Using Multispectral Imagery and Linear Spectral Unmixing Techniques for Estimating Crop Yield Variability

Total Page:16

File Type:pdf, Size:1020Kb

Using Multispectral Imagery and Linear Spectral Unmixing Techniques for Estimating Crop Yield Variability USING MULTISPECTRAL IMAGERY AND LINEAR SPECTRAL UNMIXING TECHNIQUES FOR ESTIMATING CROP YIELD VARIABILITY C. Yang, J. H. Everitt, J. M. Bradford ABSTRACT. Vegetation indices derived from multispectral imagery are commonly used to extract crop growth and yield information. Spectral unmixing techniques provide an alternative approach to quantifying crop canopy abundance within each image pixel and have the potential for mapping crop yield variability. The objective of this study was to apply linear spectral unmixing techniques to airborne multispectral imagery for estimating grain sorghum yield variability. Five time-sequential airborne multispectral images and yield monitor data collected from a grain sorghum field were used for this study. Both unconstrained and constrained linear spectral unmixing models were applied to the images to generate crop plant and soil abundances for each image and for all 26 multi-image combinations of the five images. Yield was related to unconstrained and constrained plant and soil abundances as well as to the normalized difference vegetation index (NDVI) and the green NDVI (GNDVI). Results showed that unconstrained plant abundance had better correlations with yield than NDVI for all five images, but GNDVI had better correlations with yield for the first three images. Unconstrained plant abundance derived from the fourth image provided the best overall correlation with yield (r = 0.88). Moreover, multi-image combinations generally improved the correlations with yield over single images, and the best three-image combination resulted in the highest overall correlation (r = 0.90) between yield and unconstrained plant abundance. These results indicate that linear spectral unmixing techniques can be a useful tool for quantifying crop canopy abundance and mapping crop yield. Keywords. Abundance, Endmember, Linear spectral unmixing, Multispectral imagery, Vegetation index, Yield monitor, Yield variability. emote sensing data, including ground reflectance derived from the visible to NIR portion of the spectrum are spectra, satellite imagery, and airborne imagery, often used to quantify crop variables such as leaf area index, have long been used to extract crop growth and biomass, and yield (Tucker et al., 1980; Wiegand et al., 1991; yield information. Although these data can be di- Thenkabail et al., 1995; Yang and Anderson, 1999; Plant et Rrectly related to crop biophysical parameters, vegetation al., 2000; Yang et al., 2001). Yang et al. (2000) and Yang and indices derived from various wavebands in the data are more Everitt (2002) used two band ratios (NIR/Red and NIR/ effective and therefore are more widely used. Many of these Green), NDVI, and the green NDVI [GNDVI = (NIR − indices are formed from combinations of red and near- Green)/(NIR + Green)] derived from airborne color-infrared infrared (NIR) wavebands. Indices based on these two bands (CIR) imagery to generate yield maps for delineating within- exploit the fact that living green vegetation absorbs radiation field spatial variability as compared with yield monitor data. in the red band, due to the presence of chlorophyll and other Although vegetation indices are by far the most popular absorbing pigments in leaves, and strongly reflects radiation techniques for extracting quantitative biophysical informa- in the NIR band, because of the internal structure of the leaf tion, many, if not most, indices only use two spectral bands that is responsible for the high reflection. Two of the earliest in the data. This may be sufficient if the data contain only a and most widely used vegetation indices are the simple ratio few bands. However, if a large number of bands are available, (NIR/Red) (Jordan, 1969) and the normalized difference veg- as in some multispectral and hyperspectral data, other tech- etation index [NDVI = (NIR − Red)/(NIR + Red)] (Rouse et niques that can use all the bands in the data may have the po- al., 1973). These indices along with other vegetation indices tential to offer better results. Linear spectral unmixing is one such technique (Adams et al., 1986). Spectral mixing occurs when materials with different spectral properties are repre- Submitted for review in November 2005 as manuscript number IET sented by a single image pixel. Multispectral and hyperspec- 6192; approved for publication by the Information & Electrical Technolo- tral imagery can be viewed as a collection of band images, gies Division of ASABE in December 2006. Presented at the 2005 ASAE and each image pixel contains a spectrum of reflectance val- Annual Meeting as Paper No. 051018. ues for all the wavebands in the imagery. These spectra may Mention of trade names or commercial products in this article is solely be considered as the signatures of ground materials such