Review of Biological Activities of Hydrazones

Total Page:16

File Type:pdf, Size:1020Kb

Review of Biological Activities of Hydrazones Indonesian J. Pharm. Vol. 23 No. 4 : 193 – 202 ISSN-p : 0126-1037 Review Article REVIEW OF BIOLOGICAL ACTIVITIES OF HYDRAZONES Md. Rahmat Ali1, Akranth Marella1, Md. Tauquir Alam1, Ruksar Naz1, Mymoona Akhter1, Md. Shaquiquzzaman1, Rikta Saha1, Omprakash Tanwar1, Md. Mumtaz Alam1*, Jyoti Hooda2 1Department of ABSTRACT Pharmaceutical Chemistry, Hydrazones possess an azomethine –NHN=CH group and Faculty of Pharmacy, are considered as derivatives of aldehydes and ketones in which Jamia Hamdard, New Delhi the oxygen atom has been replaced by the NNH2 functional 110062, India. group. These are widely studied molecules owing to their ease of 2CHRD- Competitive and preparation and diverse pharmacological potential. This has led Scientific Intelligence researchers to synthesize different heterocyclic compounds (CSI), WNS Global bearing hydrazones. Medicinal chemists across the world have Services (P) Ltd, Gurgaon done immense work on hydrazones and developed agents with 122002, India. better activity and low toxicity profiles. Following different Submitted: 10-08-2012 synthetic protocols and through proper SAR studies differently Revised: 14-09-2012 substituted hydrazones have been developed and found to be Accepted: 13-10-2012 active against different pharmcological targets. They are known to possess different biological activities viz. antimicrobial, anti- *Corresponding author inflammatory, anticancer, antimalarial etc. These observations Md. Mumtaz Alam have been guiding for the development of new hydrazones that possess varied biological activities. The review aims at Email : highlighting the diverse biological activities of hydrazones. [email protected] Key words: Azomethine, Hydrazones, Pharmacological Potential INTRODUCTION The C=N bond of hydrazone and Hydrazones are a class of organic terminal nitrogen atom containing a lone pair compounds which possess the structure of electron is responsible for the physical and R1R2C=NNH2. They are related to ketone and chemical properties. The C-atom in hydrazone aldehyde in which oxygen has been replaced has both electrophilic and nucleophilic with NNH2 group. These azometine - character and both the N-atoms are NHN=CH- proton constitute an important nucleophilic although the amino type nitrogen class of compounds for new drug development. is more reactive. Due to these properties Hydrazones are formed by the reaction of hydrazones are widely used in organic hydrazine or hydrazide with aldehydes and synthesis. The chemical structure of hydrazone ketones. They act as reactants in various derivatives were showed in figure 1-4. important reactions such as hydrazone iodination, Shapiro reaction and Bamford- BIOLOGICAL ACTIVITY Stevans reaction to form vinyl compounds. Antimicrobial activity They act as intermediate in Wolff-Kishner The overuse of chemicals against various reaction. Hydrazones can also be synthesized infectious diseases has led to rapid emergence by the Japp-Klingemann reaction (from β- of resistivity against different bacteria. ketoacids or β-ketoester’s and aryldiazonium Therefore, the search for antimicrobials is a salts). The N,N’-dialkyl type of hydrazones can never ending task. Consequently, there has be hydrolysed, reduced and oxidized this leads been an immense research on hydrazones as to the formation of amines by reduction of N- antibacterial agents. Sharma et al. (2011) N bond. The C=N double bond in hydrazones reported the antibacterial activity of hydrazine are important compounds in drug design as derivatives (1) against various bacterial strains. they act as ligands for metal complexes, Hydrazine derivatives (2, 3) synthesized by organocatalysis and synthesis of organic Jubie et al. (2010) are promising antibacterial compounds. agents. Ozkay et al. (2010) synthesized novel benzimidazole derivatives bearing hydrazone Volume 23 Issue 4 (2012) 193 Activities of Hydrazones moiety (4) and evaluated their antibacterial virulent H37Rv strain. Few hydrazone activity against different bacterial strains. Novel derivatives (27) synthesized by Raja et al. (2010) chloropyrrole derivatives of aroylhydrazone (5) have been screened and reported to have MIC developed by Rane et al. (2010) have been of 6.3µg/mL. 4-hydroxy-8-trifluromethyl- evaluated for antibacterial activity against quinoline derivatives (31) with a MIC of different bacterial