Measuring Multiple Apoptosis Parameters with the Agilent 2100 Bioanalyzer Application

Total Page:16

File Type:pdf, Size:1020Kb

Measuring Multiple Apoptosis Parameters with the Agilent 2100 Bioanalyzer Application Measuring multiple apoptosis parameters with the Agilent 2100 bioanalyzer A simplified and fast protocol for the analysis of DNA fragmentation during apoptosis Application Marc Valer Abstract This Application Note describes a simplified and fast protocol for apop- tosis DNA fragmentation analysis with the Agilent 2100 bioanalyzer using the DNA LabChip® kit. The combination of Annexin V, active- caspase-3 and DNA laddering analysis on the same platform together with the Cell Fluorescence LabChip kit permits quick confirmation and quantitation of apoptosis in cell populations. A fast and simple protocol was applied for the extraction of fragmented, chromosomal DNA. The increased sensitivity and sizing accuracy of the DNA LabChip kit com- pared to conventional agarose gel electrophoresis also means that a significant lower amount of apoptotic cells is required for the analysis. Introduction research scientists in a wide vari- ety of fields. Apoptosis is charac- The Agilent 2100 bioanalyzer was terized by a distinct set of mor- introduced by Agilent Technolo- phological events involving plas- gies as the first commerially avail- ma membrane blebbing and asym- able lab-on-a-chip analysis system metry loss, reduction of cell vol- for the life science laboratory ume, loss of mitochondrial mem- using LabChip® products, devel- brane potential, nuclear condensa- oped in collaboration with Caliper tion, fragmentation of DNA at Technologies Corp. Chip-based nucleosomal intervals and other approaches for a variety of separa- cytoplasmatic changes. Ultimately tion-based techniques have been fragmentation of the cell into introduced, addressing DNA, RNA membrane-enclosed “apoptotic and protein separations.1, 2, 3. bodies” occurs. Differential Recently the Agilent 2100 bioana- expression patterns or alternate lyzer has been extended to enable mechanisms in the apoptosis path- dual color simple flow cytometric ways among tissues and cell lines assays4. Apoptosis assays have makes it necessary to have two or been demonstrated for quantita- even three parallel experiments to tive measurements of whole cells5. confirm, quantitate and compare The combination of cytometric kinetic events on apoptosis. and gel-like separations on the same instrument platform makes The appearance of DNA laddering it an ideal tool for multi-paramet- is unambiguously connected to ric apoptosis quantitation and con- apoptosis. Targeting of phos- firmation. phatidyl serine (PS) in the outer leaflet of cell membrane with fluo- Apoptosis rescently labeled annexin V and Apoptosis, or programmed cell antibody labeling of active-cas- death, is the outcome of a meta- pase-3 in cells has been previously bolic cascade that results in cells described in conjunction with the dying in a controlled manner. It is Agilent 2100 bioanalyzer as a used by nature during develop- quantitative measurement for 5 ment6, homeostasis, aging and in apoptotic cell samples . defense mechanisms. Apoptosis is a key factor in cancer and also This Application Note describes suspected to be a characteristic the combined measurement of mechanism for degenerative disor- annexin V and the extracted DNA ders such as Alzheimer7 or Parkin- of apoptotic cells on one platform son's diseases. The process is uni- – the Agilent 2100 bioanalyzer. A versal and has been described in fast protocol for DNA preparation eukaryotic cells as well as in indi- and recommendations for data vidual bacteria8, protozoa9 and evaluation are discussed. amoeba10. It is a target for 2 Experimental *As an alternative to the PCR purification kit, the following pro- Apoptosis was induced in Jurkat tocol has been successfully tested: cells by incubation in a 5 µM solu- tion of the topoisomerase • Add 2 µL 5M NaCl to the lysate inhibitor Camptothecin (Sigma, # and vortex 5 seconds. C9911) in medium. Cells were har- • Add 200 µL ice-cold absolute vested and counted at the indicat- ethanol and vortex 5 seconds. ed time intervals. Cell lysis and • Incubate on ice for 10 minutes DNA purification was performed • Centrifuge at 13000 g for 5 min- as described in the fast protocol utes. Discard supernatant. below. Eluted DNA was directly • Dry residual ethanol in speed- loaded into the chip wells, pre- vac or desiccator. pared according to the LabChip • Resuspend precipitate in 30 µL Reagent Kit Guide. of pre-warmed (65 °C) distilled water or 10 mM Tris/10 mM Fast protocol for DNA fragment EDTA. purification (based on original • Run in Agilent 2100 bioanalyzer protocol in reference 11) with the DNA 12000 LabChip • Pellet 1-2 × 106 cells by cen- kit, selecting the DNA 12000 trifugation (2 min × 400 g). laddering assay. Remove medium. • Add 100 µL 4 °C lysis solution UV measurements (0. 2% Triton X, 10 mM Tris, 10 UV spectroscopy readings were mM EDTA) and gently resus- performed to determine total DNA pend. concentration. The Agilent 8453 • Incubate 5 min at 4 °C. UV-visible spectrophotometer was • Centrifuge for 5 min at 13000 g. used in conjunction with a 0.2-cm • Transfer supernatant to new light path ultra-micro cell (10 µl vial and discard the pellet. volume). The whole spectrum • Purify DNA using a low volume (190–1100 nm) was acquired and elution method. Here a PCR evaluation was automatically done purification kit* was used by the Warburg-Christian (QIAGEN MinElute PCR Purifi- method12 with internal wave- cation Kit. Cat.28004). length correction at 320/10 nm. • Run in Agilent 2100 bioanalyzer with the DNA 12000 LabChip Annexin V apoptosis measurements Kit, selecting the DNA 12000 A fast annexin protocol as Laddering assay from the bio- described in reference 13 was sizing software. used. 3 Results and Discussion A. Agilent 2100 bioanalyzer cell assay Besides DNA laddering, cytomet- ric assays like annexin V or cas- pase analysis are commonly used for apoptosis detection. Figure 1A shows the analysis of annexin V in Jurkat cells on the Agilent 2100 bioanalyzer after 6 hours treat- ment with 5 µM campthotecin. After switching the instrument to electrophoresis mode, extracted DNA from treated Jurkat cells was analyzed using the DNA 12000 LabChip kit. The characteristic DNA laddering further confirmed apoptosis in the sample (figure 1B). Sizing information, provided by the 2100 bioanalyzer software, shows nucleosomal fragmentation of DNA by evenly distributed peaks in the electropherogram (figure 2). Apoptosis is confirmed B. Agilent 2100 bioanalyzer DNA assay in samples by fragmentation of the chromosomal DNA in 180–200bp Fluorescence intervals.14 150 140 Typical DNA extraction with the described fast protocol leads to 130 10 µL of 2-30ng DNA/µL (figure 3). 120 The DNA 12000 concentration range specification is 0.5–50 110 ng/µL, so no further treatment is 100 required. Band concentration was 90 calculated to be approximately 1 ng/µL (1 µL loaded on the chip). 80 70 25 30 35 40 45 50 55 60 65 70 75 Time [s] Figure 1 A. Histogram view of the two-color flow cytometric analysis showing annexin V-biotin, strepta- vidin-Cy5® staining of phosphatidyl serine in untreated (upper panel) and apoptosis induced Jurkat cells (lower panel). Left panels show reference staining with calcein for life cells, as annexin also stains cells with a damaged membrane, e.g. necrotic and dead cells. B. Apoptosis confirmation by DNA laddering assay, electropherogram and gel like image are shown. 