as for the purpose of providing specific information and does not imply rec- ommendation or endorsement by the USDA. crop plants or soil, provided that the material occupies the The authors are Chenghai Yang, ASABE Member Engineer, Agricul- whole pixel. Spectra of mixtures can be analyzed with linear tural Engineer, James H. Everitt, Range Scientist, and Joe M. Bradford, spectral unmixing, which models each spectrum as a linear Supervisory Soil Scientist, USDA-ARS Kika de la Garza Subtropical Agri- combination of a finite number of pure spectra of the materi- cultural Research Center, Weslaco, Texas. Corresponding author: Cheng- hai Yang, USDA-ARS Kika de la Garza Subtropical Agricultural Research als located in the pixel area, weighted by their fractional Center, 2413 E. Highway 83, Weslaco, TX 78596; phone: 956-969-4824; abundances (Adams et al., 1986; Smith et al., 1990). The fax: 956-969-4893; e-mail: cyang@ weslaco.ars.usda.gov. unique ground materials are referred to as endmembers, and Transactions of the ASABE Vol. 50(2): 667−674 2007 American Society of Agricultural and Biological Engineers ISSN 0001−2351 667 their spectra are referred to as endmember spectra. A simple (2) relate grain yield to plant and soil abundances as well as linear spectral unmixing model has the following form: to NDVI and GNDVI. m = + ε = yi ∑ aij x j i , i 1, 2, ..., n (1) = j 1 METHODS where IMAGERY AND YIELD DATA PREPROCESSING yi = measured reflectance in band i for a pixel Airborne digital CIR images and yield monitor data col- aij = known or measured reflectance in band i for lected from a 21 ha grain sorghum field in south Texas in 1998 endmember j were used for this study. The geographic coordinates near the ° ′ ″ ° ′ ″ xj = unknown fractional abundance for endmember j center of the field were 26 29 27 and 98 00 03 W. Grain ei = residual between measured and modeled reflectance sorghum (Asgrow 570) was planted to the field on 15 Febru- for band i ary and was harvested on 22 June. The CIR imagery was ac- m = number of endmembers quired on five different dates during the growing season using n = number of spectral bands. a three-camera digital imaging system described by Escobar This model is referred to as the unconstrained linear spec- et al. (1997). The system consisted of three Kodak MegaPlus tral unmixing model. For constrained linear spectral unmix- charge-coupled device (CCD) digital cameras and a comput- ing, the following additional condition should be satisfied: er equipped with three image-grabbing boards. The cameras were filtered for spectral observations in the visible green m = (555-565 nm), red (625-635 nm), and NIR (845- 857 nm) ∑ x j 1 (2) j=1 bands. The image-grabbing boards had the capability to cap- ture 8-bit image frames with 1024 × 1024 pixels. CIR imag- That is, the fractional abundances for all the endmembers es were obtained at an altitude of approximately 1680 m should sum to unity. Nevertheless, both unconstrained and (5500 ft) between 12:00 and 15:00 h local time under sunny constrained unmixing can result in negative abundance val- conditions on five dates: 15 and 22 April, 18 and 29 May, and ues and values greater than 1 for any endmember. Assuming 16 June 1998. A Cessna 206 aircraft was used to acquire the that the endmembers are not linearly dependent, the mixing imagery. The imagery had a ground pixel size of approxi- fractions can be determined from the data. For a given num- mately 1 m. ber of spectral bands n, an exact solution can be found for The three band images in each composite CIR image were each pixel for the unconstrained model if m = n and for the first registered to correct the misalignments among them. constrained model if m = n + 1. However, if m < n for uncon- The registered CIR images were then rectified to the Univer- strained unmixing or if m < n + 1 for constrained unmixing, sal Transverse Mercator (UTM), World Geodetic Survey then a least squares fitting procedure can be applied to obtain 1984 (WGS-84), Zone 14, coordinate system based on the best fit. ground control points located with a submeter-accuracy GPS The fractional abundances determined by linear spectral Pathfinder Pro XRS system (Trimble Navigation Limited, unmixing may be preferred to band ratios and NDVI for Sunnyvale, Cal.). All rectified images were resampled to a tracking spectrally defined materials (i.e., endmembers) spatial resolution of 1 m using the nearest-neighbor resam- since it uses all the bands in the data (Bateson and Curtiss, pling method. Total RMS (root mean square) errors for all 1996). When linear spectral unmixing is applied to an image, rectified images were less than 2 m. For radiometric calibra- it produces a suite of abundance images, one for each end- tion, reflectance spectra were taken from three sites (an as- member in the model. Like a NDVI image, each abundance phalt road, a concrete parking lot, and a roof) within the image shows the spatial distribution of the spectrally defined image. These sites had stable reflectance response over the material.