strains. Edress et al. (2010) 0.625µg/mL have been reported by Thomas et synthesized some hydrazonoyl substituted al. (2011). Vavrikova et al. (2011) synthesized pyrimidinones (6, 7) and evaluated their fluorine-containing hydrazones (32) with a MIC antibacterial activity. Govindasami et al. (2011) of 0.5µg/mL and a selectivity index of 1268.6 synthesized vanillin based hydrazine derivatives Pavan et al. (2010) synthesized some hydrazines (8, 9) and reported their antibacterial ( 35 ) with promising results. Ferrocenyl activity specifically against Staphylococcus aureus hydrazones (38, 39) with a MIC of 0.75 and and Pseudomonas aeruginosa. Ajani et al. (2010) 0.7µmol/L have been reported by Maguene et have reported the antibacterial activity of al . (2011) Mahajan et al. (2011) synthesized 2-quinoxalinone-3-hydazine derivative (12) ferrocene-based hydrazone derivatives (43) against different bacterial strains. Lee et al. with significant potential. Eswaran et al. (2010) (2012) synthesized various hydrazones (13, 14) synthesized hydrazones (44) with a MIC of as selective inhibitors of Staphylococcus aureus β- 6.25µg/mL. Jordao et al. (2011) synthesized ketoacyl carrier proteinsynthase III. The hydrazone derivatives (45) with antitubercular compound was found to have an MIC of 1- activity. The compound is reported to have 2µg/mL. Aryloxyacetic acid hydrazide (15) MIC of 2.5µg/mL. Fungal species are known having promising antibacterial activity with to cause many superficial and systemic MIC of 4.1-16.5µg/mL against an array of infections in humans, plants as-well-as bacterial strains has been reported by Wahab et livestock. Hydrazone derivatives (49) al. (2012). Rasras et al. (2010) synthesized synthesized by Ozdemir et al. (2010) after being various cholic acid based hydrazones (22) and screened against different Candida spp have been screened them as antibacterials. The best reported to have promising antifungal potential. compound among the series is reported to have Viruses are obligate parasites which MIC of 2µg/mL and 3.9µg/mL against require cellular machinery of the host to Escherichia faecalis and Escherichia coli. Anthra- prosper. They are capable of causing immense quinone based hydrazones (23) synthesized by harm to host. Hydrazone derivatives (53, 54) Gouda et al. (2010) are reported to have promi- synthesized by Jin et al. (2010) have been sing bacteriostatic activity against P. auriginosa. reported to have EC50 value of 0.6 and 0.4µM Kumar et al. (2010) synthesized various respectively against HIV1-CA. benzyledine-hydrazides (24) and reported their bactericidal activity against S. aureus. The Analgesic and Anti-inflammatory activity agent is reported to have a MIC of 1.5µM/mL. Much work has been done describing the Abdel-Wahab et al. (2011) synthesized different analgesic and anti-inflammatory potential of hydrazone bearing imidazoles (25). The hydrazides. Harnandez et al. (2012) reported synthesized compounds were screened for their analgesic and anti-inflammatory activity of antibacterial activity against numerous bacterial furoxanyl-N-acylhydrazones (55, 56). Rajitha et strains. Vijesh et al. (2010) synthesized 2,4- di- al. (2011) evaluated the anti-inflammatory substituted thiazoles (26). The compound has a activity of some aryl hydrazones (58) and got MIC value ranging between 1.6µg/mL and good results. Moldovan et al. (2011) synthesized 3.1µg/mL when tested against different strains. various hydrazone derivatives (60) and reported Tuberculosis is a chronic infection them to have promising in-vivo anti-inflamma- caused by different strains of Mycobacterium tory activity. El-Sayed et al. (2011) synthesized tuberculosis. The bacterium affects almost any hydrazone derivatives (62) with selective organ but the favorite site is lung. The activity COX-2 inhibition. The compound is reported of the newer agents is mostly tested against to have an ED50 value of 0.2 mmol/Kg. 194 Volume 23 Issue 4 (2012) Md. Rahmat Ali, et al. Figure 1. Chemical structure of hydrazone derivatives no.1-42 Benzo-thiophene derivatives (66) with with potent activity against HL-60 leukaemia inhibition of 50.2% have been developed by and 518A2 melanoma. Acylhydrazones (79) by Isloor et al. (2010). Cui et al. (2010) have been reported to have potent activity against the human Anticancer activity promyelocytic leukemic cells (Hl-60). Copper Cancer is a lethal group of diseases with based hydrazone derivatives (82) are reported a high level of penetrating potency affecting to act against integrin β4 in H322 lung almost every organ of the body. Al-Said et al. carcinoma cell lines by Fan et al. (2010). (2011) synthesized compounds (67) active Palladium based hydrazones (86) by Abu- against human breast cancer cell lines MCF7. Surrah et al. (2010) have been reported to be Hassan et al. (2011) synthesized pyrazole based active against human head and neck squamous hydrazone derivatives (69) with potential to carcinoma cell lines SQ20B and SCC-25. 