6. Terpenes: C5 to C20

Total Page:16

File Type:pdf, Size:1020Kb

6. Terpenes: C5 to C20 6. Terpenes: C5 to C20 RA Macahig FM Dayrit HO CH3 3 _ 1 CO2 5 OH 3-(R)-MVA Introduction • Terpenes make up very prominent and characteristic group of plant secondary metabolites. Terpene metabolites range from volatile compounds with 10 carbons to colored polyenes with 40 carbons. • The word “terpene” comes from turpentine, the yellow to brown thick oleoresin which is obtained as an exudate from the terebinth tree (Pistacia terebinthus). • Terpenes are historically, culturally and economically important: • oleoresins, such as pine and eucalyptus oils; rubber (gutta percha) • distillates of the resin yield solvents and thinners • “essential oils” and perfumes, which are extracted from flowers and leaves by pressing, alcohol extraction or steam distillation • drugs and steroids 6. Terpenes: C5 to C20 (Dayrit) 2 Introduction Some characteristic terpenes: 10 AcO O OH CH3 H C CH3 1 O Ph O 3 2 O CH 9 7 8 3 Ph NH O CH3 CH3 CH3 H OH H 4 O Camphor: monoterpene from HO AcO PhCO Cinamomum camphora. 2 Taxol: antitumor diterpene from 21 24 20 23 26 Pacific yew, Taxus species 18 25 CH3 27 19 11 13 17 CH 3 14 1 9 10 8 3 5 6 HO Cholesterol: steroid originally Carotene: C40 terpene which is synthesized in isolated from gallstones; component of the chloroplast; important plant pigment; believed all cell membranes to be one of the important natural anti-oxidants. 6. Terpenes: C5 to C20 (Dayrit) 3 Introduction • In the late 19th century, Otto Wallach noted that upon chemical degradation, many of the products obtained had chemical formulas which were in multiples of 5 carbons. In the 1860s, these C5 units were called “isoprene” units. This is the basis of the “isoprene rule” which was formulated by Leopold Ruzicka. Isoprene represents the basic skeletal structure of the C5 unit. 2 n isoprene n natural rubber limonene The most prolific producer of isoprene-type polymers is the rubber tree, Hevea brasiliensis. 6. Terpenes: C5 to C20 (Dayrit) 4 Overview of terpene biogenesis • Isopentenyl diphosphate (IPP) is the C5 precursor of all isoprenoids. In plants, IPP is formed via two distinct OPP biosynthetic pathways: HO CH • The mevalonic acid (MVA) pathway 3 operates in the cytoplasm and is responsible for the smaller terpenes _ CO2 and the phytosterols OH • The methyl erythritol phosphate HO CH (MEP) pathway is responsible for the 3 OH chloroplast isoprenoids (-carotene, lutein, prenyl chains of chlorophylls HO and plastoquinone-9). OP 6. Terpenes: C5 to C20 (Dayrit) 5 The Mevalonic Acid (MVA) pathway • 3R-Mevalonic acid (MVA) is biosynthesized from three acetates. O + H HOCH3 HOCH3 O H3CSCoAOO 3 3 _ 1 H3C SCoA H3C SCoA CO25 1 5 OH O OO CoAS SCoA 3-(R)-MVA - H2C SCoA Note: 3S-MVA is an unnatural stereoisomer. There is no evidence that it is incorporated into terpenes. • MVA is converted to isopentenyl diphosphate (IPP) which is converted to its isomer, dimethylallyl diphosphate (DMAPP). HOCH3 HOCH 3 POCH3 3 -CO 2 ATP3 ATP 3 2 _ IPP _ 4.1.1.33 1CO5 1 1 OPP 2 CO2 5 5 OH OPP _ O O OPP 5.3.3.2 3-(R)-MVA5-diphospho-(R)-MVA DMAPP 4.1.1.336. Terpenes: C5: to C20Diphosphomevalonate (Dayrit) OPP 6 decarboxylase 5.3.3.2 : Isopentyl-diphosphate--isomerase The Mevalonic Acid (MVA) pathway MVA pathway for isoprenoid