Recommended publications
  • Use of Hyperspectral/Multispectral Imaging in Gastroenterology
    Journal of Clinical Medicine Review Use of Hyperspectral/Multispectral Imaging in Gastroenterology. Shedding Some–Different–Light into the Dark Samuel Ortega 1,* , Himar Fabelo 1 , Dimitris K. Iakovidis 2, Anastasios Koulaouzidis 3 and Gustavo M. Callico 1 1 Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria 35017, Spain; [email protected] (H.F.); [email protected] (G.M.C.) 2 Dept. of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; [email protected] 3 Endoscopy Unit, The Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK; [email protected] * Correspondence: [email protected]; Tel.: +34-928-451-220 Received: 26 November 2018; Accepted: 26 December 2018; Published: 1 January 2019 Abstract: Hyperspectral/Multispectral imaging (HSI/MSI) technologies are able to sample from tens to hundreds of spectral channels within the electromagnetic spectrum, exceeding the capabilities of human vision. These spectral techniques are based on the principle that every material has a different response (reflection and absorption) to different wavelengths. Thereby, this technology facilitates the discrimination between different materials. HSI has demonstrated good discrimination capabilities for materials in fields, for instance, remote sensing, pollution monitoring, field surveillance, food quality, agriculture, astronomy, geological mapping, and currently, also in medicine. HSI technology allows tissue observation beyond the limitations of the human eye. Moreover, many researchers are using HSI as a new diagnosis tool to analyze optical properties of tissue. Recently, HSI has shown good performance in identifying human diseases in a non-invasive manner. In this paper, we show the potential use of these technologies in the medical domain, with emphasis in the current advances in gastroenterology.
    [Show full text]
  • Multispectral Imaging for Medical and Industrial Machine Vision Systems
    1 | Tech Guide: Multispectral imaging for medical and industrial machine vision systems Tech Guide: Multispectral Imaging Multispectral imaging for medical and industrial machine vision systems 2 | Tech Guide: Multispectral imaging for medical and industrial machine vision systems Table of contents Introduction Chapter 1: What is multispectral imaging? Chapter 2: Multispectral imaging applications Chapter 3: Multispectral camera technologies Chapter 4: Key considerations when selecting camera technology for multispectral imaging Chapter 5: Hyperspectral and the future of multispectral imaging 3 | Tech Guide: Multispectral imaging for medical and industrial machine vision systems Introduction Just as machine vision systems have evolved from traditional monochrome cameras to many systems that now utilize full color imaging information, there has also been an evolution from systems that only captured broadband images in the visible spectrum, to those that can utilize targeted spectral bands in both visible and non- visible spectral regions to perform more sophisticated inspection and analysis. The color output of the cameras used in the machine vision industry today is largely based on Bayer-pattern or trilinear sensor technology. But imaging is moving well beyond conventional color where standard RGB is not enough to carry out inspection tasks. Some applications demand unconventional RGB wavelength bands while others demand a combination of visible and non-visible wavelengths. Others require exclusively non-visible wavelengths such as UV, NIR or SWIR, with no wavebands in the visible spectrum. Complex metrology and imaging applications are beginning to demand higher numbers of spectral channels or possibilities to select application-specific spectral filtering at high inspection throughputs. With the traditional machine vision industry merging with intricate measurement technologies, consistent, reliable, high-fidelity color and multispectral imaging are playing key roles in industrial quality control.
