A Dissertation

Entitled

Synthesis and Characterization of Lewis Acidic Aluminum and Gallium Complexes

By

Nicholas Bruck Kingsley

Submitted as a partial fulfillment of the requirements for

the Doctor of Philosophy Degree in Chemistry

Advisor: Mark R. Mason, Ph.D.

College of Graduate Studies

The University of Toledo

August 2009

An abstract of

Synthesis and Characterization of Lewis Acidic Aluminum and Gallium Complexes

Nicholas Bruck Kingsley

Submitted in partial fulfillment of the requirements for

the Doctor of Philosophy Degree in Chemistry

The University of Toledo

August 2009

Di- and tri(3-methylindolyl)methanes and related pyrrolyl-based ligands have strong electron-withdrawing ability and reduced N→M π-donation when coordinated in the η1–N bound mode since the lone pair is delocalized over the aromatic system. Thus, complexes based on these frameworks are potentially ideal for generation of tripodal monomeric electrophilic metal centers. This dissertation reports the synthesis and characterization of Lewis acidic aluminum and gallium complexes using di- and tri(3-methylindolyl)methanes, tris(pyrrolyl-α-methyl)amine, and isonitriles.

In chapter 2, the synthesis and characterization of the first extensive series of isonitrile complexes of aluminum and gallium are reported. The new complexes are

t t i t R3M•C≡N Bu (M = Al: R = Bu (1a), Me (1c), Bu (1e), Et (1f); M = Ga: R = Bu (1b),

t i Me (1d)); R3M•C≡N(2,6-dimethylphenyl) (M = Al: R = Bu (2a), Me (2c), Bu (2e), Et

ii

(2f); M = Ga: R = tBu (2b), Me (2d)). All 12 of the new complexes have been characterized by 1H and 13C NMR spectroscopy, and seven of these complexes (1a, 1b,

1d, 2a, 2b, 2c, and 2d) have been characterized by X-ray crystallography, which confirms the structures as donor-acceptor complexes with one isonitrile bound to a metal trialkyl. These isonitrile complexes serve as models of unknown non-classical CO complexes of aluminum and gallium, and are presumed to model the intermediates for

CO insertion into Al–C and Ga–C bonds. Enthalpies of formation for these complexes were determined using Isothermal Titration Calorimetry (ITC) in collaboration with Drs.

Bob Flowers and Joe Teprovich at Lehigh University.

In chapter 3, the synthesis and characterization of group 13 complexes with 3- methylindole (L1), di(3-methylindolyl)phenylmethane (L2), and tri(3-

3 methylindolyl)methane (L ) are reported. Within this report are the first examples of μ2-

η1:η1-N-indolyl moieties bridging group 13 elements, specifically aluminum in the

1 i 2 3 complexes; [L AlR2]2 (R = Me (7a), Et (7b), Bu (7c)), (L Al2Me4) (8), (L Al3R6) (R =

3 i 1 Me (9a), Et (9b)), (L Al3H Bu5) (9c). These complexes have been characterized by H and 13C NMR spectroscopy and elemental analysis. X-ray crystallography confirmed the presence of the bridging 3-methylindolyl group in 7a, 8, 9a, 9b, and 9c where there is one

3-methylindolyl moiety per aluminum. Complexes 7a-7c are observed as isomers in solution with a 60:40 ratio of anti:syn. NMR spectroscopic data suggests interconversion between syn and anti isomers for 7a-7c in solution.

In chapter 4, the synthesis and spectroscopic characterization of four- and five- coordinate complexes of aluminum and gallium are reported. This includes the synthesis of four-coordinate anionic aluminum and gallium complexes of tri(3-

iii methylindolyl)methane, four-coordinate neutral aluminum complexes of tri(3- methylindolyl)imidazolylmethane (L4), and five-coordinate aluminum and gallium complexes of tris(pyrrolyl-α-methyl)amine (L5). These complexes include:

3 t [(L MX)][Li(THF4)] (M = Al: X = Cl (3a), H (4a), D (4b), Bu (4c); M = Ga: X = Cl

4 i t 5 (3b)); (L AlR) (R = Me (5a), Et (5b), Bu (5c), Bu (5d); (L M(HNMe2)) (M = Al (6a),

Ga (6b)). These complexes have been characterized by 1H and 13C NMR spectroscopy.

X-ray crystallography confirmed the structures of 3b, 6b and 7a. These complexes serve as precursors to potential three- or four-coordinate neutral, Lewis acidic, group 13 compounds although initial attempts to generate these were unsuccessful.

iv

This dissertation is dedicated to

My wife and daughter whose constant love

and support made this a reality

v

Acknowledgement

I would like to express my gratitude and give thanks to my advisor Dr. Mark R.

Mason for his support, encouragement and guidance. His guidance and advice have helped me immensely in my professional development as a scientist.

I would also like to thank Drs. Joseph Schmidt, Ron Viola, and Viranga

Tillekeratne for serving on my committee and providing me valuable guidance in professional and personal matters.

I would like to give a great acknowledgement to Dr. Kristin Kirschbaum. Her expertise in X-ray crystallography and her immense patience has been extremely appreciated and necessary for me to complete the structures that are included in this thesis. She has a very busy schedule and her willingness to set aside time was of great help to me.

Dr. Yong-Wah Kim provided me with help in NMR spectroscopy. Despite a very busy schedule, he would help with any questions that I had for running different experiments.

I would like to thank Steve Moder, scientific glass blower, for his help in repairing and fabricating glassware used in my work and in my teaching lab. It is his abilities that allowed me to do some of the experiments that I have done. Also I would like to thank Char and Pam in the chemistry office and Tony and Steph in the Chemistry stockroom for their support in my research and teaching.

Acknowledgement is needed for my present and past group members, Dr. Bassam

Fneich, Bingxu Song, Anirban Das, Ryan Rondo, Christopher Yeisley, Adam Keith,

vi

Emmanuel Tive, Jessica Davis, Laura Sieg, Andrew Ramos, and David Holtzapple for their help and support.

I am grateful to The University of Toledo and the National Science Foundation for financial support. The material in chapter 2 is based upon work supported by the

National Science Foundation under Grant No. 0407542 (awarded to Dr. Mark R. Mason).

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science

Foundation.

I would like to thank family and friends for the support they have given for the past 5 years. Finally I would especially like to thank my wife Erin and daughter Meara.

Without their continued support and understanding I would not be where I am at right now.

vii

Table of Contents

Abstract ii

Dedication v

Acknowledgements vi

Table of Contents viii

List of Appendix Contents x

List of Figures xi

List of Tables xiv

List of Schemes xv

List of Abbreviations xvi

Chapter 1 Group 13 Lewis Acids: Synthetic Routes and Applications

1.1 Introduction 1

1.2 General Structural Features and Applications of MAO 2

1.3 Group 13 Perfluoroaryl Complexes and Derivatives 5

1.4 Triamidoamine Group 13 Complexes 12

1.5 Tripodal Triamine Group 13 Complexes 16

1.6 Multidentate Lewis Acids 18

1.7 Research Statement 20

Chapter 2 Isonitrile Complexes of Trialkylaluminum and Trialkylgallium

Reagents

2.1 Introduction 21

2.2 Experimental 26

2.3 X-ray Crystallography 33

viii

2.4 Results and Discussion 37

2.4.1 Preparation of Isonitrile Complexes 37

2.4.2 IR Spectroscopy 40

2.4.3 Molecular Structures 42

2.4.4 Reactivity of Donor-Acceptor Complexes 44

2.4.5 Isothermal Titration Calorimetry 48

2.6 Conclusions 52

Chapter 3 Confirmation of Bridging N-Indolyls in 3-Methylindole and Di- and Tri(3-methylindolyl)methane Complexes of Dialkylaluminum Moieties

3.1 Introduction 53

3.2 Experimental 57

3.3 X-ray Crystallography 65

3.4 Results and Discussion 66

3.4.1 Preparation of Di- and Tri(3-methylindolyl)methanes 66

i 3.4.2 Reactions of 3-Methylindole and R3Al (R = Me, Et, Bu) 67

3.4.3 Variable Temperature NMR of 7a and 7b 76

3.4.4 Reaction of Di(3-methylindolyl)phenylmethane and Me3Al 78

3.4.5 Reactions of Tri(3-methylindolyl)methane and R3Al 80

(R = Me, Et, iBu)

3.5 Conclusions 90

Chapter 4 Group 13 Complexes of Di- and Tri(3-methylindolyl)methanes and Tris(pyrrolyl-α-methyl)amine

4.1 Introduction 91

ix

4.2 Experimental 95

4.3 X-ray Crystallography 103

4.4 Results and Discussion 106

4.4.1 Synthesis of [{tri(3-methylindolyl)methane}MX] 106

4.4.2 Reactivity of 3a-4b 110

4.4.3 Synthesis of (1-CH3-2-C3H2N2)HC(3-CH3C8H4N)2AlR 112 i t (R = Me, Et, Bu, Bu)

4.4.4 Synthesis of (TPA)M(HNMe2) (M = Al, Ga) 116

4.5 Conclusions 119

Chapter 5 Concluding Remarks 120

References 123

Appendix CIF Files for Compounds

t t CIF File for Bu3Al·C≡N Bu 131

t t CIF File for Bu3Ga·C≡N Bu 141

t CIF File for Me3Ga·C≡N Bu 150

CIF File for Me3Al·C≡N(2,6-Me2C6H3) 157

CIF File for Me3Ga·C≡N(2,6-Me2C6H3) 166

t CIF File for Bu3Al·C≡N(2,6-Me2C6H3) 175

t CIF File for Bu3Ga·C≡N(2,6-Me2C6H3) 183

CIF File for [3-methylindolyl(AlMe2)]2 191

CIF File for [{di(3-methylindolyl)phenylmethane}(AlMe2)2] 203

CIF File for [{tri(3-methylindolyl)methane}(AlMe2)3] 219

CIF File for [{di(3-methylindolyl)imidazolylmethane}AlEt] 231

CIF File for [(tris(pyrrolyl-α-methyl)amine)Al(HNMe2)] 245

x

List of Figures

Figure 1.1 Preorganization of trigonal monopyramidal geometry. 17

Figure 2.1 Isonitrile complexes of group 13 trialkyls reported herein. 26

Figure 2.2 ORTEP diagrams of 1a, 1b and 1d. Thermal ellipsoids are drawn 43

at the 30% probability level. Hydrogen atoms are omitted for

clarity.

Figure 2.3 ORTEP diagrams of 2a-d. Thermal ellipsoids are drawn at the 43

30% probability level. Hydrogen atoms are omitted for clarity.

Figure 2.4 ORTEP diagram of 3. Thermal ellipsoids are drawn at the 30% 46

probability level. Most hydrogen atoms are omitted for clarity.

t i Figure 2.5 ITC thermogram for titration of BuN≡C with Bu3Al 50

(Top) Heat change associated with addition of 5 μL aliquots

t i of BuN≡C (0.010 M) to Bu3Al (1.4 mL, 0.10 M) at 25 °C.

(Bottom) Binding isotherm.

1 1 1 Figure 3.1 Binding descriptions for η and μ2-η :η coordination modes. 54

Figure 3.2 ORTEP diagram of N-sodioindole•TMEDA generated from CIF 54

file from Cambridge Crystallographic Database.

Figure 3.3 Bridging pyrrolidine and monomeric pyrrole complexes isolated 55

by Smith and Cowley.

Figure 3.4 Bridging dialkylaluminum complexes of di(3-methylindolyl) 56

methanes.

Figure 3.5 Numbering scheme for indole . 58

Figure 3.6 gCOSY spectrum of 7c in benzene-d6 from 7.0 ppm to 8.4 ppm. 71

xi

Figure 3.7 HMQC spectrum of 7c in benzene-d6 from 116 to 134 ppm. 72

Figure 3.8 ORTEP diagram of 7a. Both syn isomers of the whole 73

disorder are shown. Thermal ellipsoids are drawn at the 30%

probability level. Hydrogen atoms are omitted for clarity.

1 Figure 3.9 Variable-temperature H NMR plot of 7a in CDCl3 from 77

-10 to 60 °C.

1 Figure 3.10 Variable-temperature H NMR plot of 7b in CDCl3 from 77

20 to 60 °C.

Figure 3.11 ORTEP diagram of 8. Thermal ellipsoids are drawn at the 30% 79

probability level. Hydrogen atoms are omitted for clarity.

Figure 3.12 ORTEP diagram of 9a. Thermal ellipsoids are drawn at the 30% 82

probability level. Hydrogen atoms are omitted for clarity.

Figure 3.13 ORTEP diagram of 9b. Thermal ellipsoids are drawn at the 30% 85

probability level. Hydrogen atoms are omitted for clarity.

1 Figure 3.14 H NMR spectrum of aliphatic region of 9c in benzene-d6 from 87

─2.0 ppm to 2.6 ppm.

Figure 3.15 ORTEP diagram of 9c. Thermal ellipsoids are drawn at the 30% 88

probability level. Hydrogen atoms are omitted for clarity.

Figure 4.1 1H NMR spectrum of 3a in chloroform-d. 107

Figure 4.2 ORTEP diagram of 3b. Thermal ellipsoids are drawn at the 30% 108

probability level. Hydrogen atoms and disordered lithium cation

are omitted for clarity.

Figure 4.3 1H NMR spectrum of 5d in chloroform-d. 114

xii

Figure 4.4 ORTEP diagram of 5b. Thermal ellipsoids are drawn at the 30% 115

probability level. Hydrogen atoms are omitted for clarity.

Figure 4.5 ORTEP diagram of 6a. Thermal ellipsoids are drawn at the 30% 118

probability level. Hydrogen atoms are omitted for clarity.

xiii

List of Tables

Table 1.1 Calculated dissociation energies (kJ mol-1) of the gas phase 11

complexes (RI-BP86/def2-TZVPP level of theory)

Table 2.1 Crystal data and structure refinement details 35

Table 2.2 C≡N stretching frequencies and coordination shifts for 1a-1f 41

and 2a-2f

Table 2.3 Select bond distances and angles for 1a, 1b, 1d, and 2a-2d 44

Table 2.4 Reactivity of complexes in C6D6 45

Table 2.5 Enthalpies of complexation for complexes of Me3Al and Et3Al 49

Table 2.6 ITC thermodynamic data summary 51

Table 3.1 Crystal data and structure refinement details 66

Table 3.2 Select bond distances and angles for C22H28Al2N2, 7a 74

Table 3.3 Select bond distances and angles for C29H32Al2N2, 8 80

Table 3.4 Select bond distances and angles for 9a 83

13 1 Table 3.5 C and H NMR chemical shifts for alpha nuclei in benzene-d6 89

Table 4.1 Crystal data and structure refinement details 105

Table 4.2 Chloride abstraction reactions 111

Table 4.3 Select bond distances and angles for 5b 115

Table 4.4 Select bond distances and angles for 6a 119

xiv

List of Schemes

Scheme 2.1 Decomposition pathways of X3M•C≡NR 25 (M = Al, Ga, In; R = H, CH3; X = H, CH3) as proposed by Timoshkin and Schaefer

t Scheme 2.2 β-Hydride elimination of Bu3Al at elevated temperatures 47

xv

LIST OF ABBREVIATIONS

2–D Two Dimensional

CCD Charge Couple Device

CDCl3 Chloroform-d

C6D6 Benzene-d6

CIF Crystallographic Information File

DIBAL Diisobutylaluminumhydride g-COSY Gated Correlation Spectroscopy

ES Electrospray g-HMBC gated-Heteronuclear Multiple Bond Coherence g-HMQC gated-Heteronuclear Multiple Quantum Coherence

HRMS High-resolution Mass Spectrometry

IR Infrared

ITC Isothermal Titration Calorimetry

MAO Methylaluminoxanes

Mes* 2,4,6-tri(tert-butyl)phenyl

MOCVD Metal Organic Chemical Vapor Deposition

NMR Nuclear Magnetic Resonance

NOESY Nuclear Overhauser Enhancement Spectroscopy

ORTEP Oak-Ridge Thermal Ellipsoid Parameters

TEAL Triethylaluminum

THF Tetrahydrofuran

xvi

TIBAL Triisobutylaluminum

TREN Tris-2-aminoethylamine

TPA Tris(pyrrolyl-α-methyl)amine

xvii

Chapter One

Group 13 Lewis Acids: Synthetic Routes and Applications

1.1 Introduction

Organoboron, -aluminum, and -gallium Lewis acids have found utility as reagents in organic synthesis and for the polymerization of olefins and polar monomers.1-4 Strong

Lewis acids, the most common being E(C6F5)3 (E = B, Al, Ga) and methylaluminoxanes

(MAO), have been used as and moisture scavengers, catalysts, cocatalysts, and

2 stabilizers for various types of catalytic processes. The high Lewis acidity of E(C6F5)3 is due to the inclusion of the three strong electron-withdrawing pentafluorophenyl ligands.

When aluminum compounds are used as powerful Lewis acid catalysts for organic transformations, mechanistic studies show that trigonal bipyramidal (TBP) alumatranes are the active intermediates.5,6 Perfluoroaryl ligands are costly and MAO is used in large excess (up to 1000 fold) which greatly contributes to the cost of a particular catalytic system leading to interest in the design and synthesis of new group 13 Lewis acids.

Complexes of aluminum and gallium alkyls with nitrogen-donor ligands are widely being investigated for use in organic synthesis and . The Lewis acidic nature of the metal atom allows these complexes to act as catalysts and cocatalysts for reactions such as the polymerization of ethylene.7 Cationic complexes of aluminum are

1 of interest because of the enhanced Lewis acidity at the aluminum center versus their neutral analogs. Low-coordinate aluminum cationic species are more electrophilic, making them better acceptors of electron donors. The stability of the complexes formed depends on both the counter anion as well as the ligand. For example, weak Lewis bases such as NMe2Ph can sometimes be used to stabilize the formation of cationic aluminum alkyls.

In the following sections, group 13 Lewis acids and their uses will be discussed.

Although the uses of methylaluminoxanes have been reviewed,2,8,9 there will be a brief discussion because of their pertinence to this review. The uses of perfluoroarylboranes and alanes as Lewis acids along with Lewis acidic aluminum compounds that are used as catalysts for ethylene polymerization will also be reviewed. Emphasis shall be placed on group 13 complexes bearing triamine and tetraamine ligand frameworks and their derivatives. These complexes have been designed to increase the Lewis acidity of the metal center, serve as a framework and are closely related to the complexes discussed in this dissertation.

Cationic aluminum complexes as well as Salen complexes of group 13 elements have been extensively reviewed by Atwood.10 The complexes discussed in that review have been excluded from this discussion. A comprehensive review on structurally characterized organo-aluminum compounds, including those with N-donor ligands, has been carried out by Holloway and Melnik.11

1.2 General Structural Features and Applications of MAO

The discovery of alkylaluminoxanes, more specifically MAO, has proved very important for metal-catalyzed olefin polymerization. Alkylaluminoxanes, which are

2 oligomeric compounds that have –Al(R)–O–subunits, have been known since the late

1950’s and are active for the polymerization of monomers such as epoxides and lactones.12 The most active alkylaluminoxane (when combined with group 4 metallocenes) for polymerization of ethylene and propylene is methylaluminoxane.

Metallocenes that are activated by alkylaluminum halides have poor activity for the polymerization of propylene and higher α-olefins, limiting their use in metallocene catalytic systems. A plethora of research was done in this field to increase the activity and performance of these systems. The first breakthrough came when Reichert and

Meyer13 found rate enhancement for ethylene polymerization upon addition of water to the Cp2ZrEtCl/AlEtCl2 system. Similar results have also been reported for

Cp2ZrCl2/AlMe2Cl systems and data suggests that the formation of ClMeAl–O–AlClMe dimer, a stronger Lewis acid than Me2AlCl, is responsible for the rate increase. The major breakthrough came when Sinn and Kaminsky reported that the addition of water to

14 an inactive Cp2ZrMe2/AlMe3 system gave high activity for ethylene polymerization.

These results led to resurgence in research on Ziegler-Natta catalysts and began the metallocene and single-site polymerization catalysis era.15-23

MAO is prepared by controlled hydrolysis of AlMe3 and is usually assigned the

16 general formula [–Al(Me)–O–]n where n ≈ 5-20. Despite extensive research, the exact composition and molecular structure of MAO is not well understood. There are many proposed structures for MAO which include linear chains (1), cyclic rings (2), and two- or three-dimensional clusters (3, 4).24,25 It is believed that MAO has the general formula

23 [AlO0.8-0.75(CH3)1.4-1.5]n. Work by Sinn and coworkers suggests that the major component of MAO is a tetrameric species with the basic formula [Al4O3(CH3)6]4. This

3

Me

Me O Al Al O Me O Al Me Al O AlMe n 2 Al O Me Me n 1 2 t Me Me tBu Bu Me Al Al O Al Al Al O O O O t O Al Bu t Al O O Al Al Al Bu O O O Me Al Al Me Me O 3 tBu tBu 4

tetrameric compound has a CH3:Al ratio of 1.5 and is in agreement with the accepted general formula for MAO.

Based on NMR spectroscopic studies of MAO, it is postulated that there is cage formation under mild conditions while the aluminum centers are mostly tetracoordinated.

Even with its synthetic usefulness and the extensive research done in this area, the active structure of MAO is still not completely characterized because MAO undergoes structural interconversion in solution. There are also two types of Me3Al in solutions of

MAO, free Me3Al and Me3Al that is associated in a cluster. The different types of Me3Al undergo rapid exchange in solution.

MAO’s catalytic activity varies with storage duration and method of synthesis, therefore many attempts to modify MAO over the years have been explored. Controlled hydrolysis of triethylaluminum (TEAL) and triisobutylaluminum (TIBAL) in similar fashion to the synthesis of MAO has yielded promising results. These TEAL and TIBAL derivatives of MAO have much longer shelf life and improved solubility in aliphatic

4 solvents but they are not as active in metallocene catalyzed olefin polymerization.26

Commercially available products prepared by including a mixture of triisobutylaluminum and triethylaluminum during the hydrolysis process show increased shelf life and promising activity for polymerization. Other modifications to MAO include the incorporation of B(C6F5)3 and Al(C6F5)3 into solid MAO. When these mixtures are heated in solution there is B/Al and Al/Al ligand exchange and the incorporation of pentafluorophenyl groups into MAO. The activity of these derivatives has a 4-7 fold increase for ethylene polymerization when compared to similar runs with untreated

MAO.27

There are drawbacks to the use of MAO as an activator for metallocene catalyzed olefin polymerization. A high ratio of MAO to catalyst (102:1 to 104:1) is needed to achieve good activity, adding to the high cost of the cocatalysts and high ash content

(Al2O3) in the polymer that is produced. High concentrations of cocatalyst along with the unknown and complicated structural motifs of MAO render the characterization of catalytically active species increasingly difficult. Consequently, the activation process and nature of the catalytically active species are not well understood.

1.3 Group 13 Perfluoroaryl Complexes and Derivatives

The imperfect nature of MAO as an activator in metallocene-mediated olefin polymerization led to the investigation of other strong Lewis acids as activators for such processes. One of the more important discoveries was the use of perfluoroaryl boranes as activators for olefin polymerization pre-catalysts.

The first pentafluorophenyl substituted boranes were introduced over 40 years ago

28 and were prepared using C6F5SnMe3 as a transmetallation reagent with BCl3. This

5 family of compounds was extensively studied at the time but did not become prominent

29 until B(C6F5)3 was found to abstract anionic moieties from transition metals. This discovery expanded the chemistry of a wide variety of electrophilic organotransition metal cations for use in the production of high quality polyolefin resins and in the production of certain plastics.30-32 These discoveries have led to a renewed interest in

B(C6F5)3, not only as a catalyst activator, but also as a strong Lewis acid for other purposes.

The compound B(C6F5)3 was first synthesized in the early 1960’s and work by

Massey and Park showed very high thermal stability and high affinity for very weak

Lewis bases.28,33 At the time when perfluoroaryl boranes were discovered it was known that such compounds were not stable due to strong thermodynamic driving force for the formation of B–F bonds. The pentafluorophenyl moiety, however, is resistant to that pathway and B(C6F5)3 is stable to 270 °C with minimal decomposition. Unlike haloboranes, the B–C bonds in B(C6F5)3 are more stable to protic acids leading to a larger range of tolerance for chemical reactivity. The aryl groups also provide steric protection to the center and confer crystallinity to the different adducts that can be formed.

This allowed many complexes with these Lewis acids to be characterized structurally, a feature not available with MAO. Because the use of B(C6F5)3 and some related boranes in olefin polymerization applications have been reviewed extensively,2,34,35 that aspect will be left out of this chapter. Instead comments on these complexes, Lewis acidity, and recent modifications will be discussed along with a few other uses.

The catalytic activity seen using B(C6F5)3 and its aluminum and gallium analogs as abstraction reagents is related to the strength of their Lewis acidity. According to Roof

6 and coworkers,36 catalytic activities for alkene polymerizations are highly dependent on the type of anion used, and activity increases as the anion becomes less coordinated to the cationic metal center. The weak nucleophilicity of fluorine atoms and the strong electron-withdrawing nature of C6F5 groups are major contributors to the weakly coordinating ability of the anions formed by abstractions with Lewis acids. Strauss has reviewed the requirements for compounds to be a good weakly coordinating anion.37

This weak coordinating ability of the resulting borane anion is of interest because some of the strongest known Lewis acids are highly reactive with the cationic metal centers generated during metallocene-mediated olefin polymerization. Simple

trihaloboranes (BF3 and BCl3) irreversibly transfer F‾ or Cl‾ to the metal center poisoning the catalyst and stopping polymerization. Marks38 proposed that the two key features for effective cocatalysts are high native Lewis acidity of electron-deficient centers and lack of labile nucleophilic substituents that might serve as catalyst poisons. He proposes that in the absence of halogens or other donors, “base-free” cationic metallocenes can form μ-

Me dinuclear species (5) which stabilizes the highly electrophilic metal center and unlike base coordination does not poison the catalyst.

Me Me H H Zr C Zr MeB(C6F5)3 H

5

7

Lewis acidity of the cocatalyst plays a key role in the activation and activity of the metallocene catalysts. This means that quantifying Lewis acidity of the perfluoroaryl borane reagents along with other Lewis acids is of great importance. Several methods have been developed to quantify Lewis acidity of perfluoroaryl boranes using thermodynamic data,39,40 chemical reactivity,41 and spectroscopic data.42 White43 and

F F F F F F

B F F O B F

F F F F F F 3 n 3-n

6 7 n = 1 8 n = 2 9 n = 3

31 1 coworkers used P NMR chemical shifts of Et3PO and the H NMR chemical shifts of crotonaldehyde upon binding of the oxygen atom to the Lewis acid to estimate the Lewis acidity of a series of B(C6F5)3 derivatives. The validity of these methods is widely accepted, and there is correlation between Δδ and the strength of the Lewis acid.44,45

White43 synthesized a series of compounds 6-9 and tested the change in Lewis acidity as the number of aryloxy arms increased. The correlation of increasing hard Lewis acidity of compounds 7-9 compared to 6 with the increasing number of aryloxy arms was observed. The explanation for such a phenomenon resides in the presence of electron- withdrawing C6F5 groups and electronegative oxygen substituents in borinic and boronic esters of this type.

8

With the increased interest in Lewis acidic organoboranes, a plethora of borane derivatives have been synthesized. Compounds 10-14 represent a few examples.46 Marks has extensively studied these fluorinated arylborane complexes that he considers to be

“superacidic”. He claims that according to reaction enthalpies, compounds in series 14 are as strong, in terms of Lewis acidity, as BCl3 and SbCl5 which are considered two of the strongest inorganic Lewis acids.

F F F F F F F F F B(C6F5)2

F F B B F B(C6F5)2 F F F F 3 F

F F 11 12 F 3 10 F F X F F F F F F B F F B F F F B F F X F F F F F X = Cl, alkyl, C6F5 F 13 14

With the past and present interest 47 in perfluoroaryl boranes and their derivatives, there has been much research done in expanding the same type of chemistry to other

48,49 group 13 metals. The C6F5 derivatives of Ga and Al have been synthesized, along with other derivatives of fluorinated group 13 compounds.50,51 Some of these derivatives show incredibly strong Lewis acidic properties and their chemistry has been extensively studied.27,51-55 9

Despite the wide use and extensive studies of group 13 Lewis acids, there is still debate over the Lewis acid strength of such compounds. The trihalides of boron, aluminum, and gallium are commonly accepted to be very strong Lewis acids, but discrepancy exists in establishing the strength of similar Lewis acids when going down

27,52,56 the group 13 elements from B to Ga. Certain studies have shown that B(C6F5)3 is a much stronger Lewis acid than Al(C6F5)3, and that the C6F5 moiety only marginally increases Lewis acidity over the trihalides.27 In particular Marks and coworkers claim that Al(C6F5)3 has a much lower methide affinity when compared to B(C6F5)3 based on calorimetry and NMR studies.52 With many experimental studies showing these trends, evidence exists that such studies are misleading. The stability of isolated group 13 perfluorophenyls is an example. During the preparation of Al(C6F5)3 the complex is most stable when isolated as a toluene or benzene adduct.51 The THF adduct of this compound

◦ 27 is stable up to 200 C with only slight decomposition. The compound Ga(C6F5)3 shows similar chemistry with the Et2O adduct being stable and purified by sublimation.

B(C6F5)3 does not form adducts with benzene or toluene and its Et2O adduct dissociates at 60 °C under vacuum. This experimental data could be interpreted as B(C6F5)3 being a weaker Lewis acid than its Al and Ga analogues. Recent gas phase DFT calculations57

(summarized in Table 1) have shown agreement with the B(C6F5)3 and boron compounds being weaker Lewis acids than Al and Ga analogues. The study concludes that the trend in Lewis acidity is Al > Ga > B and that the C6F5 moiety strongly increases Lewis acidity in these complexes compared to the group 13 trihalides ECl3.

10

Table 1.1 Calculated dissociation energies (kJ mol-1) of the gas phase complexes (RI-BP86/def2-TZVPP level of theory)

Donor ______

Acceptor NH3 H2O PH3 H‾ CH3‾ F‾

BCl3 89.3 15.8 13.5 451.2 458.7 426.5

B(C6H5)3 45.8 10.1 ---- 383.8 367.7 344.7

B(C6H4F)3 40.7 4.8 ---- 405.2 389.1 366.0

B(C6F5)3 97.1 36.5 24.0 528.1 487.5 454.0

AlCl3 143.9 97.4 66.4 482.7 496.8 523.0

Al(C6H5)3 94.4 63.8 34.8 395.6 401.1 442.7

Al(C6H4F)3 94.6 63.7 34.9 420.2 425.9 467.2

Al(C6F5)3 145.5 112.0 63.9 513.6 521.5 552.1

GaCl3 118.3 68.9 56.7 502.4 507.5 456.2

Ga(C6H5)3 66.1 23.1 23.1 382.5 376.2 356.1

Ga(C6H4F)3 66.3 37.4 22.8 407.5 401.1 379.8

Ga(C6F5)3 114.9 74.9 52.9 510.7 506.6 464.7

Data reproduced from work by Timoshkin57

Recently Tilley and coworkers58 have taken a new approach and synthesized electron-deficient compounds called perfluoropentaphenylboroles (15, 16). Tilley claims these compounds provide unique access to highly Lewis acidic compounds of electron- deficient materials. Even though these compounds are highly reactive, their high moisture sensitivity and poor solubility render them unsuitable for industrial applications.

Nevertheless, these types of compounds are promising and could be tuned for stability.

11

C6F5 Br B B C6F5 C6F5 C6F5 C6F5

C6F5 C6F5 C6F5 C6F5 15 16

1.4 Triamidoamine Group 13 Complexes

Many group 13 complexes incorporating the tris(2-aminoethyl)amine (tren) framework have been synthesized. The work in this area with aluminum, gallium and boron was started by Verkade and coworkers with the synthesis of 17-20.59,60 The tren framework incorporates a trianionic chelating ligand that involves a fourth neutral nitrogen donor in the apical position. These complexes are typically called azatranes and the metal coordinated is used as a prefix, for example, aluminum complexes are called alumatranes. The complexes 17-19 are monomeric and possess three-fold symmetry down the apical E–N bond for aluminum.

R R R N N N N E N Al N Me N Me Me Me N Me N Me N Al N

E R N

17 B Me 20 18 B SiMe3 19 Al SiMe3 for aluminum. Moving from the bulky SiMe3 substituent on nitrogen (17-19) to Me results in the formation of a dimer (20), which is the first pentacoordinate Al center supported exclusively by nitrogen ligands. Several more derivatives of these azatranes

12 have been synthesized by Verkade including the incorporation of gallium.59-65 In compound 19 the geometry of the aluminum center has been confirmed by X-ray crystallography as trigonal monopyramidal which is a rare geometry for aluminum.