2- treat breast carcinoma. Kendall et al. (2012) phenylindole based hydrazone (87) synthesized evaluated some derivatives (70) as PI3K p110α by El-Nakkady et al. (2012) have been inhibitors. P13K are signaling
Recommended publications
  • Synthetic Strategies to Access Biologically Important Fluorinated Motifs: Fluoroalkenes and Difluoroketones by Ming-Hsiu Yang Su
    Synthetic Strategies to Access Biologically Important Fluorinated Motifs: Fluoroalkenes and Difluoroketones By Ming-Hsiu Yang Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy Chairperson Ryan A. Altman Michael D. Clift Apurba Dutta Michael F. Rafferty Jon A. Tunge Date Defended: April 26, 2017 The Dissertation Committee for Ming-Hsiu Yang certifies that this is the approved version of the following dissertation: Synthetic Strategies to Access Biologically Important Fluorinated Motifs: Fluoroalkenes and Difluoroketones Chairperson Ryan A. Altman Date Approved: April 26, 2017 ii Abstract Ming-Hsiu Yang Department of Medicinal Chemistry, April 2017 The University of Kansas Fluorine plays an important role in drug design, because of some unique features imparted by fluorine. The incorporation of fluorine into small molecules can modulate molecular physicochemical properties, metabolic stability, lipophilicity, and binding affinity to the target proteins. However, few fluorinated molecules are biosynthesized by enzymes. This means incorporating fluorine into the molecules relies on synthetic methods. Thus, efficient synthetic strategies to access the molecules bearing a variety of privileged fluorinated moieties are important for drug discovery. Fluoroalkenes are an isopolar and isosteric mimic of an amide bond with distinct biophysical properties, including decreased H-bond donating and accepting abilities, increased lipophilicity, and metabolic stability. Moreover, fluoroalkenes can also serve as probes for conducting conformational analyses of amides. These potential applications require the development of efficient methods to access fluoroalkenes. In chapter 2, a Shapiro fluorination strategy to access peptidomimetic fluoroalkenes is demonstrated.
    [Show full text]
  • Shapiro Reaction
    MANA TV programme SHAPIRO REACTION P. Kiran Kumar Lecturer in Chemistry SGA Government Degree College Yellamanchili SHAPIRO REACTION Treatment of tosyl hydrazone of an aldehyde or a ketone with a strong base leads to the formation of vinyl anion which on hydrolysis given an olefin. Hydrazine Phenyl Hydrazine Tosyl hydrazide (p-Toluenesulfonyl hydrazide) Tosyl hydrazone Formed by Nucleophilic addition between aldehyde or ketone and Tosyl hydrazide (p-Toluenesulfonyl hydrazide) and subsequent loss of carbonyl oxygen Mechanism Deprotonation of Tosyl hydrazone with a strong base to form Hydrazone aza enolate. Elimination of aryl sulfinate gives an unstable anion. Loss of Nitrogen leads to vinyl anion Hydrazone aza enolate unstable anion Vinyl anion Vinyl anions can be trapped by number various electrophiles 1. Hydrolysis gives an Alkene 2. Reaction with D2O gives Deuterated Alkene 3. Reaction with CO2 gives α, β-unsaturated acid 4. Reaction with formaldehyde gives Primary alcohol Vinyl anionsanions can can be be trapped trapped by by number number various various electrophiles – –Cont’dCont’d 5. Reaction with DMF gives an α, β-unsaturated aldehyde 6. Reaction with Alkyl chloride gives an Alkyl substituted alkene 7. Reaction with (CH3)3SiCl gives a Vinyl Silane Shapiro reaction involving cyclic ketones Cyclohexanone Shapiro reaction involving cyclic ketones Mechanism Mechanisms Mechanisms Mechanism Shapiro reaction involving unsymmetrical ketones unsymmetrical ketones gives predominantly less substituted olefins Shapiro reaction involving unsymmetrical ketones Removal of proton from the more substituted carbon atom Not formed Stability of the carbanion: secondary versus tertiary Secondary carbanion Tertiary carbanion Secondary carbanion more stable than primary carbanion.