    [Show full text]
  • User's Manual for Nuance 3.0.2 Notice
    Nuance MULTISPECTRAL IMAGING SYSTEM User's Manual for Nuance 3.0.2 Notice The information in this document is subject to change without notice and should not be construed as a commitment by PerkinElmer, Inc. PerkinElmer assumes no responsibility for any errors that may appear in this document. This manual is believed to be complete and accurate at the time of publication. In no event shall PerkinElmer be liable for incidental or consequential damages in connection with or arising from the use of this manual. This manual describes system operation using Nuance version 3.0.2 software. For more information contact: PerknElmer, Inc. 68 Elm Street, Hopkinton, MA, 01748, USA Phone: 800-762-4000 or +1 203-925-4602 Fax: +1 203-944-4904 Email: [email protected] Web site: http://www.perkinelmer.com US Patent 5,892,612; 5,953,087; 7,655,898; and patents pending. Document Part No. 130765 Rev. 01 Table of Contents Part I Welcome To Nuance 6 Part II Introduction to Multispectral Imaging 7 1 Light...................................................................................................................................... 7 2 Human...................................................................................................................................... Perception of Light Intensity and of Color 8 3 Light ......................................................................................................................................Absorbance and Reflection 9 4 Fluorescence.....................................................................................................................................
    [Show full text]
  • Classification of Compressed Remote Sensing Multispectral Images Via
    Journal of Imaging Article Classification of Compressed Remote Sensing Multispectral Images via Convolutional Neural Networks Michalis Giannopoulos 1,2,*,† , Anastasia Aidini 1,2,† , Anastasia Pentari 1,2 , Konstantina Fotiadou 1,2 and Panagiotis Tsakalides 1,2 1 Signal Processing Lab (SPL), Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH), 70013 Crete, Greece; [email protected] (A.A.); [email protected] (A.P.); [email protected] (K.F.); [email protected] (P.T.) 2 Computer Science Department, University of Crete, 70013 Crete, Greece * Correspondence: [email protected] † These authors contributed equally to this work. Received: 17 January 2020; Accepted: 15 April 2020; Published: 18 April 2020 Abstract: Multispectral sensors constitute a core Earth observation image technology generating massive high-dimensional observations. To address the communication and storage constraints of remote sensing platforms, lossy data compression becomes necessary, but it unavoidably introduces unwanted artifacts. In this work, we consider the encoding of multispectral observations into high-order tensor structures which can naturally capture multi-dimensional dependencies and correlations, and we propose a resource-efficient compression scheme based on quantized low-rank tensor completion. The proposed method is also applicable to the case of missing observations due to environmental conditions, such as cloud cover. To quantify the performance of compression, we consider both typical image quality metrics as well as the impact on state-of-the-art deep learning-based land-cover classification schemes. Experimental analysis on observations from the ESA Sentinel-2 satellite reveals that even minimal compression can have negative effects on classification performance which can be efficiently addressed by our proposed recovery scheme.
