South East Region

Total Page:16

File Type:pdf, Size:1020Kb

South East Region DRAFT Department of Environment and Natural Resources South East Region Regional Species Conservation Assessment Project Phase 1: Regional Species Status Assessments December 2011 Technical Report 2011/03 Department of Environment and Natu ral Resources www.environment.sa.gov.au Regional Species Conservation Assessment Project Phase 1 Report: Regional Species Status Assessments, South East Region S Gillam & R Urban December 2011 DENR Technical Report 2011/03 This publication may be sited as: Gillam, S. and Urban, R. (2011) Regional Species Conservation Assessment Project, Phase 1 Report: Regional Species Status Assessments, South East Region. Department of Environment and Natural Resources, South Australia. Cover Photographs: Species occurring within the South East Region: Holly Flat-pea Platylobium obtusangulum; Australasian grebe; Cherry Ballart Exocarpos cupressiformis; Magpie Geese; Gahnia spp; Donkey Orchid Diuris orientis; Malleefowl; Early Nancy Wurmbea dioica ssp; Bush Stone-curlew; Narrow-leaf Bitter-pea Daviesia leptophylla; Bulbine lily Bulbine bulbosa; Red-capped Robin; Arthropdium spp; Brown Tree-frog; Heath Goanna; Intermediate Egret; Stackhousia aspericocca ssp; Long-nosed Potoroo; Harlequin Mistletoe Lysiana exocarpi ssp exocarpi; King Spider Orchid Caladenia tentaculata; Tawny Frogmouths; Red Parrot-pea Dillwynia hispida; Striped Marsh Frog – photos: Sharon Gillam. Department of Environment and Natural Resources GPO Box 1047 Adelaide SA 5001 http://www.environment.sa.gov.au © Department of Environment and Natural Resources. Apart from fair dealings and other uses permitted by the Copyright Act 1968 (Cth), no part of this publication may be reproduced, published, communicated, transmitted, modified or commercialised without the prior written permission of the Department of Environment and Natural Resources. Disclaimer While reasonable efforts have been made to ensure the contents of this publication are factually correct, the Department of Environment and Natural Resources makes no representations and accepts no responsibility for the accuracy, completeness or fitness for any particular purpose of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of or reliance on the contents of this publication. Reference to any company, product or service in this publication should not be taken as a Departmental endorsement of the company, product or service. ISBN: 978-1-921800-32-0 Department of Environment and Natu ral Resources South East Species Status Assessment Project, Phase 1 Report December 2011 CONTENTS Acknowledgements .......................................................................................................... iii Executive Summary........................................................................................................... 1 1. Introduction .................................................................................................................. 3 2. Methodology ................................................................................................................ 4 2.1 Project area ........................................................................................................ 4 2.2 Data preparation ................................................................................................ 6 2.3 Assessment criteria ........................................................................................... 7 2.4 Consultation process ......................................................................................... 8 2.5 Data analysis ..................................................................................................... 9 3. Data limitations ............................................................................................................ 9 4. Results ........................................................................................................................ 10 4.1 South East Region ........................................................................................... 11 4.2 IBRA Subregions/IMCRA Regions .................................................................. 11 4.3 Species in protected and unprotected areas ................................................... 13 4.4 Threatened species richness ........................................................................... 16 4.5 Species lists ..................................................................................................... 20 5. Summary and next steps .......................................................................................... 