (CFTRI) [email protected] Mysore 570 013 Karnataka

Anaokar SL Phone : (022) 25188484 ( 0 ) , Managing Director 25369189 (R) Godrej Agrovet Limited Fax (022)25188473 Pirojshanagar Email [email protected] Eastern Express Highway Vikhroli (East) Mumbai 400 079 Maharashtra

Bhat RV Phone : (040)27008921, Deputy Director 27173754 (R) National Institute of Nutrition (NIN) Fax : (040)2701907 Tarnaka Email : [email protected] Hyderabad 500 007 Andhra Pradesh

339 Chandra Sekhara Rao P Phone : (0863) 2280478 (R) President Gottipadu Farmers Welfare Cooperative Society Gottipadu Post 522 019 , Guntur District Andhra Pradesh

Chengal Reddy P Phone : (040) 23319643 ( 0 ) , Honorary Chairman 26665277 (R) Federation of Farmers Associations (AP) Fax : (040)23319643 Flat No. 209, Vijaya Towers Email : Indian_farmers_federation@ Shanti Nagar yahoo.com Hyderabad 500 028 Andhra Pradesh

Dayakar Rao B Phone : (040)24018799(0), Senior Scientist (Agricultural Economics) 27632233 (R) National Research Centre for Sorghum Fax (040)24016378 (NRCS) Email [email protected] Rajendranagar Hyderabad 500 030 Andhra Pradesh

Dravid PS Phone : (040) 55316858 (O), Senior Vice President 23399849 (R) J K Agri-Genetics Fax (040) 27764943 1-10-177, 4t h Floor Email : [email protected] Varun Towers Begumpet Hyderabad 500 016 Andhra Pradesh

Govind Misale Phone : (0831) 877706 (O), Senior Chemist 447134 (R) Shree Renuka Sugars Limited Fax (0831)877189 Plant: R.S. 367/1 Email [email protected] Manoli 591 117 Saundatti Tq., Belgaum District Karnataka

340 Gupta SK Phone : (040) 23563522/ Coordinator-Breeding and 98490-22172 Product Development Fax : (040) 23563029 Proagro Seed Company Pvt Limited Email sureshkumar.gupta@ 8-1-39, Tolichowki bayercropscience. com Hyderabad 500 008 Andhra Pradesh

Harinarayana G Phone : (040) 55667222 (O), Director-Research 27643615 (R) Ganga Kaveri Seeds Pvt Limited Fax (040) 23233418 1406, Babukhan Estate, Basheerbagh Email harinarayanag@ Hyderabad 500 001 rediffmail.com Andhra Pradesh

Jayapal Reddy S Phone : (040)23319643(0), Secretary, Federation of Farmers 27555555 (R) Associations Email [email protected] Thallapusapally, Kesamudram Warangal 506 101 Andhra Pradesh

Khairwal IS Phone : (0291) 2571408 (0), Project Coordinator (01662) 243936 (R) All India Coordinated Pearl Millet Fax (0291) 2571090 Improvement Project (AICPMIP) Email [email protected] Agricultural Research Station Mandor Jodhpur 342 404 Rajasthan

Mahala RS Phone : (040) 23372891 (O), Research Manager-Pearl Millet 23567210 (R) Pioneer Overseas Corporation Fax (040) 23372898 (India Branch) Email [email protected] 3rd and 4t h Floor Babukhan's Millennium Centre 6-3-1099/1100, Somajiguda Hyderabad 500 082 Andhra Pradesh

341 Mandke AD Phone : (020) 2952214 (O), Praj Industries Limited 5466505 (R) Praj House, Bavdhan Fax (020)2951515 Pune 411 021 Email anilmandke@praj .net Maharashtra

Prasad VLK Phone : (040)24015323(0), Professor & University Head 24065844 (R) Department of Livestock Production Email : [email protected] and Management College of Veterinary, Science Acharya NG Ranga Agricultural University Rajendranagar Hyderabad 500 030 Andhra Pradesh

Rajashekher Reddy A Phone : (040)24015323(0), Senior Scientist 27171149 (R) College of Veterinary Science Email admalarsreddy@ Acharya NG Ranga Agricultural University rediffmail.cim Rajendranagar Hyderabad 500 030 Andhra Pradesh