    [Show full text]
  • Post-Processing of VIS, NIR, and SWIR Multispectral Images of Paintings
    heritage Article Post-Processing of VIS, NIR, and SWIR Multispectral Images of Paintings. New Discovery on the The Drunkenness of Noah, Painted by Andrea Sacchi, Stored at Palazzo Chigi (Ariccia, Rome) 1, , 1, , 2, , 3, , Lucilla Pronti * y , Martina Romani * y, Gianluca Verona-Rinati * y, Ombretta Tarquini * y, 4, 3, 3, 1, Francesco Colao y, Marcello Colapietro y, Augusto Pifferi y , Mariangela Cestelli-Guidi y 2, and Marco Marinelli y 1 INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Italy 2 INFN-Dipartimento di Ingegneria Industriale, Università degli Studi di Roma Tor Vergata, Department of Industrial Engineering, Via del Politecnico 1, 00133 Roma, Italy 3 C.N.R. Istituto di Cristallografia - Area della Ricerca Roma 1, Via Salaria Km 29300, 00015 Monterotondo (RM), Italy 4 ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via E. Fermi 45, 00044 Frascati (RM), Italy * Correspondence: [email protected] (L.P.); [email protected] (M.R.); [email protected] (G.V.-R.); [email protected] (O.T.) These authors contributed equally to this work. y Received: 30 June 2019; Accepted: 30 July 2019; Published: 2 August 2019 Abstract: IR Reflectography applied to the identification of hidden details of paintings is extremely useful for authentication purposes and for revealing technical hidden features. Recently, multispectral imaging has replaced traditional imaging techniques thanks to the possibility to select specific spectral ranges bringing out interesting details of the paintings. VIS–NIR–SWIR images of one of the The Drunkenness of Noah versions painted by Andrea Sacchi, acquired with a modified reflex and InGaAs cameras, are presented in this research.
    [Show full text]
  • Fundamentals of Remote Sensing
    Fundamentals of Remote Sensing A Canada Centre for Remote Sensing Remote Sensing Tutorial Natural Resources Ressources naturelles Canada Canada Fundamentals of Remote Sensing - Table of Contents Page 2 Table of Contents 1. Introduction 1.1 What is Remote Sensing? 5 1.2 Electromagnetic Radiation 7 1.3 Electromagnetic Spectrum 9 1.4 Interactions with the Atmosphere 12 1.5 Radiation - Target 16 1.6 Passive vs. Active Sensing 19 1.7 Characteristics of Images 20 1.8 Endnotes 22 Did You Know 23 Whiz Quiz and Answers 27 2. Sensors 2.1 On the Ground, In the Air, In Space 34 2.2 Satellite Characteristics 36 2.3 Pixel Size, and Scale 39 2.4 Spectral Resolution 41 2.5 Radiometric Resolution 43 2.6 Temporal Resolution 44 2.7 Cameras and Aerial Photography 45 2.8 Multispectral Scanning 48 2.9 Thermal Imaging 50 2.10 Geometric Distortion 52 2.11 Weather Satellites 54 2.12 Land Observation Satellites 60 2.13 Marine Observation Satellites 67 2.14 Other Sensors 70 2.15 Data Reception 72 2.16 Endnotes 74 Did You Know 75 Whiz Quiz and Answers 83 Canada Centre for Remote Sensing Fundamentals of Remote Sensing - Table of Contents Page 3 3. Microwaves 3.1 Introduction 92 3.2 Radar Basic 96 3.3 Viewing Geometry & Spatial Resolution 99 3.4 Image distortion 102 3.5 Target interaction 106 3.6 Image Properties 110 3.7 Advanced Applications 114 3.8 Polarimetry 117 3.9 Airborne vs Spaceborne 123 3.10 Airborne & Spaceborne Systems 125 3.11 Endnotes 129 Did You Know 131 Whiz Quiz and Answers 135 4.
    [Show full text]
  • Multispectral Image Feature Points
    Sensors 2012, 12, 12661-12672; doi:10.3390/s120912661 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Multispectral Image Feature Points Cristhian Aguilera 1,*, Fernando Barrera 2, Felipe Lumbreras 2,3, Angel D. Sappa 2 and Ricardo Toledo 2,3 1 Department of Electrical and Electronics Engineering, Collao 1202, University of Bío-Bío, 4051381 Concepción, Chile 2 Computer Vision Center, Edifici O, Campus UAB, 08193 Bellaterra, Barcelona, Spain; E-Mails: [email protected] (F.B.); [email protected] (F.L.); [email protected] (A.D.S.); [email protected] (R.T.) 3 Computer Science Department, Edifici O, Campus UAB, 08193 Bellaterra, Barcelona, Spain * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +56-41-311-1287; Fax: +56-41-311-1013. Received: 6 July 2012; in revised form: 24 August 2012 / Accepted: 30 August 2012 / Published: 17 September 2012 Abstract: This paper presents a novel feature point descriptor for the multispectral image case: Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge Oriented Histogram (EOH) descriptor. Finally, points of interest from multispectral images are matched by finding nearest couples using the information from the descriptor. The provided experimental results and comparisons with similar methods show both the validity of the proposed approach as well as the improvements it offers with respect to the current state-of-the-art.