    [Show full text]
  • Syllabus CHEM 6352 2014
    CHEM 6352 Organic Reactions & Synthesis Fall 2014 Jeremy A. May Office: 5025 SERC Office hours: T/Th 10-11 am or by appointment (email me) Email: [email protected] Website: http://mynsm.uh.edu/groups/maygroup/wiki/b24dc/Classes.html Lectures: 154 Fleming Tuesdays and Thursdays 8:30–10:00. August 26–December 6, 2014. Homework Session Saturdays 3:00 pm to 5:30 pm in Fleming 154/160/162. No class November 27–29, 2014 (Thanksgiving recess); Oct. 31st is last day to withdraw Optional Texts (on reserve at MD Anderson Library) Zweifel, G.; Nantz, M. “Modern Organic Synthesis: An Introduction” March, J. “Advanced Organic Chemistry” Corey, E. J.; Cheng, X.-M. “The Logic of Chemical Synthesis” Warren, S. “Designing Organic Syntheses: A Programmed Introduction to the Synthon Approach” Kürti, L.; Czakó, B. “Strategic Applications of Named Reactions in Organic Synthesis” Grossman, R. “The Art of Writing Reasonable Organic Reaction Mechanisms” Model Sets: Students are strongly encouraged to purchase at least one set. HGS biochemistry molecular model sets are recommended and are available at Research Stores in the Old Science Building. Other relevant texts and references: Greene; Wuts. “Protective Groups in Organic Synthesis” Nicolaou, K.C.; Sorensen, E. “Classics in Total Synthesis” Nicolaou, K.C.; Snyder, S. “Classics in Total Synthesis II” Larock, R. C. "Comprehensive Organic Transformations" Hartwig, J. “Organotransition Metal Chemistry: From Bonding to Catalysis” Tsuji, J. “Palladium Reagents and Catalysts” Hegedus, L. “Transition Metals in the Synthesis of Complex Organic Molecules” Problem Sets: Problem Sets will be distributed on Tuesdays (or before) and are due by the next Saturday at the Homework Session.
    [Show full text]
  • Therapeutic Review Exploring Antimicrobial Potential of Hydrazones As Promising Lead
    Available online a t www.derpharmachemica.com Scholars Research Library Der Pharma Chemica, 2011, 3(1):250-268 (http://derpharmachemica.com/archive.html) ISSN 0975-413X CODEN (USA): PCHHAX Therapeutic Review Exploring Antimicrobial Potential of Hydrazones as Promising Lead Goldie Uppal, Suman Bala*, Sunil Kamboj and Minaxi Saini M.M. College of Pharmacy, Maharishi Markandeshwar University, Ambala, Haryana, India ______________________________________________________________________________ ABSTRACT This review includes detailed study of structures of various hydrazones synthesized and evaluated for their antimicrobial activity. Hydrazone is a class of organic compounds with structure R 1R2C=NNH 2. Hydrazones containing an azomethine -NHN=CH- proton which leads to an important class of compounds for new drug development. Hydrazones are present in many of the bioactive heterocyclic compounds that are of very important use because of their various biological and clinical applications. Therefore, many researchers have synthesized these compounds as target structures and evaluated their antimicrobial activities. These observations have been guiding for the development of new hydrazones that possess varied biological activities. Key Words: Hydrazones, Hydrazide, Antifungal Activity, Antimicrobial Activity. ______________________________________________________________________________ INTRODUCTION The need to design new compounds to deal with the resistant strains has become one of the most important areas of research today. Hydrazone is a versatile moiety that exhibits a wide variety of biological activities. A hydrazone is a class of organic compounds with the structure R1R2C=NNH 2. Hydrazones are basically related to ketones and aldehydes. Hydrazones are formed by the replacement of the oxygen of carbonyl compounds with the -NNH 2 functional group. Hydrazones act as reactants in many important reactions e.g.