4 Fluorescence Peak Mig.Time(secs) Size(bp) Marker 1 35.4 50 Lower 100 2 41.4 169 169 3 50.7 353 184 4 58.2 535 182 90 5 63.6 710 175 6 67.4 906 196 80 7 69.9 1106 200 8 72.9 1667 561 9 83.0 10380 Upper 70 Figure 2 60 Electrophrogram of U937 cells lyophilized positive control (Roche diagnostics). Automat- 50 ed size calibration allows a quick verification of DNA fragmentation sizes. DNA peaks at 710 50* 10380* 906 353 1106 1667 169 40 535 180–200bp intervals were well according to the expected values for nucleosomal 25 30 35 40 45 50 55 60 65 70 75 80 85 90 fragmentation. Time[s] Absorbance (AU) 0.03 Absorbance (AU) 0.02 0.01 0.5 0 220 240 260 280 300 320 0.4 Wavelength (nm) 0.3 0.2 0.1 0 220 240 260 280 300 320 Wavelength [nm] Figure 3 Accurate UV quantitation of DNA was Necrotic control Sample 4 Unit achieved with 5 µL of sample (diluted to J 20H 10 % ETOH J 48H 5 µm CAM 10 µL with water). The high sensitivity of the Agilent 8453 spectrophotometer in combina- 260 2.7E-02 0.54 AU tion with an ultra micro-cell provides high quality spectra even at very low absorbance 280 1.5E-02 0.27 AU levels (spectrum magnification). The UV spec- 320 1.1E-04 0.00 AU tra with higher absorbance (red) corresponds Warburg-Christian 2.3 24.0 ng/µL to the apoptic sample 4 (figure 4). The spectra Protein 4.7 17.0 ng/µL with lower absorbance (blue) corresponds to the necrotic control sample. 5 Even at low concentrations, apop- totic samples are clearly distin- guishable from the negative con- trol and necrotic samples (figure 4, samples 1 to 7). The positive samples in figure 4 turned out to be 35 % apoptotic as confirmed by the annexin V assay. A clear dis- crimination of samples that con- tain a lower number of apoptotic cells is achieved by overlaying negative controls and samples in the electropherogram view Figure 4 (figure 5). Gel-like image showing positive and negative controls together with 4 apoptotic samples. Negative and necrotic samples display an overall smaller DNA signal and no trace of laddering. If alternative DNA purification methods are used, special atten- tion must be paid as the injection of large amounts of genomic DNA Fluorescence (like whole cell lysates) may lead 40 to clogging of the chip.
Recommended publications
  • Up-Regulation of Bax and Endonuclease G, and Down-Modulation of Bcl-XL Involved in Cardiotoxin III-Induced Apoptosis in K562 Cells
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 38, No. 4, 435-444, August 2006 Up-regulation of Bax and endonuclease G, and down-modulation of Bcl-XL involved in cardiotoxin III-induced apoptosis in K562 cells Sheng-Huei Yang1, Ching-Ming Chien1, Keywords: apoptosis; bcl-2-associated X protein; car- Mei-Chin Lu2, Yi-Hsiung Lin1, diotoxin III, Naja naja atra; caspase; endonuclease G; Xiu-Wei Hu1 and Shinne-Ren Lin1,3 K562 cells 1Faculty of Medicinal and Applied Chemistry 2 Introduction Graduate Institute of Natural Products Kaohsiung Medical University Many therapeutic and chemopreventive agents Kaohsiung 807, Taiwan, ROC 3Corresponding author: Tel, 886-7-3121101#2219; eliminate cancerous cells by inducing programmed Fax, 886-7-3123443; E-mail, [email protected] cell death (apoptosis) (Kaufmann et al., 2000; Ro- bertson et al., 2000). Apoptosis is an important Accepted 24 July 2006 cellular process for destruction of undesirable cells during development or homeostasis in multi-cellular Abbreviations: CTX III, Carditoxin III; MTT, 3-(4,5-dimethylthia- organisms. This process is characterized by distinct zol-2-yl)-2,5-diphenyltetrazolium bromide; PARP, poly (ADP-ribo- morphological changes including plasma membrane se) polymerase; Z-VAD-FMK, benzyloxycarbonyl-Val-Ala-Asp- bleb, cell shrinkage, depolarization of mitochondria, fluoromethylketone chromatin condensation, and DNA fragmentation (Kaufmann et al., 2001; Reed, 2001). Caspases are essential for the execution of cell death by various Abstract apoptotic stimuli (Cohen, 1997; Shi, 2002). Caspase activation is often regulated by various cellular pro- Cardiotoxin III (CTX III), a basic polypeptide with 60 teins including members of the IAP (Deveraux and amino acid residues isolated from Naja naja atra Reed, 1999) and Bcl-2 families (Adams and Cory, venom, has been reported to have anticancer activity.