    [Show full text]
  • Less Is More When Applying Transfer Learning to Multi-Spectral Data
    Less is More when Applying Transfer Learning to Multi-Spectral Data Yuvraj Sharma1 and Robert Ross2 1 Adapt Centre, Technological University Dublin, Ireland [email protected] 2 Adapt Centre, Technological University Dublin, Ireland [email protected] Abstract. Transfer Learning is widely recognized as providing incred- ible benefits to many image processing tasks. But not all problems in the computer vision field are driven by traditional Red, Green, and Blue (RGB) imagery as tend to be assumed by most large pre-trained mod- els for Transfer Learning. Satellite based remote sensing applications for example typically use multispectral bands of light. While transferring RGB features to this non-RGB domain has been shown to generally give higher accuracy than training from scratch, the question remains whether a more suitable fine tuned method can be found. Given this challenge, this paper presents a study in multispectral image analysis using multiple methods to achieve feature transfer. Specifically, we train and compare two pre-trained models based on the Resnet50 architec- ture and apply them to a multi-spectral image processing task. The key difference between the two models is that one was pre-trained in a con- ventional way against RGB data, while the other was trained against a single band greyscale variant of the same data. Our results demonstrate an improved performance on the greyscale pre-trained model relative to the more traditional RGB model. Keywords: Deep learning · Transfer learning · Image Analysis · Resnet · CNN · Multispectral images · ImageNet · Satellite imagery · EuroSat. 1 Introduction The rapid advancement of artificial intelligence (AI) in the computer vision field has increased the demand of large-scale labelled data.
    [Show full text]
  • High Resolution Multispectral and Thermal Remote Sensing-Based Water Stress Assessment in Subsurface Irrigated Grapevines
    Article High Resolution Multispectral and Thermal Remote Sensing-Based Water Stress Assessment in Subsurface Irrigated Grapevines Carlos Zúñiga Espinoza 1, Lav R. Khot 1,2,*, Sindhuja Sankaran 1,2, Pete W. Jacoby 2,3 1 Department of Biological System Engineering, Washington State University, Pullman, WA 99164-6120, USA; [email protected] (C.Z.E); [email protected] (S.S.) 2 Center for Precision and Automated Agricultural Systems, Washington State University, Prosser, WA 99350-8694, USA; [email protected] 3 Department of Crop and Soil Science, Washington State University, Pullman, WA 99164-6420, USA * Correspondence: [email protected]; Tel.: +1-509-786-9302 Received: 8 June 2017; Accepted: 5 September 2017; Published: 16 September 2017 Abstract: Precision irrigation management is based on the accuracy and feasibility of sensor data assessing the plant water status. Multispectral and thermal infrared images acquired from an unmanned aerial vehicle (UAV) were analyzed to evaluate the applicability of the data in the assessment of variants of subsurface irrigation configurations. The study was carried out in a Cabernet Sauvignon orchard located near Benton City, Washington. Plants were subsurface irrigated at a 30, 60, and 90 cm depth, with 15%, 30%, and 60% irrigation of the standard irrigation level as determined by the grower in commercial production management. Half of the plots were irrigated using pulse irrigation and the other half using continuous irrigation techniques. The treatments were compared to the control plots that received standard surface irrigation at a continuous rate. The results showed differences in fruit yield when the control was compared to deficit irrigated treatments (15%, 30%, 60% of standard irrigation), while no differences were found for comparisons of the techniques (pulse, continuous) or depths of irrigation (30, 60, 90 cm).