Rama Krishna Reddy D Phone : (08542) 22208 (R), President 243464 (O) Mahbubnagar Branch Federation of Farmers Associations H.No. 1-3-151/E/3/1 Rajendranagar Mahbubnagar 509 001 Andhra Pradesh

Rao C L N Phone : (040)23222180 Managing Director Fax (040) 23220869 Janaki Feeds Email [email protected] Pavani Estate, Liberty Cross Road Himayatnagar Hyderabad 500 029 Andhra Pradesh

342 Ratnavathi CV Phone : (040)24015349 Senior Scientist (Biochemistry) Fax : (040)24016378 National Research Centre for Sorghum Email : [email protected] (NRCS) [email protected] Rajendranagar Hyderabad 500 030 Andhra Pradesh

Saranaiah V Phone : (08548)258323 Ex- Udityal Village, Balanagar Mandal Mahbubnagar Dist. Andhra Pradesh

Sateesh Kumar P Phone : (040)23322945, Director-Research 9848016450 Prabhat Agri Biotech (P) Limited Fax : (040)23325680 6-3-540-10, 1st Floor, Opp SBH Email : [email protected] Panjagutta, Hyderabad 500 082 Andhra Pradesh

Seetharama N Phone : (040) 24015225 (0), Director 958455282128 (R) National Research Centre for Sorghum Fax : (040)24016378 (NRCS) Email : [email protected] Rajendranagar Hyderabad 500 030 Andhra Pradesh

Sehgal S Phone : (01662) 231171 Professor, Food and Nutrition Extn. 4243 (O) College of Home Science Fax : (01662)234952 CCS Haryana Agricultural University Email : [email protected] Hisar 125 001 Haryana

Sheila Vijayakumar Phone : (040)27804667 Consultant 147 (New No. 375) West Marredpally, Road No. 4 Secunderabad 500 026 Andhra Pradesh

343 Shyamsunder Singh M Phone : (040) 55312560 (O), Manager (Crop Science) 24046742 (R) Mahindra Shubhlabh Services Limited Email : shyam@ 1-7-1, Parklane mahindrashubhlabh. com Mahindra House, TSR Complex [email protected] Secunderabad 500 003 Andhra Pradesh

Sivakumar S Phone : (040)27800875(0), Chief Executive - Agri Businesses 27845954 (R) ITC Limited (IBD) Fax : (040)27804476 31, Sarojini Devi Road Email :[email protected] Secunderabad 500 003 Andhra Pradesh

Somani RB Phone : (0724) 2438660 (R) "Kavita" Email : [email protected] Opp. Tilak Park Ramdaspeth Akola 444 004 Maharashtra

Spielberger GA Phone : (040) 23555900 Managing Director Fax : (040)23551528 Effem India Private Limited Email guy. spielberger 1st Floor, Ashoka Hitech Chambers @eu.effem.com Road # 2, Banjara Hills Hyderabad 500 034 Andhra Pradesh

Sudershan RV Phone : (040) 27008921 (O), Technical Officer 24122925 (R) National Institute of Nutrition (NIN) Fax : (040)27019074 Tarnaka Email : [email protected] Hyderabad 500 007 Andhra Pradesh

Sudershan Reddy M Phone : (040) 23242540 (O), Plot No. 745 23540402 (R) Road No. 38 Fax : (040)23242540 Jubilee Hills Email : krishnamotors_s@ Hyderabad 500 033 rediffmail.com Andhra Pradesh

344 Vikas Mittal Phone : (040)23555900, Effem India Private Limited 9849424085 1st Floor, Ashoka Hitech Chambers Fax : (040)23551528 Road No. 2, Banjara Hills Email : [email protected] Hyderabad 500 034 Andhra Pradesh

Indonesia

Dahlan M Phone : +62(411)372249(0), Head, Plant Breeding Section (341) 801380 (R) Indonesian Research Institute for Cereals Fax : +62(411)371961 Ratulangi 274, Maros 90514 Email : [email protected]