These complexes were initially generated as MOCVD precursors to nitride films of E (E

= Al, Ga, B), and since C–E bonds are absent there may be a minimization of carbon retention.

The importance of these complexes for the purpose of our work was brought to attention in 2000 by Nelson and coworkers5 when they discovered that Al(III) complexes

(21-23) with trigonal monopyramidal coordination geometry around the Al center were active Lewis acid catalysts for cycloaddition reactions involving ketenes and aldehydes while tetrahedral analogues were not. The work by Nelson was based on similar work by

Bertrand66 who proposed using nitrogen donor ligands to generate tetracoordinated group

Bn Me iPr iPr N N N Al N N Al N Tf Tf Tf Tf Me Me 21 22

O N Al N Tf Tf Me 23 13 complexes. Complexes 24-29 were used as catalyst precursors for the ring-opening polymerization of propylene oxide. Bertrand claims that in all cases the rigid bicyclic core imposes trigonal-monopyramidal geometry around the metal. It was this realization that led Nelson to pursue the use of this coordination geometry for group 13 metals in order to increase Lewis acidity around the metal center and increase reactivity for organic

13

SiMe3 Me N N N M N N Al N Me Si SiMe Me3Si SiMe3 3 Cl 3 R

M= Al, Ga, In R= Me, H, Cl 24-26 27-29

transformations. Nelson also proposed that the active intermediates in these transformations were trigonal bipyramidal alumatranes. Once this geometry for aluminum complexes was discovered as a reactive species for some of these organic transformations,5,67-69 Verkade and coworkers synthesized monomeric derivatives of the alumatranes (30, 31) that they had previously published.6,70 These compounds are appealing because of their pseudo-threefold symmetry around the metal centers and their flexible transannular bond between metal and axial nitrogen, along with the possibility of

3d orbital involvement for substrate binding. Complex 31 is isolated in the absence of base as a dimer, but can be separated into monomers by the coordination of a variety of bases including H2O, THF, ethylenediamine, and benzaldehyde. Complex 31 facilitates the addition of trimethylsilylcyanide (TMSCN) to benzaldehyde in 97% yield, while the dimeric form performs that same reaction in 95% yield. Complex 30 is isolated in good yield and is the first example of a monomeric proalumatrane which features a base-free

TMP coordination geometry. This was accomplished by replacing the methyl groups with tert-butyl groups in the 3-position of the tris(2-hydroxy-3,5-dimethylbenzyl)amine ligand used in 31. This provided steric protection of the metal center and prevented dimerization.

14

tBu tBu tBu

O O O Al

N 30

N

O O Al O

O O Al O

N

31

Similar to this work by Verkade, Gade and coworkers71 have extended this chemistry to include similar atrane type 32-35 that are chiral and enantiopure.

The ligands used for the preparation of 32-35 are isolated as enantiopure compounds and corresponding aluminum complexes were isolated by reaction of enantiopure ligand with one equivalent of Me3Al in greater than 95% yield. It is proposed that these complexes could serve as chiral catalysts for the formation of enantiopure organic compounds.

R' R' R' N N N E R R N R

E R R' 32 Al Me Me 33 Al Me CH3SO2 i 34 Al Pr CF3SO2 35 Al Me 2,4,6-(CH3)3(C6H2)SO2

15

1.5 Tripodal Triamine Group 13 Complexes

In 2007, Chen and coworkers72 proposed, based on the results of Nelson, Bertrand and Verkade, that Lewis acid catalysts are more efficiently designed if they possess a preorganized pyramidal geometry (Figure 1.1). The Mason group had previously proposed this geometry and had been working towards this for many years. Mason and

Chen independently proposed that there will be no penalty in energy for rearrangement of the geometry upon substrate binding during Lewis acid mediated chemical transformations. The preorganized geometry consists of a binding pocket with a vacant sp3 orbital ideally arranged to accept a fourth donor ligand or substrate. Along with the prearranged geometry, steric protection and electronic tuning at the metal center is easily

Nu

Nu 3 2 sp C6F5 sp E E C6F5 C6F5 C6F5 C6F5 C6F5 Pyramidal Planar

Geometry Reorganization

Nu 3 E sp R R R N N N

Preorganized Pyramidal

Figure 1.1 Preorganization of trigonal monopyramidal geometry

16 accessible with substitution of the R groups on nitrogen. The tripodal amido ligands that

Chen is referring to are known and have been well studied for their use with transition metals and germanium.73 These molecular “claws” are tripodal, trianionic ligands, and according to Chen, give the perfect framework for this preorganized geometry.

Based on preorganized geometry, Chen and coworkers72,74 isolated complexes 36 and 37 in high yield (70-99%) using the tripodal amido ligands previously used for transition metals. Both complexes show the preorganized geometry preferred by Chen for increasing Lewis acid strength. Chen claims that 36 should be significantly more

Lewis acidic because the geometry around the boron center does not allow for N–B p–p

π–interactions, in turn limiting the electron density on boron. In the crystal structure for

36 though, it is clear that the geometry around the boron center is more planar than pyramidal. This lack of π–interactions is more prominent for complex 37 which binds

THF to help support the aluminum center. Numerous other compounds were synthesized, two of which (38, 39) are tripodal around the metal center. Complex 38 is a dimer in which two LiCl•(OEt2)2 units bridge the two aluminum centers, while 39 contains a four-coordinate aluminum center that has a hydride bridging between

THF Ar Ar Ar B Ar Al Ar Ar N N N N N N E E E E E E C C H H E = SiMe2 E = SiMe2 Ar = 4-MeC6H4 Ar = 4-MeC6H4 36 37

17

+ aluminum and a [Li(OEt2)2] cation. The polymerization activity of these compounds was mixed. All screened compounds showed poor activity for the ring-opening polymerization of propylene oxide and caprolactone. Also Cp2ZrMe2 was activated using

36 and the resulting cationic zirconacene showed poor activity for ethylene polymerization.

Ar Et2O OEt2 Ar Ar Si N Ar Si N Li OEt2 Si N Si N H Al Cl H Al H Li Si N Si N OEt2 Ar Ar 2 Ar = 4-MeC6H4 Ar = 4-MeC6H4 38 39

1.6 Multidentate Lewis Acids

Multidentate Lewis acids have been an area of growing interest in recent years for their use in anion recognition and as activators for olefin polymerization. Uhl and coworkers75 have synthesized a gallium complex that has six three-coordinate gallium centers in a heteroadamantane cage while Schnöckel76 synthesized a cyclic hexa- aluminum complex. The work by Gabbaï77 has drawn the most attention to this area with the synthesis of the trigallocycle 40. This complex consists of three Lewis acidic gallium centers in close proximity to each other and showed the potential to be an acceptor for anion binding. While no further studies were carried out with 40, it paved the way for

18

Cl Ga Ga O Ga

40

recent work by Jordan and coworkers78 who investigated multidentate Lewis acids with defined M–M distances for anion recognition and as activators for olefin polymerization.

Using rigid backbones like 1,8-biphenylene units they were able to synthesize a tetragallium macrocycle (41) in 53% yield. The complex was not tested as an activator for olefin polymerization but did show modest ability to bind Cl‾ and Br‾ in solution and undergo halide exchange.

Cl Ga Ga

Cl Cl

Ga Ga Cl

41

19

1.7 Research Statement

Based on the preceding sections, it is clear that complexes of boron, aluminum and gallium can serve as powerful Lewis acids that can be used for many different applications. It is also evident that there is a need for the synthesis and implementation of new Lewis acids, and tripodal nitrogen donor ligands could play a vital role in the development of these complexes. Aside from initial work by Frank Segla79 and others80-

82 in the Mason group, there is no published research on the use of tripodal, tridentate indolyl based ligands for generation of three-coordinate group 13 complexes. These should possess highly electrophilic metal centers and have the potential to be strong

Lewis acids. Specifically, the use of tri(3-methylindolyl)methane as a ligand in group 13 and in organometallic chemistry is limited in the literature, and most published material in this area has been done by the Mason research group.

This dissertation reports on the complexes formed by the reactions of di- and tri(3-methylindolyl)methanes and tris(pyrrolyl-α-methyl)amine with group 13 metals.

Chapter two describes reactivity of isonitriles with aluminum and gallium alkyls as a probe to the mechanism of reactivity of carbon monoxide with similar complexes.

1 1 Chapter three discusses the formation of μ2-η :η -N indolyl bridged bimetallic and trimetallic aluminum complexes. These compounds were isolated from attempted synthesis of three-coordinate indolyl based aluminum compounds. They serve as the first

1 1 examples of μ2-η :η -N bridging indolyl moieties of group 13 metals. Chapter four describes four-coordinate aluminum and gallium complexes of tri(3- methylindolyl)methanes and tris(pyrrolyl-α-methyl)amine. These complexes serve as precursors to the potential three-coordinate group 13 derivatives that are of interest.

20

Chapter Two

Isonitrile Complexes of Trialkylaluminum and Trialkylgallium Reagents

2.1 Introduction

Group 13 Lewis acids are an extremely important class of compounds that can be used to facilitate and promote many different organic transformations. Group 13 trialkyls are not as strong as the Lewis acids described in chapter one, but they are known for their ability to react with a wide variety of substrates. Alkenes are known to react with Al–H and Al–C bonds,83 while hydrogen reacts with Al–C bonds. Organoaluminum derivatives are used industrially for the production of linear terminal alkenes and alcohols, as well as alkylation reactions in chemical syntheses. Until recently, the binding of CO and insertion of CO into an Al–C or Ga–C bond was not known. Song

t and Mason demonstrated that CO will undergo insertion into an Al–C bond in Bu3Al under mild conditions to form the acyl bridged dimer shown in eq 1.84 Similarly, CO

t 85 inserts into a Ga–C bond in Bu3Ga when higher temperatures and pressures are used.

These findings are a significant contribution to the chemistry of organic aluminum and gallium derivatives and are the first examples of CO insertion into Al–C and Ga–C bonds. Attempts by Song to expand the chemistry of carbon monoxide with aluminum and gallium alkyls were unsuccessful and no other empirical evidence for carbon monoxide reactivity with said compounds was observed.

21

tBu t tBu C O Bu hexanes 2 MtBu + 2 CO M M (1) 3 t Bu O C t M = Al, Ga Bu tBu

Cui86 and coworkers subsequently reported the insertion of CO into an Al–C bond when they reacted CO with the constrained cyclopropene ring in the aluminum complex shown in eq 2. The inserted product results from relief of ring strain to give the more stable four-membered ring.

Ar Ar O R N N CO Al Al R (2) N N R Ar Ar R

i Ar = 2,6- Pr2C6H3 R = SiMe3

To model the proposed reactivity of carbon monoxide with aluminum and gallium alkyls, we herein describe reactions of isonitriles with aluminum and gallium alkyls.

Isonitriles are isoelectronic to carbon monoxide, but are better σ-donors to metal centers and weaker π-acceptors. Unlike CO, they do not require π-backbonding from metals to form stable complexes.

22

The chemistry of isonitriles with aluminum and gallium has been relatively

87 88 t 89 unexplored with only a few (Ph3Al•C≡NCy, Me3Al•C≡NMe, Cp3Al•C≡N Bu ) complexes reported in the literature. In addition to isonitrile complexes, there are reports of isonitrile insertions into Al–H, Al–C, and Al–Al bonds. Hoberg90 reported that insertion of isonitriles into the Al–H bond of DIBAL affords the dimers i t [ Bu2AlCH═NR]2 (R = Bu, cyclohexyl, benzyl) which are isostructural to the t t 91 [ Bu2AlC(O) Bu]2 dimer reported by Song. Uhl also reported the insertion of tert-

t butylisonitrile into the Al–H bond of Bu2AlH which resulted in the formation of a similar

t t 92 dimer [ Bu2AlCH═N Bu]2. Similarly, Power reported that the sterically bulky alane

(Mes*AlH2) reacts with tert-butylisonitrile in solution to afford a dimeric structure. Both hydrides on aluminum undergo hydrogen transfer to the quaternary carbon of the isonitrile which then dimerizes to form [Mes*AlCH2Nt-Bu]2 (eq 3).

tBu

N CH2 t (3) [Mes*AlH2]2 + 2 BuN C Mes* Al Al Mes* H2C N tBu

Shapiro89 and coworkers reported that in the presence of two equivalents of isonitrile there is double insertion of the isonitrile into the Al–C bond of Cp′3Al (eq 4), which leads to a four-membered AlC2N ring. Shapiro also notes that in the presence of

t just one equivalent of isonitrile a four-coordinate complex Cp′3Al•C≡N Bu is isolated. It is well known that isonitriles are prone to undergo multiple insertions with a variety of transition metal complexes, and Uhl93 reported that isonitriles will undergo insertion into an Al–Al bond.

23

tBu

N Cp' Cp' Al + 2 tBuN C 3 Al (4) Cp' N tBu Cp' =

There is also precedent for reactions of isonitriles with Al(I) species. Cui94 and coworkers report that the β-diketiminato aluminum carbene analogue

t HC[(C Bu)(NAr)]2Al reacts with two equivalents of 2,6-diisopropylphenylisonitrile (eq

5) by insertion of one isonitrile into the Al–C bond that is formed by coordination of the other isonitrile to aluminum. The nitrogen atom of the bound isonitrile then coordinates to the aluminum creating a four-membered AlC2N ring similar to that found in the compound reported by Shapiro (eq 4).

tBu Ar tBu Ar NAr N N Al + 2 C NAr Al (5) 20 °C N N N tBu Ar tBu Ar Ar

Ar = 2,6-diisopropylphenyl

Cui86 also reports that isonitriles will insert into strained cyclic complexes of aluminum to form aluminacyclobutenes. These insertions are based on strained aluminum complexes that have the same backbone as the β-diketiminato Al(I) derivatives

24 but have strained cyclopropene groups on aluminum. The insertion of the isonitrile is thought to be driven by relief of ring strain.

Outside of these few examples, the solution chemistry of isonitriles with group 13 compounds is relatively unexplored. There has, however, been a computational study of isonitriles with group 13 compounds published by Schaefer and coworkers.95 Schaefer claims that donor-acceptor complexes of isonitriles with group 13 metal alkyls and hydrides would be unstable and prone to decompose and reorganize by the pathways shown in Scheme 2.1. Schaefer hypothesizes that the donor-acceptor complexes will either undergo insertion or double insertion which could lead to dimerization, or that there could be RX elimination followed by dimer-, trimer-, or tetramerization.

X2 M C N N C X2M C N MX2 X2M C N MX2 N C N C C N X2M MX2 X2M C N C N X2M N C MX2 -RX

X3M C NR

R X CX X2M N M NR X2C CX2 M N XM CX2 NR X R

Scheme 2.1 Decomposition pathways of X3M•C≡NR (M = Al, Ga, In; R = H, CH3; X = H, CH3) 95 as proposed by Timoshkin and Schaefer

25

In this chapter, the synthesis and characterization of the first extensive series of isonitrile complexes of aluminum and gallium are reported. There are 12 new complexes reported (Figure 2.1), seven of which have been characterized by X-ray crystallography.

These isonitrile complexes serve as models of non-classical CO complexes of aluminum and gallium that are presumed to be intermediates for the CO insertion observed by

Song.82 Enthalpies of complexation were found using Isothermal Titration Calorimetry

(ITC).

R3M•C≡N–R′

M R R′ M R R′ 1a Al tBu tBu 2a Al tBu 2,6-dimethylphenyl 1b Ga tBu tBu 2b Ga tBu 2,6-dimethylphenyl 1c Al Me tBu 2c Al Me 2,6-dimethylphenyl 1d Ga Me tBu 2d Ga Me 2,6-dimethylphenyl 1e Al iBu tBu 2e Al iBu 2,6-dimethylphenyl 1f Al Et tBu 2f Al Et 2,6-dimethylphenyl

Figure 2.1 Isonitrile complexes of group 13 trialkyls reported herein.

2.2 Experimental

General Procedures

All air- and moisture-sensitive reactions were performed in an inert atmosphere of purified nitrogen using standard inert atmosphere techniques and an Innovative

Technologies dry box. Trimethylaluminum, triethylaluminum, and triisobutylaluminum were purchased from Strem Chemical, Inc. and used as received. tert-Butylisonitrile was purchased from Aldrich, and 2,6-dimethylphenylisonitrile was purchased from Acros and used as received. Tri-tert-butylaluminum96,97 and tri-tert-butylgallium98 were prepared using published procedures. Toluene was distilled from sodium, and hexanes was

26 distilled from calcium hydride prior to use. Benzene-d6 (C6D6) and chloroform-d

(CDCl3) were dried by storage over activated molecular sieves and degassed with purified nitrogen. Solution NMR spectra were recorded on a Varian Unity 400 or Varian

AS-600 spectrometer using deuterated solvent as an internal lock. All chemical shifts are reported relative to TMS. Infrared spectra were obtained on a Perkin Elmer GX FT-IR infrared spectrometer. Elemental analyses were performed by Schwarzkopf

Microanalytical Laboratory, Inc. Mass spectrometry was performed by Ohio State

University.

ITC measurements were obtained in collaboration with Drs. Robert Flowers and

Joseph Teprovich at Lehigh University. A MicroCal Omega isothermal titration calorimeter was employed and the instrument was modified with the appropriate inert seals and equipped with a small port capable of keeping a static inert gas atmosphere over the sample. These instrumental changes allow for calorimetric analysis of air-sensitive compounds in organic solvents. The enthalpies of complexation (ΔHc) were determined from the calorimetric data employing OriginTM data analysis software. Solutions of each isonitrile and trialkyl metal were prepared in dry degassed hexanes in a dry box in

0.01 M and 0.10 M concentrations, respectively. The 1.4 mL calorimetry cell was flushed with dry argon for 30 min and the trialkyl metal solution was then loaded into the cell. The isonitrile solution was loaded into a 100 μL calorimetry syringe. A ten injection matrix was used and each 5 μL injection lasted a total of 10 seconds. A two minute interval was employed between each injection of isonitrile. The averages of two runs are summarized in Table 2.6.

27

t t Preparation of Bu3Al·C≡N Bu (1a)

t To a 100 mL side arm flask was added Bu3Al (0.750 g, 3.78 mmol) and 20 mL of hexanes. To this solution was added 0.45 mL (4.0 mmol) of C≡NtBu via syringe. The colorless solution was stirred for 4 h. The solution was concentrated by half and stored at

─30 °C for 12 h to yield colorless crystals which were isolated by filtration. Yield: 1.05

1 t g, 3.73 mmol, 97%. H NMR (CDCl3, 600 MHz): δ 1.59 (s, 9H, C≡N Bu), 0.93 (s, 27H,

t 13 1 Al Bu3). C{ H} NMR (CDCl3, 150 MHz): δ 133.4 (s, C≡NC(CH3)3), 58.3 (s,

C≡NC(CH3)3), 32.2 (s, AlC(CH3)3), 30.2 (s, C≡NC(CH3)3), 16.4 (broad s, AlC(CH3)3).

–1 IR (υC≡N, KBr): 2221 cm . Anal Calcd for C17H36NAl: C, 72.55; H, 12.89; N, 4.98.

Found: C, 63.44; H, 12.92; N, 3.63.

t t Preparation of Bu3Ga·C≡N Bu (1b)

t To a 100 mL side arm flask was added Bu3Ga (0.910 g, 3.78 mmol) and 20 mL of hexanes. To this solution was added 0.45 mL (4.0 mmol) of C≡NtBu via syringe. The colorless solution was stirred for 4 h. The solution was concentrated by half and stored at

─30 °C for 12 h to yield colorless crystals which were isolated by filtration. Yield: 1.19

1 t g, 3.67 mmol, 96%. H NMR (CDCl3, 600 MHz): δ 1.56 (s, 9H, C≡N Bu), 1.02 (s, 27H,

t 13 1 Ga Bu3). C{ H} NMR (CDCl3, 150 MHz): δ 57.7 (s, C≡NC(CH3)3), 32.9 (s,

–1 GaC(CH3)3), 30.3 (s, C≡NC(CH3)3), 22.9 (s, GaC(CH3)3). IR (υC≡N, KBr): 2205 cm .

Anal Calcd for C17H36NGa: C, 62.98; H, 11.19; N, 4.32. Found: C, 57.01; H, 11.33; N,

3.20.

28

t Preparation of Me3Al·C≡N Bu (1c)

To a 100 mL side arm flask was added Me3Al (1.0 mL, 2.0 M toluene, 2.0 mmol) and 20 mL of hexanes. To this solution was added 0.25 mL (2.21 mmol) of C≡NtBu via syringe. The colorless solution was stirred for 4 h. The volatiles were removed under vacuum and the resulting solid was isolated and recrystallized from minimal amount of

1 hexanes at ─30 °C. Yield: 0.308 g, 1.99 mmol, 94%. H NMR (CDCl3, 400 MHz): δ

t 13 1 1.56 (s, 9H, C≡N Bu), ─0.91 (s, 9H, AlMe3). C{ H} (CDCl3, 100 MHz): δ 133.41 (s,

C≡NC(CH3)3), 58.02 (s, C≡NC(CH3)3), 30.06 (s, C≡NC(CH3)3), ─9.32 (s, AlCH3).

–1 IR (υC≡N, KBr): 2224 cm .

t Preparation of Me3Ga·C≡N Bu (1d)

To a 100 mL side arm flask was added Me3Ga (0.260 g 2.25 mmol) via syringe and charged with 20 mL of hexanes. To this solution was added 0.25 mL (2.21 mmol) of

C≡NtBu via syringe. The colorless solution was stirred for 4 h. Volatiles were removed under vacuum and solid was isolated and recrystallized from minimal amount of hexanes at ─30 °C. Yield: 0.422 g, 2.13 mmol, 95%.

i t Preparation of Bu3Al·C≡N Bu (1e)

i To a 100 mL side arm flask was added Bu3Al (0.520 g, 2.63 mmol). To this was added 0.30 mL (2.65 mmol) of C≡NtBu via syringe. The colorless solution was allowed to stir for 2 h and excess isocyanide was evaporated in vacuo. A colorless liquid was

1 isolated. Yield: 0.711 g, 2.53 mmol, 96%. H NMR (C6D6, 600 MHz): δ 2.24 (m, 3H,

3 t AlCH2CH(CH3)2), 1.31 (d, JHH = 6.6 Hz, 18H, AlCH2CH(CH3)2), 0.62 (s, 9H, C≡N Bu),

29

3 13 1 0.47 (d, JHH = 7.2 Hz, 6H, AlCH2CH(CH3)2). C{ H} NMR (CDCl3, 100 MHz): δ 57.7

(s, C≡NC(CH3)3), 30.0 (s, C≡NC(CH3)3), 28.4 (s, AlCH2CH(CH3)2), 27.3 (s,

–1 AlCH2CH(CH3)2), 22.2 (s, AlCH2CH(CH3)2). IR (υC≡N, nujol): 2218 cm .

t Preparation of Et3Al·C≡N Bu (1f)

To a 100 mL side arm flask, was added Et3Al (0.300 g, 2.63 mmol). To this was added 0.30 mL (2.65 mmol) of C≡NtBu via syringe. The colorless solution was stirred for 2 h and excess isocyanide was pumped off in vacuo. A colorless liquid was isolated.

1 t Yield: 0.501 g, 2.59 mmol, 98%. H NMR (CDCl3, 400 MHz): δ 1.56 (s, 9H, C≡N Bu),

3 3 1.00 (t, JHH = 8.0 Hz, 9H, Al–CH2CH3), ─0.25 (q, JHH = 8.0 Hz, 6H, Al–CH2CH3).

13 1 C{ H} NMR (CDCl3, 100 MHz): δ 57.4 (s, C≡NC(CH3)3), 30.3 (s, C≡NC(CH3)3), 10.4

–1 (s, AlCH2CH3), ─0.8 (s, AlCH2CH3). IR (υC≡N, nujol): 2218 cm .

t Preparation of Bu3Al·C≡N(2,6-Me2C6H3) (2a)

t To a 100 mL side arm flask was added Bu3Al (0.750 g, 3.78 mmol) and 20 mL of hexanes. To this solution, 0.50 g (3.8 mmol) of C≡N(2,6-Me2C6H3) in 15 mL of toluene was added via syringe. The colorless solution was stirred for 4 h and the solution was concentrated by half and stored at ─30 °C for 12 h to produce colorless crystals which

1 were isolated by filtration. Yield: 1.21 g, 3.68 mmol, 97%. H NMR (CDCl3, 600 MHz):

3 3 δ 7.34 (t, JHH = 7.2 Hz, 1H, p-CH), 7.20 (d, JHH = 7.2 Hz, 2H, m-CH), 2.49 (s, 6H,

t 13 1 C≡N(2,6-Me2C6H3)), 1.02 (s, 27H, Bu). C{ H} NMR (CDCl3, 150 MHz): δ 136.2,

131.1, 128.4, 32.2 (s, AlC(CH3)3), 18.9 (s, C≡N(2,6-Me2C6H3), 16.6 (s, AlC(CH3)3). IR

30

–1 (υC≡N, KBr): 2197 cm . Anal Calcd for C21H36NAl: C, 76.55; H, 11.01; N, 4.25; Al, 8.19.

Found: C, 73.15; H, 11.30; N, 4.30; Al, 8.77.

t Preparation of Bu3Ga·C≡N(2,6-Me2C6H3) (2b)

t To a 100 mL side arm flask was added Bu3Ga (0.910 g, 3.78 mmol) and 20 mL of hexanes. To this solution was added 0.50 g (3.8 mmol) of C≡N(2,6-Me2C6H3) in 15 mL of toluene via syringe. The colorless solution was stirred for 4 h, and the solution was concentrated by half and stored at ─30 °C for 12 h to produce colorless crystals that

1 were isolated by filtration. Yield: 1.37 g, 3.68 mmol, 97%. H NMR (CDCl3, 600 MHz):

3 3 δ 7.36 (t, JHH = 7.8 Hz, 1H, p-CH), 7.20 (d, JHH = 7.8 Hz, 2H, m-CH), 2.50 (s, 6H,

t 13 1 C≡N(2,6-Me2C6H3)), 1.02 (s, 27H, Ga Bu3). C{ H} NMR (CDCl3, 150 MHz): δ 136.6

(s), 131.5 (s), 128.7 (s), 32.4 (s, GaC(CH3)3), 19.2 (s, C≡N(2,6-Me2C6H3), 16.8 (s,

–1 GaC(CH3)3). IR (υC≡N, KBr): 2183 cm . Anal Calcd for C21H36NGa: C, 67.76; H, 9.75;

N, 3.76. Found: C, 65.71; H, 10.51; N, 3.60.

Preparation of Me3Al·C≡N(2,6-Me2C6H3) (2c)

To a 100 mL side arm flask was added Me3Al (1.0 mL, 2.0 M in toluene, 2.0 mmol) and 20 mL of hexanes. To this solution, 0.25 g (1.9 mmol) of C≡N(2,6-Me2C6H3) in 15 mL of toluene was added via syringe. The colorless solution was stirred for 4 h, and the volatiles were removed under vacuum. The resulting solid was isolated and recrystallized from a minimal amount of hexanes followed by storage at ─30 °C. Yield:

1 3 0.375 g, 1.85 mmol, 95%. H NMR (CDCl3 400 MHz): δ 7.29 (t, JHH = 8.4 Hz, 1H, p-

3 CH), 7.15 (d, JHH = 8.4 Hz, 2H, m-CH), 2.43 (s, 6H, C≡N(2,6-Me2C6H3)), ─0.38 (s, 9H,

31

13 1 AlMe3). C{ H} NMR (CDCl3, 100 MHz): δ 135.9 (s), 130.6 (s), 128.4 (s), 18.8 (s,

–1 C≡N(2,6-Me2C6H3), ─5.9 (s, AlCH3). IR (υC≡N, KBr): 2203 cm .

Preparation of Me3Ga·C≡N(2,6-Me2C6H3) (2d)

To a 100 mL side arm flask was added Me3Ga (0.230 g, 2.0 mmol) and 20 mL of hexanes. To this solution was added 0.25 g (1.9 mmol) of C≡N(2,6-Me2C6H3) in 15 mL of toluene via syringe. The colorless solution was stirred for 4 h. Volatiles were removed under vacuum and the resulting solid was isolated and recrystallized from minimal amount of hexanes followed by storage at ─30 °C. Yield: 0.461 g, 1.87 mmol,

96%.

i Preparation of Bu3Al·C≡N(2,6-Me2C6H3) (2e)

i To a 100 mL side arm flask was added Bu3Al (0.755 g, 3.81 mmol) and 20 mL of hexanes. To this solution was added 0.50 g (3.80 mmol) of C≡N(2,6-Me2C6H3) in 15 mL of toluene via syringe. The red solution was stirred for 4 h, and volatiles were removed

1 in vacuo to yield a red liquid. Yield: 1.19 g, 3.62 mmol, 95%. H NMR (CDCl3, 600

3 3 MHz): δ 7.32 (t, JHH = 7.8 Hz, 1H, p-CH), 7.17 (d, JHH = 7.8 Hz, 2H, m-CH), 2.44 (s,

3 6H, C≡N(2,6-Me2C6H3)), 1.85(m, 3H, AlCH2CH(CH3)2), 0.94 ( JHH = 6.6 Hz, d, 18H,

3 13 1 AlCH2CH(CH3)2), 1.29 (d, JHH = 7.2 Hz, 6H, AlCH2CH(CH3)2). C{ H} (CDCl3, 150

MHz): δ 136.4 (s), 131.2 (s), 128.6 (s), 28.5 (s, AlCH2CH(CH3)2), 27.44 (s,

AlCH2CH(CH3)2), 22.57 (s, AlCH2CH(CH3)2), 18.85 (s, C≡N(2,6-Me2C6H3). IR (υC≡N, nujol): 2193 cm–1.

32

Preparation of Et3Al·C≡N(2,6-Me2C6H3) (2f)

To a 100 mL side arm flask was added Et3Al (0.440 g, 3.85 mmol) and 20 mL of hexanes. To this solution was added 0.50 g (3.8 mmol) of C≡N(2,6-Me2C6H3) in 15 mL of toluene via syringe. The colorless solution was stirred for 4 h, and volatiles were removed in vacuo resulting in a slight green liquid. Yield: 1.21 g, 3.68 mmol, 97%. 1H

3 3 NMR (CDCl3, 600 MHz): δ 7.33 (t, JHH = 7.2 Hz, 1H, p-CH), 7.18 (d, JHH = 7.8 Hz, 2H,

3 m-CH), 2.45 (s, 6H, C≡N(2,6-Me2C6H3). 1.07 (t, JHH = 8.4 Hz , 6H, Al–CH2CH3),

13 1 ─0.11 (br m, 9H, Al–CH2CH3. C{ H} (CDCl3, 150 MHz): δ 136.3 (s), 131.2 (s), 128.6

(s), 18.9 (s, C≡N(2,6-Me2C6H3), 10.6 (s, AlCH2CH3), ─0.5 (s, AlCH2CH3). IR (υC≡N, nujol): 2194 cm–1.

2.3 X-ray Crystallography

Crystals of 1a, 1b, 1d and 2a-2d were grown from highly concentrated toluene solutions stored at ─30 °C. The X-ray diffraction data were collected on a Siemens three-circle platform diffractometer equipped with a 4K CCD detector. The frame data were acquired with the SMART 5.62599 software using Mo Kα radiation (λ = 0.71073 Å). Cell constants were determined with SAINT 6.22100 from the complete dataset. A complete sphere of data was collected using ω (0.3◦) scans with a run time of 30 s/frame (1a, 1b,

1d, 2b, 2d) and 40 s/frame (2a, 2c) at different Φ angles. A total of 1315 frames (1a),

2132 frames (2a), 2126 frames (1b, 2b), 1180 frames (1d), 2285 frames (2c), or 2120 frames (2d) were collected for the dataset. An additional 50 frames, identical to the first

50, were collected to determine crystal decay. The frames were integrated using the

SAINT 6.22 software, and the data were corrected for absorption and decay using the

33

SADABS101 program. The structures were solved by direct methods and refined by least- squares methods on F2, using the SHELXTL program suite.102 All hydrogen atoms were placed in calculated position and included in the refinement as riding models. The structure for 1c was solved with direct methods in Pna21 and then transformed into the correct space group Pnma.103 The tBu group is severely disordered over a mirror plane.

The model refined contained 5 positions for each methyl group in a ratio of 0.2: 0.2: 0.4:

0.1: .1. Details of data collection and refinement are provided in Table 2.1. Further details, including atomic coordinates, distances and angles are found in the CIF files.