    [Show full text]
  • Coumarin Induces Cell Cycle Arrest and Apoptosis in Human
    in vivo 21: 1003-1010 (2007) Coumarin Induces Cell Cycle Arrest and Apoptosis in Human Cervical Cancer HeLa Cells through a Mitochondria- and Caspase-3 Dependent Mechanism and NF-κB Down-regulation JING-YUAN CHUANG1, YUNG-FENG HUANG1, HSU-FENG LU2, HENG-CHEN HO3, JAI-SING YANG4, TE-MAO LI5, NAI-WEN CHANG3 and JING-GUNG CHUNG6,7 Departments of 1Medical Laboratory Science and Biotechnology, 3Biochemistry, 4Pharmacology and 6Microbiology, 7School of Biological Science and Technology, and 5Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan; 2Department of Clinical Pathology, Cheng Hsin Rehabilitation Medical Center, Taipei, Taiwan, R.O.C. Abstract. The effects of coumarin on cell viability, cell cycle investigators have also reported on the use of coumarin (1,2- arrest and induction of apoptosis were investigated in human benzopyrone), or its metabolite 7-hydroxycoumarin, for the cervical cancer HeLa cells. Coumarin was cytotoxic with an treatment of some human carcinomas (4-7). No adverse effects of coumarin have been reported in humans using doses up to IC50 of 54.2 ÌM, induced morphological changes, and caused G0/G1 arrest and apoptosis. The decreasing number of viable 7 g daily, after two weeks of continued treatment (8, 9). In the cells appeared to be due to induction of cell cycle arrest and present study, the effect of coumarin on cell cycle arrest and apoptotic cell death, since coumarin induced morphologically induction of apoptosis in human cervical cancer HeLa cells, for apoptotic changes and internucleosomal DNA laddering which no information is currently available, was examined. fragmentation and increased the sub-G1 group.
    [Show full text]
  • Book of Abstract 2008
    Co-chairs of the conference: Janko Kos, Faculty of Pharmacy, University of Ljubljana, Slovenia Gregor Serša, Institute of Oncology, Ljubljana, Slovenia Tamara Lah Turnšek, National Institute of Biology, Ljubljana, Slovenia Scientific committee: Janko Kos, Rolf Bjerkvig, Maria Grazia Daidone, Dylan Edwards, Tamara Lah Turnšek, Eberhard Neumann, Christoph Peteres, Gregor Serša, Bonnie Sloan, Gillian M. Toz e r Sponsored by: AstraZeneca UK Limited, Branch Office in Ljubljana Amgen Drugs d.o.o., Ljubljana Carl Zeiss d.o.o., Ljubljana CSC Pharma d.o.o., Ljubljana Educell d.o.o., Ljubljana Elex Unitrade, Ljubljana IGEA S.r.l., Carpi Janssen-Cilag Slovenia, Division of Johnson & Johnson d.o.o., Ljubljana Kemomed, d.o.o., Kranj Krka, d.d., Novo mesto Labormed d.o.o., Ljubljana Lek a Sandoz Company, Ljubljana LKB Vertriebs Ges.m.b. H., Wien Medias International d.o.o., Ljubljana Mediline d.o.o., Kamnik Merck d.o.o., Slovenija Mikro+Polo d.o.o., Maribor Olympus Slovenija d.o.o., Ljubljana Pivovarna Laško d.d., Laško Roche Pharmaceutical Division d.o.o., Ljubljana Sanolabor d.d., Ljubljana Santomas, Šmarje Schering-Plough CE EG, Branch Office in Ljubljana Slovenian Research Agency, Ljubljana BOOK OF ABSTRACTS Editors: Gregor Serša, Janko Kos, Tamara Lah Turnšek, Simona Kranjc, Zala Jevnikar, Nataša Obermajer Issued by: Association of Radiology and Oncology Design: Maja Licul, Simona Kranjc Printed by: Solas d.o.o CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 616-006(063) CONFERENCE on Experimental and Translational Oncology (5; 2008; Kranjska gora) Book of Abstracts - 5th Conference on Experimental and Translational Oncology, Kranjska gora, Slovenia, March 26-30, 2008; [editors: Gregor Serša, Janko Kos, Tamara Lah Turnšek, ISBN 978-961-91302-2-3 Simona Kranjc, Zala Jevnikar, Nataša Obermajer] -Ljubljana: 1.