Netherlands

Kuleshov A Phone : +31 (20) 5754970 Project Manager Fax : +31 (20) 6760231 Common Fund for Commodities (CFC) Email : andrey.kuleshov@ P.O. Box 74656 common-fund.org 1070 BR Amsterdam

Pakistan Chughtai SR Phone : +92(51)9255049, National Coordinator (0995) 618419 (R) Maize, Sorghum, and Millet Programme Fax : +92(51)9255034 Institute of Field & Horticultural Crops Email : [email protected] National Agricultural Research Centre Islamabad

Philippines Medrano WC Phone : (632)928-8624/8505 Director Fax : (632)927-5691 Bureau of Agricultural Research Email : rd@)bar.gov.ph/ Department of Agriculture [email protected] Research and Development Management & Information Center (RDMIC) Visayas Avenue Corner Elliptical Road Diliman, Quezon City 1104 Philippines

345 T h a i l a n d

Boonsue B Phone : +66 (02) 6382234 (O), Senior Advisor 5880379 (R) Charoen Pokphand Group Fax +66(02)6310943 313 Silom Road, Bangrak Email [email protected] Bangkok 10500

Prasit Jaisil Phone : +66 (43) 237602; Associate Dean for Research 242419 (R) Department of Agrnomy Fax +66 (43) 244474 Faculty of Agriculture Email [email protected] Khon Kaen University Khon Kaen 40002

United Kingdom

Marter AD Phone : +44(1634)846317 Consultant Development Economist Email [email protected] Bankview, Albany Road Rochester Kent MEl 3ET

United States of America

Dahlberg JA Phone : + 1(806) 7493478 (O), Research Director 7940695 (R) National Grain Sorghum Producers Fax + 1 (806)7499002 PO Box 5309 Email [email protected] Lubbock Texas 79408

Rooney LW Phone : + 1 (979)8452925, Professor and Faculty Fellow 5892096 (R) Chairman, Food Science Faculty Fax + 1 (979)8450456 Cereal Quality Laboratory Email [email protected] Soil & Crop Sciences Department Texas A & M University 2474 TAMUS College Station Texas 77843-2474

346 ICRISAT-Patancheru

Patancheru 502 324 Phone : (040)23296161 Andhra Pradesh Fax : (040)23241239, 23296182 India Email : [email protected]

Bantilan MCS Phone : Extn. 2517 Global Theme Leader-6 Email : [email protected] SAT Futures and Development Pathways

Blummel M Phone : Extn. 2653 Ruminant.Nutritionist ILRI-ICRISAT

Crouch JH Phone : Extn. 2366 Global Theme Leader-1 Email : [email protected] Harnessing Biotechnology for the Poor

Dar W D Phone : Extn. 2222 Director General Email : [email protected]

Gowda CLL Phone : Extn. 2354 Global Theme Leader-2 Email : [email protected] Crop Improvement, Management, and Utilization

Hall AJ Phone : Extn. 2522 Special Project Scientist Email : [email protected] (ICRISAT/NRI) Global Theme-6

Keatinge D Phone : Extn. 2221 Deputy Director General-Research Email : [email protected]

Nagaraj IR Phone : Extn. 2194 Director, Human Resources and Operations Email : [email protected]

Pande S Phone : Extn. 2687 Principal 'Scientist (Pathology) Email : [email protected] Global Theme-2

Parthasarathy Rao P Phone : Extn. 2510 Senior Scientist (Sodo-economics) Email [email protected] Global Theme-6

347 R a i K N Phone : Extn. 2323 Principal Scientist (Breeding) Email : [email protected] Global Theme-2

Reddy BVS Phone : Extn. 2487 Principal Scientist (Breeding) Email : [email protected] Global Theme-2

Thakur RP Phone : Extn.2276 Senior Scientist (Pathology) Email : [email protected] Global Theme-2

Waliyar F Phone : Extn. 2696 Principal Scientist (Pathology) Email : [email protected] Global Theme-2

ICRISAT-Nairobi

Obilana AB Phone : +254(20)524562 Principal Scientist (Cereals) Fax : +254(20)524001 ICRISAT Email : [email protected] PO Box 39063 Nairobi Kenya

