Characterization of Growth Hormone Signaling in the NCI60 Cancer Panel

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Growth Hormone Signaling in the NCI60 Cancer Panel Characterization of Growth Hormone Signaling in the NCI60 Cancer Panel A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Elahu Gosney Sustarsic August 2013 © 2013 Elahu Gosney Sustarsic. All Rights Reserved. 2 This dissertation titled Characterization of Growth Hormone Signaling in the NCI60 Cancer Panel by ELAHU GOSNEY SUSTARSIC has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Xiaozhuo Chen Associate Professor of Microbiology Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT SUSTARSIC, ELAHU GOSNEY, Ph.D., August 2013, Molecular and Cellular Biology Characterization of Growth Hormone Signaling in the NCI60 Cancer Panel Director of Dissertation: Xiaozhuo Chen Growth hormone Receptor (GHR) is a class I cytokine receptor. Under normal conditions, it is expressed in most tissues of the body.In addition to its presence in healthy tissue, GHR has been detected in cancer cells and tumors. There has been accumulating evidence that implicates GHR activation in carcinogenesis. Most research to date has focused on breast and prostate cancer, with a few studies in other cancer types. A limited number of studies have investigated a direct effect of GH on cancer cells, and even fewer have examined the mechanism of GH action in cancer cells. Our investigations began with a survey of gene expression in the 60 cell lines of the National Cancer Institute’s NCI60 panel. All of the metastatic melanoma lines examined show high expression of GHR. Five of the melanoma cell lines were treated with GH. In three of the cell lines, GH treatment increases cell growth. In one cell line, GH has a biphasic effect based on dose; a low dose moderately inhibits cell growth, while a high dose induces growth. Cell signaling pathways were analyzed as well. Some activation of mTOR was detected, along with strong STAT5 phosphorylation with GH treatment. A final group of studies examined the effect of GH treatment on cancer metabolism. In these experiments, we discovered a novel action of GH: an ability to increase the bioenergetic potential and potentiate the Warburg effect in cancer cells. These findings may have relevance to growth and invasion of metastatic melanoma cells in vivo. Further studies are warranted to determine if therapeutic interventions aimed at GH signaling might be beneficial in treatment of metastatic melanoma. 4 PREFACE ON DISSERTATION FORMAT This dissertation is divided into five chapters. The first one is an introduction to the current body of literature on the role GH may have in cancer. Chapters 2, 3 and 4 are in the form of manuscript drafts that will be submitted for publication in Endocrine-Related Cancer or a similar journal. Therefore, the formatting is set to the author guidelines for this journal. Importantly, in chapters 2-4, figures are not within the body of the text (as they are for chapters 1 and 5), but are shown at the end of each chapter. The final chapter lists the key findings and provides a roadmap of future research that should be undertaken as follow-up studies. 5 DEDICATION I dedicate this dissertation to the people who made it possible. To my mother, brother and sister for their nurturing love and support. Jahiah, your prescient advice to me many years ago put me on the path to this endeavor. Thanks to John for so many things, most importantly for giving me your passion for science. And to the love of my life, Riia. Without you, this would not have been possible. Minun rakkaus pupuni, sinä olet mailman ihana nainen. E<3R 6 ACKNOWLEDGMENTS I would like to acknowledge the many people who played a role in this project. Most importantly, Dr. John Kopchick, for bringing together several world experts who have assisted with this project. We owe a debt of gratitude to Dr. Steven Swanson, who suggested the use of the National Cancer Institute resources, specifically the NCI60 panel, for this investigation. Dr. Theresa Wood for offering her expertise in the insulin/IGF field, and Dr. Vincent Goffin for his encouragement and guidance in recombinant protein production and gene expression studies. Many thanks to everyone in the Kopchick lab who have been my friends, mentors and colleagues for many years, including Dr. Darlene Berryman, Dr. Edward List, Dr. Nick Okada and Dr. Bruce Kelder. Without the training, encouragement and guidance of these scientists, this work would not have been completed. Funding for the project was provided by the Diabetes Institute at Ohio University, the Molecular and Cellular Biology Program at Ohio University and the State of Ohio’s Eminent Scholars Program that includes a gift from Milton and Lawrence Goll. 7 TABLE OF CONTENTS Page Abstract ............................................................................................................................................ 3 Preface on Dissertation Format ........................................................................................................ 4 Dedication ........................................................................................................................................ 5 Acknowledgments............................................................................................................................ 6 List of Tables ................................................................................................................................. 11 List of Figures ................................................................................................................................ 12 Chapter 1: Introduction .................................................................................................................. 14 General overview .................................................................................................................... 14 GH background ....................................................................................................................... 19 The growth hormone gene family ..................................................................................... 19 Regulation of pituitary GH ............................................................................................... 20 GH activation of signaling via cell surface receptors ....................................................... 20 Signaling pathways affected by GH ................................................................................. 