34

Table 2.1. Crystal data and structure refinement details 1a 1b 1d

Formula C17H36AlN C17H36GaN C8H18GaN Fw 281.45 324.19 197.95 Cryst. Syst monoclinic monoclinic orthorhombic Space group P2(1)/m P2(1)/m Pnma a, Å 8.3301(19) 8.3397(2) 13.5497(4) b, Å 12.218(3) 12.2280(2) 9.6064(3) c, Å 10.525(2) 10.5604(2) 8.6082(2) α, deg 90.00 90.00 90.00 β, deg 110.735(4) 110.8900(10) 90.00 γ, deg 90.00 90.00 90.00 V, Å3 1001.8(4) 1006.14(3) 1120.48(5) Z 4 4 4 -3 Dcalcd, g cm 1.400 1.070 1.173 temp, °C ─133 ─133 ─133 μ, mm-1 0.140 1.359 2.400 λ, Å 0.71073 0.71073 0.71073 transm coeff 1.00-0.795 1.00-0.790 1.00-0.808 2θ limits, deg 4.14-52.00 4.12-56.58 5.60-70.92 total no. of data 6801 15239 4952 no. unique data 2060 2620 2353 no. obsd data 1896 2536 1759 no. of params 91 91 89

R1 (I > 2σ(I)) 0.0610 0.0333 0.0366 2 wR2 (I , all data) 0.1402 0.0832 0.1242 max, min peaks, e/Å3 0.497, ─0.458 0.560, ─0.586 0.533, ─0.552

a b c 2 2 2 2 2 1/2 I > 2σ(I). R1 = | |Fo| – |Fc| | / |Fo|. wR2 = [ [w (Fo – Fc ) ] / [w (Fo ) ]] .

35

Table 2.1 (Continued) 2a 2b 2c 2d

Formula C21H36AlN C21H36GaN C12H18AlN C12H18GaN Fw 329.49 372.23 203.25 245.99 Cryst. Syst triclinic triclinic triclinic triclinic

Space group P1 a, Å 8.8875(2) 8.9135(2) 7.3776(4) 7.3706(2) b, Å 11.8471(2) 11.8766(2) 10.6143(6) 10.6485(3) c, Å 11.9501(2) 11.9732(3) 17.2858(10) 17.2629(4) α, deg 64.0690(10) 64.1920(10) 92.011(2) 92.170(1) β, deg 87.1090(10) 87.1740(10) 94.854(2) 95.034(1) γ, deg 72.3300(10) 72.3710(10) 91.323(2) 91.303(1) V, Å 3 1073.19(4) 1082.45(4) 1347.47(13) 1348.24(6) Z 2 2 4 4 -3 Dcalcd, g cm 1.003 1.212 1.002 1.212 temp, °C ─133 ─133 ─133 ─133 μ, mm-1 0.096 1.272 0.118 2.008 λ, Å 0.71073 0.71073 0.71073 0.71073 transm coeff 1.00-0.850 1.00-0.858 1.00-0.793 1.00-0.773 2θ limits, deg 3.80-66.64 3.80-56.57 2.36-52.00 2.38-56.56 total no. of data 19702 15412 16421 18897 no. unique data 7553 5367 5254 6685 no. obsd data 6228 5143 4712 6198 no. of params 352 352 337 337

R1 (I > 2σ(I)) 0.0496 0.0231 0.0574 0.0252 2 wR2 (I , all data) 0.1168 0.0602 0.1624 0.0657 max, min peaks, e/Å3 0.536, ─0.190 0.511, ─0.297 0.279, ─0.209 0.317, ─0.318 ______a b c 2 2 2 2 2 1/2 I > 2σ(I). R1 = | |Fo| – |Fc| | / |Fo|. wR2 = [ [w (Fo – Fc ) ] / [w (Fo ) ]] .

36

2.4 Results and Discussion

2.4.1 Preparation of Isonitrile Complexes

t tert-Butyl isonitrile reacted with Bu3Al in hexanes at room temperature (eq 6) to yield a white solid (1a) upon removal of the solvent in vacuo. Isolation of a solid indicated that a reaction had taken place since both starting materials are liquids at room

1 temperature. The H NMR spectrum of 1a in CDCl3 shows only two resonances at 1.59 ppm and 0.93 ppm in a 1:3 ratio, consistent with the presence of the donor-acceptor complex where one isonitrile is coordinated to the aluminum alkyl. There is no evidence

t hexanes t R3M + C N Bu R3M C N Bu (6) 25 °C

M R 1a Al tBu 1b Ga tBu 1c Al Me 1d Ga Me 1e Al iBu 1f Al Et

in the 1H NMR spectrum for two different aluminum alkyl resonances as would be expected if insertion was followed by dimerization. The resonances seen in the 1H NMR spectrum correspond to the tert-butyl group on the isonitrile (1.59 ppm) and the tert-butyl groups bound to aluminum (0.93 ppm). The infrared spectrum of 1a obtained in a KBr pellet showed a C≡N stretch at 2221 cm-1, which is at much higher wavenumber than free tert-butyl isonitrile (2133 cm-1).

tert-Butyl isonitrile reacted similarly with other aluminum and gallium alkyls as shown in eq 6. Complexes 1b-1d were isolated as white solids in greater than 90% yield.

i The complexes formed with Bu3Al and Et3Al (1e, 1f) were isolated as yellow liquids in

37 greater than 90% yield. The 1H NMR spectrum for each complex shows one singlet resonance for the tert-butyl group on the isonitrile and one set of resonances for the alkyl groups on aluminum or gallium. The chemical shift for the tert-butyl resonance of the bound isonitrile in all complexes is found near 1.56-1.59 ppm in CDCl3, which is downfield from the resonance at 1.45 ppm seen for free isonitrile. It is expected that as the aluminum alkyls change from Me to tBu and moving from aluminum to gallium, the isonitrile chemical shift would change. However, it is evident that the shift is not sensitive to the aluminum trialkyl. The coordinated isonitrile is labile in solution, and in the presence of excess isonitrile the observed chemical shift is a weighted average of the bound and free isonitrile shifts. The exchange is rapid on the NMR timescale. Even at

─60 °C, there is only one sharp resonance observed upon addition of excess isonitrile although slightly shifted towards free isonitrile.

i The tert-butyl isonitrile derivatives of Et3Al and Bu3Al are yellow liquids even after storage at ─78 °C for 24 h. The viscosity of the liquids seems to increase at lower temperatures, but the complexes remain liquids without solidification or crystallization.

It is important to note that compounds 1c and 1d sublime readily at 20 °C under vacuum at 0.1 mm Hg.

To see if solid complexes could be isolated, 2,6-dimethylphenylisonitrile was used to make an analogous series of complexes. This isonitrile derivative is a solid at room temperature, and the bulky dimethylphenyl group was proposed to help crystallize the resulting complexes.

38

t 2,6-Dimethylphenylisonitrile was reacted with Bu3Al in hexanes at room temperature (eq 7) to yield complex 2a. Complexes 2a-2d were isolated similarly as off- white solids in greater than 90% yield from highly concentrated hexanes solutions, and complexes 2e and 2f were isolated as yellow liquids despite using the bulkier 2,6- dimethylphenylisonitrile. Complexes 2e and 2f remain liquids even when stored at ─78

°C for 24 hours.

hexanes R M + C N R3M C N (7) 3 25 °C

M R 2a Al tBu 2b Ga tBu 2c Al Me 2d Ga Me 2e Al iBu 2f Al Et

1 The H NMR spectra (CDCl3) of complexes 2a-2f show that the isonitrile coordination is labile in solution on the NMR time scale and the methyl resonances for the isonitrile are seen as a time average of the free and bound isonitrile at 2.43-2.50 ppm.

The aryl resonances for the phenyl of the isonitrile show up consistently in the same position for all complexes.

Addition of excess isonitrile and obtaining a 1H NMR spectrum at ─60 °C in

CDCl3 did not result in resolution of free and bound isonitrile, and only one sharp methyl resonance was observed. The infrared spectrum of 2a in a KBr pellet shows a C≡N stretch at 2196 cm-1 which is at a higher wavenumber than observed for the free isonitrile

39

(2125 cm-1). This is consistent with an isonitrile being coordinated in a donor-acceptor fashion to a group 13 metal.

Despite multiple attempts, satisfactory elemental analysis (EA) of some of these complexes could not be obtained. Samples for 1a and 1b exhibited considerable lower percent mass for carbon (10%-12%) and nitrogen (1%-2%) than calculated. Samples did show acceptable EA for carbon, nitrogen, and hydrogen for 2b and carbon, nitrogen, hydrogen, and aluminum for 2a. Shapiro89 and Uhl91 also reported low carbon and nitrogen analysis in the isonitrile complexes that they isolated. They both proposed that the formation of aluminum nitrides in combustion analysis was the cause for the low percentages.

Attempts to obtain satisfactory mass spectrometry data were also unsuccessful.

No molecular peak was seen for complexes 1a or 1b, only free isonitrile was observed. Dissociation of the isonitrile is prevalent in solution and the electrospray technique that was used wasn’t ideal for the complexes being tested.

2.4.2 IR Spectroscopy

It is expected that for an isonitrile bound to a group 13 metal there will be a shift to higher wavenumbers for the C≡N stretch. The carbon lone pair of the isonitrile is in a slightly anti-bonding orbital, and when that lone pair is donated to the metal center without the presence of π-backbonding, the C≡N bond strengthens and a shift to higher wavenumbers is observed. The same shift is seen for homoleptic isonitrile complexes of certain transition metals and is typical of the CO stretches observed for non-classical carbonyls.104 This shift to higher frequency was previously observed for the three reported isonitrile donor-acceptor complexes of aluminum alkyls.87-89

40

Table 2.2 summarizes the C≡N stretching frequencies in the IR spectra for all of the complexes isolated. For each of the complexes, there is a significant shift (Δ(νCN)) to higher wavenumbers for the C≡N stretch when the isonitrile is bound to the metal

t compared to the free ligand. The shift is not as significant for the complexes with Bu3Ga which is expected since the trialkyl gallium complexes are considered less Lewis acidic than their trialkyl aluminum analogues. As the Lewis acidity of the metal decreases, the amount of donation from the lone pair on the carbon of the isonitrile will also decrease.

This will cause a decrease in the strengthening of the C≡N bond when coordinated to a metal.

Table 2.2. C≡N Stretching frequencies and coordination shifts for 1a-1f and 2a-2f ______-1 -1 Complex νCN (cm ) ΔνCN (cm ) ______t t 1a Bu3Al•C≡N Bu 2221 +88 t 1c Me3Al•C≡N Bu 2224 +91 i t 1e Bu3Al•C≡N Bu 2218 +85 t 1f Et3Al•C≡N Bu 2218 +85 t t 1b Bu3Ga•C≡N Bu 2205 +72

t 2a Bu3Al•C≡N(2,6-Me2C6H3) 2195 +70

2c Me3Al•C≡N(2,6-Me2C6H3) 2203 +78 i 2e Bu3Al•C≡N(2,6-Me2C6H3) 2193 +68

2f Et3Al•C≡N(2,6-Me2C6H3) 2195 +70 t 2b Bu3Ga•C≡N(2,6-Me2C6H3) 2183 +58

Free Isonitrile C≡NtBu 2133

C≡N(2,6-Me2C6H3) 2125 ______

41

It was initially thought that changes in the C≡N stretch for the bound isonitrile might be a gauge of the strength of Lewis acidity for different R3Al species. It can be seen from the table, however, that there is very little change in the Δ(νCN) values for each of the different isonitriles when they are bound to different aluminum trialkyls.

2.4.3 Molecular Structures

X-ray crystallography confirmed the molecular structures of 1a, 1b, 1d, and 2a-

2d (Figures 2.2 and 2.3). Complexes 1a and 1b crystallized in the space group P2(1)/m and the structures were refined with R1 factors of 6.10% and 3.33%, respectively.

Complex 1d crystallized in the space group Pnma and the structure refined with an R1 factor of 3.66%. Complexes 2a and 2b crystallized in the space group P1 and the structures were refined with R1 factors of 4.78% and 2.52%, respectively. Complexes 2c

and 2d crystallized in the space group and the structures were refined with R1 factors of 4.96% and 2.31%, respectively. The Al–Cisonitrile bond distances for these structures range from 2.1166(11) Å to 2.121(3) Å and the C≡N bond distances range from 1.148(3)

Å to 1.1489(13) Å. These are comparable with the values reported for the other crystallographically characterized donor-acceptor complex reported by Shapiro.89 The

Ga–Cisonitrile bond distances range from 2.167(2) Å to 2.1749(15) Å and the C≡N bond distances range from 1.140(3) Å to 1.149(2) Å. The M–C–N bond angles range from

173.9(2)° to 179.88(13)°, which are in agreement to that reported by Shapiro. Selected bond distances and angles are summarized in Table 2.3. As expected, the average Al–

Cisonitrile bond distances are significantly shorter than the Ga–Cisonitrile bond distances.

42

C31A C23 C22 N1 N1 N1 C1 C1 C3A C22 C31A C2 C1 C33A C2 Ga1 C21 Al1 C32A C2 C31 C3A C3 C21 Ga1 C23 C33A C3 C3 C33 C32A C31 C32 C33 C4 C32

1a 1b 1d

Figure 2.2 ORTEP diagrams of 1a, 1b and 1d. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

C21 N1 C21 N1 C32 C22 C1 C1 C22 C32 C2 C3 C2 C23 C3 Al1 Ga1 C23 C33 C31 C4 C43 C4 C43 C33 C31 C42 C42 C41 C41 2a 2b

N1 C1 N1 C3 C1 C3 Ga

Al1 C2 C4

C2 C4 2c 2d

Figure 2.3 ORTEP diagrams of 2a-d. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

43

Table 2.3. Selected bond distances and angles ______Complex M–C (Å) C≡N (Å) M–C≡N (deg) ______Aluminum Complexes 1a 2.121(3) 1.148(3) 174.9(3) 2a 2.1166(11) 1.1489(13) 175.59(9) 2c 2.1201(14) 1.1484(17) 179.88(13) Gallium Complexes 1b 2.167(2) 1.143(3) 173.9(2) 1d 2.173(2) 1.140(3) 178.9(12) 2b 2.1679(13) 1.1475(17) 175.15(11) 2d 2.1749(15) 1.149(2) 179.88(18) ______

The C≡N bond distance for each complex is almost identical. It is insensitive to the metal or isonitrile in the structure. This is also seen in transition metal chemistry for CO, where there is an influence over the IR stretching frequency in different metal carbonyls but essentially no difference in C≡O bond distance for known crystal structures.

2.4.4 Reactivity of Donor-Acceptor Complexes

Based on the computational studies of Schaefer, it was surprising that only the donor-acceptor complexes were isolated. Schaefer concluded that these complexes would not be stable and would be prone to elimination and alkyl transfer reactions.95 It is evident that compounds 1a-1f and 2a-2f are stable at room temperature under an inert atmosphere for up to 3 years without any changes in the 1H NMR spectra. Complexes

1e-1f and 2e-2f do slowly discolor to green and red when stored for several months, but there is still no change in their 1H NMR spectra. To test the thermal stability of these complexes, a series of experiments were performed to check for rearrangement or decomposition of the complexes at elevated temperatures.

44

To analyze the complexes for stability, a system was set up to screen all of the complexes under the same set of conditions. NMR samples of ten of the complexes were prepared in C6D6 and slowly heated to 100 °C and checked periodically for reactivity by

1H NMR spectroscopy. Table 2.4 summarizes the results. In all but two cases, there was no reactivity seen for the donor-acceptor complexes even after heating to 100 °C for 24

i hours. For tert-butyl isonitrile derivatives with Et3Al and Bu3Al there was decomposition at 100 °C resulting in a mixture of unidentified products by 1H NMR spectroscopy.

Complexes 1a-1c and 2a-2f show stability up to 100 °C for 24 h. To check for reactivity under more harsh conditions, complex 1a was dissolved in toluene and refluxed

Table 2.4. Reactivity of complexes in C6D6 ______Complex 40 °C 60 °C 80 °C 100 °C 8 h 12 h 24 h 24 h ______t t 1a Bu3Al•C≡N Bu NR NR NR NR t t 1b Bu3Ga•C≡N Bu NR NR NR NR t 1c Me3Al•C≡N Bu NR NR NR NR i t 1e Bu3Al•C≡N Bu NR NR NR decomp t 1f Et3Al•C≡N Bu NR NR NR decomp t 2a Bu3Al•C≡N(2,6-Me2C6H3) NR NR NR NR t 2b Bu3Ga•C≡N(2,6-Me2C6H3) NR NR NR NR

2c Me3Al•C≡N(2,6-Me2C6H3) NR NR NR NR i 2e Bu3Al•C≡N(2,6-Me2C6H3) NR NR NR NR

2f Et3Al•C≡N(2,6-Me2C6H3) NR NR NR NR ______NR = No Reaction

45 under nitrogen for 72 hours. Slowly over the course of 72 hours, the color of the solution changed from colorless to a bright yellow color. All of the solvents were removed and a yellow oily residue was isolated and showed three distinct singlets with equal intensity in

1 the aliphatic region of the H NMR spectrum in CDCl3 at 1.20 ppm, 1.16 ppm and 1.10 ppm, respectively. An infrared spectrum of the oil did not show any absorption in the ranges seen for the donor-acceptor complex (Table 2.2). Many attempts were made to purify the oil by recrystallization and a single crystal was isolated from a highly concentrated THF solution stored at ─30 °C for four months. X-ray data was collected and the structure of the complex (3) is shown in Figure 2.4. Uhl91 previously obtained 3

t by insertion of tert-butyl isonitrile into the Al–H bond of Bu2AlH. He also reported the molecular structure, and the parameters for 3 match those reported by Uhl.

The 1H NMR for Uhl’s reported complex does not match that obtained from the isolated yellow oil. Uhl sees two distinct sets of resonances for the two different tert-

H1

C1 N1 Al1

Al2 C1A

N1A H1A

Figure 2.4 ORTEP diagram of 3. Thermal ellipsoids are drawn at the 30% probability level. Most hydrogen atoms are omitted for clarity.

46 butyl groups in a 2:1 ratio. The obtained single crystal is believed to be a small component of the isolated material. It is proposed that 3 was formed by isonitrile

t insertion into the Al–H bond of Bu2AlH as the solution was heated for 72 hours.

105 t Lehmkuhl reports that heating Bu3Al to 120 °C for 30 hours will result in β-hydride

t elimination to give Bu2AlH and butene (Scheme 2) and, if the process is allowed to continue for an extended period, butene will reinsert into the Al–H bond and continue

i until it all converts into Bu3Al. It is likely that as complex 1a was heated over the period

t of 72 hours, there was some conversion into Bu2AlH and the isonitrile inserted to give complex 3.

t Me Bu t t t 120 °C t Bu Me Bu Bu3Al Bu Al Me i 30 h Al H + C CH2 Al Bu t t H H Bu Me Bu H

t Scheme 2. β-hydride elimination of Bu3Al at elevated temperatures.

Complex 1c was also tested for reactivity at elevated temperatures. Compound 1c was dissolved in toluene and heated to reflux for 24 hours which resulted in a red-brown solution. Removal of solvents in vacuo resulted in the isolation of a brown solid

1 material. The H NMR spectrum in CDCl3 showed one resonance at ─0.69 ppm and the

13C NMR spectrum showed two peaks at 125 ppm and ─11.7 ppm. The resonances upfield of TMS in both the 1H and 13C spectra are in the reported range for methyl groups on aluminum. There is no evidence for a tert-butyl group on the isonitrile and the IR spectrum shows a very broad peak for the C≡N at 2218 cm-1. Coates and coworkers106 reported the synthesis of the tetramer [Me2AlCN]4 and, although they do not report any

47

NMR spectroscopic data, they do report a C≡N stretch in the IR at 2218 cm-1 that is very broad. This is also in the range for the C≡N stretch (2211 cm-1) that Uhl91 reports for the

t tetramer [ Bu2AlCN]4 which is broad. It is likely that with the heating of 1c, there is elimination of 2,2-dimethylpropane followed by tetramerization to give the compound reported by Coates. The peak seen at 125 ppm in the 13C NMR spectrum is likely the quaternary carbon of the cyano bridge in the tetramer although Uhl claims that in the tetrameric complex that they isolate this resonance was unobserved.

It is apparent based on the experiments that were done to check for rearrangement or decomposition of the donor-acceptor complexes that these complexes are significantly more stable than was theorized by Schaefer and coworkers95 and that only under harsh conditions do these complexes undergo rearrangement or decomposition.

2.4.5 Isothermal Titration Calorimetry

Solution calorimetry has been used to investigate enthalpies of complexation for trimethylaluminum and triethylaluminum complexes with a variety of substrates (Table

2.5). The trialkyl aluminum reagents were reacted with a variety of substrates to measure by calorimetry the heats of complexation for the donor-acceptor complexes. In these cases, solution calorimetry was used but isothermal titration calorimetry was not. The formation of these complexes is exothermic and the heat released can be measured calorimetrically. The binding of CO to a group 13 trialkyl is also exothermic, but there are no reported CO coordinated complexes of aluminum trialkyls that are stable at room temperature. An understanding of the strength of the isonitrile–Al interaction may be beneficial for the use of isonitriles as a model for CO binding to group 13 alkyls. We are

48

Table 2.5. Enthalpies of complexation for complexes of Me3Al and Et3Al

L107,108 ΔH (kcal/mol) L109 ΔH (kcal/mol) Me3Al•L Et3Al•L

Me3PO 32.00 ± 0.20 pyridine 27.9

Ph3PO 28.69 ± 0.20 N,N-dimethylaniline 20.0

Me2NH 30.84 ± 0.26 CyNMe2 25.7

Me3N 29.96 ± 0.19 THF 22.5 pyridine 27.56 ± 0.1 Et2O 19.7

NEt3 26.47 ± 0.18 1,4-dioxane 19.2 THF 22.90 ± 0.19

PEt3 22.12 ± 0.33

PMe3 21.02 ± 0.28

Et2O 20.21 ± 0.23 ______*Values for Me3Al and Et3Al were corrected for enthalpies of dissociation of the dimers

also interested in using calorimetry data to gauge the Lewis acidity of aluminum and gallium alkyls since the Δ(νC≡N) was not very sensitive.

Isothermal Titration Calorimetry (ITC) is a technique used to measure heats of interaction, binding affinity, enthalpies of reaction and metal coordination numbers for solutions. Solution calorimetry has been used to measure reaction enthalpies of inorganic and organometallic complexes including materials that are air- and moisture-sensitive,110 but no ITC studies with aluminum or gallium alkyls have been reported. To test for strengths of interactions of the isonitriles with the trialkyl aluminum and gallium compounds, ITC was used to measure ΔH for the binding of the isonitrile to the metal trialkyls. This work was done in collaboration with Dr. Robert Flowers and Dr. Joseph

49

Teprovich at Lehigh University. Dr. Robert Flowers is considered a leading expert in the area of solution titration calorimetry.

Heat generated by addition of the isonitrile in hexanes to a solution of metal trialkyl in hexanes was measured and thermograms and binding isotherms were generated. An example thermogram is shown in Figure 2.5 and the calculated binding

Time (min) 0 10 20

0

-20 µcal/sec -40

0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20

-22 kcal/mole of injectant of kcal/mole 0.000 0.001 0.002 0.003 0.004 Molar Ratio

i t Figure 2.5 ITC thermogram for titration of Bu3Al with BuN≡C. (Top) Heat change associated with addition of 5 μL aliquots t i of BuN≡C (0.010 M) to Bu3Al (1.4 mL, 0.10 M) at 25 °C. (Bottom) Binding isotherm.

enthalpies are summarized in Table 2.6. One trial of each complex was run while at

Lehigh and a second trial of each was run by Dr. Joseph Teprovich subsequently. The two trials were averaged to give the values that are reported in the table. Me3Al and

50

Table 2.6. ITC thermodynamic data summary ______Complex ΔH (kcal/mol) ______t t 1a Bu3Al•C≡N Bu 24.399 ± 0.558 t t 1b Bu3Ga•C≡N Bu 16.998 ± 0.303 t 1c Me3Al•C≡N Bu 21.652 ± 0.301* i t 1e Bu3Al•C≡N Bu 20.872 ± 0.278 t 1f Et3Al•C≡N Bu 21.316 ± 0.380*

t 2a Bu3Al•C≡N(2,6-Me2C6H3) 25.899 ± 0.678 t 2b Bu3Ga•C≡N(2,6-Me2C6H3) 16.755 ± 0.320

2c Me3Al•C≡N(2,6-Me2C6H3) 21.931 ± 0.463* i 2e Bu3Al•C≡N(2,6-Me2C6H3) 21.196 ± 0.628

2f Et3Al•C≡N(2,6-Me2C6H3) 20.891 ± 0.253* ______

*Values for Me3Al and Et3Al were corrected for enthalpies of dissociation of the dimers111,112

Et3Al are dimers in solution and the binding enthalpies that are reported for these complexes were corrected using half values of their enthalpies of dimerization from literature.111,112 It is evident that the binding of the isonitrile to the metal trialkyl is exothermic and has a fairly strong interaction. The binding enthalpies for the isonitrile coordination are in the range reported by Eyman107,108,113 and Bonitz109 for trialkyl phosphines coordinating to Me3Al, but not as strong as amine coordination. The isonitrile coordination is less exothermic than binding of common phosphine oxides and trialkyl amines, but more exothermic than the binding of ether or THF. The binding enthalpies for both isonitriles to the aluminum alkyls are consistent for each isonitrile

51

t t with Bu3Al being slightly higher. This could be due to the fact that Bu3Al is strictly a monomer in solution so the reported values required no correction factor. The binding

t enthalpies for both isonitriles to Bu3Ga are lower than the corresponding aluminum alkyls. This is due to gallium trialkyls being less Lewis acidic than aluminum trialkyls lowering the strength of the binding interaction.

2.5 Conclusions

The first extensive series of isonitrile donor-acceptor complexes of aluminum and gallium trialkyls is reported. These complexes are stable at elevated temperatures and show binding that is analogous to non-classical CO complexes of transition metals.

Under harsh conditions, evidence for rearrangement and decomposition is seen. The coordinated isonitriles are labile in solution and ITC data suggests that the binding is very exothermic.

52

Chapter Three

Confirmation of Bridging N-Indolyls in 3-Methylindole and Di- and Tri(3-methylindolyl)methane Complexes of Dialkylaluminum Moieties

3.1 Introduction

Pyrrolyl-,114-121 indolyl-,122-126 and carbazolyl-127 based compounds have been used as nitrogen-donor ligands to various types of metal complexes. It is known that these ligands provide significantly different electronic and steric properties compared to the common amido ligands.128 Mason and coworkers125,126,129 have used chelating di- and tri(3-methylindolyl)methanes as ligands for group 4 metals and have reported several advantages including excellent electron-withdrawing ability and reduced π-donating properties due to extensive delocalization of the nitrogen lone pair over the aromatic system. These properties imply a reduced tendency for M–N–M bridging when

1 1 compared to typical amido ligands, and there are fewer examples of μ2-η :η -N-pyrrolyl

(Figure 3.1), indolyl, and carbazolyl ligands than bridging amido ligands, particularly for the main group elements.

All examples of the bridging pyrrolyl, indolyl, and carbazolyl ligands with main

1 1 group elements have been observed for the alkali metals. The μ2-η :η -N coordination mode for indolyl and carbazolyl ligands has been confirmed structurally by X-ray crystallography for a few of the dimers including lithio-, potassio- and sodioindole along

53

N N M M M N N N

N Binding Mode N Binding Mode

1 1 1 Figure 3.1 Binding descriptions for η -N and μ2-η :η -N coordination modes

with lithio-, potassio- and sodiocarbazole.130-133 The structure of N-sodioindole•TMEDA

(TMEDA = tetramethylethylenediamine) is shown in Figure 3.2. It can clearly be seen that there is one indolyl bridge group per sodium metal center. Each sodium is approximately tetrahedral and capped with a chelating TMEDA group.

N1 Na1

Na2 N2

Figure 3.2 ORTEP diagram of N-sodioindole•TMEDA generated from CIF file from Cambridge Crystallographic Database132

1 1 The μ2-η :η -N coordination mode is also observed for pyrrolyl rings in a meso-

134 1 1 octamethylporphyrinogen complex with sodium. In some cases, the μ2-η :η -N coordination mode is stabilized by π interactions between one or more heterocyclic carbon atoms and the metal center. This is expected since η5 coordination of pyrrole

54 heterocycles has been seen in some complexes of group 1,133,135-137 2,138 and 14139,140 metals and is prevalent for transition metals.141

1 1 There are no reports in the literature of μ2-η :η -N coordination of pyrrolyl, carbazolyl and indolyl moieties for group 13 elements. There are reports of dimer complexes for aluminum, gallium and indium with η1-N-pyrrolyl and η1-C-pyrrolyl ligands, but in all cases the dimerization arises from π-association of the metal in one monomer with one or two pyrrole carbons on adjacent monomers.142-144 The lack of

1 1 additional examples suggests that the μ2-η :η -N mode for pyrrolyl, carbazolyl and indolyl is less favorable than the terminal η1-N coordination to main group metals.

145 Cowley reports that six equivalents of pyrrole will react with [Al(NMe2)3]2 to form [(Me2NH)Al(NC4H4)3]. It was expected that the isolated complex would be the

[Al(NC4H4)3]2 dimer analogous to the [Al(NC4H8)3]2 dimer isolated by Smith and coworkers (Figure 3.3).146 Amine elimination was not used in the preparation by Smith

NHMe2 Al N N N N N Al Al N N N N

[Al(NC4H8)3]2 [(Me2N(H))Al(pyr)3]

Figure 3.3 Bridging pyrrolidine, and monomeric pyrrole complexes isolated by Smith146 and Cowley145

55 but there was Me3N coordinated in the starting Me3N•AlH3. The bridging structure isolated by Smith and the monomer isolated by Cowley demonstrate the greater propensity for amido ligands to bridge metal centers compared to pyrroles.

Concurrent with the work described in this chapter, Anirban Das and Bassam

Fneich of the Mason group isolated aluminum complexes that incorporated the di(3- methylindolyl)pyridylmethane and di(3-methylindolyl)-1-methylimidazolemethane ligands (Figure 3.4). Although two different structures for 1 and 2 were proposed based on NMR spectroscopic data, X-ray crystallographic characterization of 1 confirmed the

1 1 presence of an μ2-η :η -N-indolyl moiety in which one indolyl arm bridges two dialkylaluminum centers.81

R N R R R N R Al R N Al Al R Al R N N N N

1 2 R= Me, Et

Figure 3.4 Bridging dialkylaluminum complexes of di(3- methylindolyl)methanes

In this chapter the synthesis and characterization of group 13 complexes with 3- methylindole, di(3-methylindolyl)phenylmethane, and tri(3-methylindolyl)methane are

1 1 reported. Within this report are the first examples of μ2-η :η -N-indolyl moieties bridging group 13 elements, specifically aluminum. X-ray crystallography confirmed the presence of the bridging 3-methylindolyl group in 7a, 8, and 9a-c where there is one 3-

56

R R Al N N Al R R R Al N R N R R R Me Me N Al Al Al Al Me Me R N N N N R Al Al R R R

R R 7a Me 8 9a Me 7b Et 9b Et 7c iBu 9c iBu

methylindolyl moiety per aluminum, and NMR spectroscopic data supports the claim that, even though the process is fluxional, the bridging moiety remains intact in solution.

3.2 Experimental

General Procedures

All air- and moisture-sensitive reactions were performed in an inert atmosphere of purified nitrogen using standard inert atmosphere techniques and an Innovative

Technologies dry box. Trimethylaluminum, triethylaluminum, and triisobutylaluminum were purchased from Strem Chemical, Inc. 3-Methylindole was purchased from Aldrich

Chemicals and used as received. Tri-tert-butylaluminum,97,147 di(3- methylindolyl)phenylmethane,129 and tri(3-methylindolyl)methane129,148 were prepared using published procedures. Toluene was distilled from sodium and hexanes was distilled from calcium hydride prior to use. Benzene-d6 (C6D6) and chloroform-d

57

(CDCl3) were dried by storage over activated molecular sieves and degassed with purified nitrogen. Solution NMR spectra were recorded on a Varian VXRS-400 or a

Varian AS-600 spectrometer using deuterated solvent as an internal lock. Chemical shifts are reported relative to TMS. 13C NMR chemical shift assignments for C4, C5, C6, and C7 were aided by 2D-COSY, 2D-HMQC and 2D-HMBC experiments. The accepted numbering scheme of the indole substituent is shown in Figure 3.5 and is used for all spectral assignments. Elemental analyses were performed by Schwarzkopf

Microanalytical Laboratory Inc., or Galbraith Laboratories, Inc.