348 Program for the Expert Meeting on Alternative Uses of Sorghum and Pearl Millet in Asia

Tuesday, 1 July 2003

0815-0900 Registration [near Conference Center Foyer]

Session 1 Inaugural [Master of Ceremony: Farid Waliyar] 0900-0910 Welcome address by Director General William D Dar 0910-0920 Remarks by CFC Representative Andrey Kuleshov 0920-0930 Message from FAO FAO Representative 0930-0940 Objectives of the meeting C L L Gowda 0940-1000 Group photograph and coffee break

Session 2 Chair : Dyno Keatinge Rapporteur : Belum V S Reddy 1000-1050 Importance and economics of cereals B Dayakar Rao, B S Rana, (sorghum and pearl millet) production S Hyma Jyothi, in Asia K Karthikeyan, K A Bharath Kumar, and N Seetharama 1050-1140 Sorghum and pearl millet - health foods J Dahlberg, J P Wilson, and industrial products in developed and T Snyder countries 1140-1230 Recent technologies in pearl millet Salil Sehgal, A Kawarta, and sorghum processing and food and G Singh product development 1230-1330 Lunch break

Session 3 Chair : M C S Bantilan Rapporteur : R P Thakur 1330-1415 Dynamics of utilization, markets, trade P Parthasarathy Rao, and coalitions: sorghum and millets AJ Hall, and in Asia M C S Bantilan 1415-1440 Demand driven sorghum and millet Lloyd W Rooney utilization - failures, successes and lessons learned 1440-1505 Effects of mycotoxins on cereals grain F Waliyar, S V Reddy, feed and fodder quality and R P Thakur

349 1505-1525 Coffee break 1525-1550 Cereal grain procurement, drying and Sivakumar, P S Dravid, storage for commercial use and C Ramakrishna 1550-1615 Sorghum: A potential source of raw R B Somani and material for agro-industries J R N Taylor 1615-1640 Processing of sorghum and pearl millet S Z Ali for promoting wider utilization for food purposes 1640-1715 Discussion 1900 Welcome dinner (Gazebo) — (Hosted by Dr William D Dar, D G , ICRISAT)

Wednesday, 2 July 2003 Session 4 Chair : Farid Waliyar Rapporteur : P Parthasarathy Rao 0830-0855 Methods and feasibility for alternative C V Ratnavathi, ises of sorghum: Indian perspectives P K Biswas, M Pallavi, M Maheswari, B S Vijay Kumar, and N Seetharama 0855-0920 Alternative uses of sorghum - methods Li Guiying, Lu Qingshan, and feasibility: Chinese perspectives and Zou Jianqiu 0920-0945 Cereals alternative uses - methods S R Chughtai, J Fateh, and feasibility: Pakistani perspectives M H Munawwar, and M Aslam 0945-1015 Coffee break 1015-1040 The commercialization of sorghum and D D Rohrbach and pearl millet in Africa: Traditional and A B Obilana alternative foods, products, and industrial uses in perspective 1040-1105 Cereals alternative uses - methods and Prasit Jaisil feasibility: Thailand perspectives 1105-1130 Sorghum and pearl millet for poultry C L N Rao, D Sudhakar, feed A R Reddy, and V L K Prasad 1130-1200 Forage potential of sorghum and pearl G Harinarayanaa, millet N P Melkania, Belum V S Reddy, S K Gupta, K N R a i , and P Sateesh Kumar 1200-1300 Lunch break

350 Session 5 Chair : P S Dravid Rapporteur : K N Rai 1300-1315 Strategy for commercialization using I R Nagaraj product centric and value chain approach 1315-1340 Utilization of fermented moldy V Sudershan Rao, sorghum as cattle feed S Vasanthi, and Ramesh V Bhatt 1340-1405 Cereals in alcohol industry: Industry Anil D Mandke perspective 1405-1430 Trial with sweet sorghum R V Huilgol, Ramakrishna,and Govind Misale 1430-1445 Potential of sorghum as feed grain B Boonsue for Thailand and Indonesia 1445-1500 Potential of sorghum development M Dahlan in Indonesia 1500-1530 Coffee break