22 Endocrine GH Action: the somatomedin hypothesis ........................................................ 23 Autocrine/paracrine GH .................................................................................................... 25 GH and cancer literature review .............................................................................................. 26 Evidence from cell culture and human biopsies ............................................................... 26 Evidence from animal studies ........................................................................................... 36 Evidence from human studies (epidemiological and clinical) .......................................... 43 Contradictory data ............................................................................................................. 46 Summary ........................................................................................................................... 48 Comment on PRLR signaling and cancer ............................................................................... 50 Hypotheses and research objectives ........................................................................................ 51 Research approach ................................................................................................................... 52 Limitations of the study ........................................................................................................... 54 Value of the research ............................................................................................................... 55 Publication of data and dissertation outline ............................................................................. 55 References ............................................................................................................................... 57 Chapter 2: Expression of growth hormone, prolactin, and cognate receptors in the NCI60 cancer cell line panel ................................................................................................................................. 67 Abstract ................................................................................................................................... 67 Introduction ............................................................................................................................. 68 Materials and methods ............................................................................................................. 71 NCI60 cancer cell line RNA samples ............................................................................... 71 Real-time RT qPCR .......................................................................................................... 71 Primer design and validation ............................................................................................ 72 Human melanoma biopsy cDNA arrays ..........................................................................
Recommended publications
  • FOXA2 Is a Sensitive and Specific Marker for Small Cell Neuroendocrine Carcinoma of the Prostate Jung Wook Park1, John K Lee2,3, Owen N Witte1,4,5 and Jiaoti Huang6
    Modern Pathology (2017) 30, 1262–1272 1262 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the prostate Jung Wook Park1, John K Lee2,3, Owen N Witte1,4,5 and Jiaoti Huang6 1Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA; 2Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA; 3Molecular Biology Institute, David Geffen School of Medicine, University of California— Los Angeles, Los Angeles, CA, USA; 4Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California—Los Angeles, Los Angeles, CA, USA; 5Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA and 6Department of Pathology, Duke University School of Medicine, Durham, NC, USA The median survival of patients with small cell neuroendocrine carcinoma is significantly shorter than that of patients with classic acinar-type adenocarcinoma. Small cell neuroendocrine carcinoma is traditionally diagnosed based on histologic features because expression of current immunohistochemical markers is inconsistent. This is a challenging diagnosis even for expert pathologists and particularly so for pathologists who do not specialize in prostate cancer. New biomarkers to aid in the diagnosis of small cell neuroendocrine carcinoma are therefore urgently needed. We discovered that FOXA2, a pioneer transcription factor, is frequently and specifically expressed in small cell neuroendocrine carcinoma compared with prostate adenocarcinoma from published mRNA-sequencing data of a wide range of human prostate cancers.
    [Show full text]
  • Cadherin-11 Promotes the Metastasis of Prostate Cancer Cells to Bone
    Cadherin-11 Promotes the Metastasis of Prostate Cancer Cells to Bone Khoi Chu,2 Chien-Jui Cheng,6 Xiangcang Ye,1 Yu-Chen Lee,1 Amado J.Zurita, 2 Dung-Tsa Chen,7 Li-Yuan Yu-Lee,5 Sui Zhang,4 Edward T.Yeh, 4 Mickey C-T.Hu, 3 Christopher J.Logothetis, 2 and Sue-Hwa Lin1,2 Departments of 1Molecular Pathology, 2Genitourinary Medical Oncology, 3Molecular and Cellular Oncology, and 4Cardiology, The University of Texas M. D. Anderson Cancer Center; 5Department of Medicine, Baylor College of Medicine, Houston, Texas; 6Department of Pathology, Taipei Medical University and Hospital, Taipei, Taiwan; and 7Biostatistics Division, Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida Abstract Introduction Bone is the most common site of metastases from Prostate cancer is the most common cancer among men. prostate cancer.The mechanism by which prostate The mortality from this disease results mostly from the cancer cells metastasize to bone is not fully understood, metastasis of tumor cells to secondary sites, particularly bone. but interactions between prostate cancer cells and bone Prostate cancer metastasizes to the bone with high frequency, cells are thought to initiate the colonization of metastatic causing significant morbidity and mortality (1). Jacobs (2) cells at that site.Here, we show that cadherin-11 reported that 80% of men with prostate cancer had bone (also known as osteoblast-cadherin) was highly metastases at autopsy. A more recent rapid autopsy study also expressed in prostate cancer cell line derived from bone reported that f80% of patients who die from prostate cancer metastases and had strong homophilic binding to have metastases in bone (3), further confirming the prevalence recombinant cadherin-11 in vitro.Down-regulation of of bone metastasis in prostate cancer.