21 5.1 Next steps ........................................................................................................ 21 References ....................................................................................................................... 22 Appendices Appendix 1 Landscape descriptions for each IBRA subregion ............................... 23 Appendix 2 Example of distribution map created for each species ......................... 24 Appendix 3 a). IUCN Criteria for the threatened categories (CR, EN, VU) plus Rare ......... 25 b). Outline of each status category ................................................................... 27 Appendix 4 a). South East Fauna workshops conducted .................................................... 28 b). South East Flora workshops conducted ...................................................... 28 Appendix 5 Overall regional categories derived from weighted scores ................. 29 Appendix 6 Number & percentage of fauna species per status rating per subregion .......... 30 Appendix 7 Number & percentage of fauna species per trend per subregion ..................... 30 Appendix 8 Number & percentage of flora species per status rating per sub region ........... 31 Appendix 9 Number & percentage of flora species per trend per sub region ...................... 31 Appendix 10 a). Number of South East fauna species per status ratings in protected and unprotected areas (1991-2010). ............................................................... 32 b). Number of South East flora species per status ratings in protected and unprotected areas (1991-2010). ............................................................... 33 i South East Species Status Assessment Project, Phase 1 Report December 2011 Appendix 11 a). Fauna species list for project area, from most to least threatened ............. 34 b). Fauna species list for project area, in order of taxonomic sequence........... 51 Appendix 12 a). Flora species list for project area, from most to least threatened ............... 68 b). Flora species list for project area, in alphabetical order ............................ 112 Appendix 13 a). Fauna species removed from Project Area ................................................ 156 b). Flora species removed from Project Area .................................................. 158 LIST OF TABLES Table 1. IBRA subregion and IMCRA region areas within the project area ........................ 5 Table 2. a). Status categories and abbreviations used in assessments ............................. 8 b). Trend categories and symbols used in assessments ..................................... 8 Table 3. Number of species per group that were reviewed, assessed and removed ....... 11 Table 4. Number and percentage of fauna species per status category for the South East Region .............................................................................................. 12 Table 5. Number and percentage of fauna species per trend category for the South East Region .............................................................................................. 12 Table 6. Number and percentage of flora species per status category for the South East Region .............................................................................................. 12 Table 7. Number and percentage of flora species per trend category for the South East Region .............................................................................................. 12 Table 8. Threatened flora species with less than 15% of their records occurring in protected areas in the South East Region ...................................................... 15 Table 9. Threatened fauna species with less than 15% of their records occurring in protected areas in the South East Region ...................................................... 16 LIST OF FIGURES Figure 1. Map showing location of IBRA subregions and IMCRA regions within the project area ....................................................................................................... 5 Figure 2. Frequency distributions of the percentage of All Flora records and Threatened (VU, EN, CR) fauna records from 1991 – 2010 occurring within protected areas ........................................................................... 13 Figure 3. Frequency distributions of the percentage of All Fauna records and Threatened (VU, EN, CR) flora records from 1991 – 2010 occurring within protected areas ........................................................................... 14 Figure 4. South East threatened fauna species richness map ......................................... 17 Figure 5. South East threatened flora species richness map ........................................... 18 Figure 6. South East threatened species (flora and fauna) richness map ....................... 19 ii South