    [Show full text]
  • Serial Profiling of Cell-Free DNA and Nucleosome Histone Modifications
    www.nature.com/scientificreports OPEN Serial profling of cell‑free DNA and nucleosome histone modifcations in cell cultures Vida Ungerer1,3, Abel J. Bronkhorst1,3, Priscilla Van den Ackerveken2, Marielle Herzog2 & Stefan Holdenrieder1* Recent advances in basic research have unveiled several strategies for improving the sensitivity and specifcity of cell‑free DNA (cfDNA) based assays, which is a prerequisite for broadening its clinical use. Included among these strategies is leveraging knowledge of both the biogenesis and physico‑chemical properties of cfDNA towards the identifcation of better disease‑defning features and optimization of methods. While good progress has been made on this front, much of cfDNA biology remains uncharted. Here, we correlated serial measurements of cfDNA size, concentration and nucleosome histone modifcations with various cellular parameters, including cell growth rate, viability, apoptosis, necrosis, and cell cycle phase in three diferent cell lines. Collectively, the picture emerged that temporal changes in cfDNA levels are rather irregular and not the result of constitutive release from live cells. Instead, changes in cfDNA levels correlated with intermittent cell death events, wherein apoptosis contributed more to cfDNA release in non‑cancer cells and necrosis more in cancer cells. Interestingly, the presence of a ~ 3 kbp cfDNA population, which is often deemed to originate from accidental cell lysis or active release, was found to originate from necrosis. High‑resolution analysis of this cfDNA population revealed an underlying DNA laddering pattern consisting of several oligo‑ nucleosomes, identical to those generated by apoptosis. This suggests that necrosis may contribute signifcantly to the pool of mono‑nucleosomal cfDNA fragments that are generally interrogated for cancer mutational profling.
    [Show full text]
  • DNA Laddering Nonbook
    ® Apoptotic Cell DNA Laddering Kit For detection of double-stranded DNA breaks in apoptotic cells Catalog No. 30-1231, 20 tests Instructions Store at 15 to 30°C. For laboratory research use only. Not for human, clinical, or diagnostic use. American Type Culture Collection 800-638-6597 or 703-365-2700 P.O. Box 1549 Fax: 703-365-2750 Manassas, VA 20108 USA E-mail: [email protected] www.atcc.org Or contact your local distributor. TABLE OF CONTENTS Introduction Background ............................................................................... 2 References ............................................................................... 2 Precautions ............................................................................... 2 Kit Components ................................................................................. 3 Materials Required But Not Supplied ................................................ 3 Protocols Experimental Outline ................................................................ 4 Isolation of DNA from Cells in Culture ...................................... 4 Gel Electrophoresis .................................................................. 5 Data Interpretation ............................................................................. 6 Appendix DNA Quantitation ....................................................................... 6 Reagent Preparation ................................................................ 7 Gel Preparation ........................................................................