    [Show full text]
  • Appendix I: Named Reactions Single-Bond Forming Reactions Co
    Appendix I: Named Reactions 235 / 335 432 / 533 synthesis / / synthesis Covered in Covered Featured in problem set problem Single-bond forming reactions Grignard reaction various Radical couplings hirstutene Conjugate addition / Michael reaction strychnine Stork enamine additions Aldol-type reactions (incl. Mukaiyama aldol) various (aldol / Claisen / Knoevenagel / Mannich / Henry etc.) Asymmetric aldol reactions: Evans / Carreira etc. saframycin A Organocatalytic asymmetric aldol saframycin A Pseudoephedrine glycinamide alkylation saframycin A Prins reaction Prins-pinacol reaction problem set # 2 Morita-Baylis-Hillman reaction McMurry condensation Gabriel synthesis problem set #3 Double-bond forming reactions Wittig reaction prostaglandin Horner-Wadsworth-Emmons reaction prostaglandin Still-Gennari olefination general discussion Julia olefination and heteroaryl variants within the Corey-Winter olefination prostaglandin Peterson olefination synthesis Barton extrusion reaction Tebbe olefination / other methylene-forming reactions tetrodotoxin hirstutene / Selenoxide elimination tetrodotoxin Burgess dehydration problem set # 3 Electrocyclic reactions and related transformations Diels-Alder reaction problem set # 1 Asymmetric Diels-Alder reaction prostaglandin Ene reaction problem set # 3 1,3-dipolar cycloadditions various [2,3] sigmatropic rearrangement various Cope rearrangement periplanone Claisen rearrangement hirstutene Oxidations – Also See Handout # 1 Swern-type oxidations (Swern / Moffatt / Parikh-Doering etc. N1999A2 Jones oxidation
    [Show full text]
  • Convergent Total Synthesis and Preliminary Biological Investigations
    Norrislide: Convergent Total Synthesis and Preliminary Biological Investigations Author: Krista Elizabeth Granger Persistent link: http://hdl.handle.net/2345/731 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2009 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College The Graduate School of Arts and Sciences Department of Chemistry NORRISOLIDE: CONVERGENT TOTAL SYNTHESIS AND PRELIMINARY BIOLOGICAL INVESTIGATIONS a dissertation by KRISTA ELIZABETH GRANGER submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2009 © copyright by KRISTA ELIZABETH GRANGER 2009 Norrisolide: Convergent Total Synthesis and Preliminary Biological Investigations Krista Elizabeth Granger Thesis Advisor: Professor Marc L. Snapper Abstract • Chapter 1: A review of Shapiro reactions as a coupling strategy in natural product total synthesis. The syntheses of lycoramine, galanthamine, yuehchukene analogues, ovalicin, studies toward the ingenol core, haemanthidine, pretazettine, tazettine, crinamine, Taxol, colombiasin A, elisapterosin B, the AB ring fragment of spongistatin 1 and 8-epipuupewhedione are discussed. Ar O S O nBuLi Li E+ E NH R' R' N R R R' R • Chapter 2: The convergent total synthesis of the marine natural product norrisolide is described. Both subunits, the hydrindane core and the norrisane side chain, are prepared in an asymmetric fashion through kinetic resolution and enantioselective cyclopropanation, respectively. A Shapiro reaction couples the two fragments and a Peterson olefination installs the 1,1-disubstituted olefin. O O MeO OTBS AcO MeO O O O O N Me Me Me MeO O O Me Li O OP H H Me Me Me Me norrisolide H Me Me • Chapter 3: Preliminary experiments to isolate the biological target of norrisolide through reductive alkylation and tritium labeling are investigated.