    [Show full text]
  • Prostate News
    Prostate Cancer and Prostatic Diseases (2008) 11, 108–111 & 2008 Nature Publishing Group All rights reserved 1365-7852/08 $30.00 www.nature.com/pcan RESEARCH HIGHLIGHTS Prostate News Prostate Cancer and Prostatic Diseases (2008) 11, 108–111; doi:10.1038/pcan.2008.24 Changing biopsy patterns affect Clinical trial recommendations screening predictive value In 1999, the Prostate-Specific Antigen Working Group A large body of literature establishes the contribution of offered consensus recommendations for the conduct prostate-specific antigen (PSA) screening to the improve- of clinical trials. Their focus was on the development ment of prostate cancer detection. However, much of the of trials for patients with progressive disease who had data derived from the early and mid 1990s, and since undergone castration specifically with regard to the use then prostate biopsy practice patterns have changed of PSA level. A year later, the New Guidelines to significantly. Early on the predictive power of PSA Evaluate the Response to Treatment in Solid Tumors screening depended on the high prevalence of the criteria were introduced from a broader and interna- disease, the higher prevalence of high-grade disease tional group of researchers. Their focus was on standar- and the low likelihood of prostate cancer diagnosis in dizing the criteria used in clinical trials to assess tumor men with low PSA titers. Biopsy factors that affect the response for all solid tumors, whether arising in the changes in value of PSA screening include the increased prostate or elsewhere. However, if trial outcomes were number of biopsy cores obtained routinely and changes based solely on either of these two sets of criteria, none of in how pathologists interpret biopsy samples.
    [Show full text]
  • Nanocarrier for Prostate Cancer Orielyz Flores1, 2, Santimukul Santra1, Charalambos Kaittanis3, Rania Bassiouni2, Amr S Khaled4, Annette R
    Theranostics 2017, Vol. 7, Issue 9 2477 Ivyspring International Publisher Theranostics 2017; 7(9): 2477-2494. doi: 10.7150/thno.18879 Research Paper PSMA-Targeted Theranostic Nanocarrier for Prostate Cancer Orielyz Flores1, 2, Santimukul Santra1, Charalambos Kaittanis3, Rania Bassiouni2, Amr S Khaled4, Annette R. Khaled2, Jan Grimm3 and J Manuel Perez5 1. Nanoscience Technology Center and Chemistry Department, University of Central Florida, Orlando FL, 32827; 2. Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando FL, 32827; 3. Molecular Pharmacology Program and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065; 4. Orlando VA Medical Center, Orlando, FL 32827; 5. Biomedical Imaging Research Institute, & Samuel Oschin Comprehensive Cancer Institute, Department of Biomedical Sciences and Department of Neurosurgery, Cedar Sinai Medical Center, Los Angeles CA, 90048. Corresponding author: J Manuel Perez, PhD, Professor, Department of Biomedical Sciences & Department of Neurosurgery, Biomedical Imaging Research Institute & Samuel Oschin Comprehensive Cancer Institute, Cedar Sinai Medical Center, 127 S. San Vicente Blvd, Suite A8113, Los Angeles CA, 90048 Email: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2016.12.22; Accepted: 2017.04.12; Published: 2017.06.24 Abstract Herein, we report the use of a theranostic nanocarrier (Folate-HBPE(CT20p)) to deliver a therapeutic peptide to prostate cancer tumors that express PSMA (folate hydrolase 1). The therapeutic peptide (CT20p) targets and inhibits the chaperonin-containing TCP-1 (CCT) protein-folding complex, is selectively cytotoxic to cancer cells, and is non-toxic to normal tissue.