biosynthesis with labeling pattern from [1-13C]glucose metabolized via glycolysis. (Rohmer, Pure Appl Chem 2003) 6. Terpenes: C5 to C20 (Dayrit) 7 The Methyl Erythritol Phosphate (MEP) pathway OH HOCH • Glyceraldehyde-3- 2 Glyceraldehyde- O PO 3-phosphate) (C phosphate (GAP) and CHO 3 OH OH O phosphoenolpyruvate (PEP) HO OH Phosphoenol are formed from glucose. Glucose H3C CO2H pyruvate3) (C • GAP condenses with PEP to form MEP. MEP is converted to IPP which forms its isomer DMAPP. OH PO CHO HOCH3 Glyceraldehyde-3-phosphate3) (C OH O IPP HO OPP OP H3C CO2H Methylerythritol phosphate Phosphoenol3) pyruvate 5) (MEP) (C (C DMAPP OPP 6. Terpenes: C5 to C20 (Dayrit) 8 The Methyl Erythritol Phosphate (MEP) pathway MEP pathway for the biosynthesis of isoprenoids with labeling pattern from [1-13C]glucose metabolized via glycolysis. (Rohmer, Pure Appl Chem 2003) 6. Terpenes: C5 to C20 (Dayrit) 9 Evolution of the MVA and MEP pathways • The MVA pathway was originally thought to be the obligatory intermediate for all terpenes. (This is the pathway assumed in pre-2000 literature.) • The MEP pathway was first found in eubacteria and green algae, and was later shown to operate in the plant’s chloroplast. It is hypothesized that the MEP evolved first, and was incorporated into plants from cyanobacteria. • Some fungi and yeasts have been shown to use the MVA pathway. Because the plant cytosol uses the MVA pathway, it is believed that the higher evolved organisms (fungi and yeast) may be the source of the plant’s nuclear DNA. • The co-occurrence of two distinct major metabolic pathways in plant cells is unique for isoprenoid formation in plant cells. 6. Terpenes: C5 to C20 (Dayrit) 10 “Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes” (Lange et al., PNAS, 97(24): 13172–13177, Nov 21, 2000) (p 1) • IPP is “the central intermediate in the biosynthesis of isoprenoids, the most ancient* and diverse class of natural products. Two distinct routes of IPP biosynthesis occur in nature: the MVA pathway and the recently discovered DXP** pathway.” “The evolutionary history of the enzymes involved in both routes and the phylogenetic distribution of their genes across genomes suggest that: the MVA pathway is germane to archaebacteria, that the DXP pathway is germane to eubacteria, and that eukaryotes have inherited MVA their genes for IPP biosynthesis from DXP (MEP) prokaryotes.” * In evolutionary terms, the fats are6. Terpenes:probably C5 the to older C20 (Dayrit) group! 11 ** DXP (deoxyxylulose 5-phosphate) pathway = MEP pathway “Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes” (Lange et al., PNAS, 97(24): 13172–13177, Nov 21, 2000) (p 2) “The occurrence of genes specific to the DXP pathway is restricted to plastid-bearing eukaryotes, indicating that these genes were acquired from the cyanobacterial ancestor of plastids. “However, the individual phylogenies of these genes, with only one exception, do not provide evidence for a specific affinity between the plant genes and their cyanobacterial homologues. The results suggest that: lateral gene transfer between eubacteria subsequent to the origin of plastids has played a major role in the evolution of this MVA DXP (MEP) pathway.” 