    [Show full text]
  • Reconstruction of Multispatial, Multispectral Image Data Using Spatial Frequency Content
    R. A. SCHOWENGERDT* Office of Arid Lands Studies and Systems and Zndustrial Engineering Department University of Arizona Tucson, AZ 8571 9 Reconstruction of Multispatial, MuItispectraI Image Data Using Spatial Frequency Content Multispatial, multispectral imagery is reconstructed by computer processing to enhance information extraction. recent interest and success with simpler ap- proaches (Hung, 1979). HERE HAS BEEN considerable interest in tech- It has been suggested (Colvocoresses, 1977) that Tniques for reducing the quantity of image data a mixture of high spatial resolution spectral bands transmitted from spacecraft to ground receiving and lower resolution bands may be an acceptable stations. The concern about excessive data way to reduce data rates without sacrificing image acquisition/transmission rates is particularly im- information content. The basis for this suggestion portant for the next generation of high spatial and is that only one or two spectral bands are required radiometric resolution sensors, such as the the- to define the majority of edges in a scene, and matic mapper (TM) on Landsat D, the multispectral hence only these bands need to be of high resolu- resource sampler (MRS),SPOT (Chevrel, 1979), and tion. A significant advantage of mixed resolution, Mapsat (Colvocoresses, 1979). or what may be termed multispatial, compression Techniques that reduce data quantity must also is that it can be accomplished by appropriate ABSTRACT:A data compression technique that utilizes a mixture of spatial res- olutions (multispatial) for a multispectral scanner is described. The com- plementary reconstruction procedure that extrapolates edge information from the high resolution banqs) to the low resolution bands is also discussed. Exam- ples of Landsat MSS imagery that have been compressed and reconstructed to the original resolution are presented.
    [Show full text]
  • Hyperspectral and Multispectral Image Fusion Under Spectrally Varying
    Hyperspectral and Multispectral Image Fusion Under Spectrally Varying Spatial Blurs – Application to High Dimensional Infrared Astronomical Imaging Claire Guilloteau, Thomas Oberlin, Olivier Berné, Nicolas Dobigeon To cite this version: Claire Guilloteau, Thomas Oberlin, Olivier Berné, Nicolas Dobigeon. Hyperspectral and Multispectral Image Fusion Under Spectrally Varying Spatial Blurs – Application to High Dimensional Infrared Astronomical Imaging. IEEE Transactions on Computational Imaging, IEEE, 2020, 6, pp.1362-1374. 10.1109/TCI.2020.3022825. hal-02949174 HAL Id: hal-02949174 https://hal.archives-ouvertes.fr/hal-02949174 Submitted on 28 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 1 Hyperspectral and multispectral image fusion under spectrally varying spatial blurs – Application to high dimensional infrared astronomical imaging Claire Guilloteau, Thomas Oberlin, Olivier Berne´ and Nicolas Dobigeon Abstract—Hyperspectral imaging has become a significant spatial and spectral resolution is indeed of particular interest to source of valuable data for astronomers over the past decades. study key mechanisms in astrophysics and cosmology. More Current instrumental and observing time constraints allow direct specifically, this concerns for instance the combined sensing acquisition of multispectral images, with high spatial but low spectral resolution, and hyperspectral images, with low spatial of the morphology or spectral signatures of protoplanetary but high spectral resolution.
    [Show full text]
  • Multispectral Photogrammetric Data Acquisition and Processing for Wall
    Multispectral photogrammetric data acquisition and processing for wall paintings studies Anthony Pamart, Odile Guillon, Stéphan Faraci, Eloi Gattet, Michel Genevois, Jean-Marc Vallet, Livio de Luca To cite this version: Anthony Pamart, Odile Guillon, Stéphan Faraci, Eloi Gattet, Michel Genevois, et al.. Multispectral photogrammetric data acquisition and processing for wall paintings studies. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, Nafplio, Greece. pp.559–566, 10.5194/isprs-archives-XLII-2-W3-559-2017. hal-01480562 HAL Id: hal-01480562 https://hal.archives-ouvertes.fr/hal-01480562 Submitted on 1 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W3, 2017 3D Virtual Reconstruction and Visualization of Complex Architectures, 1–3 March 2017, Nafplio, Greece MULTISPECTRAL PHOTOGRAMMETRIC DATA ACQUISITION AND PROCESSING FOR WALL PAINTINGS STUDIES A. Pamarta,∗ O. Guillonb,
    [Show full text]