    [Show full text]
  • Rearrangement and Trapping of Organozinc Carbenoids
    Rearrangement and Trapping of Organozinc Carbenoids A Thesis Presented by Donogh John Roger O’Mahony In Partial Fulfilment of the Requirements for the Award of the Degree DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON Christopher Ingold Laboratories, Department of Chemistry, University College London, London WCIH OAJ. August 1995 ProQuest Number: 10016794 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10016794 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Abstract This thesis is divided into six chapters. Chapter one presents a review on metallocarbenoid chemistry and is divided into three parts. The first part gives a general survey of the influence of substituents on the reactivity and stability of free carbenes. The second part describes the reactions of transition metal carbenoids, particularly in relation to the oxidation state of the metal and the stoichiometry of carbenoid generation. The final part discusses the reactions of zinc carbenoids and the means of their formation. Chapter two is prefaced by a review on the generation and reactivity of organozinc carbenoids within the group, coupled with a mechanistic study of their formation.
    [Show full text]
  • Shapiro Reaction
    Robinson annulation The Robinson annulation is an organic reaction used to convert a ketone and an α,β-unsaturated ketone to a cyclohexenone using base. The mechanism begins with deprotonation with the base of the α-hydrogen of the ketone to form an enolate. The enolate then does a 1,4 addition to the conjugated olefin (Michael addition), which then abstracts a proton from water to form a diketone. Deprotonation of the other α-hydrogen with base forms another enolate which then does in intramolecular attack on the ketone group to give a cyclic alkoxy intermediate. Protonation of the alkoxy and a final elimination step result in the cyclo-hexenone produc. Mechanism The Wittig reaction or Wittig olefination is a chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide (often called a Wittig reagent) to give an alkene and triphenylphosphine oxide. Reaction type:Nucleophilic Addition then Elimination Alkene formation from carbonyl compounds and phosphonium ylides, proceeding primarily through the proposed betaine and/or oxaphosphetane intermediates. The stereoselectivity can be controlled by the choice of ylide, carbonyl compound, and reaction conditions. When the ylide is replaced with a phosphine oxide carbanion, the reaction is referred to as the Horner reaction. When the ylide is replaced with a phosphonate carbanion, the reaction is referred to as the Horner-Emmons- Wadsworth reaction. The “Wittig Reaction” is one of the premier methods for the synthesis of alkenes. It uses a carbonyl compound as an electrophile, which is attacked by a “phosphorus ylide”. The Wittig reaction is nicely complementary to the aldol condensation, in which carbonyl compounds are attacked not by a phosphorus ylide but by an enolate.
    [Show full text]
  • Name Reactions
    Name Reactions A Collection of Detailed Reaction Mechanisms Bearbeitet von Jie Jack Li 1. Auflage 2002. Buch. xviii, 417 S. Hardcover ISBN 978 3 540 43024 7 Format (B x L): 15,5 x 23,5 cm Gewicht: 780 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Chemie Allgemein Zu Leseprobe schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Table of Contents Preface ................................................................................................................XIII Abbreviations.......................................................................................................XV 1. Abnormal Claisen rearrangement..............................................................1 2. Alder ene reaction......................................................................................2 3. Allan–Robinson reaction ...........................................................................3 4. Alper carbonylation...................................................................................5 5. Amadori glucosamine rearrangement........................................................7 6. Angeli–Rimini hydroxamic acid synthesis................................................8
    [Show full text]
  • The Merck Index