4 3 5 3a 2 6 7a N 1 7 H Figure 3.5 Numbering scheme for indole

Synthesis of [3-methylindolyl(AlMe2)]2 (7a)

To a 100 mL side arm flask was added 3-methylindole (0.262 g, 2.00 mmol) and

20 mL of toluene. A toluene solution of trimethylaluminum (1.0 mL, 2.0 M, 2.0 mmol) was added via syringe. Gas evolution proceeded immediately, followed by precipitation of an off-white solid. The mixture was stirred for 2 h and a solid material was isolated by filtration followed by washing with cold hexanes (5 mL). Yield: 0.318 g, 1.70 mmol,

1 3 85%. H NMR (CDCl3, 600 MHz) syn isomer: δ 7.86 (d, JHH = 9.6 Hz, 2H, H7), 7.61 (d,

3 JHH = 9.6 Hz, 2H, H4), 7.40-7.34 (m, 6H, H2, H5, H6), 2.36 (s, 6H, indole CH3), ─0.50

1 (s, 6H, CH3), ─0.84 (s, 6H, CH3). H NMR (CDCl3, 600 MHz) anti isomer: δ 7.75 (d,

3 3 JHH = 10.8 Hz, 2H, H7), 7.61 (d, JHH = 10.2 Hz, 2H, H4), 7.40-7.34 (m, 6H, H2, H5,

13 1 H6), 2.37 (s, 6H, indole CH3), ─0.71 (s, 12H, CH3). C{ H} NMR (CDCl3, 150.8 MHz):

58

145.6 (s, C3a), 135.5 (s, C7a anti), 135.4 (s, C7a syn), 133.2 (s, C2 syn), 132.6 (s, C2 anti), 123.8 (s, C6 syn), 123.6 (s, C6 anti), 123.3 (s, C5 syn), 123.3 (s, C5 anti), 123.0 (s,

C3), 119.7 (s, C4 anti), 119.6 (s, C4 syn), 118.7 (s, C7), 10.4 (s, CH3), 7.4 (s, AlCH3).

Anal Calcd for C22H28N2Al2: C, 70.57; H, 7.54; N, 7.48; Al, 14.41. Found: C, 69.20; H,

7.67; N, 7.38; Al, 15.25.

Synthesis of [3-methylindolyl(AlEt2)]2 (7b)

To a 100 mL side arm flask was added 3-methylindole (0.403 g, 3.07 mmol) and

35 mL of toluene. Triethylaluminum (0.350 g, 3.07 mmol) in 10 mL of toluene was added via syringe. The solution turned light yellow which darkened over 12 h of stirring.

Solvent was removed in vacuo which resulted in pure 7b as a yellow solid. Solid 7b can be recrystallized from a highly concentrated hexanes solution. Yield: 0.647 g, 3.01

1 3 mmol, 97%. H NMR (CDCl3, 600 MHz) syn isomer: δ 7.96 (d, JHH = 7.8 Hz, 2H, H7,

3 syn), 7.58 (d, JHH = 7.8 Hz, 2H, H4), 7.39-7.34 (m, 6H, H2, H5, H6), 2.36 (s, 6H, indole

3 3 CH3), 0.67 (t, JHH = 7.8 Hz, 6H, AlCH2CH3), 0.39 (t, JHH = 7.8 Hz, 6H, AlCH2CH3),

3 3 1 0.19 (q, JHH = 7.8 Hz, 4H, AlCH2CH3), 0.00 (q, JHH = 7.8 Hz, 4H, AlCH2CH3). H

3 3 NMR (CDCl3, 600 MHz) anti isomer: δ 7.82 (d, JHH = 7.8 Hz, 2H, H7), 7.58 (d, JHH =

3 7.8 Hz, 2H, H4), 7.39-7.34 (m, 6H, H2, H5, H6), 2.38 (s, 6H, indole CH3), 0.52 (t, JHH =

13 1 7.8 Hz, 12H, AlCH2CH3), 0.07 (m, 8H, AlCH2CH3). C{ H} NMR (CDCl3, 150.8

MHz): δ 145.3, 145.2, 135.2, 135.0, 132.3, 131.8, 129.3, 128.4, 123.7, 123.6, 123.3,

123.2, 122.9, 122.8, 119.5, 118.0, 117.9, 10.08, 10.1, 8.10 (s, CH3, syn), 7.78 (s, CH3,

1 anti), 7.63 (s, CH3, syn), 2.35 (s, CH2, syn), 1.47 (s, CH2, anti), 0.84 (s, CH2, syn). H

3 NMR (C6D6, 600 MHz) syn isomer: δ 8.10 (d, JHH = 7.8 Hz, 2H, H7), 7.40 (m, 2H, H4),

3 7.31-7.28 (m, 4H, H2, H6), 7.24-7.21 (m, 2H, H5), 2.10 (s, 6H, indole CH3), 0.84 (t, JHH

59

3 3 = 8.4 Hz, 6H, AlCH2CH3), 0.61 (t, JHH = 8.4 Hz, 6H, AlCH2CH3), 0.40 (q, JHH = 8.4

3 1 Hz, 4H, AlCH2CH3), 0.14 (q, JHH = 7.8 Hz, 4H, AlCH2CH3). H NMR (C6D6, 600 MHz)

3 anti isomer: δ 7.93 (d, JHH = 7.8 Hz, 2H, H7), 7.40 (m, 4H, H4, H2), 7.31-7.28 (m, 2H,

3 H6), 7.24-7.21 (m, 2H, H5), 2.09 (s, 6H, indole CH3), 0.72 (t, JHH = 8.4 Hz, 12H,

13 1 AlCH2CH3), 0.27 (m, 8H, AlCH2CH3). C{ H} NMR (C6D6, 150.8 MHz): δ 145.39 (s,

C3a syn), 145.26 (s, C3a, anti), 135.11 (s, C7a, anti), 134.97 (s, C7a, syn), 132.12 (s, C2, syn), 131.60 (s, C2, anti), 123.89 (s, C6, syn), 123.76 (s, C6, anti), 123.41 (s, C5, syn),

123.39 (s, C5, anti), 122.93 (s, C3, anti), 122.82 (s, C3, syn), 119.70 (s, C4, anti), 119.64

(s, C4, syn), 117.94 (s, C7, anti), 117.89 (s, C7, syn), 9.50 (s, indole CH3), 8.10 (s, CH3, syn), 7.80 (s, CH3, anti), 7.66 (s, CH3, syn), 2.34 (s, CH2, syn), 1.60 (s, CH2, anti), 1.05

(s, CH2, syn). Anal Calcd for C26H36N2Al2: C, 72.53; H, 8.43; N, 6.51; Al, 12.53. Found:

C, 69.48; H, 8.11; N, 6.40; Al, 13.05.

i Synthesis of [3-methylindolyl(Al Bu2)]2 (7c)

To a 100 mL side arm flask was added 3-methylindole (0.747 g, 5.70 mmol) and

50 mL of toluene. A toluene solution of triisobutylaluminum (5.7 mL, 1.0 M, 5.70 mmol) was added via syringe. The colorless solution stirred for 4 h and solvent was removed in vacuo. The resulting white solid was dissolved in 10 mL of toluene and crystallized following storage at ─30 °C for 12 h. Yield: 1.47 g, 5.47 mmol, 96%. 1H

3 3 NMR (C6D6, 600 MHz) syn isomer: δ 8.21 (d, JHH = 7.8 Hz, 2H, H7), 7.40 (d, JHH = 7.8

Hz, 2H, H4), 7.31-7.25 (m, 4H, H2 syn, H6), 7.21-7.19 (m, 2H, H5), 2.12 (s, 6H, indole

CH3), 1.80 (m, 2H, CH), 1.52 (m, 2H, CH), 0.82 (d, 6H, CH3), 0.52-0.43 (m, 14H, CH2,

1 3 CH3). H NMR (C6D6, 600 MHz) anti isomer: δ 7.98 (d, JHH = 8.4 Hz, 2H, H7), 7.47 (s,

60

3 2H, H2), 7.40 (d, JHH = 7.8 Hz, 2H, H4), 7.31-7.25 (m, 2H, H6), 7.21-7.19 (m, 2H, H5),

2.13 (s, 6H, indole CH3), 1.65 (m, 4H, CH), 0.73 (d, 12H, CH3), 0.59 (d, 12H, CH3),

13 1 0.52-0.43 (m, 8H, CH2). C{ H} NMR (C6D6, 150.8 MHz): δ 146.15 (s, C3a, syn),

145.64 (s, C3a, anti), 135.53 (s, C7a, anti), 135.40 (s, C7a, syn), 133.72 (s, C2, syn),

133.01 (s, C2, anti), 123.52 (s, C6), 123.34 (s, C5, syn), 123.32 (s, C5, anti), 122.42 (s,

C3, anti), 122.23 (s, C3, syn), 119.60 (s, C4), 119.37 (s, C7, anti), 119.21 (s, C7, syn),

27.88 (s, CH3, syn), 27.61 (s, CH3, anti), 27.57 (s, CH3, anti), 27.20 (s, CH3, syn), 26.22

(s, CH, syn), 25.92 (s, CH, anti), 25.69 (s, CH, syn), 25.62 (br s, CH2, syn), 23.74 (br s,

CH2, anti), 22.01 (br s, CH2, syn), 9.47 (s, indole CH3, anti), 9.46 (s, indole CH3, syn).

Anal Calcd for C34H52N2Al2: C, 75.24; H, 9.66; N, 5.16. Found: C, 73.24; H, 8.64; N,

5.06.

Synthesis of [{di(3-methylindolyl)phenylmethane}(AlMe2)2] (8)

To a 100 mL side arm flask was added di(3-methylindolyl)phenylmethane (0.350 g, 1.00 mmol) and 25 mL of toluene. A toluene solution of trimethylaluminum (1.0 mL,

2.0 M, 2.0 mmol) was added via syringe. Gas evolution proceeded immediately and the solution slowly turned dark green over 12 h. Solvent was removed in vacuo and the remaining green oil was dissolved in 15 mL of hexanes. The solution was stored at ─30

°C for 12 h to yield a green solid which was isolated by filtration. Attempts to isolate 8 as a pure sample separate from excess Me3Al was not successful. The presence of excess

1 Me3Al broadens all resonances in the H NMR spectrum making assignments unsuccessful.

61

Synthesis of [{tri(3-methylindolyl)methane}(AlMe2)3] (9a)

To a 100 mL side arm flask was added tri(3-methylindolyl)methane (0.269 g,

0.667 mmol) and 30 mL of toluene, followed by heating to 50 °C in an oil bath. A toluene solution of trimethylaluminum (1.0 mL, 2.0 M, 2.0 mmol) was added via syringe.

The reaction solution turned bright yellow and darkened as the solution was cooled to 25

°C and stirred for 12 h. The solvent was then removed in vacuo, resulting in a yellow solid, which was dissolved in a mixture of 10 mL of toluene and 5 mL of hexanes followed by cooling to ─30 °C for 48 h. The resulting white crystalline material was

1 isolated by filtration. Yield: 0.338 g, 0.590 mmol, 88%. H NMR (C6D6, 600 MHz): δ

3 3 7.87 (d, JHH = 7.8 Hz, 3H, H7), 7.28 (d, JHH = 7.8 Hz, 3H, H4), 7.11 (m, 6H, H5, H6),

6.08 (s, 1H, CH), 2.12 (s, 9H, indolyl CH3), 0.45 (s, 9H, AlCH3), ─2.27 (s, 9H, AlCH3).

13 1 C{ H} NMR (C6D6, 150.8 MHz): δ 143.23 (s, C3a), 140.03 (s, C2), 137.35 (s, C7a),

125.20 (s, C5), 124.82 (s, C6), 121.66 (s, C3), 120.09 (s, C4), 117.16, (s, C7), 33.58 (s,

1 CH), 8.50 (s, CH3), ─6.65 (br s, AlCH3), ─19.34 (br s, AlCH3). H NMR (CDCl3, 600

MHz): δ 7.69 (m, 3H, H7), 7.48 (m, 3H, H4), 7.31 (m, 6H, H5, H6), 6.14 (s, 1H, CH),

13 1 2.45 (s, 9H, indolyl CH3), 0.04 (s, 9H, AlCH3), ─2.74 (s, 9H, AlCH3). C{ H} NMR

(CDCl3, 150.8 MHz): δ 142.78 (s, C3a), 139.72 (s, C2), 137.14 (s, C7a), 124.73 (s, C5),

124.56 (s, C6), 121.53 (s, C3), 119.95 (s, C4), 116.95, (s, C7), 33.32 (s, CH), 8.96 (s,

CH3), ─7.18 (br s, AlCH3), ─19.90 (br s, AlCH3). Anal Calcd for C34H40N3Al3: C, 71.44;

H, 7.05; N, 7.35; Al, 14.16. Found: C, 71.09; H, 7.56; N, 7.32; Al, 14.87.

62

Synthesis of [{tri(3-methylindolyl)methane}(AlEt2)3] (9b)

To a 100 mL side arm flask was added tri(3-methylindolyl)methane (0.442 g, 1.09 mmol) and 50 mL of toluene, followed by heating to 50 °C in an oil bath.

Triethylaluminum (0.375 g, 3.27 mmol) in 10 mL of toluene was added via syringe. The resulting solution turned slight yellow, which slowly darkened over 24 h. Solvent was removed in vacuo to yield a yellow oil. The oil was dissolved in 15 mL of hexanes and stored at ─30 °C for 24 h to yield a yellow crystalline solid that was isolated by filtration.

1 Yield: 0.72 g, 0.86 mmol, 79%. H NMR (C6D6, 600 MHz): δ 7.97 (m, 3H, H7), 7.22

(m, 3H, H4), 7.08 (m, 6H, H5, H6), 6.00 (s, 1H, CH), 2.08 (s, 9H, indolyl CH3), 1.44 (t,

3 3 3 JHH = 9.0 Hz, 9H, AlCH2CH3), 1.31 (q, JHH = 9.0 Hz, 6H, AlCH2CH3), ─0.13 (t, JHH =

3 13 1 9.0 Hz, 9H, AlCH2CH3), ─1.57 (q, JHH = 9.0 Hz, 6H, AlCH2CH3). C{ H} NMR (C6D6,

150.8 MHz): δ 143.57 (s, C3a), 140.15 (s, C2), 137.56 (s, C7a), 125.00 (s, C5), 124.98 (s,

C6), 121.30 (s, C3), 119.93 (s, C4), 117.54, (s, C7), 33.59 (s, CH), 10.34 (s, CH3), 8.63

(s, AlCH2CH3), 8.20 (s, AlCH2CH3), 3.54 (br s, AlCH2CH3), ─7.88 (br s, AlCH2CH3).

1 H NMR (CDCl3, 600 MHz): δ 7.82 (d, 3H, H7), 7.47 (d, 3H, H4), 7.32 (m, 6H, H6,

3 H5), 6.12 (s, H, CH), 2.45 (s, 9H, indolyl CH3), 1.14 (t, JHH = 8.2 Hz, 9H, AlCH2CH3),

3 3 0.96 (q, JHH = 8.2 Hz, 6H, AlCH2CH3), ─0.49 (t, JHH = 8.7 Hz, 9H, AlCH2CH3), ─1.94

3 13 1 (q, JHH = 8.7 Hz, 6H, AlCH2CH3). C{ H} NMR (CDCl3, 150.8 MHz): δ 143.17, 139.88

(s, C), 137.33 (s, C), 124.66 (s, C5), 124.58 (s, C6), 121.13 (s, C), 119.74 (s, C4), 117.4,

(s, C7), 33.32 (s, CH), 9.94 (s, CH3), 9.06 (s, AlCH2CH3), 7.69 (s, AlCH2CH3), 2.9 (br s,

AlCH2CH3), ─8.5 (br s, AlCH2CH3). Anal Calcd for C40H52N3Al3: C, 73.26; H, 7.99; N,

6.41; Al, 12.34. Found: C, 72.05; H, 8.34; N, 6.41; Al, 12.80.

63

i Synthesis of [{tri(3-methylindolyl)methane}(HAl3 Bu5)] (9c)

To a 100 mL side arm flask was added tri(3-methylindolyl)methane (0.403 g, 1.00 mmol) and 50 mL of toluene followed by heating to 50 °C in an oil bath. A toluene solution of triisobutylaluminum (3.0 mL, 1.0 M, 3.0 mmol) was added via syringe at 50

°C . The resulting solution was kept at 50 °C for 48 h to yield a yellow solution. Solvent was removed in vacuo to yield a yellow oil. The oil was dissolved in 10 mL of hexanes followed by cooling to ─30 °C for 12 h which yielded a yellow crystalline solid that was

1 isolated by filtration. Yield: 0.606 g, 0.79 mmol, 79%. H NMR (C6D6, 600 MHz): δ

3 3 3 8.16 (d, JHH = 7.8 Hz, 1H, H7), 8.08 (d, JHH = 7.8 Hz, 2H, H7), 7.30 (d, JHH = 7.8 Hz,

3 1H, H4), 7.27 (d, JHH = 7.8 Hz, 2H, H4), 7.15 (m, 6H, H5, H6), 6.06 (s, 1H, CH), 2.51

2 3 (m, 2H, CH), 2.21 (s, 3H, CH3), 2.16 (s, 6H, CH3), 1.72 (dd, JHH = 15 Hz JHH = 6.6 Hz,

2 3 3 2H, CH2), 1.52 (dd, JHH = 15 Hz JHH = 6.6 Hz, 2H, CH2), 1.42 (d, JHH = 6.6 Hz, 6H,

3 3 CH3), 1.31 (d, JHH = 6.6 Hz, 6H, CH3), 0.71 (m, 3H, CH), 0.40 (d, JHH = 6.6 Hz, 6H,

3 3 3 CH3), 0.19 (d, JHH = 6.6 Hz, 6H, CH3), 0.14 (d, JHH = 6.6 Hz, 6H, CH3), ─1.55 (d, JHH

3 13 1 = 6.6 Hz, 4H, CH2), ─1.93 (d, JHH = 6.6 Hz, 2H, CH2). C{ H} NMR (C6D6, 150.8

MHz): δ 143.95 (s, C3a), 143.49 (s, C3a), 140.34 (s, C2), 137.94 (s, C7a), 137.59 (s,

C7a), 125.21 (s, C5), 125.17 (s, C5), 125.04 (s, C6), 125.00 (s, C6), 122.13 (s, C3),

121.18 (s, C3), 120.11 (s, C4), 120.01 (s, C4), 117.48 (s, C7), 117.37 (s, C7), 33.51 (s,

CH), 29.15 (s, CH2CH(CH3)2), 28.45 (s, CH2CH(CH3)2), 27.65 (s, CH2CH(CH3)2), 27.44

(s, CH2CH(CH3)2), 27.11 (s, CH2CH(CH3)2), 26.86 (s, CH2CH(CH3)2), 24.98 (s,

CH2CH(CH3)2), 24.67 (s, CH2CH(CH3)2), 24.44 (s, CH2CH(CH3)2), 14.19 (s,

CH2CH(CH3)2), 11.41 (s, CH2CH(CH3)2), 8.66 (s, CH3), 8.58 (s, CH3). Anal Calcd for

64

C48H68N3Al3: C, 75.07; H, 8.92; N, 5.47; Al, 10.54. Found: C, 72.33; H, 9.07; N, 5.43;

Al, 10.74.

3.3 X-ray Crystallography

Crystals of 7a were grown from a highly concentrated chloroform solution stored at ─30 °C. Crystals of 8 were grown from a highly concentrated oil of 8 in toluene stored undisturbed in the glove box for 3 weeks. Crystals of 9a were grown from a highly concentrated toluene solution stored at ─30 °C. Crystals of 9b and 9c were grown from highly concentrated hexanes solutions at ─30 °C. The X-ray diffraction data were collected on a Siemens three-circle platform diffractometer equipped with a 4K CCD detector. The frame data were acquired with the SMART 5.62599 software using Mo Kα radiation (λ = 0.71073 Å). Cell constants were determined with SAINT 6.22100 from the complete dataset. A complete sphere of data was collected using ω (0.3◦) scans with a run time of 30 s/frame (7a, 9a, 9b) and 50 s/frame (8, 9c) at different Φ angles. A total of

1262 frames (9c), 1400 frames (8), 1515 frames (9b) or 1415 frames (7a, 9a) were collected for the dataset. An additional 50 frames, identical to the first 50, were collected to determine crystal decay. The frames were integrated using the SAINT 6.22 software and the data were corrected for absorption and decay using the SADABS101 program. The structures were solved by direct methods and refined by least-squares methods on F2, using the SHELXTL program suite.102 Details of data collection and refinement are provided in Table 3.1. Further details, including atomic coordinates, distances and angles are found in the CIF files.

65

Table 3.1. Crystal data and structure refinement details

7a 8 9a•0.6toluene

Formula C22H28Al2N2 C29H32Al2N2 C38.20H44.80Al3N3 Fw 374.42 462.53 626.91 Cryst. Syst Monoclinic Triclinic Triclinic Space group P2(1)/c P1 a, Å 7.9554(4) 11.9211(18) 10.2695(12) b, Å 18.7424(1) 12.4867(19) 12.3448(14) c, Å 14.6172(7) 18.489(3) 15.0435(18) α, deg 90 91.419(3) 77.768(3) β, deg 104.9450(1) 107.696(3) 86.788(2) γ, deg 90 101.049(3) 88.308(3) V, Å3 2105.75(2) 2563.2(7) 1860.6(4) Z 4 4 2 -3 Dcalcd, g cm 1.181 1.199 1.119 temp, °C ─133 ─133 ─133 μ, mm-1 0.146 0.133 0.130 λ, Å 0.71073 0.71073 0.71073 transm coeff 1.00-0.895 1.00-0.800 1.00-0.861 2θ limits, deg 3.62 to 52.00 2.32 to 52.00 3.38 to 52.00 total no. of data 14293 19281 13288 no. unique data 4133 10067 7270 no. obsd dataa 3778 8574 6868 no. of params 377 591 387 b R1 (I > 2σ(I)) 0.0556 0.0547 0.0548 2 c wR2(I , all data) 0.1643 0.1486 0.1733 max, min peaks, e/Å3 0.478, –0.425 0.481, –0.339 1.023, –0.342 ______a b c 2 2 2 2 2 1/2 I > 2σ(I). R1 = | |Fo| – |Fc| | / |Fo|. wR2 = [ [w (Fo – Fc ) ] / [w (Fo ) ]] .

3.4 Results and Discussion

3.4.1 Preparation of di- and tri(3-methylindolyl)methanes

Di- and tri(3-methylindolyl)methanes can be prepared from acid-catalyzed reactions of two equivalents of 3-methylindole with various aldehydes, or three equivalents of 3-methylindole with triethylorthoformate. The two ligands (3, 4) of interest in this chapter were prepared as shown in eqs 1-2 using literature

66 procedures.129,149 Indole moieties are most susceptible to electrophilic attack at C3 so 3- methylindole is used for the condensation reactions to force connectivity of the methine carbon to C2 of the indole, giving the ligands a preferred binding mode. These two ligands can serve as dianionic, bidentate (3) or trianionic, tridentate (4) ligands, when deprotonated and bound to a metal, forming six-membered chelate rings.

NH H+ 2 + PhC(O)H CH OH (1) 3 Ph N H NH

3

NH + 3 H (2) + HC(OEt)3 CH3OH N NH H NH

4

i 3.4.2 Reactions of 3-methylindole and R3Al (R = Me, Et, Bu)

The initial aim of this research was to generate three-coordinate Lewis acidic metal complexes via reactions of indoles with aluminum trialkyls. The goals were to generate these complexes, test their Lewis acidity, and check their ability to bind carbon monoxide. There are currently no reported complexes of carbon monoxide bound to a group 13 metal that is stable at room temperature. Theoretical calculations by Hu85 and

67

Pascal85,150 show that the binding of CO to a group 13 alkyl is exothermic and will be favored at lower temperatures. The binding of CO to a metal is entropically unfavorable so low temperatures and greater binding enthalpy helps favor this reaction. Generation of strong Lewis acidic complexes should help the binding of CO to group 13 metals.

As a part of an industrial contract with Zeon Chemicals, Frank Segla and Baohan

Xie reacted indoles and indolyl ligands with different ratios of aluminum alkyls and successfully used the reaction solutions for the polymerization of epichlorohydrin to high molecular weight polyethers.151 The aluminum complexes at that time were not isolated or characterized. The molecular structures of the aluminum complexes used for the polymerizations are of interest at present.

Based on the previously synthesized ligand frameworks, the use of 3- methylindole was a starting point for the investigation. It was chosen based on work previously done by Baohan Xie and Frank Segla79 of the Mason group who reported the synthesis of 5 and 6 by reacting six equivalents of 3-methylindole or 2,5-dimethylpyrrole with [Al(NMe2)3]2 as shown in eqs 3 and 4. X-ray crystallography confirmed that 5 consisted of a four-coordinate aluminum center ligated with three anionic 3- methylindolyl moieties and one neutral dimethylamine. While this compound showed promise, the desired complex would be the three-coordinate base-free Lewis acid without coordination of the amine.

CH CH3 3 NH N Al NHMe2

6 + [Al(NMe2)3]2 2 (3) -4 NHMe2

3 5

68

CH3 CH3

6 NH + [Al(NMe2)3]2 2 N Al NHMe2 (4) - 4 NHMe2 3 CH3 CH3 6

We started our investigation with reactions of aluminum alkyls with 3- methylindole in a 1:1 ratio. 3-Methylindole was added to toluene solutions of R3Al (R =

Me, Et, iBu) in a 1:1 ratio (eq 5). It was expected that the products would contain one indolyl moiety and two alkyl groups resulting in either dimers (R = Me, Et) with alkyl groups bridging the aluminum centers, or possibly monomers (R = iBu). Compound 7a was isolated as an off white solid in 85% yield and X-ray quality crystals were obtained from a concentrated chloroform solution stored at ─30 °C. The 1H NMR spectrum shows three different methyl resonances for the alkyl groups on aluminum at ─0.50 ppm, ─0.71 ppm and ─0.84 ppm in CDCl3 with a 1:3:1 ratio. There was no evidence for any NH protons from unreacted 3-methylindole and there were two methyl resonances for the indolyl moiety at 2.37 ppm and 2.36 ppm, respectively. There were also two sets of resonances for H7 at 7.86 ppm and 7.75 ppm, and this indicates that there were two different compounds isolated in the powder or that there was a fluxional process taking place between two different isomers of the product.

69

R R Al N N Al Syn Isomer R R

2 NH 2 R3Al toluene R R (5) Al Anti Isomer N N Al R R

R Yield 7a Me 85% 7b Et 97% 7c iBu 96%

The specific assignments were made on the basis of gCOSY experiments (Figure 3.6) which confirmed the assignments of resonances for two sets of indolyl protons H7–H6–

H5–H4. The presence of two sets of indole resonances could be due to syn and anti isomers of 7a if either a methyl or indolyl bridge were present. Using this assumption, the 1H NMR spectrum could be assigned based on an indolyl bridge of the aluminum centers. The three resonances for aluminum-bound methyls could now be assigned based on the presence of the syn and anti isomers. In the anti isomer, the methyl groups on aluminum are chemically equivalent and show up as one resonance at ─0.71 ppm.

The syn isomer results in two methyl resonances at ─0.50 ppm and ─0.84 ppm for the methyls that are above and below the plane of the four-membered Al2N2 ring. Integration of the methyl resonances on aluminum and H7 of the indolyl rings shows a 60:40 ratio of anti to syn isomers in solution.

70

H4 H2syn H6 H5 H2anti

H7syn H7anti

H5

H2syn H6 H4

H2anti

H7anti

H7syn

Figure 3.6. gCOSY spectrum of 7c in benzene-d6 from 7.0 ppm to 8.4 ppm

The resonances in the 13C NMR spectrum were assigned on the basis of HMQC

(Heteronuclear Multiple Quantum Coherence) and HMBC (Heteronuclear Multiple Bond

Coherence) experiments.152 HMQC gives cross-peaks for direct C–H couplings while

HMBC gives cross-peaks for long range (2-4 bond) C–H coupling. The assigned chemical shifts are consistent with those previously reported by Mason129 and coworkers for other di- and tri-indolylmethanes. A representative HMQC spectrum is shown in

Figure 3.7.

71

The indolyl bridged structures were proposed based on 1H NMR spectral characterization of 7a. It is important to note that NMR spectral characterization did not rule out the possibility of monomeric structures or methyl bridged dimers. The resonances observed for the anti isomer could be assigned to a monomeric structure and the resonances observed for the syn isomer could be assigned to methyl bridged dimers.

C4 C2 C6D6 C6 C5 C7 C3

H5 H2, H6 H4 H2anti

H7anti

H7syn

Figure 3.7. HMQC spectrum of 7c in benzene-d6 from 116 to 134 ppm

X-ray crystallography confirmed the structure of 7a (Figure 3.8) as a dimer with two 3-methylindolyl moieties bridging two aluminum centers. The molecule crystallized in space group P2(1)/c and the structure was refined with an R1 factor of 5.55%. The

72 structure consists of a whole molecule disorder of two syn isomers with the aluminum and alkyl atoms overlapping and a refined ratio between the two isomers of 56% to 44%.

1 1 Each indolyl moiety bridges two aluminum centers in a μ2-η :η -N fashion. This is the

1 1 first example of a μ2-η :η -N-indolyl coordinated to a group 13 element. Selected bond distances and angles are summarized in Table 3.2. The Al–N bond distances range from

2.004(4) to 2.037(3) Å, which is comparable to the distances of 2.022(2) and 1.969(2) Å

81 1 1 reported by Das for μ2-η :η Al–Nindolyl bond distances. They are also in the range for

N–Al bond distances (1.9588(2) to 1.9673(22) Å) in the bisaluminum complexes bridged by pyrrolidine moieties reported by Smith and co-workers.146

C28 C15A C25A C4 C4 C13A C26A C23A C18 C21 C16A C10 C2 C20 C2 Al2 C22 C17A C27A N2 C11 C23 Al2 N1 C24A C12 C14A N1A N2A Al1 C27 C22 C13 C12 Al1 C17 C3 C3 C24 C26 C11A C10A C20A C21A C25 C16 C1 C1 C14 C18A C28A C15

Figure 3.8 ORTEP diagrams of 7a. Both syn isomers of the whole molecule disorder are shown. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

73

Table 3.2 Selected bond distances and angles for 7a

Bond distances (Å)

Al1–N1 2.008(3) Al1–N1a 2.033(4)

Al1–N2 2.016(3) Al1–N2a 2.027(4)

Al2–N1 2.024(3) Al2–N1a 2.004(4)

Al2–N2 2.037(3) Al2–N2a 2.004(4)

Al1–C1 1.947(3) Al1–C2 1.949(3)

Al2–C3 1.941(3) Al2–C4 1.946(2)

Bond angles (deg)

N1–Al1–N2 88.51(13) C3–Al2–C4 117.91(13)

N1–Al2–N2 87.52(13) C1–Al1–N1 115.18(13)

N1a–Al1–N2a 85.75(16) C1–Al1–N2 118.88(14)

N1a–Al2–N2a 87.11(16) C2–Al1–N1 105.36(14)

Al1–N1–Al2 91.05(13) C2–Al1–N2 105.14(15)

Al1–N2–Al2 90.90(13) C3–Al2–N1 117.44(14)

Al1–N1a–Al2 91.14(17) C3–Al2–N2 118.30(14)

Al1–N2a–Al2 91.31(16) C4–Al2–N1 105.20(14)

C1–Al1–C2 119.04(14) C4–Al2–N2 105.85(13)

Based on the observed chemistry of Me3Al with one equivalent of 3- methylindole, the reactivity study was expanded to other aluminum alkyls. Derivatives

i using Et3Al (7b) and Bu3Al (7c) were prepared in high yields in similar manner to 7a.

Complex 7b shows analogous physical and spectral properties to 7a. It is isolated as an

74 off-white powder and can be recrystallized from minimal amounts of hot toluene.

1 Integration of the H NMR spectrum of 7b in CDCl3 also shows a 60:40 ratio of anti to syn isomers and has three triplet resonances for the methyl component of the ethyl groups on aluminum at 0.67 ppm, 0.52 ppm, and 0.39 ppm and three quartet resonances for methylene component at 0.19 ppm, 0.07 ppm, and 0.00 ppm. There is no evidence for

NH protons from unreacted 3-methylindole and there are two doublet resonances for methyl groups on indolyl moieties at 2.38 ppm and 2.36 ppm. There are also two resonances for H7 at 7.96 ppm and 7.82 ppm, consistent with two different indolyl groups in the obtained product. The ethyl resonances could be assigned based on integration of the syn and anti H7 protons. Resonances at 0.52 ppm and 0.07 ppm correspond to the ethyl groups on the anti isomer and those at 0.67 ppm, 0.39 ppm, 0.19 ppm, and 0.00 ppm represent the ethyl resonances for the syn isomer. Crystals of 7b were grown from a highly concentrated toluene solution and checked for diffraction.

After many attempts to obtain a suitable unit cell from matrix runs it was deemed that the crystals were not suitable for a complete data set collection.

Complex 7c is also analogous to 7a and 7b and is isolated as an off-white solid.