    [Show full text]
  • On the Biological Properties of Prostate Cancer Cells by Modulation of Inflammatory and Steroidogenesis Pathway Genes
    International Journal of Molecular Sciences Article The Impact of Ang-(1-9) and Ang-(3-7) on the Biological Properties of Prostate Cancer Cells by Modulation of Inflammatory and Steroidogenesis Pathway Genes Kamila Domi ´nska 1,* , Karolina Kowalska 2 , Kinga Anna Urbanek 2 , Dominika Ewa Habrowska-Górczy ´nska 2 , Tomasz Och˛edalski 1 and Agnieszka Wanda Piastowska Ciesielska 2 1 Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; [email protected] 2 Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; [email protected] (K.K.); [email protected] (K.A.U.); [email protected] (D.E.H.-G.); [email protected] (A.W.P.C.) * Correspondence: [email protected] Received: 12 July 2020; Accepted: 26 August 2020; Published: 28 August 2020 Abstract: The local renin–angiotensin system (RAS) plays an important role in the pathophysiology of the prostate, including cancer development and progression. The Ang-(1-9) and Ang-(3-7) are the less known active peptides of RAS. This study examines the influence of these two peptide hormones on the metabolic activity, proliferation and migration of prostate cancer cells. Significant changes in MTT dye reduction were observed depending on the type of angiotensin and its concentration as well as time of incubation. Ang-(1-9) did not regulate the 2D cell division of either prostate cancer lines however, it reduced the size of LNCaP colonies formed in soft agar, maybe through down-regulation of the HIF1a gene.
    [Show full text]
  • Rapid Signalling by Androgen Receptor in Prostate Cancer Cells
    Oncogene (1999) 18, 6322 ± 6329 ã 1999 Stockton Press All rights reserved 0950 ± 9232/99 $15.00 http://www.stockton-press.co.uk/onc Rapid signalling by androgen receptor in prostate cancer cells Heike Peterziel1, Sigrun Mink1, Annette Schonert1, Matthias Becker1, Helmut Klocker2 and Andrew CB Cato*,1 1Forschungszentrum Karlsruhe, Institut fuÈr Toxikologie und Genetik, Postfach 3640, D-76021 Karlsruhe, Germany; 2Department of Urology, University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria Androgens are important growth regulators in prostate interacts with c-Jun to inhibit the DNA binding cancer. Their known mode of action in target cells activity of this factor (Kallio et al., 1995) or with Ets requires binding to a cytoplasmic androgen receptor transcription factors to downregulate their activities followed by a nuclear translocation event and modulation (Schneikert et al., 1996). of the expression of speci®c genes. Here, we report The ability to regulate gene expression positively and another mode of action of this receptor. Treatment of negatively is not speci®c to the AR but is shared by androgen responsive prostate cancer cells with dihydro- other steroid receptors (Beato et al., 1995). In addition, testosterone leads to a rapid and reversible activation of a number of steroid hormones are reported to rapidly mitogen-activated protein kinases MAPKs (also called and reversibly activate important intermediates in extracellular signal-regulated kinases or Erks). Transient signal transduction pathways known to trigger cell transfection assays demonstrated that the androgen proliferation (Migliaccio et al., 1996, 1998; Endoh et receptor-mediated activation of MAP kinase results in al., 1997; Marcinkowska et al., 1997).
    [Show full text]
  • Secreted Transforming Growth Factor 2 Activates NF- B, Blocks Apoptosis, and Is Essential for the Survival of Some Tumor Cells
    Secreted transforming growth factor ␤2 activates NF-␬B, blocks apoptosis, and is essential for the survival of some tumor cells Tao Lu*†, Lyudmila G. Burdelya*†, Shannon M. Swiatkowski*, Alexander D. Boiko*, Philip H. Howe‡, George R. Stark*§, and Andrei V. Gudkov*§ Departments of *Molecular Biology and ‡Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 Contributed by George R. Stark, March 24, 2004 The basis of constitutive activation of NF-␬B, essential for survival thrombospondin-1 (11). Members of the TGF␤ superfamily play and resistance to apoptosis in many tumors, is not well under- essential roles in early embryonic development, cell mobility, stood. We find that transforming growth factor ␤2 (TGF␤2), pre- growth, differentiation, apoptosis, and tumorigenesis (10). De- dominantly in its latent form, is secreted by several different types spite the name ‘‘transforming growth factor,’’ the role of TGF␤ of tumor cell lines that exhibit constitutively active NF-␬B and that family members in tumorigenesis is complex. Depending on the TGF␤2 potently stimulates the activation of NF-␬B in reporter cells. cell type, these factors can promote either tumor suppression or Suppression of TGF␤2 expression by small interfering RNA kills oncogenesis (7). In general, the TGF␤s are potent inhibitors of prostate cancer PC3 cells, indicating that the TGF␤2–NF-␬B path- the growth of various cell types, including epithelial, endothelial, way is important for their viability. These findings identify TGF␤2 and hematopoietic, but act as mitogens for fibroblasts. as a potential target for therapeutic strategies to inhibit the Here, we have analyzed the mechanism of constitutive NF-␬B growth of tumor cells that depend on constitutively active NF-␬B, activation in the prostate cancer cell line PC3, which is known to or to sensitize them to treatment with cytotoxic drugs.
