Tectonic and Magmatic Controls on Extension and Crustal Accretion in Backarc Basins, Insights from the Lau Basin and Southern Mariana Trough
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
38. Structural and Stratigraphic Evolution of the Sumisu Rift, Izu-Bonin Arc1
Taylor, B., Fujioka, K., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 126 38. STRUCTURAL AND STRATIGRAPHIC EVOLUTION OF THE SUMISU RIFT, IZU-BONIN ARC1 Adam Klaus,2,3 Brian Taylor,2 Gregory F. Moore,2 Mary E. MacKay,2 Glenn R. Brown,4 Yukinobu Okamura,5 and Fumitoshi Murakami5 ABSTRACT The Sumisu Rift, which is ~ 120 km long and 30-50 km wide, is bounded to the north and south by structural and volcanic highs west of the Sumisu and Torishima calderas and longitudinally by curvilinear border fault zones with both convex and concave dips. The zigzag pattern of normal faults (average strikes N23°W and N5°W) indicates fault formation in orthorhombic symmetry in response to N76° ± 10°E extension, orthogonal to the volcanic arc. Three oblique transfer zones divide the rift along strike into four segments with different fault trends and uplift/subsidence patterns. Differential strain across the transfer zones is accommodated by interdigitating, rift-parallel faults and some cross-rift volcanism, rather than by strike- or oblique-slip faults. From estimates of extension (2-5 km), the age of the rift (~2 Ma), and the accelerating subsidence, we infer that the Sumisu Rift is in the early syn-rift stage of backarc basin formation. Following an early sag phase, a half graben formed with a synthetically faulted, structural rollover facing large-offset border fault zones. In the three northern rift segments, the largest faults are on the arc side and dip 60°-75°W, whereas in the southern segment they are on the west side and dip 25°-50°E. -
Analysis of Plate Spin Motion and Its Implications for Strength of Plate Boundary Takeshi Matsuyama1 and Hikaru Iwamori1,2*
Matsuyama and Iwamori Earth Planet Sp (2016) 68:36 DOI 10.1186/s40623-016-0405-5 LETTER Open Access Analysis of plate spin motion and its implications for strength of plate boundary Takeshi Matsuyama1 and Hikaru Iwamori1,2* Abstract In this study, we investigate the driving forces of plate motion, especially those of plate spin motion, that are related to the toroidal components of the global plate velocity field. In previous works, numerical simulations of mantle convection have been used to examine the extent to which toroidal velocity components are naturally generated on the surface, by varying key parameters, notably the rheological properties of plates and plate boundaries. Here, we take the reverse approach and perform analyses of observed plate motions, which show an increase in the toroidal/ poloidal ratio at high degrees of spherical harmonic expansion, as well as a rapid change in the plate spin rate and the estimated driving stress around a critical plate size of approximately 1000 km. This quantitative relationship constrains the strength at plate boundaries to 3–75 MPa, which is consistent with several seismological observations, including those from the NE Japan arc associated with the 2011 Tohoku earthquake. Keywords: Plate spin motion, Toroidal–poloidal component, Driving force, Plate boundary, Strength Background simulations of mantle convection that naturally repro- A unique feature of the Earth is active plate tectonics duce the surface motions of plate tectonics (e.g., Richards (Schubert et al. 2001), involving rigid plates that inter- et al. 2001; Tackley 2000a, b). However, the mechanism act at “soft” boundaries, the nature of which allows the of the plates’ motions is not well understood at present relative motion between plates. -
Philippine Sea Plate Inception, Evolution, and Consumption with Special Emphasis on the Early Stages of Izu-Bonin-Mariana Subduction Lallemand