Integration of the 1H NMR spectrum of 7c also shows a 60:40 ratio of anti and syn isomers in solution. Three sets of iso-butyl resonances on aluminum can clearly be seen along with two sets of resonances for both the methyl and H7 protons on the indolyl moiety. Similar to 7b, crystals of this complex can be grown from a highly concentrated toluene solution, but they were not suitable for X-ray diffraction.

t Attempts to synthesize similar complexes using Bu3Al were unsuccessful. The

1 H NMR spectra in CDCl3 of isolated materials from these attempts showed a mixture of

75 indolyl resonances and a plethora of alkyl resonances in the range between 0.80 ppm and

1.40 ppm, which is the area where tert-butyl resonances on aluminum are normally seen.

All attempts made to purify and isolate products from these mixtures were unsuccessful.

3.4.3 Variable Temperature NMR of 7a-b

A variable-temperature (VT) NMR study was performed to test for exchange of the syn and anti isomers of 7a and 7b. VT plots (Figures 3.9 and 3.10) for 7a and 7b show exchange between the syn and anti isomers of the complexes. For both 7a and 7b there is broadening of the aluminum alkyl resonances as the interconversion of isomers becomes more rapid at higher temperatures. For 7a, coalescence of the methyl resonances occurs at 45 °C, and the methyl resonances sharpen at higher temperatures.

For 7b coalescence of the ethyl resonances occurs at 50 °C and there is sharpening of the ethyl resonances at higher temperatures. As coalescence of the alkyl resonances for 7a and 7b occurs, there is also coalescence of the H7 indolyl protons. At this time neither a mechanism for the interconversion of the two isomers nor models to calculate thermodynamic parameters have been determined.

Schleyer and coworkers have reported 1H NMR studies for the N-sodio-N-N-N′-

N′-tetramethylethylenediamine complex shown in Figure 3.2. The 1H NMR data shows a

3:1 ratio of anti to syn isomers in solution at ─80 °C and coalescence of the two isomers at ─59 °C. The 3:1 ratio observed for the anti/syn isomers is similar to the ratio observed for 7a-7c. In the crystal structure for this complex, the anti isomer is observed. They report that based on MNDO calculations there is no energetic preference for the anti over the syn isomer, meaning that the effect that determines arrangement in the solid state is not relevant to the solution phase.

76

Indolyl CH3

AlCH3 H2, H4, H5, H6, H7

1 Figure 3.9 Variable-temperature H NMR plot of 7a in CDCl3 from -10 to 60 °C

Indolyl CH3 H2, H4, H5, H6, H7

AlCH2CH3

1 Figure 3.10 Variable-temperature H NMR plot of 7b in CDCl3 from 20 to 60 °C

77

3.4.4 Reaction of Di(3-methylindolyl)phenylmethane and Me3Al

Based on the results obtained from reactions of one equivalent of 3-methylindole with one equivalent of aluminum alkyl, the chemistry was expanded to include reactions of the di- and tri(3-methylindolyl)methanes with aluminum alkyls. It appeared that the bridging mode for the indolyl moiety would also be favored in the constrained system of the ligand framework. To test this, di(3-methylindolyl)phenylmethane was reacted with two equivalents of Me3Al to yield complex 8 (eq 6). A single crystal was obtained from a highly concentrated toluene solution left undisturbed in the glove box for three weeks.

Complex 8 was not isolated as a pure product other than the single crystal grown from the oil. Numerous attempts were made to isolate and purify larger quantities of 8 for characterization, but these were unsuccessful. Isolated products showed multiple broad aluminum methyl and di(3-methylindolyl)phenylmethane resonances. This is presumably due to excess Me3Al that is always found as an impurity in the purification of

8. A similar broadening is seen in the NMR spectra of 7a when excess Me3Al is present.

Thus, the structure of complex 8 in solution is unknown.

NH Me N - 2 CH4 Me + 2 Me3Al Al Al (6) toluene Me NH Me N

8

78

X-ray crystallography confirmed the solid-state structure of 8 (Figure 3.11) as a

1 1 bimetallic dimer with two aluminum centers, each bridged by a μ2-η :η -N indolyl moiety. The molecule crystallized in space group P1 and the structure was refined with an R1 factor of 5.47%. Selected bond distances and angles are summarized in Table 3.3.

The structure consists of two molecules in the asymmetric unit and has a disordered phenyl group in each molecule. Each phenyl group is refined with a ratio of 56% to 44%.

Each indolyl arm of the di(3-methylindolyl)phenylmethane ligand is bridging two

1 1 different pseudo-tetrahedral aluminum centers in a μ2-η :η -N fashion. The Al–Nindolyl bond distances range from 1.9722(2) to 2.0339(2) Å, comparable to the distances reported earlier in this chapter (section 3.4.2). It is of interest to note that the bridge ring is asymmetric and that two of the Al–Nindolyl bonds are significantly shorter than the others.

C4

Al2 N1 C5 N2 Al1 C3 C2

Figure 3.11 ORTEP diagram of 8. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

79

Table 3.3 Selected bond distances and angles for C29H32Al2N2 (8) Bond distances (Å)

Al1–N1 1.9785(2) Al1–C2 1.954(2)

Al1–N2 2.0339(2) Al1–C3 1.964(2)

Al2–N1 2.002(2) Al2–C4 1.943(3)

Al2–N2 1.9722(2) Al2–C5 1.963(3)

Bond angles (deg)

N1–Al1–N2 77.82(8) C2–Al1–N2 116.29(10)

N1–Al2–N2 78.73(7) C3–Al1–N1 115.52(9)

Al1–N1–Al2 91.49(8) C3–Al1–N2 111.55(9)

Al1–N2–Al2 90.73(7) C4–Al2–N1 113.14(13)

C2–Al1–C3 115.97(12) C4–Al2–N2 121.06(12)

C4–Al2–C5 112.74(14) C5–Al2–N1 115.20(11)

C2–Al1–N1 114.09(10) C5–Al2–N2 111.96(11)

i 3.4.5 Reactions of Tri(3-methylindolyl)methane and R3Al (R = Me, Et, Bu)

With the apparent preference of indolyl bridges over alkyl bridges, this study was expanded to include the tri(3-methylindolyl)methane ligand. Tri(3- methylindolyl)methane was stirred with three equivalents of Me3Al in toluene at 40 °C for 24 hours (eq 7). The off-white solid 9a was isolated in 88% yield and is air- and

1 moisture-sensitive. The H NMR spectra of 9a were obtained in both CDCl3 and C6D6 although only the latter will be discussed based on a better resolution of the aromatic

1 resonances in C6D6. The H NMR spectrum in C6D6 shows one methine resonance at

6.08 ppm, and one methyl resonance for the 3-methylindolyl moieties at 2.45 ppm

80 indicating that all three arms of the ligand are chemically equivalent. There are two sets of resonances for the methyl groups on aluminum at 0.45 ppm and ─2.27 ppm, each integrating to nine protons. This indicates a highly symmetrical structure in solution and integration confirms that there are six Me–Al moieties per tri(3-methylindolyl)methane ligand, thus establishing the stoichiometry of the product. NMR spectroscopic data suggests the structure shown in eq 7 based on the ability of indolyls to bridge aluminum centers observed throughout this chapter. The large difference in chemical shift of the aluminum-bound methyls is due to different chemical environments, one set that is above and one set below the six-membered Al3N3 ring formed by the bridging indolyls. There is a considerable shift of almost 3 ppm upfield for one set of methyls on aluminum. This is assigned to the methyls that sit below the six-membered ring situated between the

R Al NH N R N R CH + 3 R3Al Al (7) toluene R N R Al 3 R

R Yield 9a Me 88% 9b Et 79% aromatic rings of two different indolyl moieties; the ring current effect of these aromatic rings causes this large upfield shift. The shielding effect on the aluminum methyls is also seen in the 13C NMR spectrum where the shifts are ─6.65 ppm and ─19.90 ppm, respectively. This is an almost 13 ppm shift upfield due to the ring current effect on the

81 bridging indolyl moieties. The aromatic region of the 13C NMR spectrum shows only one set of indolyl resonances which are comparable to those reported by Das for indolyl moieties bridging dialkyl aluminum centers.81 There is only one methine resonance at

33.32 ppm and one resonance for methyls on the indolyls at 8.96 ppm. The 1H NMR spectrum does not change at reduced or elevated temperatures suggesting that this complex is static in solution, unlike complexes 7a-c.

Crystals of 9a were isolated from a highly concentrated toluene solution stored at

─30 °C for 24 hours. X-ray crystallography confirmed the proposed structure as shown in Figure 3.12. The molecular structure consists of three chemically equivalent

1 1 dimethylaluminum centers each bridged by two μ2-η :η -N-3-methylindolyl moieties.

These bridging units form a six-membered Al3N3 ring that has three alkyl groups above and three below the plane of the ring. The molecule crystallized in space group P1 ,and the structure was refined with an R1 factor of 5.48% (see Table 3.1). Bond distances and

C5 C4

C6 N2 Al2

Al3 N1 C2 C7 N3 Al1

C3

Figure 3.12 ORTEP diagram of 9a. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

82 angles within the indolyl moieties compare favorably with the reported literature values for other diindolyl methane ligands.129 Selected bond distances and angles are summarized in Table 3.4. Each indolyl arm of the tri(3-methylindolyl)methane ligand is

1 1 bridging two different pseudo-tetrahedral aluminum centers in a μ2-η :η -N fashion. The

Al–Nindolyl bond distances range from 1.9876(18) to 2.0044(18) Å, which are comparable to the ranges reported earlier in this chapter.

Table 3.4 Selected bond distances and angles for 9a

Bond distances (Å)

Al1–N1 2.0044(18) Al1–C2 1.954(2)

Al1–N3 1.9882(17) Al1–C3 1.952(2)

Al2–N1 1.9876(18) Al2–C4 1.953(2)

Al2–N2 1.9940(18) Al2–C5 1.953(2)

Al3–N2 1.9930(18) Al3–C6 1.954(2)

Al3–N3 1.9938(18) Al3–C7 1.948(2)

Bond angles (deg)

N1–Al1–N3 93.80(7) C2–Al1–C3 119.78(10)

N1–Al2–N2 93.70(7) C4–Al2–C5 119.02(11)

N2–Al3–N3 94.60(7) C6–Al3–C7 117.41(11)

Al1–N1–Al2 122.19(9)

Al2–N2–Al3 120.82(8)

Al3–N3–Al1 119.78(8)

83

It was postulated that 9a could serve as a precursor to the tridentate monoaluminum complex illustrated in eq 8. Roesky153 reported that at elevated temperatures, Me3Al elimination from C6F5AlMe2 was a synthetic route to the formation of (C6F5)3Al. Attempts to generate the tridentate monoaluminum complex were not successful. Complex 9a is stable under vacuum to at least 175 °C and in refluxing xylenes for at least 72 hours without any change to its 1H NMR spectrum.

Me Me Al Al N Me N N N N Al (8) - 2 Me3Al N Me Me Al Me

Reaction of three equivalents of triethylaluminum and one equivalent of tri(3- methylindolyl)methane gave 9b as a yellow solid in 77% yield. The 1H NMR spectrum shows analogous patterns to that for 9a with three equivalent indolyl moieties and two distinct alkyl groups on aluminum. There is a doublet at 7.97 ppm for H7, doublet at

7.22 ppm for H4, and a singlet methine resonance at 6.00 ppm. Two sets of ethyl resonances on aluminum are observed, with triplet methyl resonances at 1.44 ppm and

─0.13 ppm, and quartet methylene resonances at 1.31 ppm and ─1.57 ppm in C6D6.

13 There is only one set of C resonances in C6D6 for indolyl moieties and two distinct sets of ethyl resonances on aluminum at 9.06 ppm and 7.69 ppm for methyls and 2.9 ppm and

─8.5 ppm for methylene protons. As with compound 9a, there is a large upfield shift for the alpha carbon and proton for the alkyl groups that are below the six-membered Al3N3

84 ring due to the ring current of the bridging indolyl moieties that they are situated between.

Crystals of 9b were grown from a highly concentrated hexanes solution that was stored at ─30 °C for 48 hours. A complete dataset was collected on a single crystal but the data quality was poor as indicated by an internal R value of 12.5% after integration.

A preliminary solution as seen in Figure 3.13 confirmed the three-dimensional connectivity of the atoms and confirmed the proposed bridging structure as being analogous to 9a. Considering the poor refinement from integration, bond distances and angles will not be discussed in this dissertation.

Al1 Al3 N3

N1 N2 Al2

Figure 3.13 ORTEP diagram of 9b. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

i Tri(3-methylindolyl)methane was reacted with three equivalents of Bu3Al in an effort to generate a complex similar to 9a and 9b (eq 9). A yellow solid 9c was obtained in 79% yield after recrystallization from hexanes.

85

iBu iBu Al NH N iBu CH + 3 iBu Al N (9) 3 toluene Al i N Bu H Al 3 iBu

9c

From the 1H NMR spectrum shown in Figure 3.14, it was obvious that 9c was not analogous to 9a or 9b. There are five distinct sets of resonances for isobutyl groups on aluminum with the methyls being at 1.42 ppm, 1.31 ppm, 0.40 ppm, 0.19 ppm, and 0.14 ppm in C6D6, each integrating to six protons. There are four sets of methylene resonances at 1.72 ppm, 1.52 ppm, ─1.55 ppm and ─1.93 ppm. The sets at 1.72 and 1.52 ppm integrates to four protons representing two isobutyl groups and is seen as diastereotopic methylenes with an ABX splitting pattern. The two doublet resonances that are upfield at ─1.55 and ─1.93 integrate to four protons and two protons, respectively, therefore representing two and one iso-butyl groups. They do not display the

ABX splitting pattern that is observed for the other set. Based on the structures of 9a and

9b it was proposed that 9c could have a similar structure but with five isobutyl groups as opposed to six. This would also explain the two distinct sets of resonances for the indolyl moieties. There are two doublets at 8.16 ppm and 8.08 ppm for H7, and two doublets at

7.30 ppm and 7.27 ppm for H4. The resonances at 8.16 ppm and 7.30 ppm each integrate to one proton while the resonances at 8.08 ppm and 7.27 ppm integrate to two. There are also two different resonances for the methyls on indole at 2.21 ppm and 2.16 ppm that integrate to three protons and six protons, respectively. Only one methine resonance is

86 seen at 6.06 ppm. This data shows that in addition to the five isobutyl groups on aluminum, there is only one tri(3-methylindolyl)methane ligand that has inequivalent indolyl moieties. To account for this, it is proposed formation of 9c may result from β- hydride elimination

Indolyl CH3

CH3 CH3 CH3

CH2

CH2 CH CH CH 2

1 Figure 3.14. H NMR spectrum of aliphatic region of 9c in benzene-d6 from ─2.0 ppm to 2.6 ppm.

from one of the isobutyl groups to form an Al–H species on one of the bridged aluminum centers. The broad singlet at 5.42 ppm is tentatively assigned to the hydride on aluminum. An IR spectrum of 9c in KBr shows a broad intense peak at 1866 cm-1 which is in the range reported for Al–H stretches.154 Trace amounts of diisobutylaluminum hydride (DIBAL) are always present in triisobutylaluminum and it was proposed that it could be the source of the hydride species. The presence of 5-10% DIBAL impurity cannot, however, account for the 79% yield of 9c. The amount of the hydride species that was isolated is much more than could be strictly coming from the DIBAL impurity.

87

i Synthesis of 9c was attempted using two equivalents of Bu3Al and one equivalent of i i Bu2AlH, and using three equivalents of Bu2AlH. These attempts did not yield complex

9c, only unidentified mixtures of indolyl and alkyl aluminum resonances.

Crystals of 9c were grown from a concentrated hexanes solution stored at ─30 °C for 6 hours. A complete data set was collected on a single crystal, but the data were of low quality as indicated by an internal R value of 11.6% after integration. Preliminary solution as seen in Figure 3.15 showed the three-dimensional connectivity of the atoms and confirmed the proposed bridging structure as being similar to 9a and 9b. Electron density is seen on Al1 and the SHELXTL software package calculates hydrogen to be in the void space. Bond distances and angles will not be discussed due to poor refinement after integration.

Al3

N3 Al1

N2 Al1 N1

Figure 3.15 ORTEP diagram of 9c. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

The ORTEP diagram of 9c helps explain the peaks that were observed in the 1H

NMR spectrum. The hydride on the aluminum pointing above the plane of the six- membered Al3N3 ring results in two equivalent isobutyl groups above the plane and

88 inequivalent isobutyl groups in a 2:1 ratio below the plane. The hydride and inequivalent isobutyl groups result in inequivalent bridging indolyl moieties that are also in a 2:1 ratio.

This shows that the indolyl moieties not only prefer the bridging of two aluminum centers over the typical η1 binding mode supported with alkyl bridges, but to relieve steric congestion β-hydride elimination is observed in order to adopt this geometry.

Table 3.5 13C and 1H NMR chemical shifts for alpha nuclei of aluminum alkyl substituent in benzene-d6

13 13 Complex C Shift for α-C Above Al3N3 Plane C Shift for α-C Below Al3N3Plane

9a ─ 6.65 ppm ─ 19.34 ppm

9b 2.9 ppm ─ 8.8 ppm

9c ≈ 24 ppm ≈ 11 ppm

1H Shift for α-H Above Plane 1H Shift for α-H Below Plane

9a 0.45 ppm ─ 2.74 ppm

9b 0.96 ppm ─ 1.94 ppm

9c 1.62 ppm ─ 1.55 ppm, ─ 1.93 ppm

Complexes 9a-c all show interesting shifts in their 1H and 13C NMR spectra in

C6D6 for the alpha carbon and alpha protons for the alkyl groups on aluminum. The alkyl groups that are oriented below the six-membered Al3N3 ring are situated between the aromatic systems of two bridging indolyl moieties. This orientation causes ring current effects to cause a large shift upfield for the nuclei that are shielded by this ring current.

Table 3.5 summarizes those large shifts for the alpha carbon and alpha protons in complexes 9a-c. There is an average shift of ≈13 ppm upfield for the alpha carbon and

89 an average shift of ≈3 ppm upfield for the alpha proton. As the length of the alkyl chain increases there isn’t as much influence beyond the β atoms.

3.5 Conclusions

1 1 The first group 13 examples of μ2-η :η -N-indolyl moieties 7a-c, 8, 9a-c were synthesized. All complexes were characterized by elemental analysis and 1H and 13C

NMR spectroscopy. Complexes 7a, 8, and 9a were characterized by X-ray crystallography. These complexes show that indolyl moieties are stronger bridging ligands than originally proposed. They have stronger bridging ability than Me, Et, and iBu groups, but less than amido ligands.

90

Chapter Four

Group 13 Complexes of Di- and Tri(3-methylindolyl)methanes and Tris(pyrrolyl-α-methyl)amine

4.1 Introduction

Carbon monoxide is one of the most important carbon feedstocks used in industry today, and its chemistry with transition metals has been extensively studied. It is of interest to the Mason group to design and develop group 13 metal complexes that could potentially bind and activate CO for reactivity. A few CO complexes of main group metals have been observed, but those required matrix isolation techniques at very low temperatures (15-40 K). Adducts have been observed for beryllium,155 boron,156,157

158 159 aluminum, gallium and indium. Stable CO borane complexes such as H3BCO,

156 160 161 162 (BX2)3BCO (X= F, Cl), (CF3)3BCO, B4X6CO (X = F, Cl, Br, I) and B4(CO)2 have also been reported, but several of these have been prepared by indirect routes rather than by direct reaction with CO.

There are no room-temperature stable carbonyl complexes of aluminum or gallium. This is due to weak binding of CO to metals in the absence of π-backbonding, likely making coordinated complexes unstable. To help stabilize CO complexes in the absence of π-backbonding, a highly electrophilic metal center is ideal. Methods to achieve such non-classical carbonyl complexes of transition metals have been developed by Strauss, but not applied to main group metals.104 The binding of CO to a metal is entropically unfavorable, so low temperatures and greater binding enthalpy help to favor

91 complexation. Generation of strong Lewis acidic complexes should help the binding of

CO to group 13 metals. Tricoordinate aluminum complexes are of interest because they can potentially be used as highly Lewis acidic metal centers.

Pyrrolyl-,114-121 indolyl-,122-125,128 and carbazolyl127 ligands are of increasing interest because they induce different electronic and steric properties to main group and transition metal complexes when compared with common amido ligands. Some of these differences include strong electron-withdrawing ability when bound in an η1-N mode and minimal N→M π-donation. These characteristics should help in generating highly electrophilic metal centers that might help bind CO. The Mason group has focused on the use of di- and tri(3-methylindolyl)methane moieties as ligands for main group metals.

These ligands act as reduced π-donating analogues of poly(pyrazolyl)borates and tripodal triamides.

NH N n 4 1) 4 BuLi N Al Li (1) 2) AlCl3 N N

92

-

(2) NH N N 1) 4 nBuLi Ph Al Li+ 2 Ph Ph 2) AlCl3 NH N N

A few aluminum complexes using these ligand systems have been synthesized in

79 the Mason group. Segla reported that AlCl3 reacts with four equivalents of deprotonated 3-methylindole (eq 1) or two equivalents of deprotonated di(3- methylindolyl)phenyl methane (eq 2) to generate four-coordinate anionic aluminum complexes. Reaction of tri(3-methylindolyl)methane with LiAlH4 and reaction of deprotonated tri(3-methylindolyl)methane with AlCl3 resulted in the formation of four- coordinate complexes 1 and 2, respectively. These were previously characterized spectroscopically, but not by X-ray crystallography.

[Li(OEt2)4] X Al N N N

1 X = H 2 X = Cl

93

Neutral four-coordinate aluminum complexes were isolated by Fneich80 when di(3-methylindolyl)pyridylmethane was stirred with trialkyl aluminum compounds (eq 3).

The complexes are structurally similar to 1 and 2, but the inclusion of a neutral donor arm in the ligand framework results in a neutral complex.

R

N Al H NH N toluene N + AlR (3) 3 15 h, 20 oC NH N H

R= Me, Et, iBu, tBu

The isolation of the foor-coordinate aluminum complexes are of particular interest based on advantages proposed by Mason and Chen72,74 because they would be ideal for promotion of base coordination. The complexes are already preorganized with trigonal monopyramidal geometry and alkide, chloride or hydride abstraction should provide strong Lewis acidic compounds.

In this chapter, the synthesis and spectroscopic characterization of four- and five- coordinate complexes of aluminum and gallium will be discussed. This includes the synthesis of four-coordinate anionic aluminum and gallium complexes of tri(3- methylindolyl)methane (3a, 3b, 4a-4c), four-coordinate neutral aluminum complexes of tri(3-methylindolyl)imidazolylmethane (5a-5d), and five-coordinate aluminum and gallium complexes of tris(pyrrolyl-α-methyl)amine (6a, 6b). X-ray crystallography confirmed the structures of 3b, 6b, and 7a. Initial attempts to generate three-coordinate complexes were unsuccessful.

94

[Li(THF) ] 4 R X HNMe2 M N Al N N N N N N N M N N N H

M X R M 3a Al Cl 5a Me 6a Al 3b Ga Cl 5b Et 6b Ga 4a Al H 5c iBu 4b Al D 5d tBu 4c Al tBu

4.2 Experimental

General Procedures

All air- and moisture-sensitive reactions were performed in an inert atmosphere of purified nitrogen using standard inert atmosphere techniques and an Innovative

n t Technologies dry box. 3-Methylindole, AlCl3, LiAlH4, BuLi, and BuLi were purchased from Aldrich Chemicals and used as received. Tri(3-methylindolyl)methane,129,148

163 164 165 tris(pyrrolyl-α-methyl)amine (TPA), [Ga(NMe2)3]2, and [Al(NMe2)3]2 were prepared using published procedures. Di(3-methylindolyl)imidazolylmethane was made using the procedure of Das.81 Toluene was distilled from sodium. Hexanes was distilled from calcium hydride. THF and ether were distilled from sodium benzophenone ketyl prior to use. Benzene-d6 (C6D6) and chloroform-d (CDCl3) were dried by storage over activated molecular sieves and degassed with purified nitrogen. Solution NMR spectra were recorded on a Varian VXRS-400 or a Varian AS-600 spectrometer using deuterated solvent as an internal lock. Chemical shifts are reported relative to TMS. 13C NMR

95 chemical shift assignments for C4, C5, C6, and C7 of the indolyl rings were aided by 2D-

COSY, 2D-HMQC and 2D-HMBC experiments. Elemental analyses were performed by

Schwarzkopf Microanalytical Laboratory, Inc.

Synthesis of [{tri(3-methylindolyl)methane}AlCl][Li(THF)4] (3a)

The preparation of 3a is a modification of the preparation used by Segla.

Addition of nBuLi (5.8 mL, 1.6 M in hexane, 9.2 mmol) to a solution of tri(3- methylindolyl)methane (1.25 g, 3.10 mmol) in 100 mL of THF resulted in a bright yellow solution that was added via dropping funnel to a THF (40 mL) solution of AlCl3 (0.416 g,

3.10 mmol). The resulting suspension was stirred overnight. Solvents were removed in vacuo and the residue was redissolved in 40 mL of CH2Cl2 and filtered over Celite on a fine frit. Solvents were removed from the filtrate in vacuo to yield a purple solid. Yield:

1 3 1.24 g, 1.64 mmol, 53%. H NMR (CDCl3, 600 MHz): δ 7.59 (d, JHH = 7.8 Hz, 3H,

3 3 3 H7), 7.33 (d, JHH = 7.8 Hz, 3H, H4), 7.01 (t, JHH = 7.8 Hz, 3H, H6), 6.92 (t, JHH = 7.8

Hz, 3H, H5), 6.05 (s, 1H, CH), 3.16 (br s, 16H, THF), 2.40 (s, 9H, CH3), 1.25 (br s, 16H,

13 1 THF). C{ H} NMR (CDCl3, 150.8 MHz): δ 143.08 (s, C7a), 141.23 (s, C2), 130.70 (s,

C3a), 119.78 (s, C6), 117.99 (s, C5), 117.53 (s, C4), 113.51 (s, C7), 105.79 (s, C3), 68.1

(s, THF), 33.05 (s, CH), 25.72 (s, THF), 8.70 (s, CH3).

Synthesis of [{tri(3-methylindolyl)methane}GaCl][Li(THF)4] (3b)

Addition of nBuLi (5.8 mL, 1.6 M in hexane, 9.2 mmol) to a solution of tri(3- methylindolyl)methane (1.25 g, 3.10 mmol) in 100 mL of THF resulted in a bright yellow solution that was added via dropping funnel to a THF (40 mL) solution of GaCl3 (0.546 g, 3.10 mmol). The resulting suspension was stirred overnight. Solvents were removed

96 in vacuo and the residue was redissolved in 40 mL of CH2Cl2 and filtered over Celite on a fine frit. Solvents were removed from the filtrate in vacuo to yield a purple solid.

1 3 Yield: 1.19 g, 1.49 mmol, 48%. H NMR (CDCl3, 600 MHz): δ 7.50 (d, JHH = 7.8 Hz,

3 3 3 3H, H7), 7.30 (d, JHH = 7.8 Hz, 3H, H4), 6.90 (t, JHH = 7.8 Hz, 3H, H6), 6.81 (t, JHH =

7.8 Hz, 3H, H5), 6.07 (s, 1H, CH), 3.16 (br s, 16H, THF), 2.43 (s, 9H, CH3), 1.26 (br s,

13 1 16H, THF). C{ H} NMR (CDCl3, 150.8 MHz): δ 143.08 (s, C7a), 141.23 (s, C2),

130.7 (s, C3a), 119.78 (s, C6), 117.99 (s, C5), 117.53 (s, C4), 113.51 (s, C7), 105.79 (s,

C3), 68.39 (s, THF), 33.05 (s, CH), 25.25 (s, THF), 8.70 (s, CH3).

Synthesis of [{tri(3-methylindolyl)methane}AlH][Li(THF)4] (4a)

The preparation of 4a is a modification of the preparation used by Segla. A THF solution (50 mL) of tri(3-methylindolyl)methane (0.704 g, 1.7 mmol) was added dropwise to a toluene (100 mL) suspension of LiAlH4 (0.095 g, 2.5 mmol). Upon addition, a gas was released, and the green solution was stirred for 12 h. The solution was concentrated to 30 mL, and the resulting grey solid was filtered over a medium frit

1 and dried in vacuo. Yield: 1.09 g, 1.50 mmol, 88%. H NMR (CDCl3, 600 MHz): δ 7.43

3 3 3 (d, JHH = 7.8 Hz, 3H, H7), 7.32 (d, JHH = 7.8 Hz, 3H, H4), 6.92 (t, JHH = 7.8 Hz, 3H,

3 H6), 6.84 (t, JHH = 8.4 Hz, 3H, H5), 6.01 (s, 1H, CH), 3.31 (br s, 16H, THF), 2.42 (s,

13 1 9H, CH3), 1.69 (br s, 16H, THF). C{ H} NMR (CDCl3, 150.8 MHz): δ 143.53 (s, C7a),

142.08 (s, C2), 131.55 (s, C3a), 119.80 (s, C6), 118.18 (s, C5), 117.73 (s, C4), 113.3 (s,

C7), 105.66 (s, C3), 68.31 (s, THF), 33.50 (s, CH), 25.55 (s, THF), 9.15 (s, CH3). IR (υAl–

–1 H, KBr): 1864 cm .

97

Synthesis of [{tri(3-methylindolyl)methane}AlD][Li(THF)4] (4b)

A THF solution (50 mL) of tri(3-methylindolyl)methane (0.704 g, 1.7 mmol) was added dropwise to a toluene (100 mL) suspension of LiAlD4 (0.105 g, 2.5 mmol). Upon addition, a gas was released, and the green solution was stirred for 12 h. The solution was concentrated to 30 mL, and the resulting grey solid was filtered over a medium frit

1 and dried in vacuo. Yield: 1.12 g, 1.53 mmol, 90%. H NMR (CDCl3, 600 MHz): δ 7.43

3 3 3 (d, JHH = 7.8 Hz, 3H, H7), 7.32 (d, JHH = 7.8 Hz, 3H, H4), 6.93 (t, JHH = 7.8 Hz, 3H,

3 H6), 6.86 (t, JHH = 8.4 Hz, 3H, H5), 6.03 (s, 1H, CH), 3.30 (br s, 16H, THF), 2.43 (s,

13 1 9H, CH3), 1.66 (br s, 16H, THF). C{ H} NMR (CDCl3, 150.8 MHz): δ 143.85 (s, C7a),

142.07 (s, C2), 131.47 (s, C3a), 119.44 (s, C6), 118.02 (s, C5), 117.34 (s, C4), 113.22 (s,

C7), 105.66 (s, C3), 68.38 (s, THF), 33.51 (s, CH), 25.47 (s, THF), 9.13 (s, CH3).

t Synthesis of [{tri(3-methylindolyl)methane}Al Bu][Li(THF)4] (4c)

To a 100 mL sidearm flask was added 3a (1.29 g, 1.7 mmol) and 30 mL of THF.

To this solution was added tBuLi (1.0 mL, 1.7 M in hexane, 1.7 mmol) via syringe. The resulting yellow solution was stirred for 12 h. The slurry was filtered over a fine frit with a Celite plug, and the solvent was removed from the filtrate in vacuo. Yield: 1.28 g,

1 3 1.66 mmol, 97% H NMR (CDCl3, 600 MHz): δ 7.49 (d, JHH = 7.8 Hz, 3H, H7), 7.40

3 3 3 (d, JHH = 7.8 Hz, 3H, H4), 7.00 (t, JHH = 7.8 Hz, 3H, H6), 6.88 (t, JHH = 8.4 Hz, 3H,

H5), 6.10 (s, 1H, CH), 3.34 (br s, 16H, THF), 2.48 (s, 9H, CH3), 1.70 (br s, 16H, THF)

t 13 1 1.55 (s, 9H, Al Bu). C{ H} NMR (CDCl3, 150.8 MHz): δ 142.88 (s, C7a), 139.23 (s,

C2), 131.33 (s, C3a), 119.22 (s, C6), 118.52 (s, C5), 117.11 (s, C4), 112.22 (s, C7),

105.45 (s, C3), 69.10 (s, THF), 32.9 (s, methine), 29.88 (s, AlC(CH3)), 24.87 (s, THF),

9.34 (s, CH3).