6. Terpenes: C5 to C20 (Dayrit) 12 The MVA and MEP pathways: taxonomic distribution Organism Pathways Bacteria MVA or MEP Archaea MVA Green Algae MEP Fungi MVA Plants MVA and MEP Animals MVA 6. Terpenes: C5 to C20 (Dayrit) 13 The MVA and MEP pathways: practical implications • The mevalonate-independent methylerythritol phosphate (MEP) pathway is present in many bacteria and in the chloroplasts of all phototrophic organisms. It represents an alternative to the well-known MVA pathway, which is present in animals, fungi, plant cytoplasm, archaebacteria, and some eubacteria. • The MEP pathway in these bacteria represents a novel selective target for antibacterial and antiparasitic drugs. • The MEP pathway is also present in nonphototrophic eukaryotes, but belonging to phyla related to phototrophic unicellular eukaryotes, such as the parasite responsible for malaria, Plasmodium falciparum. This presents a potential target for a new class of antibacterial and antiparasitic drugs. 6. Terpenes: C5 to C20 (Dayrit) 14 The MVA and MEP pathways:DXS, 1-deoxy- dpractical-xylulose-5-phosphate implications synthase DXR, 1-deoxy-d-xylulose-5-phosphate reductoisomerase HMGR, 3-hydroxy-3-methylglutaryl coenzyme A HDS, hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase reductase IDS, isopentenyl diphosphate dimethylallyl diphosphate synthase IDI, isopentenyl diphosphate isomerase IDI, isopentenyl diphosphate isomerase Roberts, Nature Chemical Biology, 2007. Biology, Chemical Nature Roberts, Compartmentalized biosynthesis of IPP and DMAPP via the cytosolic MVA and the plastidic MEP pathways. 6. Terpenes: C5 to C20 (Dayrit) 15 OPP Hemiterpenes (rare) DMAPP, C5 OPP The terpene family is formed by Monoterpenes condensation of C5 OPP (IPP) units: geranyl pyrophosphate, C10 • C10, monoterpenes OPP • C15, sesquiterpenes • C20, diterpenes. OPP Sesquiterpenes farnesyl pyrophosphate, C15 OPP OPP Diterpenes geranylgeranyl pyrophosphate, C20 6. Terpenes: C5 to C20 (Dayrit) 16 Terpene chains are produced by condensation of DMAPP with IPP in “head-to-tail” manner. DMAPP is the “starter unit” while IPP is the nucleophile which lengthens the terpene chain. :Base H OPP OPP -OPP _ OPP IPP X DMAPP X Enz Enz _ -Enz-X OPP OPP farnesylpyrophosphate geranylpyrophosphate OPP OPP _ IPP X etc. Enz 6. Terpenes: C5 to C20 (Dayrit) 17 C30 terpenes are formed by head-to-head dimerization of C15 sesquiterpenes. This leads to the triterpenes, steroids, and carotenes. OPP + PPO (farnesyl pyrophosphate, C15) x 2 squalene, C30 Triterpenes, C30 Steroids OPP + PPO (geranylgeranyl pyrophosphate, C20) x 2 C40 18 Carotenes, C40 HOCH2 Plastids Cytosol O Overview of OH OH HO OH OP Terpene CoA-SCOCH OH 3 Glucose PO CHO CO2H Biosynthesis GAP PEP in Plants H3C OH HO CH3 OH MVA HOC MEP 2 HO OPP OP R OPP OPP OPP OPP DMAPP, C5 Prenyl IPP, C5 DMAPP, C5 IPP, C5 side-chain Monoterpenes OPP Monoterpenes OPP geranyl pyrophosphate, C10 geranyl pyrophosphate, C10 IPP, C5 IPP, C5 Sesquiterpenes Sesquiterpenes OPP OPP farnesyl pyrophosphate, C15 farnesyl pyrophosphate, C15 IPP, C5 H Polyprenyl R side-chain Head-to-head n Diterpenes dimerization OPP geranylgeranyl pyrophosphate, C20 OPP Diterpenes geranylgeranyl pyrophosphate, C20 Head-to-head dimerization Triterpenes & Steroids squalene,6. Terpenes: C30 C5 to C20 (Dayrit) 19 Carotenoids, C40 Estimates of number of structural groups and compounds known for each of the major types of terpenes.