    [Show full text]
  • A Gene-Expression Study
    G C A T T A C G G C A T genes Article Characterization of Hormone-Dependent Pathways in Six Human Prostate-Cancer Cell Lines: A Gene-Expression Study Andras Franko 1,2,3 , Lucia Berti 2,3,* , Alke Guirguis 4, Jörg Hennenlotter 5 , Robert Wagner 1,2,3 , Marcus O. Scharpf 6, Martin Hrabe˘ de Angelis 3,7, Katharina Wißmiller 8,9,10 , Heiko Lickert 3,8,9,10, Arnulf Stenzl 5 , Andreas L. Birkenfeld 1,2,3, 2,3,4 1,2,3 1,11, 1,2,3,4, Andreas Peter , Hans-Ulrich Häring , Stefan Z. Lutz y and Martin Heni y 1 Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; [email protected] (A.F.); [email protected] (R.W.); [email protected] (A.L.B.); [email protected] (H.-U.H.); [email protected] (S.Z.L.); [email protected] (M.H.) 2 Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany; [email protected] 3 German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; [email protected] (M.H.d.A.); [email protected] (H.L.) 4 Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany; [email protected] 5 Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; [email protected]
    [Show full text]
  • P21 Gene Is Inactivated in Metastatic Prostatic Cancer Cell Lines by Promoter Methylation
    Prostate Cancer and Prostatic Diseases (2005) 8, 321–326 & 2005 Nature Publishing Group All rights reserved 1365-7852/05 $30.00 www.nature.com/pcan p21WAF1/CIP1 gene is inactivated in metastatic prostatic cancer cell lines by promoter methylation SRJ Bott1*, M Arya1, RS Kirby1 & M Williamson1 1Prostate Cancer Research Centre, Institute of Urology, University College London, London, UK Introduction: p21WAF1/CIP1 may act as a tumour suppressor gene (TSG) and loss of the p21WAF1/CIP1 gene has been reported in several solid tumours. The aim of this study was to see whether p21WAF1/CIP1 was expressed in metastatic prostate cancer cell lines and to determine if there was methylation of the p21WAF1/CIP1 promoter. Method: PC3, LNCaP and DU145 metastatic prostate cancer cell lines, 1542NP normal prostate, and RD rhabdomyosarcoma cell lines were cultured in the demethylating agent 5-Aza-2 deoxycytidine (5-Aza-CdR). p21WAF1/CIP1 mRNA expression was analysed by RT-PCR. DNA from untreated cell lines was modified with sodium bisulphite and promoter sequencing was performed. Results: p21WAF1/CIP1 was expressed at low or undetectable levels in metastatic prostate cancer cell lines but expression was reactivated by treatment with 5-Aza-CdR. Sequence analysis of the promoter region revealed several sites of methylation at the 50 end of a CpG island in the PC3, LNCaP and DU145 cell line DNA but not in the normal prostate control DNA. Most notably the Sis-inducible element (SEI)-1—a STAT1-binding site, was methylated. Conclusions: In this study, we show that p21WAF1/CIP1 expression in metastatic prostate cancer cell lines is enhanced as a result of demethylation of the DNA.