98

Synthesis of (1-CH3-2-C3H2N2)HC(3-CH3C8H4N)2AlCH3 (5a)

To a 100 mL sidearm flask was added di(3-methylindolyl)-N- methylimidazolylmethane (0.600 g, 1.7 mmol) and 50 mL of toluene. To this suspension nBuLi (2.1 mL, 1.6 M in hexane, 3.4 mmol) was then added via syringe at 25 °C. An orange slurry formed immediately and the mixture stirred for 1 h. A solution of MeAlCl2

(1.0 mL, 1.0 M in toluene, 1.7 mmol) was added via syringe. The solution slowly turned light purple over 1 h as a white precipitate formed. The mixture was filtered over Celite on a medium frit, then filtered over Celite on a fine frit. The resulting green solution was concentrated to 15 mL and stored at ─30 °C for 48 h to yield a light green solid which was isolated by filtration. Recrystallization of 5a can be achieved using highly concentrated toluene solutions stored at ─30 °C for 72 h. Yield: 0.563 g, 1.43 mmol,

1 3 84%. H NMR (CDCl3, 600 MHz): δ 7.40 (d, JHH = 7.8 Hz, 2H, indolyl H4), 7.39 (d,

3 3 3 JHH = 7.8 Hz, 2H, indolyl H7), 7.06 (t, JHH = 7.8 Hz, 2H, indolyl H6), 6.96 (t, JHH = 7.8

3 3 Hz, 2H, indolyl H5), 6.89 (d, JHH = 1.8 Hz, 1H, imidazolyl H5), 6.47 (d, JHH = 1.8 Hz,

1H, imidazolyl H4), 5.90 (s, 1H, CH), 3.70 (s, 3H, imidazolyl CH3), 2.41 (s, 6H, indolyl

13 1 CH3), 0.31 (s, 3H, AlCH3). C{ H} NMR (CDCl3, 150.8 MHz): δ 153.11 (s, imidazolyl

C2), 142.10 (s, C7a), 137.10 (s, C2), 130.19 (s, C3a), 122.97 (s, imidazolyl C5), 120.89

(s, indolyl C5), 119.86 (s, imidazolyl C4), 118.42 (s, C4), 117.96 (s, C6), 113.13 (s, C7),

106.51 (s, C3), 33.35 (s, imidazolyl-CH3), 32.27 (s, CH), 8.85 (s, indolyl-CH3). Anal

Calcd for C24H23N4Al•0.85C7H8: C, 76.09; H, 6.35; N, 11.85. Found: C, 73.06; H, 6.28;

N, 11.44.

99

Synthesis of (1-CH3-2-C3H2N2)HC(3-CH3C8H4N)2AlCH2CH3 (5b)

To a 100 mL sidearm flask was added di(3-methylindolyl)-N- methylimidazolylmethane (0.600 g, 1.7 mmol) and 50 mL of toluene. To this suspension nBuLi (2.1 mL, 1.6 M in hexane, 3.4 mmol) was added via syringe at 25 °C. An orange slurry formed immediately, and the mixture was stirred for 1 h. A solution of EtAlCl2

(1.0 mL, 1.0 M in toluene, 1.7 mmol) was then added via syringe. The solution slowly turned blue over 1 h as a white precipitate formed. The mixture was filtered over Celite on a medium frit, then filtered over Celite on a fine frit. The resulting green solution was concentrated to 15 mL and stored at ─30 °C for 48 h to yield a light green solid that was isolated by filtration. Recrystallization of 5b can be achieved from highly concentrated toluene solutions stored at ─30 °C for 72 h. Yield: 0.454 g, 1.11 mmol, 64%. 1H NMR

3 3 (CDCl3, 600 MHz): δ 7.39 (d, JHH = 7.8 Hz, 2H, indolyl H4), 7.37 (d, JHH = 7.8 Hz, 2H,

3 4 3 indolyl H7), 7.06 (td, JHH = 7.8 Hz, JHH = 1.2 Hz, 2H, indolyl H6), 6.96 (td, JHH = 7.8

4 3 Hz, JHH = 1.2 Hz, 2H, indolyl H5), 6.77 (d, JHH = 1.2 Hz, 1H, imidazolyl H5), 6.24 (d,

3 JHH = 1.2 Hz, 1H, imidazolyl H4), 5.83 (s, 1H, CH), 3.49 (s, 3H, imidazolyl CH3), 2.38

3 3 (s, 6H, indolyl CH3), 1.59 (t, JHH = 8.4 Hz, 3H, AlCH2CH3), 1.02 (q, JHH = 8.4 Hz, 2H,

13 1 AlCH2CH3). C{ H} NMR (CDCl3, 150.8 MHz): δ 153.01 (s, imidazolyl C2), 142.05 (s,

C7a), 137.20 (s, C2), 130.21 (s, C3a), 123.30 (s, imidazolyl C5), 120.95 (s, indolyl C5),

119.91 (s, imidazolyl C4), 118.42 (s, C4), 117.98 (s, C6), 113.22 (s, C7), 106.59 (s, C3),

33.08 (s, imidazolyl-CH3), 32.19 (s, CH), 8.83 (s, indolyl-CH3), 8.44 (s, AlCH2CH3),

─4.41 (s, AlCH2CH3).

100

Synthesis of (1-CH3-2-C3H2N2)HC(3-CH3C8H4N)2AlCH2CH(CH3)2 (5c)

To a 100 mL sidearm flask was added di(3-methylindolyl)-N- methylimidazolylmethane (0.600 g, 1.7 mmol) and 50 mL of toluene. To this suspension nBuLi (2.1 mL, 1.6 M in hexane, 3.4 mmol) was added via syringe at 25 °C. An orange

i slurry formed immediately and the mixture stirred for 1 h. A solution of BuAlCl2 (1.0 mL, 1.0 M in toluene, 1.7 mmol) was then added via syringe. The solution slowly turned green over 1 h as a white precipitate formed. The mixture was filtered over Celite on a medium frit, then filtered over Celite on a fine frit. The resulting green solution was concentrated to 15 mL and stored at ─30 °C for 48 h to yield a light green solid isolated by filtration. Recrystallization of 5c can be achieved using highly concentrated toluene

1 solutions stored at ─30 °C for 72 h. Yield: 0.567g, 1.34 mmol, 79%. H NMR (CDCl3,

3 3 600 MHz): δ 7.49 (d, JHH = 7.8 Hz, 2H, indolyl H7), 7.47 (d, JHH = 7.8 Hz, 2H, indolyl

3 3 H4), 7.14 (t, JHH = 7.8 Hz, 2H, indolyl H6), 7.04 (t, JHH = 7.8 Hz, 2H, indolyl H5), 6.87

3 3 (d, JHH = 1.2 Hz, 1H, imidazolyl H5), 6.23 (d, JHH = 1.2 Hz, 1H, imidazolyl H4), 5.89

(s, 1H, CH), 3.50 (s, 3H, imidazolyl CH3), 2.57 (m, 1H, AlCH2CH(CH3)2), 2.45 (s, 6H,

3 3 indolyl CH3), 1.36 (d, JHH = 7.8 Hz, 6H, AlCH2CH(CH3)2), 1.23 (d, JHH = 7.8 Hz, 2H,

13 1 AlCH2CH(CH3)2). C{ H} NMR (CDCl3, 150.8 MHz): δ 153.25 (s, imidazolyl C2),

142.39 (s, C7a), 137.52 (s, C2), 130.55 (s, C3a), 123.50 (s, imidazolyl C5), 121.21 (s, indolyl C5), 120.19 (s, imidazolyl C4), 118.71 (s, C4), 118.31 (s, C6), 113.67 (s, C7),

106.80 (s, C3), 33.30 (s, imidazolyl-CH3), 32.41 (s, CH), 28.82 (s, AlCH2CH(CH3)2),

21.77 (s, AlCH2CH(CH3)2), 17.95 (br s, AlCH2CH(CH3)2), 9.13 (s, indolyl-CH3). Anal

Calcd for C27H29N4Al•C7H8: C, 77.24; H, 7.05; N, 10.59. Found: C, 75.34; H, 7.40; N,

10.96.

101

Synthesis of (1-CH3-2-C3H2N2)HC(3-CH3C8H4N)2AlC(CH3)3 (5d)

To a 100 mL sidearm flask was added di(3-methylindolyl)-N- methylimidazolylmethane (0.600 g, 1.7 mmol) and 50 mL of toluene. To this suspension nBuLi (2.1 mL, 1.6 M in hexane, 3.4 mmol) was added via syringe at 25 °C. An orange

t slurry formed immediately, and the mixture stirred for 1 h. BuAlCl2 (0.263 g, 1.7 mmol) was dissolved in 5 mL of toluene and transferred to this slurry. The mixture slowly turned pink over 1 h as a white precipitate formed. The mixture was filtered over Celite on a medium frit, then filtered over Celite on a fine frit. The resulting green solution was concentrated to 15 mL and stored at ─30 °C for 48 h to yield a light green solid that was isolated by filtration. Recrystallization of 5d can be achieved using highly concentrated toluene solutions stored at ─30 °C for 72 h. Yield: 0.549 g, 1.26 mmol, 74%. 1H NMR

3 3 (CDCl3, 600 MHz): δ 7.48 (d, JHH = 7.8 Hz, 2H, indolyl H7), 7.41 (d, JHH = 7.8 Hz, 2H,

3 3 indolyl H4), 7.09 (t, JHH = 7.8 Hz, 2H, indolyl H6), 7.01 (d, JHH = 1.2 Hz, 1H,

3 3 imidazolyl H5), 6.99 (t, JHH = 7.2 Hz, 2H, indolyl H5), 6.59 (d, JHH = 1.2 Hz, 1H, imidazolyl H4), 5.95 (s, 1H, CH), 3.78 (s, 3H, imidazolyl CH3), 2.43 (s, 6H, indolyl

13 1 CH3), 1.60 (s, 9H, AlC(CH3)3). C{ H} NMR (CDCl3, 150.8 MHz): δ 153.32 (s, imidazolyl C2), 142.00 (s, C7a), 137.24 (s, C2), 130.29 (s, C3a), 123.25 (s, imidazolyl

C5), 121.10 (s, indolyl C5), 119.99 (s, imidazolyl C4), 118.45 (s, C4), 118.06 (s, C6),

113.62 (s, C7), 106.87 (s, C3), 33.44 (br s, AlC(CH3)3), 33.43 (s, imidazolyl-CH3), 32.12

(s, CH), 29.21 (s, AlC(CH3)3), 8.88 (s, indolyl-CH3).

102

Synthesis of (tris(pyrrolyl-α-methyl)amine)Al(HNMe2)] (6a)

To a 100 mL sidearm flask was added tris(pyrrolyl-α-methyl)amine (0.2513 g,

1.00 mmol) and 50 mL of toluene. A 10 mL toluene solution of [Al(NMe2)3]2 (0.158 g,

0.500 mmol) was added via cannula and the resulting red suspension was stirred for 16 h after which all materials were solubilized. The solution was concentrated to 15 mL and stored at ─30 °C for 24 h, and a light red solid was isolated by filtration. Yield: 0.300 g,

1 0.94 mmol, 94%. H NMR (CDCl3, 600 MHz): δ 6.69 (s, 3H, H5), 6.22 (s, 3H, H4),

3 13 1 6.04 (s, 3H, H3), 3.96 (s, 6H, CH2), 3.19 (d, JHH = 5.4 Hz, 6H, NCH3,). C{ H} NMR

(CDCl3, 150.8 MHz): δ 136.3 (s, C2), 122.7 (s, C5), 111.2 (s, C4), 105.2 (s, C3), 52.8 (s,

CH2), 40.1 (s, NCH3).

Synthesis of (tris(pyrrolyl-α-methyl)amine)Ga(HNMe2)] (6b)

To a 100 mL sidearm flask was added tris(pyrrolyl-α-methyl)amine (0.2513 g,

1.00 mmol) and 50 mL of toluene. A 10 mL toluene solution of [Ga(NMe2)3]2 (0.201 g,

0.500 mmol) was added via cannula and the resulting red suspension was stirred for 16 h after which all materials were solubilized. The solution was concentrated to 15 mL and stored at ─30 °C for 24 h and a light red solid was isolated by filtration. Yield: 0.318 g,

1 0.88 mmol, 88%. H NMR (CDCl3, 600 MHz): δ 6.68 (s, 3H, H5), 6.23 (s, 3H, H4),

3 13 1 6.05 (s, 3H, H3), 3.91 (s, 6H, CH2), 3.18 (d, JHH = 6.0 Hz, 6H, NCH3,). C{ H} NMR

(CDCl3, 150.8 MHz): δ 135.1 (s, C2), 122.5 (s, C5), 110.9 (s, C4), 105.3 (s, C3), 51.9 (s,

CH2), 40.6 (s, NCH3).

4.3 X-ray Crystallography

Crystals of 3b were grown from a highly concentrated chlorobenzene solution stored at ─30 °C. Crystals of 5c were grown from a highly concentrated toluene solution

103 stored at ─30 °C for 72 h. Crystals of 6a were grown from a dilute toluene solution stored at ─30 °C for 89 h. The X-ray diffraction data were collected on a Siemens three- circle platform diffractometer equipped with a 4K CCD detector. The frame data were acquired with the SMART 5.62599 software using Mo Kα radiation (λ = 0.71073 Å). Cell constants were determined with SAINT 6.22100 from the complete dataset. A complete sphere of data was collected using ω (0.3◦) scans with a run time of 30 s/frame at different

Φ angles. A total of 1415 frames (3b, 5c) or 1365 frames (6a) were collected for the dataset. An additional 50 frames, identical to the first 50, were collected to determine crystal decay. The frames were integrated using the SAINT 6.22 software and the data were corrected for absorption and decay using the SADABS101 program. The structures were solved by direct methods and refined by least-squares methods on F2, using the

SHELXTL program suite.102 All hydrogen atoms were placed in calculated positions and included in the refinement as riding models. Details of data collection and refinement are provided in Table 4.1. Further details, including atomic coordinates, distances and angles are found in the CIF files. For 3b there is a disordered chlorobenzene molecule in the asymmetric unit that does not model. The four THF molecules that are coordinated to the lithium cation are disordered and all of the atoms to each THF do not refine well.

Attempts to model the structure in different space groups did not prove to be successful.

104

Table 4.1. Crystal data and structure refinement details 5c 6a

Formula C32H32AlN4 C23H29AlN5 Fw 499.60 402.49 Cryst. Syst triclinic monoclinic

Space group P1 P2(1)/n a, Å 11.3139(11) 12.3285(6) b, Å 15.6164(14) 10.4147(5) c, Å 17.2642(16) 17.4485(8) α, deg 86.455(2) 90 β, deg 87.184(2) 97.7140(10) γ, deg 76.554(2) 90 V, Å3 2959.1(5) 2220.07(18) Z 4 4 -3 Dcalcd, g cm 1.121 1.204 temp, °C ─133 ─133 μ, mm-1 0.094 0.110 λ, Å 0.71073 0.71073 transm coeff 1.00- 0.837 1.00- 0.892 2θ limits, deg 3.66 to 52.00 3.82 to 52.00 total no. of data 21154 14974 no. unique data 11565 4355 no. obsd dataa 10423 4093 no. of params 667 391 b R1 (I > 2σ(I)) 0.0620 0.0353 2 c wR2 (I , all data) 0.1814 0.1083 max, min peaks, e/Å3 1.133, ─0.920 0.283, ─0.256 ______a b c 2 2 2 2 2 1/2 I > 2σ(I). R1 = | |Fo| – |Fc| | / |Fo|. wR2 = [ [w (Fo – Fc ) ] / [w (Fo ) ]] .

105

4.4 Results and Discussion

4.4.1 Synthesis of [{tri(3-methylindolyl)methane}MX]

Based on the results obtained by Frank Segla79 with the synthesis of 1 and 2, further investigation into tripodal ligand frameworks for aluminum and gallium was performed as part of this dissertation. The synthesis of 3a was performed in a different manner than reported by Segla. Deprotonated tri(3-methylindolyl)methane was added to a solution of AlCl3 in THF, and the solution was stirred overnight (eq 4). Solvents were removed in vacuo, and the solid residue was dissolved in methylene chloride and filtered over a fine frit with a Celite plug. Removal of methylene chloride from the filtrate yielded 3a as a dark purple solid. The 1H NMR spectrum of 3a (Figure 4.1) showed one set of indolyl resonances for the 3-methylindolyl moiety with two doublets at 7.59 and

7.33 ppm, and two triplets at 7.01 and 6.92 ppm for H7, H4, H6 and H5, respectively.

[Li(THF)4] Cl

N M N H NH N 1) 3 nBuLi (4)

2) MCl3 NH H NH M 3a Al 3b Ga

There was a singlet resonance at 2.40 ppm for the indolyl methyl and one singlet methine resonance at 6.05 ppm. The simplicity of the spectrum indicated three equivalent 3- methylindolyl moieties. There was one set of resonances for THF at 3.20 ppm and 1.25

106

H7 H4 H6 H5 CH (a) Indolyl CH3

THF THF (b)

Figure 4.1 1H NMR spectrum of 3a in chloroform-d; (a) aromatic expansion (b) full spectrum

ppm, the integration for which indicates four THF molecules coordinated to the lithium

cation. The 13C NMR spectrum shows similar results with only one set of tri(3-

methylindolyl)methane resonances and only one set of THF resonances. All resonances

in the 1H and 13C spectra match those reported by Segla for 1.79 The structure of 3a is

proposed to be an anionic aluminum center ligated by one tri(3-methylindolyl)methane

ligand and one chloride. There is also a lithium cation that is coordinated by four THF

molecules.

Complex 3b was isolated in the same manner as 3a. It is also a dark purple solid

and shows analogous features in the 1H and 13C NMR spectra to those of 3a. There is

only one set of resonances for tri(3-methylindolyl)methane and one set of resonances for

coordinated THF. Complexes 3a and 3b are analogous to 1 except for the inclusion of

THF as the ligand to the lithium cation. These complexes can be made with either THF

or ether coordinated with comparable yields.

107

Crystals of 3a and 3b were grown from concentrated chlorobenzene solutions. X- ray diffraction data were collected on both 3a and 3b. The internal R1 value after integration for 3a was 13.34% due to a poor quality data set. No suitable space group was found and preliminary solution of the structure was not conclusive. The internal R1 value for 3b after integration was 3.8%, which is indicative of good data. Finding a suitable unit cell and space group was difficult, and the space group P1 was chosen for preliminary solution of the structure, of which the anionic portion is shown in Figure 4.1.

The preliminary structure consists of an anionic gallium center ligated by one tri(3- methylindolyl)methane ligand and one chloride. There is also a lithium cation that is solvated with four THF molecules.

Cl1 N1

N3 Ga1 N2

Figure 4.1 ORTEP diagram of 3b. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms and disordered lithium cation are omitted for clarity.

Complex 4a was made using a modified version of the procedure used by Frank

Segla.79 A THF solution of tri(3-methylindolyl)methane was added via dropping funnel to a slurry of LiAlH4 in toluene and the grey slurry was allowed to stir overnight (eq 5).

After removal of half the solvent, 4a was isolated in good yield as a grey solid. The 1H

NMR spectrum looks similar to that of 3a and 3b. There is one set of aromatic

108

[Li(THF)4] X

N Al NH N H N (5) + LiAlX4 NH H NH

X X 4aa H H 4bb D D

resonances for 3-methylindolyl moieties at 7.43 ppm, 7.32 ppm, 6.92 ppm, and 6.84 ppm which corresponds to H7, H4, H6, and H5, respectively. There is only one methine resonance at 6.01 ppm and a singlet methyl resonance at 2.42 ppm. THF resonances are observed at 3.31 and 1.61 ppm. As with 3a and 3b, this indicates that all three 3- methylindolyl moieties are chemically equivalent. At first, there appeared to be no definitive evidence in the 1H NMR spectrum of 4a for a hydride on aluminum, which is not unexpected since aluminum nuclei are quadrupolar and peak broadening is well known for hydrides on aluminum. If the baseline of the spectrum is expanded however, there is a broad peak centered near 5.4 ppm but it cannot be conclusively assigned as hydride. Evidence for the hydride was seen in the IR spectrum obtained in KBr where a broad Al–H stretch was observed at 1864 cm-1.92

To help confirm the assignment of the Al–H stretch in the IR spectrum, complex

4b was synthesized using LiAlD4 (eq 5). Comparable yields were seen for the synthesis of both compounds and the 1H and 13C NMR spectra of 4b are indistinguishable from those of 4a. The only noticeable difference is the absence of the broad peak at 5.4 ppm in the baseline expansion of the spectrum of 4b. An IR spectrum of 4b in a KBr pellet is

109 also identical to that of 4a except the broad peak at 1864 cm-1 is missing. This verifies the presence of a hydride on aluminum and confirms the proposed structures of 4a and 4b as isostructural to compounds 3a and 3b with hydride and deuteride replacing chloride.

Attempts to crystallize 4a or 4b from concentrated chlorobenzene solutions were not successful.

4.4.2 Reactivity of 3a-4b

Compounds 3a-4b were prepared as potential precursors to three-coordinate tripodal group 13 complexes. Complexes 3a and 3b were reacted with two distinct chloride abstraction reagents in three different solvent combinations as summarized in

Table 4.2. These attempts to generate an isolable neutral Lewis base adduct of three- coordinate tripodal aluminum or gallium as shown in eq 6 were unsuccessful. The only

[Li(THF)4] Cl N M N M N N N + LiX + M'Cl N + M'X (6) H H

M 3a Al M' = Ag, Tl 3b Ga X = BF4, PF6

complex that could be isolated and characterized by 1H NMR spectroscopy from the salt abstraction reactions was free, protonated tri(3-methylindolyl)methane indicating hydrolysis. The use of amines to displace halides from group 13 metal complexes for the generation of cationic four-coordinate group 13 complexes has been reviewed by

166 Atwood. Reactions of 3a or 3b with Et3N showed promise with the formation of a

110

Table 4.2. Chloride abstraction reactions ______Complex Solvent MX ______3a THF AgBF4

3a Acetonitrile AgBF4

3a Methylene chloride AgBF4

3a THF TlPF6

3a Acetonitrile TlPF6

3a Methylene chloride TlPF6

3a Excess NEt3 ------

3b THF TlPF6

3b Acetonitrile TlPF6

3b Methylene chloride TlPF6 ______

white insoluble precipitate assumed to be LiCl, but 1H NMR spectra of the resulting filtrate only showed evidence for unreacted 3a.

Cation exchange was attempted with Et4NCl and Bu4NCl for complexes 3a and

4a. It was proposed that the use of the tetraalkyl ammonium cations would help in the crystallization of these complexes; no reactivity was observed.

Reactions of 3a with one equivalent of tBuLi in THF resulted in the formation of

4c. The 1H NMR spectrum is analogous to 3a except there is a singlet resonance at 1.55 ppm which is assigned to the tert-butyl group on the anionic aluminum. These types of complexes are of interest because they are ideal for the alkide and hydride abstraction reactions to generate the tripodal neutral aluminum and gallium compounds.

111

i t 4.4.3 Synthesis of (1-CH3-2-C3H2N2)HC(3-CH3C8H4N)2AlR (R = Me, Et, Bu, Bu)

Complexes 5a-d were synthesized to complete the series of compounds that Das had made using di(3-methylindolyl)imidazolylmethane.81 Complexes analogous to those in eq 3 using this ligand could be potential precursors to three-coordinate tripodal cationic aluminum compounds that should be highly Lewis acidic. Das reacted di(3- methylindolyl)imidazolylmethane with a variety of aluminum and gallium trialkyls in attempts to synthesize these complexes (eq 7).81 Despite many attempts only the bidentate complexes with dialkyl groups on the metal and one free 3-methylindolyl moiety were obtained.81

H N R H NH M N toluene R (7) + MR3 N 2 h, 20 oC NH NH N N

M R Al Me Al Et Al iBu Al tBu Ga tBu

Deprotonation of di(3-methylindolyl)imidazolylmethane with nBuLi, followed by

i t addition of Cl2AlR (R = Me, Et, Bu, Bu) yielded complexes 5a-d as light green and purple solids in high yield as shown in eq 8.

112

The complexes show the same characteristics in the 1H and 13C NMR spectra. The

1H NMR spectrum of 5a shows one set of indolyl resonances for the 3-methylindolyl moieties with doublets at 7.40 ppm and 7.39 ppm for H4 and H7, respectively, and triplet resonances at 7.06 ppm and 6.96 ppm for H6 and H5, respectively. There is one set of aromatic resonances for the imidazolyl at 6.89 ppm and 6.47 ppm for H5imidazolyl and H4

R

N Al H NH n N N 1) 2 BuLi N (8) 2) RAlCl2 N NH N toluene H 15 h, 20 oC R 5a Me 5b Et 5c iBu 5d tBu

imidazolyl, respectively. A singlet resonance at 2.41 ppm is observed for the methyl groups on the indolyl, and a singlet resonance is observed at 3.70 ppm for the methyl group on the imidazolyl. A singlet resonance is observed for the aluminum bound methyl at 0.31 ppm. The integration of the indolyl-, imidazolyl-, and aluminum-bound methyls shows a ratio of 2:1:1 indicating only one alkyl group per aluminum. The H7 proton for the 3- methylindolyl moiety is seen upfield of H4 for 5a but shifts downfield of H4 in complexes 5b-d. This isn’t unexpected based on work by Barnard,124 since it is known that the chemical shift of H7 is highly influenced by groups that are bound to the metal

113

AltBu

CH3

H5 CH H7 H4 H6 H5imid H4imid (a)

CH3imid

(b)

Figure 4.3 1H NMR spectrum of 5d in chloroform-d: (a) aromatic expansion (b) full spectrum

when the indolyl ligands are oriented in a tripodal fashion. A representative 1H NMR spectrum of 5d is shown in Figure 4.3.

X-ray crystallography confirmed the structure of 5b (Figure 4.4) as the four- coordinate tripodal aluminum complex ligated by two anionic 3-methylindolyl groups, one neutral imidazolyl donor, and one ethyl group. The molecule crystallized in the space group P1 , and the structure was refined with an R1 factor of 6.20%. Selected bond distances and angles are summarized in Table 4.3. The Al–Nindolyl bond distances are

1.8699(18) Å and 1.8785(18) Å, while the Al–Nimidazolyl bond distance is 1.9380(18) Å. It is important to note that the Al–Nindolyl bond distances for the anionic donors are

114 significantly shorter than for the Al–Nimidazolyl neutral donor. This difference in bond length is similar to results obtained by Fneich and Das shown in equations 3 and 7. 80,81

Alkide abstraction from 5a-5d for the generation of a three-coordinate cationic aluminum complex was not attempted.

C3

C2 N2 Al1 N1 N3

N4

Figure 4.4 ORTEP diagram of 5b. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Table 4.3 Selected bond distances and angles for 5b Bond distances (Å)

Al1-N1 1.8699(18) Al1-N3 1.9380(18)

Al1-N2 1.8785(18) Al1-C2 1.941(2)

Bond angles (deg)

N1-Al1-N3 94.79(7) N1-Al1-C2 120.40(10)

N1-Al1-N2 97.15(8) N2-Al1-C2 123.47(10)

N2-Al1-N3 92.62(8) N3-Al1-C2 121.33(9)

115

4.4.4 Synthesis of (TPA)M(HNMe2) Complexes (M = Al, Ga)

Concurrent with the work reported herein, Andrew Ramos in the Mason group synthesized the TPA163 ligand for reactions with trialkylaluminum reagents. This ligand has an analogous framework to the tripodal tren ligands popularized by Verkade60 and

Schrock167 and is expected to help in the generation of Lewis acidic group 13 complexes.

Ramos observed good reactivity of trialkyl aluminum complexes with the TPA ligand, but complex mixtures were sometimes isolated. Complexes that were isolated showed reactivity of one or two arms of the ligand leaving mono- and dialkyl aluminum centers as shown in eq 9. One of the aims of this dissertation was then to make the neutral tetradentate trigonal bipyramidal complexes of aluminum and gallium using the TPA ligand.

A toluene solution of [Al(NMe2)3]2 was added to a toluene suspension of TPA and the reaction solution was stirred overnight (eq 10). Concentration of solvent and

R

N Al R N N H

N HN H NH N + AlR (9) 3 toluene t R = Me, Bu R N Al HN N

N

HN

116

subsequent filtration allowed for isolation of 6a in high yield. The absence of an NH resonance in the 1H NMR spectrum of 6a indicated that all three pyrrolyl arms of the ligand reacted. There is one set of aromatic resonances for the pyrrolyl groups at 6.69,

6.22 and 6.04 ppm which correspond to H5, H4, and H3, respectively. The resonance for the methylene protons is observed at 3.96 ppm and the sharp singlet is more evidence for reactivity of all three arms resulting in a symmetrical complex. In contrast the methylene proton resonances are diastereotopic and observed as AB quartets in the complexes isolated by Ramos due to the inequivalencies in the pyrrolyl arms in his complexes.

Complex 6a has a dimethylamine moiety coordinated to aluminum that is trans to the tertiary amine, and the doublet resonance at 3.19 ppm is assigned to the methyl groups of the amine.

N HNMe2 H N N + 0.5 [M(NMe ) ] N N 2 3 2 M (10) HH toluene NN N

M 6a Al 6b Ga

Complex 6b was isolated using the same procedures as for 6a and similar features are seen in the 1H and 13C NMR spectra. The 1H NMR spectrum of 6b is indistinguishable from that for 6a and there is less than 0.08 ppm shift for all corresponding resonances of the two compounds.

117

X-ray crystallography confirmed the structure of 6a (Figure 4.5) as the five- coordinate tripodal aluminum complex with three anionic pyrrolyl arms, one neutral dimethylamine, and one apical nitrogen bound to aluminum. The molecule crystallized in the space group P2(1)/n and the structure was refined with an R1 factor of 3.53%.

Selected bond distances and angles are summarized in Table 4.4. The Al–Npyrrolyl bond distances range from 1.8838(11) Å to 1.8894(11) Å. As expected for a neutral donor, the

Al–N bond distance of 2.0314(11) Å for the coordinated dimethylamine is greater than the Al–Npyrrolyl bond distances. The apical Al–N distance is considerably greater at

2.1099(10) Å, which indicates a weaker interaction of the apical nitrogen and aluminum center. Coordination of the apical nitrogen plays an important role in the related tren systems. The Al–Napical bond distances will be a point of interest in future work with the

Al–TPA systems.

N5

N2

Al1 N4 N3

N1

Figure 4.5 ORTEP diagram of 6a. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

118

Table 4.4 Selected bond distances and angles for 6a Bond distances (Å)

Al1–N1 2.1099(10) Al1–N4 1.8894(11)

Al1–N2 1.8878(11) Al1–N5 2.0314(11)

Al1–N3 1.8838(11)

Bond angles (deg)

N2-Al1-N1 81.86(4) N2-Al1-N4 123.87(5)

N3-Al1-N1 83.39(4) N2-Al1-N5 93.83(5)

N4-Al1-N1 82.79(4) N3-Al1-N4 116.36(5)

N5-Al1-N1 174.74(5) N3-Al1-N5 101.22(5)

N3-Al1-N2 114.93(5) N4-Al1-N5 97.25(5)

4.5 Conclusions

Three different series of four- and five-coordinate tripodal aluminum and gallium complexes were synthesized and characterized using 1H and 13C NMR spectroscopy.

Molecular structures for 3b, 5b, and 6a were confirmed using X-ray crystallography.

These complexes may serve as precursors to potential three- or four-coordinate (neutral or cationic) tripodal group 13 complexes that should be highly Lewis acidic.

119

Chapter 5

Concluding Remarks

The reactivity of di- and tri(3-methylindolyl)methanes and tris(pyrrolyl-α- methyl)amine with several different aluminum and gallium compounds was investigated.

The use of isonitriles as models to reactivity of carbon monoxide with aluminum and gallium alkyls was also investigated. This study was performed in hopes of generating highly electrophilic and Lewis acidic group 13 metal centers for the binding and coordination of carbon monoxide.

Chapter 2 describes the reactivity of two different isonitriles with a series of

t t aluminum and gallium alkyls. These complexes; R3M•C≡N Bu (M = Al: R = Bu (1a),

i t Me (1c), Bu (1e), Et (1f); M = Ga: R = Bu (1b), Me (1d)); R3M•C≡N(2,6- dimethylphenyl) (M = Al: R = tBu (2a), Me (2c), iBu (2e), Et (2f); M = Ga: R = tBu (2b),

Me (2d)), serve as models of carbon monoxide binding to group 13 alkyls. The compounds were characterized by NMR and IR spectroscopy and X-ray crystallography.

Isothermal titration calorimetry was used to study the enthalpies of complexation for coordination of the isonitrile to the group 13 trialkyl. The binding is exothermic, and ΔH for complexation is approximately 21-25 kJ/mol for the aluminum alkyls and 16-17 kJ/mol for the gallium alkyls. Reactivity studies of these complexes at elevated temperatures did not lead to insertion products that were desired. These complexes are

120 stable up to 24 h at 100 °C in benzene solutions without any change to the 1H NMR spectrum.