Recommended publications
  • Western Red Cedar Report
    Forintek Canada Corp. Western Division 2665 East Mall Vancouver, BC V6T 1W5 Maximizing Natural Durability of Western Red-cedar: Beyond Thujaplicins by Jean Clark Bob Daniels Paul Morris Mycological Technologist Wood Chemistry Analyst Group Leader Durability and Protection Durability and Protection Durability and Protection Prepared for March 2004 Recipient Agreement Number: R04-013 Research Program Date: March 2004 C. R. Daniels Janet Ingram Jean Cook Acting Project Leader Reviewed Department Manager Maximizing Natural Durability of Western Red-cedar: Beyond Thujaplicins Confidential Summary Western red-cedar (WRC, Thuja plicata Donn ex D. Don) wood was extracted sequentially with six solvents using two extraction methods. The extracts were prepared for subsequent bioassay and analysed by high performance liquid chromatography for known bioactive compound concentrations. To focus identification of the extractives on those with bioactive properties, it was necessary to develop a micro-bioassay that would allow the biological activity of the unknown compounds present to be determined using minute quantities of each extracted constituent. The initial proposed technique utilised the loss of birefringence that occurs when decay fungi disrupt the crystalline cellulose structure as wood decays. Microtome sections of perishable sapwood were treated with microgram amounts of T. plicata heartwood compounds prior to exposure to decay fungi. The efficacy of the applied extract was then to be measured relative to the birefringence loss in untreated pine sapwood. Validation of the technique required standardisation of a number of variables. Over 600 thin sections of ponderosa pine sapwood were cut and exposed to three different fungi, plus non-infected controls, under varying conditions of section thickness and orientation, media and growth conditions, viz, on grids or sterile microscope slides, with and without cover-slips, and with and without supplemental nitrogen, for six different incubation periods.
    [Show full text]
  • De Novo Sequencing and Analysis of the American Ginseng Root
    Sun et al. BMC Genomics 2010, 11:262 http://www.biomedcentral.com/1471-2164/11/262 RESEARCH ARTICLE Open Access DeResearch novo article sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis Chao Sun†1, Ying Li†1, Qiong Wu1, Hongmei Luo1, Yongzhen Sun1, Jingyuan Song1, Edmund MK Lui2 and Shilin Chen*1 Abstract Background: American ginseng (Panax quinquefolius L.) is one of the most widely used herbal remedies in the world. Its major bioactive constituents are the triterpene saponins known as ginsenosides. However, little is known about ginsenoside biosynthesis in American ginseng, especially the late steps of the pathway. Results: In this study, a one-quarter 454 sequencing run produced 209,747 high-quality reads with an average sequence length of 427 bases. De novo assembly generated 31,088 unique sequences containing 16,592 contigs and 14,496 singletons. About 93.1% of the high-quality reads were assembled into contigs with an average 8-fold coverage. A total of 21,684 (69.8%) unique sequences were annotated by a BLAST similarity search against four public sequence databases, and 4,097 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Based on the bioinformatic analysis described above, we found all of the known enzymes involved in ginsenoside backbone synthesis, starting from acetyl-CoA via the isoprenoid pathway. Additionally, a total of 150 cytochrome P450 (CYP450) and 235 glycosyltransferase unique sequences were found in the 454 cDNA library, some of which encode enzymes responsible for the conversion of the ginsenoside backbone into the various ginsenosides.