Progress in Earth and Planetary Science Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Lallemand Lallemand Progress in Earth and Planetary Science (2016) 3:15 DOI 10.1186/s40645-016-0085-6 Lallemand Progress in Earth and Planetary Science (2016) 3:15 Progress in Earth and DOI 10.1186/s40645-016-0085-6 Planetary Science REVIEW Open Access Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Serge Lallemand1,2 Abstract We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60–55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ∼54–48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called “fore-arc basalts” (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ∼52–50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere. -
Ishikukaepsl10.Pdf
Earth and Planetary Science Letters 294 (2010) 111–122 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Migrating shoshonitic magmatism tracks Izu–Bonin–Mariana intra-oceanic arc rift propagation O. Ishizuka a,b,⁎, M. Yuasa a, Y. Tamura b, H. Shukuno b, R.J. Stern c, J. Naka b, M. Joshima a, R.N. Taylor d a Institute of Geology and Geoinformation, Geological Survey of Japan/AIST, Central 7, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8567, Japan b IFREE, JAMSTEC, 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan c Dept. of Geosciences, University of Texas at Dallas, Richardson TX 75083-0688, USA d National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, UK article info abstract Article history: The southernmost Izu–Bonin arc and northernmost Mariana arc are characterized by K-rich and shoshonitic Received 22 November 2009 lavas, referred to as the alkalic volcano province (AVP). These compositions are unusual for intra-oceanic arcs Received in revised form 6 March 2010 and the interpretation of the AVP is controversial. Rifting to form the Mariana Trough back-arc basin occurs Accepted 12 March 2010 just south of the AVP although back-arc seafloor spreading has not begun. Here we report the results of Available online 9 April 2010 dredge sampling of the West Mariana Ridge (WMR) in the region of rift propagation; this recovered Editor: R.W. Carlson exclusively medium K to shoshonitic basalts that show clear arc-like geochemical signatures. Ar–Ar ages of WMR shoshonitics systematically young northward. -
53. Petrologic Evolution of the Mariana Arc and Back-Arc Basin System— a Synthesis of Drilling Results in the South Philippine Sea1
53. PETROLOGIC EVOLUTION OF THE MARIANA ARC AND BACK-ARC BASIN SYSTEM— A SYNTHESIS OF DRILLING RESULTS IN THE SOUTH PHILIPPINE SEA1 James H. Natland, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California and John Tarney, Department of Geology, University of Leicester, LEI 7RH, United Kingdom ABSTRACT The results of Deep Sea Drilling Project Leg 60 pertaining to the petrologic evolution of the Mariana Trough and Mariana arc are summarized in Part I. The rocks recovered at five principal sites are exceptionally diverse, including gabbros and calc-alkalic andesites derived from the West Mariana Ridge; fresh and hydrothermally altered basalts in the Mariana Trough; and interbedded boninites and arc tholeiites in the forearc region between the modern arc and the trench. Part I outlines the stratigraphy, alteration, and petrology of these rock suites and summarizes hypotheses on their origin. Part II integrates these results with those of previous DSDP legs in the region, and with island sampling, to present a composite 40-m.y. history of the Mariana arc system. Arc volcanism began in the Eocene, probably as a result of a change to the west in the motion of the Pacific plate. A north-south-trending fracture zone was transformed into a trench-subduction complex, trapping a portion of the Pacific plate in the Philippine Sea. The crust of this basin, drilled in Hole 447 (Leg 59), has the composition of typical ocean floor basalt. The earliest Eocene arc was built up dominantly of arc tholeiite and boninitic lavas, with lesser calc-alkalic lavas, based on the results of Leg 60 drilling at Sites 458 and 459 in the forearc region; Leg 59, Site 448, on the Palau-Kyushu Ridge; and exposures on the islands of Palau, Guam, and Saipan. -