    [Show full text]
  • Pathogenesis of Prostatic Small Cell Carcinoma Involves the Inactivation of the P53 Pathway
    Endocrine-Related Cancer (2012) 19 321–331 Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway Hongbing Chen1,2*, Yin Sun2*, Chengyu Wu5, Clara E Magyar2, Xinmin Li2,3, Liang Cheng6, Jorge L Yao7, Steven Shen8, Adeboye O Osunkoya9, Chaozhao Liang1 and Jiaoti Huang2,3,4 1Department of Urology, The Geriatrics Research Institute, First Affiliated Hospital of Anhui Medical University, Anhui, China 2Department of Pathology and Laboratory Medicine, 3Jonsson Comprehensive Cancer Center and 4Broad Center for Regenerative Medicine and Stem Cell Biology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 13-229 CHS, Los Angeles, California 90095-1732, USA 5Transplant Immunology Laboratory, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA 6Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA 7Department of Pathology, University of Rochester School of Medicine, Rochester, New York, USA 8Department of Pathology, The Methodist Hospital, Houston, Texas, USA 9Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA (Correspondence should be addressed to J Huang at Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA; Email: [email protected]; C Liang; Email: [email protected]) *(H Chen and Y Sun contributed equally to this work) Abstract Small cell neuroendocrine carcinoma (SCNC) of the prostate is a variant form of prostate cancer that occurs de novo or as a recurrent tumor in patients who received hormonal therapy for prostatic adenocarcinoma. It is composed of pure neuroendocrine (NE) tumor cells, but unlike the scattered NE cells in benign prostate and adenocarcinoma that are quiescent, the NE cells in SCNC are highly proliferative and aggressive, causing death in months.
    [Show full text]
  • Sensitivity Profiles of Human Prostate Cancer Cell Lines to an 80 Kinase Inhibitor Panel
    ANTICANCER RESEARCH 36: 633-642 (2016) Sensitivity Profiles of Human Prostate Cancer Cell Lines to an 80 Kinase Inhibitor Panel AMY J. BURKE1, HUSNAIN ALI1, ENDA O’CONNELL2, FRANCIS J. SULLIVAN1,3 and SHARON A. GLYNN1,4,5 1Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland; 2Screening Core, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland; 3HRB Clinical Research Facilities Galway, National University of Ireland Galway, Galway, Ireland; 4Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland; 5Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland Abstract: Background: Taxanes and anti-androgen diagnosed with prostate cancer and 27,540 men will die of therapies are routinely used for the treatment of metastatic cancer of the prostate during 2015 (http://seer.cancer.gov). prostate cancer, however the majority of patients eventually Several choices exist for the treatment of early prostate develop resistance. Materials and Methods: Eighty kinase cancer, including androgen deprivation therapy, radical inhibitors were screened regarding their ability to inhibit cell prostatectomy, external-beam radiation and prostate viability in CWR22, 22Rv1, PC-3 and DU145 prostate brachytherapy, with similar outcomes (1). In patients who cancer cells using automated toxicity assays. Four kinase develop metastatic disease, androgen deprivation therapy and inhibitors were selected for further investigation. Results: No taxanes remain the main therapeutic strategies. While these significant difference in sensitivity patterns was found treatment approaches extend patient survival, they are not between the androgen receptor wild-type CWR22 and its curative and eventually patients develop refractory disease androgen receptor mutant variant 22Rv1, indicating that and progress.
    [Show full text]
  • Promotion of Prostatic Metastatic Migration Towards Human Bone Marrow Stoma by Omega 6 and Its Inhibition by Omega 3 Pufas
    British Journal of Cancer (2006) 94, 842 – 853 & 2006 Cancer Research UK All rights reserved 0007 – 0920/06 $30.00 www.bjcancer.com Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs Clinical Studies ,1 1 1 2 1,3,4 MD Brown* , CA Hart , E Gazi , S Bagley and NW Clarke 1ProMPT Genito Urinary Cancer Research Group, Cancer Research UK Paterson Institute, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK; 2Advanced Imaging Facility, Cancer Research UK Paterson Institute, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK; 3 4 Department of Urology, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK; Department of Urology, Salford Royal Hospital NHST, Eccles Old Road, Salford, M6 8HD, UK Epidemiological studies have shown not only a relationship between the intake of dietary lipids and an increased risk of developing metastatic prostate cancer, but also the type of lipid intake that influences the risk of metastatic prostate cancer. The Omega-6 poly- unsaturated fatty acid, Arachidonic acid, has been shown to enhance the proliferation of malignant prostate epithelial cells and increase the risk of advanced prostate cancer. However, its role in potentiating the migration of cancer cells is unknown. Here we show that arachidonic acid at concentrations p5 mM is a potent stimulator of malignant epithelial cellular invasion, which is able to restore invasion toward hydrocortisone-deprived adipocyte-free human bone marrow stroma completely. This observed invasion is mediated by the arachidonic acid metabolite prostaglandin E and is inhibited by the Omega-3 poly-unsaturated fatty acids 2 eicosapentaenoic acid and docosahexaenoic acid at a ratio of 1 : 2 Omega-3 : Omega-6, and by the COX-2 inhibitor NS-398.
    [Show full text]