Recommended publications
  • NZ Botanical Society Index
    Topic Type Author Year Date Number Page Ribes uva-crispa L. (Grossulariaceae) Cover illustration 1985 August 1 Matai planting in Auckland Domain Note Cameron, Ewen 1985 August 1 4 Auckland Botanical Society Society 1985 August 1 4 Rotorua Botanical Society Society 1985 August 1 5 Botany news from the University of Waikato University Silvester, Prof. Warwick B 1985 August 1 6 Forest Research Institute Herbarium (NZFRI) Herbarium Ecroyd, Chris 1985 August 1 7 Flora of New Zealand, Volume IV, Naturalised Dicotyledons Research Webb, Colin 1985 August 1 7 Clematis vitalba - "Old Man's Beard" Note West, Carol 1985 August 1 8 New Davallia in Puketi State Forest Note Wright, Anthony 1985 August 1 9 Forest ecology studies in Puketi Forest, Northland. Note Bellingham, Peter 1985 August 1 10 Miro (Prumnopitys ferruginea) Species Cameron, Ewen 1985 August 1 11 Lucy M Cranwell Lecture Note 1985 August 1 11 Lichen Workshop Meeting Wright, Anthony 1985 August 1 11 Hoheria seed Request Bates, David 1985 August 1 12 New Zealand Herbarium Curators Meeting Herbarium 1985 August 1 12 Systematics Association of New Zealand Conference Meeting 1985 August 1 12 NZ Marine Sciences Society Conference Meeting 1985 August 1 12 Ecological Society Conference and AGM Meeting 1985 August 1 13 Bryophyte Foray Meeting 1985 August 1 13 NZ Genetical Society Conference Meeting 1985 August 1 13 Theses in Botanical Science List 1985 August 1 13 Penium spp. (Desmidiaceae) Cover illustration 1985 December 2 Canterbury Botanical Society Society 1985 December 2 4 Wellington Botanical
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Molecular Phylogenetics and Evolution 71 (2014) 149–156 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multi-locus molecular phylogeny for Australia’s iconic Jacky Dragon (Agamidae: Amphibolurus muricatus): Phylogeographic structure along the Great Dividing Range of south-eastern Australia ⇑ Mitzy Pepper a, , Marco D. Barquero b, Martin J. Whiting b, J. Scott Keogh a a Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australia b Department of Biological Sciences, Macquarie University, Sydney, Australia article info abstract Article history: Jacky dragons (Amphibolurus muricatus) are ubiquitous in south-eastern Australia and were one of the Received 25 June 2013
    [Show full text]
  • Otanewainuku ED (Report Prepared on 13 August 2013)
    1 NZFRI collection wish list for Otanewainuku ED (Report prepared on 13 August 2013) Fern Ally Isolepis cernua Lycopodiaceae Isolepis inundata Lycopodium fastigiatum Isolepis marginata Lycopodium scariosum Isolepis pottsii Psilotaceae Isolepis prolifera Tmesipteris lanceolata Lepidosperma australe Lepidosperma laterale Gymnosperm Schoenoplectus pungens Cupressaceae Schoenoplectus tabernaemontani Chamaecyparis lawsoniana Schoenus apogon Cupressus macrocarpa Schoenus tendo Pinaceae Uncinia filiformis Pinus contorta Uncinia gracilenta Pinus patula Uncinia rupestris Pinus pinaster Uncinia scabra Pinus ponderosa Hemerocallidaceae Pinus radiata Dianella nigra Pinus strobus Phormium cookianum subsp. hookeri Podocarpaceae Phormium tenax Podocarpus totara var. totara Iridaceae Prumnopitys taxifolia Crocosmia xcrocosmiiflora Libertia grandiflora Monocotyledon Libertia ixioides Agapanthaceae Watsonia bulbillifera Agapanthus praecox Juncaceae Alliaceae Juncus articulatus Allium triquetrum Juncus australis Araceae Juncus conglomeratus Alocasia brisbanensis Juncus distegus Arum italicum Juncus edgariae Lemna minor Juncus effusus var. effusus Zantedeschia aethiopica Juncus sarophorus Arecaceae Juncus tenuis var. tenuis Rhopalostylis sapida Luzula congesta Asparagaceae Luzula multiflora Asparagus aethiopicus Luzula picta var. limosa Asparagus asparagoides Orchidaceae Cordyline australis x banksii Acianthus sinclairii Cordyline banksii x pumilio Aporostylis bifolia Asteliaceae Corunastylis nuda Collospermum microspermum Diplodium alobulum Commelinaceae
    [Show full text]
  • Sericornis, Acanthizidae)