    [Show full text]
  • Instructions TACS Apoptotic DNA Laddering
    IFU0202 Rev 0 Status: RELEASED printed 12/9/2016 11:34:42 AM by Trevigen Document Control Instructions For Research Use Only. Not For Use In Diagnostic Procedures TACS® Apoptotic DNA Laddering Kit Protocol Covers the Following: Cat# 4850-20-ET Ethidium Bromide 20 reactions Cat# 4859-20-K Tissue Supplement 20 reactions E5/20/10v1 i IFU0202 Rev 0 Status: RELEASED printed 12/9/2016 11:34:42 AM by Trevigen Document Control TACS® Apoptotic DNA Laddering Kit Cat# 4850-20-ET Cat# 4859-20-K Table of Contents Page I. Background 1 II. Precautions and Limitations 1 III. Materials Supplied 1 IV. Materials Required But Not Supplied 2 V. Reagent Preparation 2 VI. Assay Protocols 2 VII. Interpretation 5 VIII. Casting TreviGel™ 500 5 IX. Troubleshooting Guide 6 X. References 6 XI. Related Products Available From Trevigen 7 ©2010 Trevigen, Inc. All rights reserved. Trevigen, Cultrex, TACS•XL, and TACS are registered trademarks, and TreviGel, is a trademark of Trevigen, Inc. E5/20/10v1 i IFU0202 Rev 0 Status: RELEASED printed 12/9/2016 11:34:42 AM by Trevigen Document Control I. Background Trevigen's TACS® Apoptotic DNA laddering kit is used to assay cells and tissues for apoptosis by detecting double-strand breaks in genomic DNA and determining the level of DNA degradation. DNA fragmentation is considered to be irreversible, and a classical indicator of apoptosis. During apoptosis, DNA is cleaved between the nucleosomes into 180-200 bp fragments. These DNA fragments are analyzed by horizontal gel electrophoresis followed by ethidium bromide staining. When analyzing tissue samples, it is necessary to disrupt the tissue and create a cell suspension.
    [Show full text]
  • DNA Fragmentation Into 200-250 And/Or 30-50 Kilobase Pair Fragments in Rat Liver Nuclei Is Stimulated by Mg2+ Alone and Ca2’/Mg2’ but Not by Ca2+ Alone
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 349 (1994) 385-391 FEBS 14321 DNA fragmentation into 200-250 and/or 30-50 kilobase pair fragments in rat liver nuclei is stimulated by Mg2+ alone and Ca2’/Mg2’ but not by Ca2+ alone Kelvin Cain*, Salmaan H. Inayat-Hussain, James T. Wolfe, Gerald M. Cohen MRC Toxicology &ii, Hodgkin Building, University of Leicester, PO Box 138, Loneaster Rd., Leicester LEl 9HN, UK Received 31 May 1994; revised version received 24 June 1994 Abstract Internucleosomal cleavage of DNA has often been regarded as the biochemical hallmark of apoptosis. We now demonstrate in isolated rat liver nuclei that DNA is initially cleaved into 2700, 200-250 kbp and 30-50 kbp fragments via a multi-step process, which is activated by Mg*+ and Mg*‘+Ca” but not by Ca2’ alone. The subsequent intemucleosomal cleavage requires both cations. These findings demonstrate that a key event in the apoptotic process is the fragmentation of DNA into large kbp fragments by either a Mg”-dependent process (which can be potentiated by Ca”) and/or by a Ca*‘/Mg*’ activated endonuclease(s). Key words: Apoptosis; DNA fragmentation; Magnesium; Endonuclease 1. Introduction that the formation of large fragments of DNA represents a much earlier event in the apoptotic process. In support Two classical morphological features of apoptosis are of this conclusion, it has been shown that isolated hepa- the condensation of chromatin and its margination at the tocytes undergoing apoptosis with TGF-B, treatment ex- nuclear boundary [l].
    [Show full text]
  • Accelerated Apoptotic Dna Laddering Protocol
    Accelerated Apoptotic Dna Laddering Protocol Is Arnoldo honest or edified after melancholy Silvain shove so underhand? Barrie is painted and Merillbeautifies folio streakilyhis florence while map scorpaenoid snort mathematically. Marchall subverts and incarcerate. Masturbatory and farraginous Sem of the case of apoptotic dna ladder covered in Friesel RE, Maciag T: Molecular mechanisms of angiogenesis: Fibroblast growth factor signal transduction. Handbook of Models for Human Aging. Chemical shearing generates randomly distributed fragment lengths visible as a smear of DNA below the peak fragment length. This does not be accelerated and needs further biochemical hallmarks of accelerated apoptotic dna laddering protocol as alcohols or varicella patients and acceptance criteria. First, on one end of the cascade, we have shown that both RAR and RXR need to be stimulated by retinoic acid to trigger apoptosis in this cell line. PHENIX PCR Enzyme Guide PHENIX offers a broad line of premium quality PCR Enzymes. All previously published articles are available through the Table of Contents. Nanopore sequencing theoretically is limited by the input fragment length, there is still a need to assess DNA integrity for quality management purposes rather than rely on the read length distribution generated by sequencing with the nanopore. XL transgenes and photoreceptor degeneration. Apoptotic or nonapoptotic cells suspended in saline containing the detergent and serum proteins, however, are fragile and their pipetting, vortexing or even shaking the tube containing the suspension, causes cell lysis and release of the cell constituents into solution. Heuristics and computational intelligence methods are combined to exploit their respective benefits. Mechanism of lead neurotoxicity. For detecting the active form of Bax, tissues or cells were lysed in CHAPS buffer containing protease inhibitors.