Mariana Magmatic Arc Hiyoshi Volcanic Complex and Iwo Jima
Mariana Magmatic Arc Hiyoshi Volcanic Complex and Iwo Jima: Bloomer, S. H., Stern, R. J., Fisk, E., and Geschwind, C. H. "Shoshonitic volcanism in the northern Mariana Arc: 1. Petrographic and major and trace element characteristics." J. Geophys. Res., 94, 4469-4496, 1989. Ishizuka, O., Yuasa, M., Tamura, Y., Shukuno, H., Stern, R.J., Naka, J, Joshima, M., and Taylor, R.N., 2010. Migrating shoshonitic magmatism tracks Izu-Bonin- Mariana intra-oceanic arc rift propagation. Earth Planet. Sci. Lett. 294, 111-122 Lin, P.-N., Stern, R. J., and Bloomer, S. H. "Shoshonitic Volcanism in the Northern Mariana Arc: 2. Large-Ion Lithophile and Rare Earth Element Abundances - Evidence for the Source of Incompatible Element Enrichments in Intra-Oceanic Arcs." J. Geophys. Res., 94, 4497-4514, 1989. Meen, J.K., Stern, R.J., and Bloomer, S.H.,1998. Evidence for magma mixing in the Mariana arc system The Island Arc 7, 443-459. Stern, R. J., Bloomer, S. H., Lin, P.-N., Ito, E., and Morris, J. 1988. Shoshonitic magmas in nascent arcs: New evidence from submarine volcanoes in the northern Marianas. Geology, 16, p. 426-430. Stern, R. J., Smoot, N. C., and Rubin, M., 1984. Unzipping of the Volcano Arc, Japan." Tectonophysics, 102, p. 153-174. Sun, C.-H., Stern, R.J., Yoshida, T., and Kimura, J.-I., 1998. Fukutoku-oka-no-ba Volcano: A new perspective on the Alkalic Volcano Province in the Izu-Bonin- Mariana arc The Island Arc 7, 432-442. Kasuga cross-chain (KXN): Stern, R. J., Jackson, M. C., Fryer, P., and Ito, E. -
Deep Sea Drilling Project Initial Reports Volume 59
38. EVOLUTION OF THE SOUTH PHILIPPINE SEA: DEEP SEA DRILLING PROJECT LEG 59 RESULTS Robert B. Scott, Department of Geology, Texas A&M University, College Station, Texas Loren Kroenke, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii Guram Zakariadze,1 Institute of Geology, Georgian Academy of Sciences, Tbilisi, U.S.S.R. and Anatoli Sharaskin, Vernadsky Institute of Geochemistry, U.S.S.R. Academy of Sciences, 117334, Moscow, U.S.S.R. INTRODUCTION (Hussong, Uyeda et al., 1978). Only through an integra- tion of all these investigations can a coherent evolution Several prominent inactive and active arcs and of the inactive arcs and marginal basins of the South marginal basins lie within the confines of the South Philippine Sea be constructed. Philippine Sea (Fig. 1). These are, from west to east, the Because timing of events in the arcs and basins is fun- inactive West Philippine Basin, Palau-Kyushu Ridge, damental to any evolutionary scheme, modern plank- Parece Vela Basin, and West Mariana Ridge and the ac- tonic biozonation is used. The zonations used by Ingle tive Mariana Trough and Mariana Ridge. The two most (1975) on Leg 31, by Martini (this volume) on Leg 59, acceptable hypotheses suggested for the origin of these and by Hussong, Uyeda et al. (in press) on Leg 60, how- marginal basins are (1) the entrapment of preexisting ever, all differ somewhat. For a discussion of these dif- oceanic crust and (2) the formation of new oceanic crust ferences see the biostratigraphic synthesis by Martini et by back-arc sea-floor spreading. al. -
Seafloor Spreading and Plate Tectonics