Chapter 3 describes the synthesis and spectroscopic characterization of group 13 complexes with 3-methylindole (L1), di(3-methylindolyl)phenylmethane (L2), and tri(3-

3 methylindolyl)methane (L ) is reported. Within this report are the first examples of μ2-

η1:η1-N-indolyl moieties bridging group 13 elements, specifically aluminum in the

1 i 2 3 complexes; [L AlR2]2 (R = Me (7a), Et (7b), Bu (7c)), (L Al2Me4) (8), (L Al3R6) (R =

3 i Me (9a), Et (9b)), (L Al3H Bu5) (9c). These complexes were characterized by NMR spectroscopy and elemental analyses. Compounds 7a, 8, and 9a were characterized by

1 1 X-ray crystallography which confirmed the presence of the μ2-η :η -N-indolyl moieties.

These complexes specifically 9a-9c were proposed to be precursors to neutral three- coordinate tripodal aluminum compounds that would be highly electrophilic and Lewis acidic. Attempts toward generation of such compounds were unsuccessful.

Chapter 4 describes the synthesis and spectroscopic characterization of four- and five-coordinate complexes of aluminum and gallium is reported. This includes the synthesis of four-coordinate anionic aluminum and gallium complexes of tri(3- methylindolyl)methane, four-coordinate neutral aluminum complexes of tri(3- methylindolyl)imidazolylmethane (L4), and five-coordinate aluminum and gallium complexes of tris(pyrrolyl-α-methyl)amine (L5). These complexes include:

3 t [(L MX)][Li(THF4)] (M = Al: X = Cl (3a), H (4a), D (4b), Bu (4c); M = Ga: X = Cl

4 i t 5 (3b)); (L AlR) (R = Me (5a), Et (5b), Bu (5c), Bu (5d); (L M(HNMe2)) (M = Al (6a),

Ga (6b)). These complexes have been characterized by 1H and 13C NMR spectroscopy.

X-ray crystallography confirmed the structures of 3b, 6b and 7a. These complexes serve

121 as precursors to potential three- or four-coordinate neutral, Lewis acidic, group 13 compounds although initial attempts to generate these were unsuccessful.

In future research, different methods than those discussed towards the generation of neutral three-coordinate tripodal aluminum complexes from the compounds discussed in chapter 3 should be investigated. A potential route would be the use of a strong base to help promote the elimination of Me3Al in complex 9a. The coordination of base may also help the stability of the aluminum complex that would be generated. More thorough attempts for hydride, alkide, or chloride abstraction from complexes described in chapter

4 need to be undertaken. Trityl salts should be explored as alkide or hydride abstraction reagents. Bases other than Et3N should be used for the attempted removal of chloride from complexes 3a and 3b in chapter 4.

122

References

1. Kuran, W. Prog. Polym. Sci. 1998, 23, 919-992.

2. Chen, E. Y. X.; Marks, T. J. Chem. Rev. 2000, 100, 1391-1434.

3. Pedeutour, J. N.; Radhakrishnan, K.; Cramail, H.; Deffieux, A. Macromol. Rapid Commun. 2001, 22, 1095-1123.

4. Piers, W. E. Adv. Organomet. Chem. 2005, 52, 1-76.

5. Nelson, S. G.; Kim, B. K.; Peelen, T. J. J. Am. Chem. Soc. 2000, 122, 9318-9319.

6. Su, W.; Kim, Y.; Ellern, A.; Guzei, I. A.; Verkade, J. G. J. Am. Chem. Soc. 2006, 128, 13727-13735.

7. Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1997, 119, 8125-8126.

8. Corma, A.; Garcia, H. Chem. Rev. 2003, 103, 4307-4365.

9. Pasynkiewicz, S. Polyhedron 1990, 9, 429-453.

10. Atwood, D. A. Coord. Chem. Rev. 1997, 165, 267-296.

11. Holloway, C. E.; Melnik, M. J. Organomet. Chem. 1997, 543, 1-37.

12. Vandenberg, E. J. J. Polym. Sci. 1960, 47, 486-489.

13. Reichert, K. H.; Meyer, K. R. Makromol. Chem. 1973, 169, 163-176.

14. Andresen, A.; Cordes, H. G.; Herwig, H.; Kaminsky, W.; Merk, A.; Mottweiler, R.; Pein, J.; Sinn, H.; Vollmer, H. J. Angew. Chem. Int. Ed. 1976, 15, 630-632.

15. Ewen, J. A. J. Am. Chem. Soc. 1984, 106, 6355-6364.

16. Kaminsky, W.; Kulper, K.; Brintzinger, H. H.; Wild, F. Angew. Chem. Int. Ed. 1985, 24, 507-508.

17. Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. J. Am. Chem. Soc. 1988, 110, 6255-6256.

123

18. Chien, J. C. W.; Llinas, G. H.; Rausch, M. D.; Lin, G. Y.; Winter, H. H. J. Am. Chem. Soc. 1991, 113, 8569-8570.

19. Spaleck, W.; Kuber, F.; Winter, A.; Rohrmann, J.; Bachmann, B.; Antberg, M.; Dolle, V.; Paulus, E. F. Organometallics 1994, 13, 954-963.

20. Stehling, U.; Diebold, J.; Kirsten, R.; Roll, W.; Brintzinger, H. H.; Jungling, S.; Mulhaupt, R.; Langhauser, F. Organometallics 1994, 13, 964-970.

21. Coates, G. W.; Waymouth, R. M. Science 1995, 267, 217-219.

22. Gauthier, W. J.; Collins, S. Macromolecules 1995, 28, 3779-3786.

23. Sinn, H.; Kaminsky, W. Adv. Organomet. Chem. 1980, 18, 99-149.

24. Mason, M. R.; Smith, J. M.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc. 1993, 115, 4971-4984.

25. Reddy, S. S.; Sivaram, S. Prog. Polym. Sci. 1995, 20, 309-367.

26. Kaminsky, W.; Steiger, R. Polyhedron 1988, 7, 2375-2381.

27. Lee, C. H.; Lee, S. J.; Park, J. W.; Kim, K. H.; Lee, B. Y.; Oh, J. S. J. Mol. Catal. A-Chem. 1998, 132, 231-239.

28. Massey, A. G.; Park, A. J. J. Organomet. Chem. 1964, 2, 245-50.

29. Yang, X. M.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113, 3623-3625.

30. Brintzinger, H. H.; Fischer, D.; Mulhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem. Int. Ed. 1995, 34, 1143-1170.

31. Coates, G. W. Chem. Rev. 2000, 100, 1223-1252.

32. Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. 2000, 100, 1253- 1345.

33. Massey, A. G.; Park, A. J. J. Organomet. Chem. 1966, 5, 218-25.

34. Piers, W. E.; Chivers, T. Chem. Soc. Rev. 1997, 26, 345-354.

124

35. Erker, G. Chem. Commun. 2003, 1469-1476.

36. LaPointe, R. E.; Roof, G. R.; Abboud, K. A.; Klosin, J. J. Am. Chem. Soc. 2000, 122, 9560-9561.

37. Strauss, S. H. Chem. Rev. 1993, 93, 927-942.

38. Deck, P. A.; Beswick, C. L.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1772- 1784.

39. Childs, R. F.; Mulholland, D. L.; Nixon, A. Can. J. Chem. 1982, 60, 809-812.

40. Luo, L.; Marks, T. J. Top. Catal. 1999, 7, 97-106.

41. Kobayashi, S.; Busujima, T.; Nagayama, S. Chem. Eur. J. 2000, 6, 3491-3494.

42. Branch, C. S.; Bott, S. G.; Barron, A. R. J. Organomet. Chem. 2003, 666, 23-34.

43. Britovsek, G. J. P.; Ugolotti, J.; White, A. J. P. Organometallics 2005, 24, 1685- 1691.

44. Childs, R. F.; Mulholland, D. L.; Nixon, A. Can. J. Chem. 1982, 60, 801-808.

45. Beckett, M. A.; Strickland, G. C.; Holland, J. R.; Varma, K. S. Polymer 1996, 37, 4629-4631.

46. Metz, M. V.; Schwartz, D. J.; Stern, C. L.; Marks, T. J.; Nickias, P. N. Organometallics 2002, 21, 4159-4168.

47. Chivers, T. J. Fluorine Chem. 2002, 115, 1-8.

48. Belgardt, T.; Storre, J.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. Inorg. Chem. 1995, 34, 3821-3822.

49. Chen, M. C.; Roberts, J. A. S.; Marks, T. J. Organometallics 2004, 23, 932-935.

50. Chen, Y. X.; Stern, C. L.; Yang, S. T.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 12451-12452.

51. Hair, G. S.; Cowley, A. H.; Jones, R. A.; McBurnett, B. G.; Voigt, A. J. Am. Chem. Soc. 1999, 121, 4922-4923.

125

52. Stahl, N. G.; Salata, M. R.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 10898- 10909.

53. Chakraborty, D.; Chen, E. Y. X. Inorg. Chem. Commun. 2002, 5, 698-701.

54. Muller, L. O.; Himmel, D.; Stauffer, J.; Steinfeld, G.; Slattery, J.; Santiso- Quinones, G.; Brecht, V.; Krossing, I. Angew. Chem. Int. Ed. 2008, 47, 7659- 7663.

55. Klosin, J.; Roof, G. R.; Chen, E. Y. X.; Abboud, K. A. Organometallics 2000, 19, 4684-4686.

56. Bochmann, M.; Sarsfield, M. J. Organometallics 1998, 17, 5908-5912.

57. Timoshkin, A. Y.; Frenking, G. Organometallics 2008, 27, 371-380.

58. Huynh, K.; Vignolle, J.; Tilley, T. D. Angew. Chem. Int. Ed. 2009, 48, 2835-2837.

59. Pinkas, J.; Gaul, B.; Verkade, J. G. J. Am. Chem. Soc. 1993, 115, 3925-3931.

60. Verkade, J. G. Acc. Chem. Res. 1993, 26, 483-489.

61. Pinkas, J.; Verkade, J. G. Inorg. Chem. 1993, 32, 2711-2716.

62. Pinkas, J.; Verkade, J. G. Abstr. Pap. Am. Chem. Soc. 1993, 206, 290.

63. Plass, W.; Verkade, J. G. Inorg. Chem. 1993, 32, 5145-5152.

64. Pinkas, J.; Wang, T. L.; Jacobson, R. A.; Verkade, J. G. Inorg. Chem. 1994, 33, 5244-5253.

65. Pinkas, J.; Wang, T. L.; Jacobson, R. A.; Verkade, J. G. Inorg. Chem. 1994, 33, 4202-4210.

66. Emig, N.; Nguyen, H.; Krautscheid, H.; Reau, R.; Cazaux, J. B.; Bertrand, G. Organometallics 1998, 17, 3599-3608.

67. Murakata, M.; Jono, T.; Mizuno, Y.; Hoshino, O. J. Am. Chem. Soc. 1997, 119, 11713-11714.

68. Arai, T.; Sasai, H.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 441-442. 126

69. Ooi, T.; Uraguchi, D.; Kagoshima, N.; Maruoka, K. J. Am. Chem. Soc. 1998, 120, 5327-5328.

70. Su, W.; Kobayashi, J.; Ellern, A.; Kawashima, T.; Verkade, J. G. Inorg. Chem. 2007, 46, 7953-7959.

71. Forcato, M.; Lake, F.; Blazquez, M. M.; Renner, P.; Crisma, M.; Gade, L. H.; Licini, G.; Moberg, C. Eur. J. Inorg. Chem. 2006, 1032-1040.

72. Zhu, H.; Chen, E. Y. Inorg. Chem. 2007, 46, 1481-1487.

73. Gade, L. H. Acc. Chem. Res. 2002, 35, 575-582.

74. Zhu, H.; Chen, E. Y. Organometallics 2007, 26, 5395-5405.

75. Uhl, W.; Cuypers, L.; Neumuller, B.; Weller, F. Organometallics 2002, 21, 2365- 2368.

76. Dohmeier, C.; Mattes, R.; Schnockel, H. J. Chem. Soc. Chem. Commun. 1990, 358-359.

77. Hoefelmeyer, J. D.; Brode, D. L.; Gabbai, F. P. Organometallics 2002, 21, 3496- 3496.

78. Kilyanek, S. M.; Fang, X. D.; Jordan, R. F. Organometallics 2009, 28, 300-305.

79. Segla, M. F. M.S. Thesis, The University of Toledo, May 2001.

80. Fneich, B. Ph.D. Dissertation, The University of Toledo, 2006.

81. Das, A. M.S. Thesis, The University of Toledo, 2007.

82. Song, B. X. M.S. Thesis, The University of Toledo, 2005.

83. Mason, M. R. In Encyclopedia of Inorganic Chemistry; King, R. B., Ed.; John Wiley and Sons: New York, 2005; Vol. 1, p 185-210.

84. Mason, M. R.; Song, B. X.; Kirschbaum, K. J. Am. Chem. Soc. 2004, 126, 11812- 11813.

85. Mason, M. R.; Song, B. X.; Han, Y. H.; Hu, X. C. Inorg. Chim. Acta 2008, 361, 3332-3337. 127

86. Li, X. F.; Ni, C. B.; Song, H. B.; Cui, C. M. Chem. Commun. 2006, 1763-1765.

87. Hesse, G.; Witte, H.; Mischke, P. Angew. Chem. Int. Edit. 1965, 4, 355.

88. Meller, A.; Batka, H. Monatsh. Chem. 1975, 101, 627-628.

89. Shapiro, P. J.; Vij, A.; Yap, G. P. A.; Rheingold, A. L. Polyhedron 1995, 14, 203- 209.

90. Hoberg, H.; Bukowski, P. Liebigs Ann. Chem. 1975, 1124-1130.

91. Uhl, W.; Matar, M. Z. Naturforsch., B: Chem. Sci. 2004, 59, 1214-1222.

92. Wehmschulte, R. J.; Power, P. P. Inorg. Chem. 1998, 37, 6906-6911.

93. Uhl, W.; Schutz, U.; Hiller, W.; Heckel, M. Chem. Ber. 1994, 127, 1587-1592.

94. Li, X. F.; Cheng, X. Y.; Song, H. B.; Cui, C. M. Organometallics 2007, 26, 1039- 1043.

95. Timoshkin, A. Y.; Schaefer, H. F. J. Am. Chem. Soc. 2003, 125, 9998-10011.

96. Lehmkuhl, H.; Olbrysch, O. Liebigs Ann. Chem. 1973, 708-714.

97. Uhl, W. Z. Anorg. Allg. Chem. 1989, 570, 37-53.

98. Kovar, R. A.; Derr, H.; Brandau, D.; Callaway, J. O. Inorg. Chem. 1975, 14, 2809-2814.

99. SMART, Software for the CCD Detector System; Siemens Analytical Instruments Division: Madison, WI, 1995.

100. SAINT, Software for the CCD Detector System; Siemens Analytical Instruments Division: Madison, WI, 1996.

101. Sheldrick, G. M. SADABS: Absorption Correction Program; University of Göttingen: Göttingen, Germany, 1996.

102. Sheldrick, G. M. Acta Crystallogr. 2008, 64, 112-122.

103. Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.

128

104. Strauss, S. H. J. Chem. Soc. Dalton Trans. 2000, 1-6.

105. Lehmkuhl, H. Angew. Chem. Int. Edit. 1964, 76, 817.

106. Coates, G. E.; Mukherjee, R. N. J. Chem. Soc. A 1963, 229-233.

107. Eyman, D. P.; Henrickson, C. H. Inorg. Chem. 1968, 7, 1047-1051.

108. Nykerk, K. M.; Eyman, D. P. Inorg. Nucl. Chem. Lett. 1968, 4, 253-256.

109. Bonitz, E. Chem. Ber. 1955, 88, 742-763.

110. Shotwell, J. B.; Sealy, J. M.; Flowers, R. A. J. Org. Chem. 1999, 64, 5251-5255.

111. Laubengayer, A. W.; Gilliam, W. F. J. Am. Chem. Soc. 1941, 63, 477-479.

112. Smith, M. B. J. Phys. Chem. 1967, 71, 364-370.

113. Henrickson, C. H.; Eyman, D. P. Inorg. Chem. 1967, 6, 1461-1465.

114. Moloy, K. G.; Petersen, J. L. J. Am. Chem. Soc. 1995, 117, 7696-7710.

115. Dube, T.; Gambarotta, S.; Yap, G. P. A. Organometallics 2000, 19, 817-823.

116. Dube, T.; Gambarotta, S.; Yap, G. P. A.; Conoci, S. Organometallics 2000, 19, 115-117.

117. Ganesan, M.; Lalonde, M. P.; Gambarotta, S.; Yap, G. P. A. Organometallics 2001, 20, 2443-2445.

118. Harris, S. A.; Ciszewski, J. T.; Odom, A. L. Inorg. Chem. 2001, 40, 1987-1988.

119. Korobkov, I.; Gambarotta, S.; Yap, G. P. A. Organometallics 2001, 20, 2552- 2559.

120. Li, Y. H.; Turnas, A.; Ciszewski, J. T.; Odom, A. L. Inorg. Chem. 2002, 41, 6298- 6306.

121. Shi, Y. H.; Hall, C.; Ciszewski, J. T.; Cao, C. S.; Odom, A. L. Chem. Commun. 2003, 586-587.

129

122. Tanski, J. M.; Parkin, G. Inorg. Chem. 2003, 42, 264-266.

123. Barnard, T. S.; Mason, M. R. Inorg. Chem. 2001, 40, 5001-5009.

124. Barnard, T. S.; Mason, M. R. Organometallics 2001, 20, 206-214.

125. Mason, M. R.; Fneich, B. N.; Kirschbaum, K. Inorg. Chem. 2003, 42, 6592-6594.

126. Mason, M. R.; Ogrin, D.; Fneich, B.; Barnard, T. S.; Kirschbaum, K. J. Organomet. Chem. 2005, 690, 157-162.

127. Riley, P. N.; Fanwick, P. E.; Rothwell, I. P. J. Chem. Soc. Dalton Trans. 2001, 181-186.

128. Mason, M. R. Chemtracts 2003, 16, 272-289.

129. Mason, M. R.; Barnard, T. S.; Segla, M. F.; Xie, B. H.; Kirschbaum, K. J. Chem. Crystallogr. 2003, 33, 531-540.

130. Hacker, R.; Kaufmann, E.; Schleyer, P. V.; Mahdi, W.; Dietrich, H. Chem. Ber. 1987, 120, 1533-1538.

131. Gregory, K.; Bremer, M.; Schleyer, P. V.; Klusener, P. A. A.; Brandsma, L. Angew. Chem. Int. Edit. 1989, 28, 1224-1226.

132. Gregory, K.; Bremer, M.; Bauer, W.; Schleyer, P. V.; Lorenzen, N. P.; Kopf, J.; Weiss, E. Organometallics 1990, 9, 1485-1492.

133. Deangelis, S.; Solari, E.; Floriani, C.; Chiesivilla, A.; Rizzoli, C. J. Am. Chem. Soc. 1994, 116, 5691-5701.

134. Crescenzi, R.; Solari, E.; Floriani, C.; ChiesiVilla, A.; Rizzoli, C. Inorg. Chem. 1996, 35, 2413-2414.

135. Chen, Y. C.; Lin, C. Y.; Li, C. Y.; Huang, J. H.; Chang, L. C.; Lee, T. Y. Chem.Eur. J. 2008, 14, 9747-9753.

136. Deangelis, S.; Solari, E.; Floriani, C.; Chiesivilla, A.; Rizzoli, C. J. Chem. Soc. Dalton Trans. 1994, 2467-2469.

137. Deangelis, S.; Solari, E.; Floriani, C.; Chiesivilla, A.; Rizzoli, C. J. Am. Chem. Soc. 1994, 116, 5702-5713.

130

138. Schumann, H.; Gottfriedsen, J.; Demtschuk, J. Chem. Commun. 1999, 2091-2092.

139. Kuhn, N.; Henkel, G.; Stubenrauch, S. Angew. Chem. Int. Edit. 1992, 31, 778- 779.

140. Kuhn, N.; Henkel, G.; Stubenrauch, S. J. Chem. Soc. Chem. Commun. 1992, 760- 761.

141. Kershner, D. L.; Basolo, F. Coord. Chem. Rev. 1987, 79, 279-292.

142. Hausen, H. D.; Locke, K.; Weidlein, J. J. Organomet. Chem. 1992, 429, C27- C32.

143. Todtmann, J.; Schwarz, W.; Weidlein, J.; Haaland, A. Z. Naturforsch., B: Chem. Sci. 1993, 48, 1437-1447.

144. Hausen, H. D.; Todtmann, J.; Weidlein, J. Z. Naturforsch., B: Chem. Sci. 1994, 49, 430-433.

145. Silverman, J. S.; Carmalt, C. J.; Neumayer, D. A.; Cowley, A. H.; McBurnett, B. G.; Decken, A. Polyhedron 1998, 17, 977-982.

146. Andrianarison, M. M.; Ellerby, M. C.; Gorrell, I. B.; Hitchcock, P. B.; Smith, J. D.; Stanley, D. R. J. Chem. Soc. Dalton Trans. 1996, 211-217.

147. Lehmkuhl, H.; Olbrysch, O.; Nehl, H. Liebigs Ann. Chem. 1973, 708-714. .

148. v. Dobeneck, H.; Prietzel, H. Chem. Abstr. 1956, 50, 1765.

149. Dostal, V. Chem. Listy 1938, 32, 13.

150. Pascal, L. F.; Mason, M. R. Unpublished Results 2007

151. Mason, M. R.; Xie, B. H.; Segla, M. F. Unpublished Results 2000

152. Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectroscopic Identification of Organic Compounds; Fourth Ed. John Wiley & Sons: New York, 1981.

153. Belgardt, T.; Storre, J.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H. G. Inorg. Chem. 1995, 34, 3821-3822.

131

154. Wang, X. F.; Andrews, L.; Tam, S.; DeRose, M. E.; Fajardo, M. E. J. Am. Chem. Soc. 2003, 125, 9218-9228.

155. Andrews, L.; Tague, T. J.; Kushto, G. P.; Davy, R. D. Inorg. Chem. 1995, 34, 2952-2961.

156. Jeffery, J. C.; Norman, N. C.; Pardoe, J. A. J.; Timms, P. L. Chem. Commun. 2000, 2367-2368.

157. Zhou, M. F.; Tsumori, N.; Li, Z. H.; Fan, K. N.; Andrews, L.; Xu, Q. A. J. Am. Chem. Soc. 2002, 124, 12936-12937.

158. Himmel, H. J.; Downs, A. J.; Green, J. C.; Greene, T. M. J. Phys. Chem. A 2000, 104, 3642-3654.

159. Burg, A. B.; Schlesinger, H. I. J. Am. Chem. Soc. 1937, 59, 780-787.

160. Terheiden, A.; Bernhardt, E.; Willner, H.; Aubke, F. Angew. Chem. Int. Edit. 2002, 41, 799-801.

161. Mackie, I. D.; Hinchley, S. L.; Robertson, H. E.; Rankin, D. W. H.; Pardoe, J. A. J.; Timms, P. L. J. Chem. Soc. Dalton Trans. 2002, 4162-4167.

162. Zhou, M. F.; Xu, Q.; Wang, Z. X.; Schleyer, P. V. J. Am. Chem. Soc. 2002, 124, 14854-14855.

163. Shi, Y. H.; Cao, C. S.; Odom, A. L. Inorg. Chem. 2004, 43, 275-281.

164. Noth, H.; Konrad, P. Z. Naturforsch. 1975, 30b, 681-685.

165. Waggoner, K. M.; Olmstead, M. M.; Power, P. P. Polyhedron 1990, 9, 257-263.

166. Atwood, D. A. Coord. Chem. Rev. 1998, 176, 407-430.

167. Schrock, R. R. Acc. Chem. Res. 1997, 30, 9-16.

132

Appendix: CIF Files for Compounds

t t CIF File for Bu3Al·C≡N Bu

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common _chemical_melting_point _chemical_formula_moiety 'C17 H36 Al N' _chemical_formula_sum 'C17 H36 Al N'

_chemical_formula_weight 281.45 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Al' 'Al' 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M P2(1)/m loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z' '-x, -y, -z' 'x, -y-1/2, z'

_cell_length_a 8.3301(19) _cell_length_b 12.218(3) _cell_length_c 10.525(2) _cell_angle_alpha 90.00 _cell_angle_beta 110.735(4) 133

_cell_angle_gamma 90.00 _cell_volume 1001.8(4) _cell_formula_units_Z 4 _cell_measurement_temperature -133 _cell_measurement_reflns_used 893 _cell_measurement_theta_min 4.04 _cell_measurement_theta_max 30.53

_exptl_crystal_description Cube _exptl_crystal_colour Colorless _exptl_crystal_size_max .2 _exptl_crystal_size_mid .2 _exptl_crystal_size_min .2 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.400 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 474 _exptl_absorpt_coefficient_mu 0.140 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.795 _exptl_absorpt_correction_T_max 1.000 _exptl_absorpt_process_details ?

_exptl_special_details ; ? ;

_diffrn_ambient_temperature -133 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker platform with 6k CCD' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 6801 _diffrn_reflns_av_R_equivalents 0.0199 _diffrn_reflns_av_sigmaI/netI 0.0198 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min -13 _diffrn_reflns_limit_k_max 15 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 2.07 _diffrn_reflns_theta_max 26.00 _reflns_number_total 2060 _reflns_number_gt 1896 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630'

134

_computing_cell_refinement 'Saintplus 5.45' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0405P)^2^+1.3638P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 2060 _refine_ls_number_parameters 91 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0656 _refine_ls_R_factor_gt 0.0610 _refine_ls_wR_factor_ref 0.1402 _refine_ls_wR_factor_gt 0.1375 _refine_ls_goodness_of_fit_ref 1.044 _refine_ls_restrained_S_all 1.044 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group

135

Al1 Al -0.00281(9) 0.2500 0.26025(7) 0.0161(2) Uani 1 2 d S . . N1 N -0.3229(3) 0.2500 -0.0298(2) 0.0217(5) Uani 1 2 d S . . C1 C -0.2051(3) 0.2500 0.0687(3) 0.0232(6) Uani 1 2 d S . . C2 C -0.1440(4) 0.2500 0.3825(3) 0.0282(6) Uani 1 2 d S . . C21 C -0.0269(5) 0.2787(3) 0.5283(4) 0.0303(10) Uiso 0.50 1 d P A 1 H21A H -0.0946 0.2791 0.5878 0.045 Uiso 0.50 1 calc PR A 1 H21B H 0.0238 0.3512 0.5291 0.045 Uiso 0.50 1 calc PR A 1 H21C H 0.0647 0.2240 0.5609 0.045 Uiso 0.50 1 calc PR A 1 C22 C -0.2934(6) 0.3284(4) 0.3382(5) 0.0411(11) Uiso 0.50 1 d P . 1 H22A H -0.3564 0.3235 0.4009 0.062 Uiso 0.50 1 calc PR . 1 H22B H -0.3701 0.3094 0.2463 0.062 Uiso 0.50 1 calc PR . 1 H22C H -0.2508 0.4032 0.3386 0.062 Uiso 0.50 1 calc PR . 1 C23 C -0.2235(7) 0.1337(4) 0.3873(5) 0.0423(11) Uiso 0.50 1 d P A 1 H23A H -0.2924 0.1366 0.4458 0.063 Uiso 0.50 1 calc PR A 1 H23B H -0.1309 0.0801 0.4237 0.063 Uiso 0.50 1 calc PR A 1 H23C H -0.2965 0.1120 0.2953 0.063 Uiso 0.50 1 calc PR A 1 C3 C 0.1202(3) 0.10872(17) 0.2523(2) 0.0282(5) Uani 1 1 d . . . C31A C 0.0007(7) 0.0136(5) 0.1912(6) 0.0376(12) Uiso 0.45 1 d P A 1 H31A H 0.0687 -0.0515 0.1893 0.056 Uiso 0.45 1 calc PR A 1 H31B H -0.0736 0.0322 0.0984 0.056 Uiso 0.45 1 calc PR A 1 H31C H -0.0700 -0.0013 0.2464 0.056 Uiso 0.45 1 calc PR A 1 C32A C 0.2376(6) 0.0733(4) 0.4002(5) 0.0282(10) Uiso 0.45 1 d P A 1 H32A H 0.2965 0.0047 0.3957 0.042 Uiso 0.45 1 calc PR A 1 H32B H 0.1664 0.0624 0.4560 0.042 Uiso 0.45 1 calc PR A 1 H32C H 0.3227 0.1305 0.4407 0.042 Uiso 0.45 1 calc PR A 1 C33A C 0.2382(8) 0.1206(5) 0.1666(6) 0.0390(12) Uiso 0.45 1 d P A 1 H33A H 0.2939 0.0504 0.1644 0.058 Uiso 0.45 1 calc PR A 1 H33B H 0.3259 0.1763 0.2078 0.058 Uiso 0.45 1 calc PR A 1 H33C H 0.1689 0.1427 0.0738 0.058 Uiso 0.45 1 calc PR A 1 C31B C 0.0040(6) 0.0088(4) 0.2501(5) 0.0422(11) Uiso 0.55 1 d P A 3 H31D H 0.0644 -0.0588 0.2448 0.063 Uiso 0.55 1 calc PR A 3 H31E H -0.1024 0.0139 0.1710 0.063 Uiso 0.55 1 calc PR A 3 H31F H -0.0235 0.0083 0.3333 0.063 Uiso 0.55 1 calc PR A 3 C32B C 0.2867(5) 0.1005(4) 0.3757(4) 0.0333(9) Uiso 0.55 1 d P A 3 H32D H 0.3458 0.0321 0.3710 0.050 Uiso 0.55 1 calc PR A 3 H32E H 0.2598 0.1013 0.4591 0.050 Uiso 0.55 1 calc PR A 3 H32F H 0.3610 0.1627 0.3760 0.050 Uiso 0.55 1 calc PR A 3 C33B C 0.1671(7) 0.1010(4) 0.1253(5) 0.0467(12) Uiso 0.55 1 d P A 3 H33D H 0.2251 0.0312 0.1253 0.070 Uiso 0.55 1 calc PR A 3 H33E H 0.2439 0.1615 0.1244 0.070 Uiso 0.55 1 calc PR A 3 H33F H 0.0626 0.1053 0.0444 0.070 Uiso 0.55 1 calc PR A 3 C5 C -0.4778(3) 0.2500 -0.1538(3) 0.0240(6) Uani 1 2 d S . . C51 C -0.5781(3) 0.1468(2) -0.1497(2) 0.0405(6) Uani 1 1 d . . . H51A H -0.6147 0.1496 -0.0709 0.061 Uiso 1 1 calc R . . H51B H -0.5050 0.0825 -0.1424 0.061 Uiso 1 1 calc R . . H51C H -0.6793 0.1417 -0.2330 0.061 Uiso 1 1 calc R . . C52 C -0.4170(4) 0.2500 -0.2745(3) 0.0351(7) Uani 1 2 d S . . H52A H -0.3545 0.3180 -0.2746 0.053 Uiso 0.50 1 calc PR . . H52B H -0.5164 0.2447 -0.3591 0.053 Uiso 0.50 1 calc PR . . H52C H -0.3409 0.1873 -0.2675 0.053 Uiso 0.50 1 calc PR . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33

136

_atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Al1 0.0145(4) 0.0178(4) 0.0148(4) 0.000 0.0035(3) 0.000 N1 0.0193(11) 0.0246(12) 0.0193(11) 0.000 0.0045(9) 0.000 C1 0.0215(13) 0.0242(14) 0.0225(14) 0.000 0.0063(12) 0.000 C2 0.0196(13) 0.0442(18) 0.0216(13) 0.000 0.0082(11) 0.000 C3 0.0282(10) 0.0259(10) 0.0254(10) -0.0055(8) 0.0032(8) 0.0060(8) C5 0.0182(13) 0.0273(14) 0.0194(13) 0.000 -0.0019(10) 0.000 C51 0.0274(11) 0.0434(14) 0.0414(13) 0.0040(11) 0.0008(10) -0.0114(10) C52 0.0379(17) 0.0434(18) 0.0201(14) 0.000 0.0054(13) 0.000

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Al1 C3 2.024(2) 4_565 ? Al1 C3 2.024(2) . ? Al1 C2 2.027(3) . ? Al1 C1 2.121(3) . ? N1 C1 1.148(3) . ? N1 C5 1.475(3) . ? C2 C22 1.508(5) 4_565 ? C2 C22 1.508(5) . ? C2 C21 1.539(4) . ? C2 C21 1.539(4) 4_565 ? C2 C23 1.576(5) . ? C2 C23 1.576(5) 4_565 ? C21 H21A 0.9800 . ? C21 H21B 0.9800 . ? C21 H21C 0.9800 . ? C22 C22 1.916(11) 4_565 ? C22 H22A 0.9800 . ? C22 H22B 0.9800 . ? C22 H22C 0.9800 . ? C23 H23A 0.9800 . ? C23 H23B 0.9800 . ? C23 H23C 0.9800 . ? C3 C31A 1.517(6) . ? C3 C33B 1.523(5) . ? C3 C32B 1.532(4) . ? C3 C31B 1.553(5) . ? C3 C33A 1.558(6) . ? C3 C32A 1.578(5) . ?