    [Show full text]
  • Application: Detection of the Early Stages of Apoptosis Using Apopladder Ex™
    ApopLadder Ex™ (Cat.# MK600) Application: Detection of the Early Stages of Apoptosis Using ApopLadder Ex™ Apoptosis is characterized by fragmentation of chromosomal DNA into multiples of approximately 180 nt, corresponding to nucleosome fragments. This fragmentation process is also referred to as DNA laddering. The ApopLadder Ex Kit allows selec- tive extraction of small, fragmented DNA from apoptotic cells while minimizing chromatin contamination. Using a fluorescent nucleic acid dye such as SYBR® Green I, DNA fragments purified using ApopLadder Ex can be quantified, providing a sensitive method of apoptosis analysis. This application note illustrates the use of ApopLadder Ex and SYBR Green I quantification of DNA fragmentation for the de- tection of the early stages of apoptosis in mouse and human cell lines. Methods P3U1 (murine myeloma cell line) cells were treated for 20 hours with various concentrations of actinomycin D. HL60 (human promyelocytic leukemia cell line) cells (3x105 cells) were treated with 1 μM staurosporine. Apoptosis was analyzed by trypan blue staining and/or analysis of DNA fragmentation using ApopLadder Ex (Cat. # MK600). Results In general, the permeability of the cell membrane increases during late apoptosis, and apoptotic cells can be visualized by trypan blue staining. However, DNA fragmentation occurs early in apoptosis, often before changes in cell membrane perme- ability occur. We hypothesized that the highly sensitive quantitative detection possible with ApopLadder Ex could be used to detect early stages of apoptosis. In P3U1 cells, trypan blue staining indicated an increase in apoptosis when cells were treated with 30 ng/ml actinomycin D (Figure 1). In contrast, in these same cells, an increase in apoptosis (as indicated by an increase in fluorescence intensity) was detected with treatment of as little as 5 ng/ml actinomycin D when fragmented DNA was extracted with ApopLadder Ex and quantified with SYBR Green I.
    [Show full text]
  • DNA Laddering Kit
    DNA Laddering Kit Item No. 660990 www.caymanchem.com Customer Service 800.364.9897 Technical Support 888.526.5351 1180 E. Ellsworth Rd · Ann Arbor, MI · USA TABLE OF CONTENTS GENERAL INFORMATION GENERAL INFORMATION 3 Materials Supplied Materials Supplied 4 Safety Data 4 Precautions Item Number Item Quantity/Size Storage 4 If You Have Problems 4 Storage and Stability 660991 Lysis Buffer 4 vials/1.2 ml -20°C 5 Materials Needed but Not Supplied 660992 10% SDS 1 vial/0.48 ml -20°C INTRODUCTION 6 Background 6 About This Assay 660993 Enzyme A 1 vial/0.48 ml -20°C ASSAY PROTOCOL 8 Performing the Assay 660994 Enzyme B 1 vial/0.48 ml -20°C RESOURCES 10 Troubleshooting 660995 Precipitating Reagent 3 vials/1.04 ml -20°C 10 References 11 Notes 660996 Gel-Loading Buffer (6X) 1 vials/0.48 ml -20°C 11 Warranty and Limitation of Remedy If any of the items listed above are damaged or missing, please contact our Customer Service department at (800) 364-9897 or (734) 971-3335. We cannot accept any returns without prior authorization. WARNING: THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR ! HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE. GENERAL INFORMATION 3 Safety Data Materials Needed But Not Supplied This material should be considered hazardous until further information becomes 1. 1.5 ml microcentrifuge tubes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash 2. 37°C incubator thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.