OCN 201: Seafloor Spreading and Plate Tectonics I Revival of Continental Drift Theory • Kiyoo Wadati (1935) speculated that earthquakes and volcanoes may be associated with continental drift. • Hugo Benioff (1940) plotted locations of deep earthquakes at edge of Pacific “Ring of Fire”. • Earthquakes are not randomly distributed but instead coincide with mid-ocean ridge system. • Evidence of polar wandering. Revival of Continental Drift Theory Wegener’s theory was revived in the 1950’s based on paleomagnetic evidence for “Polar Wandering”. Earth’s Magnetic Field Earth’s magnetic field simulates a bar magnet, but it is caused by A bar magnet with Fe filings convection of liquid Fe in Earth’s aligning along the “lines” of the outer core: the Geodynamo. magnetic field A moving electrical conductor induces a magnetic field. Earth’s magnetic field is toroidal, or “donut-shaped”. A freely moving magnet lies horizontal at the equator, vertical at the poles, and points toward the “North” pole. Paleomagnetism in Rocks • Magnetic minerals (e.g. Magnetite, Fe3 O4 ) in rocks align with Earth’s magnetic field when rocks solidify. • Magnetic alignment is “frozen in” and retained if rock is not subsequently heated. • Can use paleomagnetism of ancient rocks to determine: --direction and polarity of magnetic field --paleolatitude of rock --apparent position of N and S magnetic poles. Apparent Polar Wander Paths • Geomagnetic poles 200 had apparently 200 100 “wandered” 100 systematically with time. • Rocks from different continents gave different paths! Divergence increased with age of rocks. 200 100 Apparent Polar Wander Paths 200 200 100 100 Magnetic poles have never been more the 20o from geographic poles of rotation; rest of apparent wander results from motion of continents! For a magnetic compass, the red end of the needle points to: A. -
33. Geochemistry of Igneous Rocks Recovered from a Transect Across the Mariana Trough, Arc, Fore-Arc
33. GEOCHEMISTRY OF IGNEOUS ROCKS RECOVERED FROM A TRANSECT ACROSS THE MARIANA TROUGH, ARC, FORE-ARC, AND TRENCH, SITES 453 THROUGH 461, DEEP SEA DRILLING PROJECT LEG 601 D. A. Wood,2 N. G. Marsh,2 J. Tarney,2 J.-L. Joron,3 P. Fryer,4 and M. Treuil3 ABSTRACT Major and trace element analyses are presented for 110 samples from the DSDP Leg 60 basement cores drilled along a transect across the Mariana Trough, arc, fore-arc, and Trench at about 18°N. The igneous rocks forming breccias at Site 453 in the west Mariana Trough include plutonic cumulates and basalts with calc-alkaline affinities. Basalts recovered from Sites 454 and 456 in the Mariana Trough include types with compositions similar to normal MORB and types with calc-alkaline affinities within a single hole. At Site 454 the basalts show a complete compositional transition between normal MORB and calc-alkaline basalts. These basalts may be the result of mixing of the two magma types in small sub-crustal magma reservoirs or assimilation of calc-alkaline, arc-derived vitric tuffs by normal MORB magmas during eruption or intrusion. A basaltic andesite clast in the breccia recovered from Site 457 on the active Mariana arc and samples dredged from a seamount in the Mariana arc are calc-alkaline and similar in composition to the basalts recovered from the Mariana Trough and West Mariana Ridge. Primitive island arc tholeiites were recovered from all four sites (Sites 458-461) drilled on the fore-arc and arc-side wall of the trench. These basalts form a coherent compositional group distinct from the Mariana arc, West Mariana arc, and Mariana Trough calc-alkaline lavas, indicating temporal (and perhaps spatial?) chemical variations in the arc magmas erupted along the transect. -
The Earth's Lithosphere-Documentary
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/310021377 The Earth's Lithosphere-Documentary Presentation · November 2011 CITATIONS READS 0 1,973 1 author: A. Balasubramanian University of Mysore 348 PUBLICATIONS 315 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Indian Social Sceince Congress-Trends in Earth Science Research View project Numerical Modelling for Prediction and Control of Saltwater Encroachment in the Coastal Aquifers of Tuticorin, Tamil Nadu View project All content following this page was uploaded by A. Balasubramanian on 13 November 2016. The user has requested enhancement of the downloaded file. THE EARTH’S LITHOSPHERE- Documentary By Prof. A. Balasubramanian University of Mysore 19-11-2011 Introduction Earth’s environmental