Session 6 Group meeting [concurrent] 1530-1730 Working Groups on • Novel foods and health • Livestock feed and forage • Industrial products 1900 Workshop dinner (204 Banquet Hall) - (Sponsored by JK Agri- Genetics, Proagro Seed Co., Ganga Kaveri Seeds, Prabhat Agri Biotech, and Pioneer Overseas Corporation)

Thursday, 3 July 2003 0830-1230 Group meeting [continues) [Coffee break - 1040-1100) Tasks of the Working Groups are to identify research and development priorities and potential partners from various sectors for developing project proposal 1230-1330 Lunch break Session 7 Plenary Chair : J Dahlberg Rapporteur : S Pande 1330-1400 Report by the Working Group and discussion on Novel foods and health - research and development issues and institutional alliances

351 1400-1430 Report by the Working Group and discussion on Livestock feed and forage - research and development issues and institutional alliances 1430-1500 Report by the Working Group and discussion on Industrial products - research and development issues and institutional alliances 1500-1520 Coffee break Session 8 Planning Chair : Andrey Kuleshov Rapporteurs: K N Rai and Belum V S Reddy Facilitator : Alan D Marter 1520-1800 Identification of research components, outputs and institutional alliances for project development and implementation 1900 Workshop dinner (Swimming Pool) - (Sponsored by Effem India Private Limited, Banjara Hills)

Friday, 4 July 2003 0830-1030 Planning session (continues) 1030-1100 Coffee break 1100-1230 Presentation of research components, outputs, and potential partners (by Alan D Marter, Consultant) 1230-1300 Closing remarks by CFC and ICRISAT 1300-1400 Lunch break 1400-1500 Press Conference (W D Dar, A Kuleshov, C L L Gowda, F Waliyar, P S Dravid, and G Warrier) 1500 Departure

352 About CFC The Common Fund for Commodities (CFC) is an autonomous intergovernmental financial institution established within the framework of the United Nations. The Agreement Establishing the Common Fund for Commodities was negotiated in the United Nations Conference on Trade and Development (UNCTAD) from 1976 to 1980 and became effective in 1989. The first project was approved in 1991. The CFC forms a partnership of 106 Member States plus the European Community (EC), the African Union (AU) and the Common Market for Eastern and Southern Africa (COMESA) as institutional members. Membership is open to all Member States of the United Nations or any of its specialized agencies, or of the International Atomic Energy Agency, and intergovernmental organizations of regional economic integration which exercise competence in the fields of activity of the Fund. CFC's mandate is to enhance the socioeconomic development of commodity producers and contribute to the development of society as a whole. In line with its market-oriented approach, the Fund concentrates on commodity development projects financed from its resources, which are voluntary contributions, capital subscriptions by Member Countries. Through cooperation with other development institutions, the private sector and civil society, the Fund endeavors to achieve overall efficiency in and impact on commodity development.

A b o u t ICRISAT

The semi-arid tropics (SAT) encompasses parts of 48 developing countries including most of India, parts of southeast Asia, a swathe across sub-Saharan Africa, much of southern and eastern Africa, and parts of Latin America. Many of these countries are among the poorest in the world. Approximately one-sixth of the world's population lives in the SAT, which is typified by unpredictable weather, limited and erratic rainfall, and nutrient-poor soils. ICRISAT's mandate crops are sorghum, pearl millet, chickpea, pigeonpea and groundnut - five crops vital to life for the ever-increasing populations of the SAT. ICRISAT's mission is to conduct research that can lead to enhanced sustainable production of these crops and to improved management of the limited natural resources of the SAT ICRISAT communicates information on technologies as they are developed through workshops, networks, training, library services and publishing. ICRISAT was established in 1972. It is supported by the Consultative Group on International Agricultural Research (CGIAR), an informal association of approximately 50 public and private sector donors. It is co-sponsored by the Food and Agriculture Organization of the United Nations (FAO), the United Nations Development Programme (UNDP), the International Fund for Agricultural Development (IFAD) and the World Bank. ICRISAT is one of 15 nonprofit CGIAR- supported Future Harvest Centers.

353 RA-00407