    [Show full text]
  • On Skin Cells and Mitochondria Isolated from Melanoma Induced Mouse
    Original Research Article 2019;2(1):e5 Selective Toxicity of Standardized Extracts of Persian Gulf Sponge (Irciniamutans) on Skin Cells and Mitochondria isolated from Melanoma induced mouse a b c d e Yalda Arast , Nina SeyedRazi , Melika Nazemi , Enayatollah Seydi , Jalal Pourahmad * a. Department of Occupational Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran. b. Pharmaceutical Sciences Research Center, ShahidBeheshti University of Medical Sciences, Tehran, Iran. c. Persian Gulf and Oman Sea Ecological Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran. d. Research Center for Health, Safety and Environment (RCHSE), Department of Occupational Health Engineering, Alborz University of Medical Sciences, Karaj, Iran. e. Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Article Info: ABSTRACT: Received: March 2019 Melanoma is an aggressive and highly lethal cancer with poor prognosis and Accepted: June 2019 resistance to current treatments. Apoptosis signaling is believed to be suppressed in Published online: melanoma. Evidence suggests that compounds isolated from marine sponges have June 2019 anti-cancer properties. This study was designed to evaluate the apoptotic effect of methanolic, diethyl ether, and n-hexane extracts of Irciniamutans (I.mutans) on skin mitochondria isolated from mice animal
    [Show full text]
  • A Comprehensive Review on Phyllanthus Derived Natural Products As Potential Chemotherapeutic and Immunomodulators for a Wide Range of T Human Diseases
    Biocatalysis and Agricultural Biotechnology 17 (2019) 529–537 Contents lists available at ScienceDirect Biocatalysis and Agricultural Biotechnology journal homepage: www.elsevier.com/locate/bab A comprehensive review on Phyllanthus derived natural products as potential chemotherapeutic and immunomodulators for a wide range of T human diseases Mohamed Ali Seyed Department of Clinical Biochemistry, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia ARTICLE INFO ABSTRACT Keywords: Treatment options for most cancers are still insufficient, despite developments and technology advancements. It Cancer has been postulated that the immune response to progressive tumors is insufficient due to a deficiency in afferent Phyllanthus amarus/niruri mechanisms responsible for the development of tumor-reactive T cells. Many patients treated for cancer will Phyllanthin have their cancer recurrence, often after a long remission period. This suggests that there are a small number of Hypophyllanthin tumor cells that remain alive after standard treatment(s) – alone or in combination and have been less effective Chemotherapeutic in combating metastasis that represents the most elaborate hurdle to overcome in the cure of the disease. Immunomodulation Therefore, any new effective and safe therapeutic agents will be highly demanded. To circumvent many plant extracts have attributed for their chemoprotective potentials and their influence on the human immune system. It is now well recognized that immunomodulation of immune response could provide an alternative or addition to conventional chemotherapy for a variety of disease conditions. However, many hurdles still exist. In recent years, there has been a tremendous interest either in harnessing the immune system or towards plant-derived immunomodulators as anticancer agents for their efficacy, safety and their targeted drug action and drug de- livery mechanisms.
    [Show full text]
  • Plant Terpenes – Hongjie Zhang, Minghua Qiu, Yegao Chen, Jinxiong Chen, Yun Sun, Cuifang Wang, Harry H.S
    PHYTOCHEMISTRY AND PHARMACOGNOSY – Plant Terpenes – Hongjie Zhang, Minghua Qiu, Yegao Chen, Jinxiong Chen, Yun Sun, Cuifang Wang, Harry H.S. Fong PLANT TERPENES Hongjie Zhang Program for Collaborative Research in the Pharmaceutical Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, the University of Illinois at Chicago, Illinois 60612, USA Minghua Qiu State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 P. R. China Yegao Chen Department of Chemistry, Yunnan Normal University, Kunming 650092, P. R. China Jinxiong Chen, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 P. R. China Yun Sun State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 P. R. China Cuifang Wang State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 P. R. China Harry H.S. Fong Program for Collaborative Research in the Pharmaceutical Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, the University of Illinois at Chicago, Illinois 60612, USA Keywords: Terpenes, Plants, Secondary Metabolites, Biological Activities, Biosynthetic Pathway. Contents 1. IntroductionUNESCO – EOLSS 2. Hemiterpenes 3. MonoterpenesSAMPLE CHAPTERS 4. Sesquiterpenes 5. Diterpenes 6. Sesterterpenes 7. Triterpenes 8. Polyterpenes 9. Conclusions Glossary Bibliography Biographical Sketch ©Encyclopedia of Life Support Systems (EOLSS) PHYTOCHEMISTRY AND PHARMACOGNOSY – Plant Terpenes – Hongjie Zhang, Minghua Qiu, Yegao Chen, Jinxiong Chen, Yun Sun, Cuifang Wang, Harry H.S. Fong Summary Terpenoids are hydrocarbon natural products based on five-carbon (isoprene) units as their building blocks, numbering more than 30,000 molecules having been discovered to-date.