    Browse Organic Name Reactions ● Preface ● 4CC ● Acetoacetic Ester Condensation ● Acetoacetic Ester Synthesis ● Acyloin Condensation ● Addition ● Akabori Amino Acid Reactions ● Alder (see Diels-Alder Reaction) ● Alder-Ene Reaction ● Aldol Reaction (Condensation) ● Algar-Flynn-Oyamada Reaction ● Allan-Robinson Reaction ● Allylic Rearrangements ● Aluminum Alkoxide Reduction ● Aluminum Alkoxide Reduction (see Meerwein-Ponndorf-Verley Reduction) ● Amadori Rearrangement ● Amidine and Ortho Ester Synthesis ● Aniline Rearrangement ● Arbuzov (see Michaelis-Arbuzov Reaction) ● Arens-van Dorp Synthesis ● Arndt-Eistert Synthesis ● Auwers Synthesis ● Babayan (see Favorskii-Babayan Synthesis) ● Bachmann (see Gomberg-Bachmann Reaction) ● Bäcklund (see Ramberg-Bäcklund Reaction) ● Baeyer-Drewson Indigo Synthesis ● Baeyer-Villiger Reaction ● Baker-Venkataraman Rearrangement ● Bakshi (see Corey-Bakshi-Shibata Reduction) ● Balz-Schiemann Reaction ● Bamberger Rearrangement ● Bamford-Stevens Reaction ● Barbier(-type) Reaction ● Barbier-Wieland Degradation ● Bart Reaction ● Barton Decarboxylation ● Barton Deoxygenation ● Barton Olefin Synthesis ● Barton Reaction http://themerckindex.cambridgesoft.com/TheMerckIndex/NameReactions/TOC.asp (1 of 17)19/4/2005 20:00:21 Browse Organic Name Reactions ● Barton-Kellogg Reaction ● Barton-McCombie Reaction ● Barton-Zard Reaction ● Baudisch Reaction ● Bauer (see Haller-Bauer Reaction) ● Baumann (see Schotten-Baumann Reaction) ● Baylis-Hillman Reaction ● Béchamp Reduction ● Beckmann Fragmentation ● Beckmann Rearrangement
    [Show full text]
  • A Synthetic Route to Polymeric Carbohelicenes and Cyclic Derivatives
    University of Nevada, Reno A Synthetic Route to Polymeric Carbohelicenes and Cyclic Derivatives A thesis submitted in partial fulfillment of the Requirements for the degree of Master of Science in Chemistry By William B. Thompson Dr. Benjamin T. King/Thesis Advisor December, 2014 i Abstract The King group’s interest is in the synthesis of polycylic aromatic hydrocarbons (PAHs) for their wide range of applications in materials, electronics, and mechanical properties.1 The primary focus of my own synthetic efforts in PAHs involves the production of polymeric carbohelicenes and their cyclic derivatives. Traditional methods for synthesizing helicenes structure use cross coupling of two phenanthrenes with desired functional groups. The final synthetic step usually involves a single reaction to close the ring and complete the helicenes such as Diels-Alder,2 carbenoid couplings,3or photocyclisation.4 Our own approach to synthesizing carbohelicenes is to synthesize a polymer precursor, poly{4,6-di((1E)-(2-2H)-propenyl])-m-phenylene), followed by a ring closing metathesis reaction (RCM) to stitch up the helicene. Our route is eight synthetic steps starting from commercially available m-xyene. The sequential steps involve bromination of m-xylene by electrophilic aromatic substitution, with a 70-74% yield, followed by a benzylic bromination with a 75-78% yield. Next a hydrolysis is performed using ZnBr2 in acetic acid yielding the dialdehyde in 75-80%. A double Wittig reaction follows using ethyltriphenylphosphonium bromide to obtain on average 65% yield of a mixture of EE, EZ, and ZZ isomers. Through optimization, we obtained a 95:5:0 ratio of our Wittig product (EE, EZ, and ZZ, checked by GC-MS).
    [Show full text]
  • Wilkes, Antonia (2015) Towards the Synthesis of the ABC Tricycle of Taxol
    Wilkes, Antonia (2015) Towards the synthesis of the ABC tricycle of Taxol. PhD thesis. http://theses.gla.ac.uk/5885/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Towards the Synthesis of the ABC Tricycle of Taxol Antonia Wilkes (MChem) Thesis submitted in part fulfillment of the requirements for the Degree of Doctor of Philosophy School of Chemistry College of Science & Engineering July 2013 Abstract Taxol is one of the world’s most successful drugs used in the treatment of cancers. Isolated from the bark of the Pacific yew tree (Taxus brevifolia), it is a molecule of great interest within organic chemistry; with six total syntheses and a number of synthetic works having been published since its discovery. A semi-convergent synthesis of an intermediate in Holton’s synthesis was planned. The overall synthetic plan is shown below. The A ring would be installed by an intramolecular pinacol condensation. The BC bicycle would be closed by ring-closing metathesis at C10- C11. The ketone at C12 would be protected as an alkyne and the BC bicycle precursor would be obtained by coupling fragment A and the C ring.
    [Show full text]