Guided GUI Testing of Android Apps with Minimal Restart and Approximate Learning Wontae Choi George Necula Koushik Sen EECS Department EECS Department EECS Department University of California, Berkeley University of California, Berkeley University of California, Berkeley
[email protected] [email protected] [email protected] Abstract 1. Introduction Smartphones and tablets with rich graphical user interfaces Smartphones and tablets with rich graphical user interfaces (GUI) are becoming increasingly popular. Hundreds of thou- (GUI) are becoming increasingly popular. Hundred of thou- sands of specialized applications, called apps, are available sands of specialized applications, called apps, are already for such mobile platforms. Manual testing is the most pop- available for these mobile platforms. The complexity of ular technique for testing graphical user interfaces of such these apps lies often in the user interface, with data process- apps. Manual testing is often tedious and error-prone. In ing either minor, or delegated to a backend component. A this paper, we propose an automated technique, called Swift- similar situation exists in applications using software-as-a- Hand, for generating sequences of test inputs for Android service architecture, where the client-side component con- apps. The technique uses machine learning to learn a model sists mostly of user interface code. Testing such applications of the app during testing, uses the learned model to generate involves predominantly user interface testing. user inputs that visit unexplored states of the app, and uses We focus on user interface testing for Android apps, al- the execution of the app on the generated inputs to refine the though many of the same challenges exist on other mobile model.