    [Show full text]
  • Effect of Thujaplicins on the Promoter Activities of the Human SIRT1 And
    A tica nal eu yt c ic a a m A r a c t Uchiumi et al., Pharmaceut Anal Acta 2012, 3:5 h a P DOI: 10.4172/2153-2435.1000159 ISSN: 2153-2435 Pharmaceutica Analytica Acta Research Article Open Access Effects of Thujaplicins on the Promoter Activities of the Human SIRT1 and Telomere Maintenance Factor Encoding Genes Fumiaki Uchiumi1,2, Haruki Tachibana3, Hideaki Abe4, Atsushi Yoshimori5, Takanori Kamiya4, Makoto Fujikawa3, Steven Larsen2, Asuka Honma4, Shigeo Ebizuka4 and Sei-ichi Tanuma2,3,6,7* 1Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan 2Research Center for RNA Science, RIST, Tokyo University of Science, Noda-shi, Chiba-ken, Japan 3Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan 4Hinoki Shinyaku Co., Ltd, 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan 5Institute for Theoretical Medicine, Inc., 4259-3 Nagatsuda-cho, Midori-ku, Yokohama 226-8510, Japan 6Genome and Drug Research Center, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan 7Drug Creation Frontier Research Center, RIST, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan Abstract Resveratrol (Rsv) has been shown to extend the lifespan of diverse range of species to activate sirtuin (SIRT) family proteins, which belong to the class III NAD+ dependent histone de-acetylases (HDACs).The protein de- acetylating enzyme SIRT1 has been implicated in the regulation of cellular senescence and aging processes in mammalian cells. However, higher concentrations of this natural compound cause cell death.
    [Show full text]
  • TERPENES : Structural Classification and Biological Activities
    IOSR Journal Of Pharmacy And Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 16, Issue 3 Ser. I (May – June 2021), PP 25-40 www.Iosrjournals.Org TERPENES : structural classification and biological activities Florence Déclaire Mabou1*, Irma Belinda Nzeuwa Yossa2 1Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 96 Dschang, Cameroon 2Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, P.O. Box 96 Dschang, Cameroon Corresponding author : (F.D. Mabou) Abstract Terpenes is a large group of compounds found in flowers, stems, leaves, roots and other parts of numerous plant species. They are built up from isoprene units with the general formula (C5H8)n. They can be grouped into classes according to the number of isoprene units (n) in the molecule: hemiterpenes (C5H8), monoterpenes (C10H16), sesquiterpenes (C15H24), diterpenes (C20H32), triterpenes (C30H48), tetraterpenes (C40H64), and polyterpenes (C5H8)n. Most of the terpenoids with the variation in their structures are biologically active and are used worldwide for the treatment of many diseases. Many terpenoids inhibited different human cancer cells and are used as anticancer drugs such as Taxol and its derivatives. Many flavorings and nice fragrances are consisting on terpenes because of its nice aroma. Terpenes and its derivatives are used as antimalarial drugs such as artemisinin and related compounds. Meanwhile, terpenoids play a diverse role in the field of foods, drugs, cosmetics, hormones, vitamins, and so on. This chapterprovides classification, biological activities and distribution of terpenes isolated currently from different natural sources. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 04-05-2021 Date of Acceptance: 17-05-2021 --------------------------------------------------------------------------------------------------------------------------------------- I.