    GENETIC AND MORPHOLOGICAL DIFFERENTIATION AND PHYLOGENY IN THE AUSTRALO-PAPUAN SCRUBWRENS (SERICORNIS, ACANTHIZIDAE) LESLIE CHRISTIDIS,1'2 RICHARD $CHODDE,l AND PETER R. BAVERSTOCK 3 •Divisionof Wildlifeand Ecology, CSIRO, P.O. Box84, Lyneham,Australian Capital Territory 2605, Australia, 2Departmentof EvolutionaryBiology, Research School of BiologicalSciences, AustralianNational University, Canberra, Australian Capital Territory 2601, Australia, and 3EvolutionaryBiology Unit, SouthAustralian Museum, North Terrace, Adelaide, South Australia 5000, Australia ASS•CRACr.--Theinterrelationships of 13 of the 14 speciescurrently recognized in the Australo-Papuan oscinine scrubwrens, Sericornis,were assessedby protein electrophoresis, screening44 presumptivelo.ci. Consensus among analysesindicated that Sericorniscomprises two primary lineagesof hithertounassociated species: S. beccarii with S.magnirostris, S.nouhuysi and the S. perspicillatusgroup; and S. papuensisand S. keriwith S. spiloderaand the S. frontalis group. Both lineages are shared by Australia and New Guinea. Patternsof latitudinal and altitudinal allopatry and sequencesof introgressiveintergradation are concordantwith these groupings,but many featuresof external morphologyare not. Apparent homologiesin face, wing and tail markings, used formerly as the principal criteria for grouping species,are particularly at variance and are interpreted either as coinherited ancestraltraits or homo- plasies. Distribution patternssuggest that both primary lineageswere first split vicariantly between
    [Show full text]
  • Breeding System Diversification and Evolution in American Poa Supersect. Homalopoa (Poaceae: Poeae: Poinae)
    Annals of Botany Page 1 of 23 doi:10.1093/aob/mcw108, available online at www.aob.oxfordjournals.org Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae) Liliana M. Giussani1,*, Lynn J. Gillespie2, M. Amalia Scataglini1,Marıa A. Negritto3, Ana M. Anton4 and Robert J. Soreng5 1Instituto de Botanica Darwinion, San Isidro, Buenos Aires, Argentina, 2Research and Collections Division, Canadian Museum of Nature, Ottawa, Ontario, Canada, 3Universidad de Magdalena, Santa Marta, Colombia, 4Instituto Multidisciplinario de Biologıa Vegetal (IMBIV), CONICET-UNC, Cordoba, Argentina and 5Department of Botany, Smithsonian Institution, Washington, DC, USA *For correspondence. E-mail [email protected] Received: 11 December 2015 Returned for revision: 18 February 2016 Accepted: 18 March 2016 Downloaded from Background and Aims Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia. Diclinism in Homalopoa can be divided into three main types: gynomonoecism, gynodioe- cism and dioecism. Here the sampling of species of New World Homalopoa is expanded to date its origin and diver- sification in North and South America and examine the evolution and origin of the breeding system diversity. Methods A total of 124 specimens were included in the matrix, of which 89 are species of Poa supersect. http://aob.oxfordjournals.org/ Homalopoa sections Acutifoliae, Anthochloa, Brizoides, Dasypoa, Dioicopoa, Dissanthelium, Homalopoa sensu lato (s.l.), Madropoa and Tovarochloa, and the informal Punapoa group. Bayesian and parsimony analyses were conducted on the data sets based on four markers: the nuclear ribosomal internal tanscribed spacer (ITS) and exter- nal transcribed spacer (ETS), and plastid trnT-L and trnL-F.
    [Show full text]
  • Seidenfaden Malaysia: 0.65 These Figures Are Surprisingly High, They Apply to Single Only. T
    BIOGEOGRAPHY OF MALESIAN ORCHIDACEAE 273 VIII. Biogeographyof Malesian Orchidaceae A. Schuiteman Rijksherbarium/Hortus Botanicus, P.O. Box 9514, 2300 RA Leiden, The Netherlands INTRODUCTION The Orchidaceae outnumber far other in Malesia. At how- by any plant family present, accurate estimate of the of Malesian orchid is difficult to make. ever, an number species Subtracting the numberofestablishedsynonyms from the numberof names attributed to Malesian orchid species results in the staggering figure of 6414 species, with a retention of 0.74. This is ratio (ratio of ‘accepted’ species to heterotypic names) undoubtedly a overestimate, of the 209 Malesian orchid have been revised gross as most genera never their entire from availablerevisions estimate realis- over range. Extrapolating to a more tic retention ratio is problematic due to the small number of modern revisions and the different of treated. If look for Malesian of nature the groups we comparison at species wide ofretention ratios: some recently revised groups, we encounter a range Bulbophylluw sect. Uncifera (Vermeulen, 1993): 0.24 Dendrobium sect. Oxyglossum (Reeve & Woods, 1989): 0.24 Mediocalcar (Schuiteman, 1997): 0.29 Pholidota (De Vogel, 1988): 0.29 Bulbophyllum sect. Pelma (Vermeulen, 1993): 0.50 Paphiopedilum (Cribb, 1987, modified): 0.57 Dendrobium sect. Spatulata (Cribb, 1986, modified): 0.60. Correspondingly, we find a wide rangeof estimates for the ‘real’ numberof known Male- sian orchid species: from 2050 to 5125. Another approach would be to look at a single area, and to compute the retention ratio for the orchid flora of that area. If we do this for Java (mainly based on Comber, 1990), Peninsular Malaysia & Singapore (Seidenfaden & Wood, 1992) and Sumatra (J.J.