    [Show full text]
  • Apoptotic DNA Laddering Kits Are Used to Assay Cells and Tissues for Apoptosis by Detecting Internucleosomal DNA Fragmentation and Displaying DNA Laddering
    TACS™ DNA Laddering Kit Apoptosis Detection Kit catalog number: TA4633 Colorimetric 20 tests FOR RESEARCH USE ONLY NOT FOR USE IN DIAGNOSTIC PROCEDURES TABLE OF CONTENTS Contents Page PRINCIPLE OF THE ASSAY 2 REAGENTS AND MATERIALS . .2 MATERIALS REQUIRED BUT NOT SUPPLIED 3 Reagents . 3 Equipment 3 PROCEDURES 3 DNA Isolation . 3 Colorimetric Labeling and Detection 5 RESULTS . 6 TROUBLESHOOTING GUIDE 7 APPENDICES . 8 DNA Extraction from Tissue Samples 8 Casting TreviGel™ 500 . 8 Buffer Compositions 9 WARNINGS . 9 MANUFACTURED FOR AND DISTRIBUTED BY: R&D Systems, Inc. TELEPHONE: (800)343-7475 614 McKinley Place N.E. (612)379-2956 Minneapolis, MN 55413 FAX: (612)379-6580 United States of America E-MAIL: [email protected] R&D Systems Europe 4 - 10 The Quadrant TELEPHONE: (0)1235 551100 Barton Lane FAX: (0)1235 533420 Abingdon, Oxon OX14 3YS E-MAIL: [email protected] United Kingdom R&D Systems GmbH FREEPHONE: 0800 909 4455 Borsigstrasse 7 TELEPHONE: 06122 90980 65205 Wiesbaden-Nordenstadt FAX: 06122 909819 Germany E-MAIL: [email protected] PRINCIPLE OF THE ASSAY TACS Apoptotic DNA Laddering Kits are used to assay cells and tissues for apoptosis by detecting internucleosomal DNA fragmentation and displaying DNA laddering. DNA laddering is one of the hallmark events that confirms apoptosis. During apoptosis, endonucleases produce double-stranded breaks generating DNA fragments. These DNA fragments are isolated from cells or tissues using the optimized TACS DNA isolation reagents that inactivate endogenous nucleases and rapidly recover high and low molecular weight DNA. The isolated DNA is labeled with biotinylated deoxynucleotides. The labeled DNA is then size-fractionated by gel electrophoresis.
    [Show full text]
  • Complete 1110 with Extra Posters
    European Cell Death Organization 15 (ECDO) The Jožef Stefan Institute, Ljubljana, October 26-31, 2007, Portoroz, Slovenia ___________________________________________________________________________ Programme and Book of Abstracts This publication is available at the conference website http://www.ecdo.eu/portoroz/index.html Supported by EC within the framework of the Marie Curie ___________________________________________________Conferences and Training Courses ________________________ No responsibility is assumed by the publisher for any injury and/or damage to persons or property resulting either directly or indirectly from material contained within this book. Supported by EC within the framework of the Marie Curie ___________________________________________________Conferences and Training Courses ________________________ 15 th Euroconference on Apoptosis Organisation Local Organisation Boris Turk Department of Biochemistry, Molecular and Structural Biology J. Stefan Institute Jamova 39 SI-1000 Ljubljana, Slovenia Tel. +386 1 477 3772 Fax. +386 1 477 3984 e-mail: [email protected] ECDO Scientific Committee Wilfried Bursch Institute of Cancer Research, Medical University of Vienna, Vienna, Austria Klaus-Michael Debatin University Children's Hospital, Ulm, Germany Wim Declercq VIB/Ghent University, Ghent, Belgium László Fésüs University of Debrecen, Debrecen, Hungary Simone Fulda University Children's Hospital, Ulm, Germany Marie-Lise Gougeon Institut Pasteur, Paris, France Marja Jäättelä Institute for Cancer Biology, Danish Cancer Society,
    [Show full text]