    [Show full text]
  • FORINTEK CANADA CORP, Western Region 6620 N.W, Marine Drive Vancouver, B.C
    FORINTEK CANADA CORP, Western Region 6620 N.W, Marine Drive Vancouver, B.C. V6T 1X2 RADIAL DISTRIBUTION OF THUJAPLICINS AND THUJIC ACID IN OLD-GROWTH AND SECOND-GROWTH WESTERN RED CEDAR (THUJA PLICATA DONN) by J.R, Nault July 1986 Project No, 04-55-43-010 J,R. Nault R.M, Kellogg Research Scientist Manager Wood Science Department Wood Science Department NOTICE This report is an internal Forintek document, for release only by permission of Forintek Canada Corp. This distribution does not constitute publication. The report is not to be copied for, or circulated to, persons or parties other than those agreed to by Forintek. Also, this report is not to be cited, in whole or in part, unless prior permission is secured from Forintek Canada Corp. Neither Forintek Canada Corp., nor its members, nor any other persons acting on its behalf, make any warranty, express or implied, or assume any legal responsibility or liability for the completeness of any information, apparatus, product or process disclosed, or represent that the use of the disclosed information would not infringe upon privately owned rights. Any reference in this report to any specific commercial product, process or service by tradename, trademark, manufacturer or otherwise does not necessarily constitute or imply its endorsement by Forintek Canada Corp. or any of its members. SUMMARY A capillary column gas chromatographic method for analyzing thujaplicins and related chemicals in extractive mixtures of Thuja plicata Donn was developed. The method involved derivatization of the extracts with diazomethane to form a complex mixture of methyl ethers and methyl esters.
    [Show full text]
  • The Science of Flavonoids the Science of Flavonoids
    The Science of Flavonoids The Science of Flavonoids Edited by Erich Grotewold The Ohio State University Columbus, Ohio, USA Erich Grotewold Department of Cellular and Molecular Biology The Ohio State University Columbus, Ohio 43210 USA [email protected] The background of the cover corresponds to the accumulation of flavonols in the plasmodesmata of Arabidopsis root cells, as visualized with DBPA (provided by Dr. Wendy Peer). The structure corresponds to a model of the Arabidopsis F3 'H enzyme (provided by Dr. Brenda Winkel). The chemical structure corresponds to dihydrokaempferol. Library of Congress Control Number: 2005934296 ISBN-10: 0-387-28821-X ISBN-13: 978-0387-28821-5 ᭧2006 Springer ScienceϩBusiness Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceϩBusiness Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America (BS/DH) 987654321 springeronline.com PREFACE There is no doubt that among the large number of natural products of plant origin, debatably called secondary metabolites because their importance to the eco- physiology of the organisms that accumulate them was not initially recognized, flavonoids play a central role.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin Et Al
    USOO8486374B2 (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin et al. (45) Date of Patent: Jul. 16, 2013 (54) HYDROPHILIC, NON-AQUEOUS (56) References Cited PHARMACEUTICAL CARRIERS AND COMPOSITIONS AND USES U.S. PATENT DOCUMENTS 1,159,250 A 11/1915 Moulton 1,666,684 A 4, 1928 Carstens (75) Inventors: Dov Tamarkin, Maccabim (IL); Meir 1924,972 A 8, 1933 Beckert Eini, Ness Ziona (IL); Doron Friedman, 2,085,733. A T. 1937 Bird Karmei Yosef (IL); Alex Besonov, 2,390,921 A 12, 1945 Clark Rehovot (IL); David Schuz. Moshav 2,524,590 A 10, 1950 Boe Gimzu (IL); Tal Berman, Rishon 2,586.287 A 2/1952 Apperson 2,617,754 A 1 1/1952 Neely LeZiyyon (IL); Jorge Danziger, Rishom 2,767,712 A 10, 1956 Waterman LeZion (IL); Rita Keynan, Rehovot (IL); 2.968,628 A 1/1961 Reed Ella Zlatkis, Rehovot (IL) 3,004,894 A 10/1961 Johnson et al. 3,062,715 A 11/1962 Reese et al. 3,067,784. A 12/1962 Gorman (73) Assignee: Foamix Ltd., Rehovot (IL) 3,092.255. A 6, 1963 Hohman 3,092,555 A 6, 1963 Horn 3,141,821 A 7, 1964 Compeau (*) Notice: Subject to any disclaimer, the term of this 3,142,420 A 7/1964 Gawthrop patent is extended or adjusted under 35 3,144,386 A 8/1964 Brightenback U.S.C. 154(b) by 1180 days. 3,149,543 A 9, 1964 Naab 3,154,075 A 10, 1964 Weckesser 3,178,352 A 4, 1965 Erickson (21) Appl.