    [Show full text]
  • Great Australian Bight BP Oil Drilling Project
    Submission to Senate Inquiry: Great Australian Bight BP Oil Drilling Project: Potential Impacts on Matters of National Environmental Significance within Modelled Oil Spill Impact Areas (Summer and Winter 2A Model Scenarios) Prepared by Dr David Ellis (BSc Hons PhD; Ecologist, Environmental Consultant and Founder at Stepping Stones Ecological Services) March 27, 2016 Table of Contents Table of Contents ..................................................................................................... 2 Executive Summary ................................................................................................ 4 Summer Oil Spill Scenario Key Findings ................................................................. 5 Winter Oil Spill Scenario Key Findings ................................................................... 7 Threatened Species Conservation Status Summary ........................................... 8 International Migratory Bird Agreements ............................................................. 8 Introduction ............................................................................................................ 11 Methods .................................................................................................................... 12 Protected Matters Search Tool Database Search and Criteria for Oil-Spill Model Selection ............................................................................................................. 12 Criteria for Inclusion/Exclusion of Threatened, Migratory and Marine
    [Show full text]
  • Poa Billardierei
    Poa billardierei COMMON NAME Sand tussock, hinarepe SYNONYMS Festuca littoralis Labill.; Schedonorus littoralis (Labill.) P.Beauv.; Triodia billardierei Spreng.; Poa billardierei (Spreng.)St.-Yves; Schedonorus billardiereanus Nees; Arundo triodioides Trin.; Schedonorus littoralis var. alpha minor Hook.f.; Austrofestuca littoralis (Labill.) E.B.Alexev. FAMILY Poaceae AUTHORITY Poa billardierei (Spreng.)St.-Yves FLORA CATEGORY Vascular – Native ENDEMIC TAXON No Austrofestuca littoralis. Photographer: Kevin Matthews ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Grasses NVS CODE POABIL CHROMOSOME NUMBER 2n = 28 CURRENT CONSERVATION STATUS 2012 | At Risk – Declining | Qualifiers: SO PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Declining | Qualifiers: SO 2004 | Gradual Decline DISTRIBUTION Austrofestuca littoralis. Photographer: Geoff North Island, South Island, Chatham Island (apparently absent from Walls Chatham Island now despite being formerly abundant). Also found in temperate Australia. HABITAT Coastal dunes; sandy and rocky places near the shore, especially foredunes and dune hollows. FEATURES Yellow-green tussocks up to about 70 cm tall. Leaves fine, rolled, somewhat drooping (coarser than silver tussock), initially green, often fading at tips to silver, and drying to golden-straw colour. Seed heads no longer than leaves; seeds relatively large, barley-like, leaving a characteristic zig-zag look to the remaining head when fallen. Flowers in early summer and the seed are produced in late summer. It could be confused with Poa chathamica which has blue- green or grass-green flat leaves and an open seed head which overtops the foliage. It could also be confused with marram grass which has similar foliage but large cat’stail-like seed heads which overtop the foliage. SIMILAR TAXA Ammophila arenaria (marram grass) is often confused with sand tussock because they grow in the same habitat.
    [Show full text]
  • Birds: Indicators of Environmental Repair in Oil Affected Coastlines
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Wells, Dezmond (2010) Birds : indicators of environmental repair in oil affected coastlines. (Unpublished) This file was downloaded from: https://eprints.qut.edu.au/59524/ c Copyright 2010 Dezmond Wells This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. Birds - Indicators of Environmental Repair in Oil Affected Coastlines 1 Birds - Indicators of Environmental Repair in Oil Affected Coastlines Dezmond. R. Wells (GradDipEd , BSc, , AssDipAppSc)A ABirds Australia Southern Queensland, 32 Panoramic Dr, Narangba, QLD 4504, Australia. Email: [email protected] Abstract Bird coastal communities were studied along Bribie Island and Moreton Island, two islands within Moreton Bay, Brisbane, Queensland, Australia, using the point counts method.