segments include Atmosphere, Hydrosphere, lithosphere, and biosphere. Lithosphere is the basic solid sphere of the planet earth. It is the sphere of hard rock masses. The land we live in is on this lithosphere only. All other spheres are attached to this lithosphere due to earth’s gravity. Lithosphere is a massive and hard solid substratum holding the semisolid, liquid, biotic and gaseous molecules and masses surrounding it. All geomorphic processes happen on this sphere. It is the sphere where all natural resources are existing. It links the cyclic processes of atmosphere, hydrosphere, and biosphere. Lithosphere also acts as the basic route for all biogeochemical activities. For all geographic studies, a basic understanding of the lithosphere is needed. In this lesson, the following aspects are included: 1. The Earth’s Interior. 2. -
Volcanic History of the Izu Bonin Mariana Arc Prior to the First Arc Rift from Volcaniclastic Sediments of DSDP Site 296 and IODP Site 1438
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-20-2020 Volcanic History of the Izu Bonin Mariana Arc Prior to the First Arc Rift from Volcaniclastic Sediments of DSDP Site 296 and IODP Site 1438 Eshita Samajpati Florida International University, [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Geochemistry Commons, Geology Commons, and the Volcanology Commons Recommended Citation Samajpati, Eshita, "Volcanic History of the Izu Bonin Mariana Arc Prior to the First Arc Rift from Volcaniclastic Sediments of DSDP Site 296 and IODP Site 1438" (2020). FIU Electronic Theses and Dissertations. 4408. https://digitalcommons.fiu.edu/etd/4408 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida VOLCANIC HISTORY OF THE IZU BONIN MARIANA ARC PRIOR TO THE FIRST ARC RIFT FROM VOLCANICLASTIC SEDIMENTS OF DSDP SITE 296 AND IODP SITE 1438 A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in EARTH SYSTEMS SCIENCE by Eshita Samajpati 2020 To: Dean Michael R. Heithaus College of Arts, Sciences and Education This dissertation, written by Eshita Samajpati, and entitled Volcanic History of the Izu Bonin Mariana Arc Prior to the First Arc Rift from Volcaniclastic Sediments of DSDP Site 296 and IODP Site 1438, having been approved in respect to style and intellectual content, is referred to you for judgement. -
Western South Pacific Regional Workshop in Nadi, Fiji, 22 to 25 November 2011
SPINE .24” 1 1 Ecologically or Biologically Significant Secretariat of the Convention on Biological Diversity 413 rue St-Jacques, Suite 800 Tel +1 514-288-2220 Marine Areas (EBSAs) Montreal, Quebec H2Y 1N9 Fax +1 514-288-6588 Canada [email protected] Special places in the world’s oceans The full report of this workshop is available at www.cbd.int/wsp-ebsa-report For further information on the CBD’s work on ecologically or biologically significant marine areas Western (EBSAs), please see www.cbd.int/ebsa south Pacific Areas described as meeting the EBSA criteria at the CBD Western South Pacific Regional Workshop in Nadi, Fiji, 22 to 25 November 2011 EBSA WSP Cover-F3.indd 1 2014-09-16 2:28 PM Ecologically or Published by the Secretariat of the Convention on Biological Diversity. Biologically Significant ISBN: 92-9225-558-4 Copyright © 2014, Secretariat of the Convention on Biological Diversity. Marine Areas (EBSAs) The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the Convention on Biological Diversity concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of Special places in the world’s oceans its frontiers or boundaries. The views reported in this publication do not necessarily represent those of the Secretariat of the Areas described as meeting the EBSA criteria at the Convention on Biological Diversity. CBD Western South Pacific Regional Workshop in Nadi, This publication may be reproduced for educational or non-profit purposes without special permission from the copyright holders, provided acknowledgement of the source is made.