    [Show full text]
  • Thujaplicin Enhances TRAIL-Induced Apoptosis Via the Dual Effects of XIAP Inhibition and Degradation in NCI-H460 Human Lung Cancer Cells
    medicines Article β-Thujaplicin Enhances TRAIL-Induced Apoptosis via the Dual Effects of XIAP Inhibition and Degradation in NCI-H460 Human Lung Cancer Cells Saki Seno 1, Minori Kimura 1, Yuki Yashiro 1, Ryutaro Kimura 1, Kanae Adachi 1, Aoi Terabayashi 1, Mio Takahashi 1, Takahiro Oyama 2, Hideaki Abe 2, Takehiko Abe 2, Sei-ichi Tanuma 3 and Ryoko Takasawa 1,* 1 Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; [email protected] (S.S.); [email protected] (M.K.); [email protected] (Y.Y.); [email protected] (R.K.); [email protected] (K.A.); [email protected] (A.T.); [email protected] (M.T.) 2 Hinoki Shinyaku Co. Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; [email protected] (T.O.); [email protected] (H.A.); [email protected] (T.A.) 3 Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-4-7124-1501 β Abstract: AbstractBackground: -thujaplicin, a natural tropolone derivative, has anticancer effects on various cancer cells via apoptosis. However, the apoptosis regulatory proteins involved in this Citation: Seno, S.; Kimura, M.; process have yet to be revealed. Methods: Trypan blue staining, a WST-8 assay, and a caspase-3/7 Yashiro, Y.; Kimura, R.; Adachi, K.; activity assay were used to investigate whether β-thujaplicin sensitizes cancer cells to TNF-related Terabayashi, A.; Takahashi, M.; apoptosis-inducing ligand (TRAIL)-mediated apoptosis.
    [Show full text]
  • Alternative Treatments for Cancer Prevention and Cure [Part 1]
    Advances in Pharmacology and Clinical Trials ISSN: 2474-9214 Alternative Treatments for Cancer Prevention and Cure [Part 1] Abdul Kader Mohiuddin* Review Article Secretary & Treasurer Dr M. Nasirullah Memorial Trust, Tejgaon, Dhaka, Bangladesh Volume 4 Issue 4 Received Date: September 02, 2019 *Corresponding author: Abdul Kader Mohiuddin, Secretary & Treasurer Dr M Published Date: October 17, 2019 Nasirullah Memorial Trust, Tejgaon, Dhaka, Bangladesh, Tel: +8802-9110553; Email: DOI: 10.23880/apct-16000168 [email protected] Abstract Many lay people along with some so called “key opinion leaders” have a common slogan “There's no answer for cancer”. Again, mistake delays proper treatment and make situation worse, more often. Compliance is crucial to obtain optimal health outcomes, such as cure or improvement in QoL. Patients may delay treatment or fail to seek care because of high out-of- pocket expenditures. Despite phenomenal development, conventional therapy falls short in cancer management. There are two major hurdles in anticancer drug development: dose-limiting toxic side effects that reduce either drug effectiveness or the QoL of patients and complicated drug development processes that are costly and time consuming. Cancer patients are increasingly seeking out alternative medicine and might be reluctant to disclose its use to their oncology treatment physicians. But there is limited available information on patterns of utilization and efficacy of alternative medicine for patients with cancer. As adjuvant therapy, many traditional medicines shown efficacy against brain, head and neck, skin, breast, liver, pancreas, kidney, bladder, prostate, colon and blood cancers. The literature reviews non-pharmacological interventions used against cancer, published trials, systematic reviews and meta-analyses.
    [Show full text]