    [Show full text]
  • Archived at the Flinders Academic Commons
    Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/ This is the publisher’s version of an article published in The South Australian Naturalist. The original publication is available by subscription at: http://search.informit.com.au/ browseJournalTitle;res=IELHSS;issn=0038-2965 Please cite this article as: Smith AL, Bull CM and Driscoll DA (2013). Skeletochronological analysis of age in three “fire- specialist” lizard species. SA Naturalist 87, 6-17 Copyright (2013) the Field Naturalists Society of South Australia. Published version of the paper reproduced here with permission from the publisher. All rights reserved. Extract from The South Australian Naturalist 87(1): 6–17. SKELETOCHRONOLOGICAL ANALYSIS OF AGE IN THREE ‘FIRE-SPECIALIST’ LIZARD SPECIES Annabel L. Smith 1,2*, C. Michael Bull 2, Don A. Driscoll 1,2 1. ARC Centre of Excellence for Environmental Decisions and the NERP Environmental Decisions Hub, Fenner School of Environment and Society, Frank Fenner Building 141, Australian National University, Canberra ACT 0200, Australia. 2. School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia * Author for correspondence: Email: [email protected] Phone: +612 6125 9339, Fax: +612 6125 0757 ABSTRACT: Adverse fire regimes threaten the persistence of animals in many ecosystems. ‘Fire-specialist’ species, which specialise on a particular post-fire successional stage, are likely to be at greatest risk of decline under adverse fire regimes. Life history data on fire-specialists, including longevity, are needed to develop tools to assist fire management for conservation. We used skeletochronology to estimate the age of individuals of three South Australian fire-specialist lizard species: Amphibolurus norrisi (Agamidae), Ctenotus atlas (Scincidae) and Nephrurus stellatus (Gekkonidae).
    [Show full text]
  • Biological Survey Part 2.Pdf
    LEVEL 1 BIOLOGICAL ASSESSMENT OF RAVENSTHORPE GOLD PROJECT, WESTERN AUSTRALIA Page | 101 home ranges may overlap, there tends to be a smaller non-overlapping ‘core’ area defined by den locations. Core areas are approximately 4 km2 and 0.9 km2 for males and females, respectively (Serena & Soderquist, 1989). Females tend to be territorial, although some areas may be shared by a mother and her adult daughter (Serena & Soderquist, 1989). Male core areas are much larger and overlap broadly with other males as well as females. Both sexes occur at similar densities in the Jarrah forest. Home range size may be smaller in areas where foxes are effectively controlled, and where Chuditch population densities are higher (DEC, 2012b; Mathew, 1996). Chuditch are opportunistic feeders, foraging primarily on the ground at night. In the forest, insects and other large invertebrates comprise the bulk of their diet, though some mammals, birds and lizards are also included (DEC, 2012b; Serena et al., 1991). The Chuditch is primarily a nocturnal species, they may be diurnally active during the breeding season (April to July) or when cold, wet weather restricts nocturnal foraging (DEC, 2012b). The average life span of an established adult is two years, and wild Chuditch generally don’t live past four years (Soderquist, 1988). Factors contributing to Chuditch mortality include: ▪ Motor vehicle strike (Chuditch commonly forage along dirt roads and tracks making them more susceptible to this); ▪ Illegal shooting near roads; ▪ Predation by foxes, raptors and feral cats; ▪ Injury in rabbit traps; and ▪ Natural accidents and disease. The Chuditch has been recorded on camera within the Project Area during the two fauna surveys conducted by APM in 2016 and 2017.
    [Show full text]
  • Orchid Historical Biogeography, Diversification, Antarctica and The
    Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Orchid historical biogeography, ARTICLE diversification, Antarctica and the paradox of orchid dispersal Thomas J. Givnish1*, Daniel Spalink1, Mercedes Ames1, Stephanie P. Lyon1, Steven J. Hunter1, Alejandro Zuluaga1,2, Alfonso Doucette1, Giovanny Giraldo Caro1, James McDaniel1, Mark A. Clements3, Mary T. K. Arroyo4, Lorena Endara5, Ricardo Kriebel1, Norris H. Williams5 and Kenneth M. Cameron1 1Department of Botany, University of ABSTRACT Wisconsin-Madison, Madison, WI 53706, Aim Orchidaceae is the most species-rich angiosperm family and has one of USA, 2Departamento de Biologıa, the broadest distributions. Until now, the lack of a well-resolved phylogeny has Universidad del Valle, Cali, Colombia, 3Centre for Australian National Biodiversity prevented analyses of orchid historical biogeography. In this study, we use such Research, Canberra, ACT 2601, Australia, a phylogeny to estimate the geographical spread of orchids, evaluate the impor- 4Institute of Ecology and Biodiversity, tance of different regions in their diversification and assess the role of long-dis- Facultad de Ciencias, Universidad de Chile, tance dispersal (LDD) in generating orchid diversity. 5 Santiago, Chile, Department of Biology, Location Global. University of Florida, Gainesville, FL 32611, USA Methods Analyses use a phylogeny including species representing all five orchid subfamilies and almost all tribes and subtribes, calibrated against 17 angiosperm fossils. We estimated historical biogeography and assessed the
    [Show full text]