137

C31A H31A 0.9800 . ? C31A H31B 0.9800 . ? C31A H31C 0.9800 . ? C32A H32A 0.9800 . ? C32A H32B 0.9800 . ? C32A H32C 0.9800 . ? C33A H33A 0.9800 . ? C33A H33B 0.9800 . ? C33A H33C 0.9800 . ? C31B H31D 0.9800 . ? C31B H31E 0.9800 . ? C31B H31F 0.9800 . ? C32B H32D 0.9800 . ? C32B H32E 0.9800 . ? C32B H32F 0.9800 . ? C33B H33D 0.9800 . ? C33B H33E 0.9800 . ? C33B H33F 0.9800 . ? C5 C51 1.522(3) . ? C5 C51 1.522(3) 4_565 ? C5 C52 1.526(4) . ? C51 H51A 0.9800 . ? C51 H51B 0.9800 . ? C51 H51C 0.9800 . ? C52 H52A 0.9800 . ? C52 H52B 0.9800 . ? C52 H52C 0.9800 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C3 Al1 C3 117.04(13) 4_565 . ? C3 Al1 C2 116.23(7) 4_565 . ? C3 Al1 C2 116.23(7) . . ? C3 Al1 C1 101.77(7) 4_565 . ? C3 Al1 C1 101.77(7) . . ? C2 Al1 C1 99.17(11) . . ? C1 N1 C5 178.2(3) . . ? N1 C1 Al1 174.9(2) . . ? C22 C2 C22 78.9(4) 4_565 . ? C22 C2 C21 128.0(3) 4_565 . ? C22 C2 C21 109.0(3) . . ? C22 C2 C21 109.0(3) 4_565 4_565 ? C22 C2 C21 128.0(3) . 4_565 ? C21 C2 C21 26.3(3) . 4_565 ? C22 C2 C23 29.2(2) 4_565 . ? C22 C2 C23 105.8(4) . . ? C21 C2 C23 107.4(3) . . ? C21 C2 C23 83.6(3) 4_565 . ? C22 C2 C23 105.8(4) 4_565 4_565 ? C22 C2 C23 29.2(2) . 4_565 ? C21 C2 C23 83.6(3) . 4_565 ?

138

C21 C2 C23 107.4(3) 4_565 4_565 ? C23 C2 C23 128.8(4) . 4_565 ? C22 C2 Al1 113.9(2) 4_565 . ? C22 C2 Al1 113.9(2) . . ? C21 C2 Al1 109.1(2) . . ? C21 C2 Al1 109.1(2) 4_565 . ? C23 C2 Al1 111.4(2) . . ? C23 C2 Al1 111.4(2) 4_565 . ? C2 C21 H21A 109.5 . . ? C2 C21 H21B 109.5 . . ? H21A C21 H21B 109.5 . . ? C2 C21 H21C 109.5 . . ? H21A C21 H21C 109.5 . . ? H21B C21 H21C 109.5 . . ? C2 C22 C22 50.5(2) . 4_565 ? C2 C22 H22A 109.5 . . ? C22 C22 H22A 86.5 4_565 . ? C2 C22 H22B 109.5 . . ? C22 C22 H22B 76.3 4_565 . ? H22A C22 H22B 109.5 . . ? C2 C22 H22C 109.5 . . ? C22 C22 H22C 158.9 4_565 . ? H22A C22 H22C 109.5 . . ? H22B C22 H22C 109.5 . . ? C2 C23 H23A 109.5 . . ? C2 C23 H23B 109.5 . . ? H23A C23 H23B 109.5 . . ? C2 C23 H23C 109.5 . . ? H23A C23 H23C 109.5 . . ? H23B C23 H23C 109.5 . . ? C31A C3 C33B 85.1(3) . . ? C31A C3 C32B 124.8(3) . . ? C33B C3 C32B 107.7(3) . . ? C31A C3 C31B 23.0(2) . . ? C33B C3 C31B 106.9(3) . . ? C32B C3 C31B 109.5(3) . . ? C31A C3 C33A 106.3(3) . . ? C33B C3 C33A 24.1(2) . . ? C32B C3 C33A 86.0(3) . . ? C31B C3 C33A 125.6(3) . . ? C31A C3 C32A 107.0(3) . . ? C33B C3 C32A 125.9(3) . . ? C32B C3 C32A 23.96(19) . . ? C31B C3 C32A 87.9(3) . . ? C33A C3 C32A 107.4(3) . . ? C31A C3 Al1 113.9(2) . . ? C33B C3 Al1 112.3(2) . . ? C32B C3 Al1 109.92(19) . . ? C31B C3 Al1 110.4(2) . . ? C33A C3 Al1 112.1(2) . . ? C32A C3 Al1 109.8(2) . . ? C3 C31A H31A 109.5 . . ? C3 C31A H31B 109.5 . . ? H31A C31A H31B 109.5 . . ? C3 C31A H31C 109.5 . . ? H31A C31A H31C 109.5 . . ?

139

H31B C31A H31C 109.5 . . ? C3 C32A H32A 109.5 . . ? C3 C32A H32B 109.5 . . ? H32A C32A H32B 109.5 . . ? C3 C32A H32C 109.5 . . ? H32A C32A H32C 109.5 . . ? H32B C32A H32C 109.5 . . ? C3 C33A H33A 109.5 . . ? C3 C33A H33B 109.5 . . ? H33A C33A H33B 109.5 . . ? C3 C33A H33C 109.5 . . ? H33A C33A H33C 109.5 . . ? H33B C33A H33C 109.5 . . ? C3 C31B H31D 109.5 . . ? C3 C31B H31E 109.5 . . ? H31D C31B H31E 109.5 . . ? C3 C31B H31F 109.5 . . ? H31D C31B H31F 109.5 . . ? H31E C31B H31F 109.5 . . ? C3 C32B H32D 109.5 . . ? C3 C32B H32E 109.5 . . ? H32D C32B H32E 109.5 . . ? C3 C32B H32F 109.5 . . ? H32D C32B H32F 109.5 . . ? H32E C32B H32F 109.5 . . ? C3 C33B H33D 109.5 . . ? C3 C33B H33E 109.5 . . ? H33D C33B H33E 109.5 . . ? C3 C33B H33F 109.5 . . ? H33D C33B H33F 109.5 . . ? H33E C33B H33F 109.5 . . ? N1 C5 C51 106.97(15) . . ? N1 C5 C51 106.97(15) . 4_565 ? C51 C5 C51 111.9(3) . 4_565 ? N1 C5 C52 107.0(2) . . ? C51 C5 C52 111.81(16) . . ? C51 C5 C52 111.81(16) 4_565 . ? C5 C51 H51A 109.5 . . ? C5 C51 H51B 109.5 . . ? H51A C51 H51B 109.5 . . ? C5 C51 H51C 109.5 . . ? H51A C51 H51C 109.5 . . ? H51B C51 H51C 109.5 . . ? C5 C52 H52A 109.5 . . ? C5 C52 H52B 109.5 . . ? H52A C52 H52B 109.5 . . ? C5 C52 H52C 109.5 . . ? H52A C52 H52C 109.5 . . ? H52B C52 H52C 109.5 . . ? _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.497 _refine_diff_density_min -0.458 _refine_diff_density_rms 0.053

140

t t CIF File for Bu3Ga·C≡N Bu

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C17 H36 Ga N' _chemical_formula_sum 'C17 H36 Ga N'

_chemical_formula_weight 324.19 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Ga' 'Ga' 0.2307 1.6083 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M P2(1)/m loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z' '-x, -y, -z' 'x, -y-1/2, z'

_cell_length_a 8.3397(2) _cell_length_b 12.2280(2) _cell_length_c 10.5604(2) _cell_angle_alpha 90.00 _cell_angle_beta 110.8900(10) _cell_angle_gamma 90.00 _cell_volume 1006.14(3) _cell_formula_units_Z 2 _cell_measurement_temperature -133 _cell_measurement_reflns_used 6873 _cell_measurement_theta_min 2.614 _cell_measurement_theta_max 28.292

141

_exptl_crystal_description rectangle brick _exptl_crystal_colour Colorless _exptl_crystal_size_max .25 _exptl_crystal_size_mid .25 _exptl_crystal_size_min .20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.070 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 352 _exptl_absorpt_coefficient_mu 1.359 _exptl_absorpt_correction_type ? _exptl_absorpt_correction_T_min 0.790 _exptl_absorpt_correction_T_max 1.000 _exptl_absorpt_process_details ?

_exptl_special_details ; ? ;

_diffrn_ambient_temperature -133 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker platform with 6k CCD' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 15239 _diffrn_reflns_av_R_equivalents 0.0231 _diffrn_reflns_av_sigmaI/netI 0.0150 _diffrn_reflns_limit_h_min -11 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_k_max 16 _diffrn_reflns_limit_l_min -14 _diffrn_reflns_limit_l_max 14 _diffrn_reflns_theta_min 2.06 _diffrn_reflns_theta_max 28.29 _reflns_number_total 2620 _reflns_number_gt 2536 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630' _computing_cell_refinement 'Saintplus 5.45' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

142

_computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0378P)^2^+0.8329P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 2620 _refine_ls_number_parameters 91 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0345 _refine_ls_R_factor_gt 0.0333 _refine_ls_wR_factor_ref 0.0832 _refine_ls_wR_factor_gt 0.0824 _refine_ls_goodness_of_fit_ref 1.053 _refine_ls_restrained_S_all 1.053 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ga1 Ga 0.00003(3) 0.2500 0.26268(2) 0.02351(9) Uani 1 2 d S . .

143

N1 N -0.3245(3) 0.2500 -0.0304(2) 0.0308(4) Uani 1 2 d S . . C1 C -0.2060(3) 0.2500 0.0668(3) 0.0341(5) Uani 1 2 d S . . C2 C -0.1444(3) 0.2500 0.3827(3) 0.0372(6) Uani 1 2 d S . . C21 C -0.0277(5) 0.2776(3) 0.5279(4) 0.0407(9) Uiso 0.50 1 d P A 1 H21A H -0.0955 0.2780 0.5870 0.061 Uiso 0.50 1 calc PR A 1 H21B H 0.0236 0.3499 0.5294 0.061 Uiso 0.50 1 calc PR A 1 H21C H 0.0633 0.2227 0.5601 0.061 Uiso 0.50 1 calc PR A 1 C22 C -0.2916(6) 0.3276(4) 0.3370(5) 0.0531(11) Uiso 0.50 1 d P A 1 H22A H -0.3556 0.3236 0.3987 0.080 Uiso 0.50 1 calc PR A 1 H22B H -0.3676 0.3082 0.2451 0.080 Uiso 0.50 1 calc PR A 1 H22C H -0.2486 0.4022 0.3370 0.080 Uiso 0.50 1 calc PR A 1 C23 C -0.2233(7) 0.1322(4) 0.3852(6) 0.0548(11) Uiso 0.50 1 d P A 1 H23A H -0.2925 0.1337 0.4432 0.082 Uiso 0.50 1 calc PR A 1 H23B H -0.1302 0.0789 0.4210 0.082 Uiso 0.50 1 calc PR A 1 H23C H -0.2959 0.1112 0.2930 0.082 Uiso 0.50 1 calc PR A 1 C3 C 0.1213(2) 0.10796(16) 0.25264(19) 0.0367(4) Uani 1 1 d . . . C31A C 0.0009(7) 0.0139(5) 0.1925(6) 0.0485(12) Uiso 0.45 1 d P A 1 H31A H 0.0678 -0.0515 0.1902 0.073 Uiso 0.45 1 calc PR A 1 H31B H -0.0741 0.0327 0.1001 0.073 Uiso 0.45 1 calc PR A 1 H31C H -0.0690 -0.0005 0.2481 0.073 Uiso 0.45 1 calc PR A 1 C32A C 0.2394(6) 0.0731(4) 0.4002(5) 0.0405(10) Uiso 0.45 1 d P A 1 H32A H 0.2985 0.0047 0.3960 0.061 Uiso 0.45 1 calc PR A 1 H32B H 0.1687 0.0625 0.4561 0.061 Uiso 0.45 1 calc PR A 1 H32C H 0.3244 0.1305 0.4402 0.061 Uiso 0.45 1 calc PR A 1 C33A C 0.2357(8) 0.1200(5) 0.1659(6) 0.0517(12) Uiso 0.45 1 d P A 1 H33A H 0.2917 0.0500 0.1634 0.078 Uiso 0.45 1 calc PR A 1 H33B H 0.3233 0.1760 0.2059 0.078 Uiso 0.45 1 calc PR A 1 H33C H 0.1647 0.1416 0.0735 0.078 Uiso 0.45 1 calc PR A 1 C31B C 0.0042(5) 0.0089(4) 0.2499(5) 0.0518(11) Uiso 0.55 1 d P A 3 H31D H 0.0639 -0.0590 0.2446 0.078 Uiso 0.55 1 calc PR A 3 H31E H -0.1021 0.0145 0.1707 0.078 Uiso 0.55 1 calc PR A 3 H31F H -0.0234 0.0085 0.3327 0.078 Uiso 0.55 1 calc PR A 3 C32B C 0.2864(5) 0.0998(4) 0.3758(4) 0.0440(8) Uiso 0.55 1 d P A 3 H32D H 0.3457 0.0315 0.3713 0.066 Uiso 0.55 1 calc PR A 3 H32E H 0.2589 0.1005 0.4586 0.066 Uiso 0.55 1 calc PR A 3 H32F H 0.3608 0.1620 0.3766 0.066 Uiso 0.55 1 calc PR A 3 C33B C 0.1664(7) 0.1024(5) 0.1254(5) 0.0592(12) Uiso 0.55 1 d P A 3 H33D H 0.2245 0.0331 0.1238 0.089 Uiso 0.55 1 calc PR A 3 H33E H 0.2426 0.1634 0.1252 0.089 Uiso 0.55 1 calc PR A 3 H33F H 0.0612 0.1073 0.0452 0.089 Uiso 0.55 1 calc PR A 3 C5 C -0.4792(3) 0.2500 -0.1526(2) 0.0334(5) Uani 1 2 d S . . C51 C -0.5784(3) 0.1470(2) -0.1486(3) 0.0586(6) Uani 1 1 d . . . H51A H -0.6150 0.1497 -0.0702 0.088 Uiso 1 1 calc R . . H51B H -0.5049 0.0830 -0.1412 0.088 Uiso 1 1 calc R . . H51C H -0.6796 0.1418 -0.2319 0.088 Uiso 1 1 calc R . . C52 C -0.4200(5) 0.2500 -0.2731(3) 0.0519(8) Uani 1 2 d S . . H52A H -0.3576 0.3179 -0.2733 0.078 Uiso 0.50 1 calc PR . . H52B H -0.5200 0.2449 -0.3572 0.078 Uiso 0.50 1 calc PR . . H52C H -0.3442 0.1873 -0.2664 0.078 Uiso 0.50 1 calc PR . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11

144

_atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ga1 0.02019(13) 0.02801(15) 0.01968(13) 0.000 0.00387(9) 0.000 N1 0.0264(10) 0.0382(11) 0.0236(9) 0.000 0.0038(8) 0.000 C1 0.0302(12) 0.0400(14) 0.0286(12) 0.000 0.0061(10) 0.000 C2 0.0277(12) 0.0552(17) 0.0292(12) 0.000 0.0108(10) 0.000 C3 0.0357(9) 0.0349(9) 0.0337(9) -0.0063(7) 0.0052(7) 0.0051(7) C5 0.0261(11) 0.0391(13) 0.0256(11) 0.000 -0.0021(9) 0.000 C51 0.0409(11) 0.0617(15) 0.0590(14) 0.0049(12) 0.0006(10) -0.0185(11) C52 0.0587(19) 0.066(2) 0.0251(12) 0.000 0.0080(12) 0.000

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ga1 C3 2.0315(19) 4_565 ? Ga1 C3 2.0315(19) . ? Ga1 C2 2.036(3) . ? Ga1 C1 2.167(2) . ? N1 C1 1.143(3) . ? N1 C5 1.464(3) . ? C2 C22 1.489(5) 4_565 ? C2 C22 1.489(5) . ? C2 C21 1.533(4) . ? C2 C21 1.533(4) 4_565 ? C2 C23 1.588(5) . ? C2 C23 1.588(5) 4_565 ? C21 H21A 0.9800 . ? C21 H21B 0.9800 . ? C21 H21C 0.9800 . ? C22 H22A 0.9800 . ? C22 H22B 0.9800 . ? C22 H22C 0.9800 . ? C23 H23A 0.9800 . ? C23 H23B 0.9800 . ? C23 H23C 0.9800 . ? C3 C31A 1.509(6) . ? C3 C33B 1.521(5) . ?

145

C3 C32B 1.523(4) . ? C3 C33A 1.547(6) . ? C3 C31B 1.550(5) . ? C3 C32A 1.577(5) . ? C31A H31A 0.9800 . ? C31A H31B 0.9800 . ? C31A H31C 0.9800 . ? C32A H32A 0.9800 . ? C32A H32B 0.9800 . ? C32A H32C 0.9800 . ? C33A H33A 0.9800 . ? C33A H33B 0.9800 . ? C33A H33C 0.9800 . ? C31B H31D 0.9800 . ? C31B H31E 0.9800 . ? C31B H31F 0.9800 . ? C32B H32D 0.9800 . ? C32B H32E 0.9800 . ? C32B H32F 0.9800 . ? C33B H33D 0.9800 . ? C33B H33E 0.9800 . ? C33B H33F 0.9800 . ? C5 C51 1.516(3) . ? C5 C51 1.516(3) 4_565 ? C5 C52 1.520(4) . ? C51 H51A 0.9800 . ? C51 H51B 0.9800 . ? C51 H51C 0.9800 . ? C52 H52A 0.9800 . ? C52 H52B 0.9800 . ? C52 H52C 0.9800 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C3 Ga1 C3 117.51(12) 4_565 . ? C3 Ga1 C2 116.65(6) 4_565 . ? C3 Ga1 C2 116.65(6) . . ? C3 Ga1 C1 100.96(6) 4_565 . ? C3 Ga1 C1 100.96(6) . . ? C2 Ga1 C1 98.65(10) . . ? C1 N1 C5 178.4(3) . . ? N1 C1 Ga1 173.9(2) . . ? C22 C2 C22 79.2(4) 4_565 . ? C22 C2 C21 128.4(3) 4_565 . ? C22 C2 C21 109.9(3) . . ? C22 C2 C21 109.9(3) 4_565 4_565 ? C22 C2 C21 128.4(3) . 4_565 ?

146

C21 C2 C21 25.5(3) . 4_565 ? C22 C2 C23 29.4(2) 4_565 . ? C22 C2 C23 106.6(4) . . ? C21 C2 C23 107.6(3) . . ? C21 C2 C23 84.4(3) 4_565 . ? C22 C2 C23 106.6(4) 4_565 4_565 ? C22 C2 C23 29.4(2) . 4_565 ? C21 C2 C23 84.4(3) . 4_565 ? C21 C2 C23 107.6(3) 4_565 4_565 ? C23 C2 C23 130.3(4) . 4_565 ? C22 C2 Ga1 113.6(2) 4_565 . ? C22 C2 Ga1 113.6(2) . . ? C21 C2 Ga1 108.5(2) . . ? C21 C2 Ga1 108.5(2) 4_565 . ? C23 C2 Ga1 110.6(2) . . ? C23 C2 Ga1 110.6(2) 4_565 . ? C2 C21 H21A 109.5 . . ? C2 C21 H21B 109.5 . . ? H21A C21 H21B 109.5 . . ? C2 C21 H21C 109.5 . . ? H21A C21 H21C 109.5 . . ? H21B C21 H21C 109.5 . . ? C2 C22 H22A 109.5 . . ? C2 C22 H22B 109.5 . . ? H22A C22 H22B 109.5 . . ? C2 C22 H22C 109.5 . . ? H22A C22 H22C 109.5 . . ? H22B C22 H22C 109.5 . . ? C2 C23 H23A 109.5 . . ? C2 C23 H23B 109.5 . . ? H23A C23 H23B 109.5 . . ? C2 C23 H23C 109.5 . . ? H23A C23 H23C 109.5 . . ? H23B C23 H23C 109.5 . . ? C31A C3 C33B 86.1(3) . . ? C31A C3 C32B 124.9(3) . . ? C33B C3 C32B 108.5(3) . . ? C31A C3 C33A 106.3(3) . . ? C33B C3 C33A 23.4(3) . . ? C32B C3 C33A 87.2(3) . . ? C31A C3 C31B 22.6(2) . . ? C33B C3 C31B 107.6(3) . . ? C32B C3 C31B 109.7(3) . . ? C33A C3 C31B 125.5(3) . . ? C31A C3 C32A 107.3(3) . . ? C33B C3 C32A 126.7(3) . . ? C32B C3 C32A 23.4(2) . . ? C33A C3 C32A 108.1(3) . . ? C31B C3 C32A 88.5(3) . . ? C31A C3 Ga1 113.9(2) . . ? C33B C3 Ga1 111.6(2) . . ? C32B C3 Ga1 109.09(19) . . ? C33A C3 Ga1 111.9(3) . . ?

147

C31B C3 Ga1 110.3(2) . . ? C32A C3 Ga1 109.1(2) . . ? C3 C31A H31A 109.5 . . ? C3 C31A H31B 109.5 . . ? H31A C31A H31B 109.5 . . ? C3 C31A H31C 109.5 . . ? H31A C31A H31C 109.5 . . ? H31B C31A H31C 109.5 . . ? C3 C32A H32A 109.5 . . ? C3 C32A H32B 109.5 . . ? H32A C32A H32B 109.5 . . ? C3 C32A H32C 109.5 . . ? H32A C32A H32C 109.5 . . ? H32B C32A H32C 109.5 . . ? C3 C33A H33A 109.5 . . ? C3 C33A H33B 109.5 . . ? H33A C33A H33B 109.5 . . ? C3 C33A H33C 109.5 . . ? H33A C33A H33C 109.5 . . ? H33B C33A H33C 109.5 . . ? C3 C31B H31D 109.5 . . ? C3 C31B H31E 109.5 . . ? H31D C31B H31E 109.5 . . ? C3 C31B H31F 109.5 . . ? H31D C31B H31F 109.5 . . ? H31E C31B H31F 109.5 . . ? C3 C32B H32D 109.5 . . ? C3 C32B H32E 109.5 . . ? H32D C32B H32E 109.5 . . ? C3 C32B H32F 109.5 . . ? H32D C32B H32F 109.5 . . ? H32E C32B H32F 109.5 . . ? C3 C33B H33D 109.5 . . ? C3 C33B H33E 109.5 . . ? H33D C33B H33E 109.5 . . ? C3 C33B H33F 109.5 . . ? H33D C33B H33F 109.5 . . ? H33E C33B H33F 109.5 . . ? N1 C5 C51 107.09(15) . . ? N1 C5 C51 107.09(15) . 4_565 ? C51 C5 C51 112.3(3) . 4_565 ? N1 C5 C52 106.9(2) . . ? C51 C5 C52 111.52(17) . . ? C51 C5 C52 111.52(17) 4_565 . ? C5 C51 H51A 109.5 . . ? C5 C51 H51B 109.5 . . ? H51A C51 H51B 109.5 . . ? C5 C51 H51C 109.5 . . ? H51A C51 H51C 109.5 . . ? H51B C51 H51C 109.5 . . ? C5 C52 H52A 109.5 . . ? C5 C52 H52B 109.5 . . ? H52A C52 H52B 109.5 . . ?

148

C5 C52 H52C 109.5 . . ? H52A C52 H52C 109.5 . . ? H52B C52 H52C 109.5 . . ?

_diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.560 _refine_diff_density_min -0.586 _refine_diff_density_rms 0.060

149

t CIF File for Me3Ga·C≡N Bu

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C8 H18 Ga N' _chemical_formula_sum 'C8 H18 Ga N'

_chemical_formula_weight 197.95 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Ga' 'Ga' 0.2307 1.6083 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M Pnma loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' 'x+1/2, -y+1/2, -z+1/2' '-x, y+1/2, -z' '-x, -y, -z' 'x-1/2, y, -z-1/2' '-x-1/2, y-1/2, z-1/2' 'x, -y-1/2, z'

_cell_length_a 13.5497(4) _cell_length_b 9.6064(3) _cell_length_c 8.6082(2) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1120.48(5) _cell_formula_units_Z 4 _cell_measurement_temperature -133 _cell_measurement_reflns_used _cell_measurement_theta_min 4.60 _cell_measurement_theta_max 70.92

150

_exptl_crystal_description cube _exptl_crystal_colour colorless _exptl_crystal_size_max .25 _exptl_crystal_size_mid .25 _exptl_crystal_size_min .25 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.173 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 416 _exptl_absorpt_coefficient_mu 2.400 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.808 _exptl_absorpt_correction_T_max 1.000 _exptl_absorpt_process_details ?

_exptl_special_details ; ? ;

_diffrn_ambient_temperature -133 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker platform with 6k CCD' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 4952 _diffrn_reflns_av_R_equivalents 0.0145 _diffrn_reflns_av_sigmaI/netI 0.0198 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 21 _diffrn_reflns_limit_k_min -15 _diffrn_reflns_limit_k_max 8 _diffrn_reflns_limit_l_min -7 _diffrn_reflns_limit_l_max 13 _diffrn_reflns_theta_min 2.80 _diffrn_reflns_theta_max 35.46 _reflns_number_total 2353 _reflns_number_gt 1759 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630' _computing_cell_refinement 'Saintplus 5.45' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ?

151

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0728P)^2^+0.3159P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 2353 _refine_ls_number_parameters 89 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0508 _refine_ls_R_factor_gt 0.0366 _refine_ls_wR_factor_ref 0.1242 _refine_ls_wR_factor_gt 0.1133 _refine_ls_goodness_of_fit_ref 1.033 _refine_ls_restrained_S_all 1.033 _refine_ls_shift/su_max 0.009 _refine_ls_shift/su_mean 0.001 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ga1 Ga 0.255359(18) 0.7500 0.75643(3) 0.02796(11) Uani 1 2 d S . . N1 N 0.09850(15) 0.7500 0.4612(2) 0.0325(4) Uani 1 2 d S . . C1 C 0.03163(18) 0.7500 0.3267(2) 0.0331(5) Uani 1 2 d S . . C4 C 0.15171(19) 0.7500 0.5638(3) 0.0370(5) Uani 1 2 d S . . C5 C 0.3821(2) 0.7500 0.6407(4) 0.0417(6) Uani 1 2 d S . . C6 C 0.21654(16) 0.5740(2) 0.8609(2) 0.0421(4) Uani 1 1 d . . . H6C H 0.1440(18) 0.575(2) 0.900(3) 0.047(6) Uiso 1 1 d . . . H6B H 0.225(2) 0.488(4) 0.780(3) 0.057(8) Uiso 1 1 d . . .

152

H6A H 0.243(2) 0.582(5) 0.966(5) 0.114(14) Uiso 1 1 d . . . H5B H 0.3892(19) 0.831(3) 0.584(3) 0.064(8) Uiso 1 1 d . . . H5A H 0.438(4) 0.7500 0.710(5) 0.069(11) Uiso 1 2 d S . . C21 C -0.0683(8) 0.8022(14) 0.3743(12) 0.0336(16) Uiso 0.20 1 d P . 1 C22 C 0.0851(5) 0.8180(8) 0.1932(8) 0.0237(13) Uiso 0.20 1 d P . 1 C23 C 0.0317(6) 0.5863(8) 0.2668(9) 0.0203(11) Uiso 0.20 1 d P . 1 C31 C -0.0762(8) 0.7500 0.3876(11) 0.050(2) Uiso 0.40 2 d SP . 2 C32 C 0.0578(7) 0.8712(10) 0.2251(9) 0.0681(18) Uiso 0.40 1 d P . 2 C41 C 0.1135(18) 0.7500 0.178(3) 0.074(5) Uiso 0.20 2 d SP A 3 C42 C -0.0510(19) 0.859(3) 0.369(3) 0.051(5) Uiso 0.10 1 d P . 3 C43 C 0.0067(12) 0.5876(19) 0.310(2) 0.027(3) Uiso 0.10 1 d P . 3 loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ga1 0.02899(15) 0.03207(17) 0.02284(15) 0.000 -0.00168(8) 0.000 N1 0.0342(9) 0.0375(10) 0.0259(8) 0.000 -0.0016(7) 0.000 C1 0.0285(10) 0.0461(13) 0.0247(9) 0.000 -0.0040(7) 0.000 C4 0.0399(12) 0.0417(13) 0.0293(10) 0.000 -0.0015(9) 0.000 C5 0.0392(13) 0.0416(14) 0.0442(14) 0.000 0.0110(11) 0.000 C6 0.0427(10) 0.0430(10) 0.0406(9) 0.0081(8) -0.0006(8) -0.0069(9)

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ga1 C5 1.985(3) . ? Ga1 C6 1.986(2) . ? Ga1 C6 1.986(2) 8_575 ? Ga1 C4 2.173(2) . ? N1 C4 1.140(3) . ? N1 C1 1.470(3) . ? C1 C32 1.498(8) . ? C1 C32 1.498(8) 8_575 ? C1 C21 1.501(11) 8_575 ? C1 C21 1.501(11) . ? C1 C22 1.507(7) . ? C1 C22 1.507(7) 8_575 ? C1 C31 1.553(11) . ?

153

C1 C42 1.58(2) 8_575 ? C1 C42 1.58(2) . ? C1 C43 1.603(18) 8_575 ? C1 C43 1.603(18) . ? C5 H5B 0.92(3) . ? C5 H5A 0.96(5) . ? C6 H6C 1.04(2) . ? C6 H6B 1.09(3) . ? C6 H6A 0.98(4) . ? C21 C21 1.00(3) 8_575 ? C21 C23 1.959(14) 8_575 ? C22 C22 1.307(16) 8_575 ? C22 C23 1.330(11) 8_575 ? C23 C22 1.330(11) 8_575 ? C23 C21 1.959(14) 8_575 ? C42 C43 1.06(3) 8_575 ? C43 C42 1.06(3) 8_575 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C5 Ga1 C6 117.14(7) . . ? C5 Ga1 C6 117.15(7) . 8_575 ? C6 Ga1 C6 116.74(13) . 8_575 ? C5 Ga1 C4 100.14(11) . . ? C6 Ga1 C4 100.03(7) . . ? C6 Ga1 C4 100.03(7) 8_575 . ? C4 N1 C1 178.8(2) . . ? N1 C1 C32 108.3(3) . . ? N1 C1 C32 108.3(3) . 8_575 ? C32 C1 C32 102.0(8) . 8_575 ? N1 C1 C21 109.9(4) . 8_575 ? C32 C1 C21 129.3(6) . 8_575 ? C32 C1 C21 96.5(6) 8_575 8_575 ? N1 C1 C21 109.9(4) . . ? C32 C1 C21 96.5(6) . . ? C32 C1 C21 129.3(6) 8_575 . ? C21 C1 C21 39.1(10) 8_575 . ? N1 C1 C22 107.7(3) . . ? C32 C1 C22 26.4(4) . . ? C32 C1 C22 77.2(6) 8_575 . ? C21 C1 C22 141.9(5) 8_575 . ? C21 C1 C22 119.8(6) . . ? N1 C1 C22 107.7(3) . 8_575 ? C32 C1 C22 77.2(6) . 8_575 ? C32 C1 C22 26.4(4) 8_575 8_575 ? C21 C1 C22 119.8(6) 8_575 8_575 ? C21 C1 C22 141.9(5) . 8_575 ? C22 C1 C22 51.4(6) . 8_575 ? N1 C1 C31 108.3(4) . . ? C32 C1 C31 114.8(5) . . ?

154

C32 C1 C31 114.8(5) 8_575 . ? C21 C1 C31 19.7(5) 8_575 . ? C21 C1 C31 19.7(5) . . ? C22 C1 C31 135.2(4) . . ? C22 C1 C31 135.2(4) 8_575 . ? N1 C1 C42 104.9(9) . 8_575 ? C32 C1 C42 145.0(10) . 8_575 ? C32 C1 C42 77.6(10) 8_575 8_575 ? C21 C1 C42 22.2(9) 8_575 8_575 ? C21 C1 C42 61.3(14) . 8_575 ? C22 C1 C42 143.6(9) . 8_575 ? C22 C1 C42 103.1(10) 8_575 8_575 ? C31 C1 C42 41.8(10) . 8_575 ? N1 C1 C42 104.9(9) . . ? C32 C1 C42 77.6(10) . . ? C32 C1 C42 145.0(10) 8_575 . ? C21 C1 C42 61.3(14) 8_575 . ? C21 C1 C42 22.2(9) . . ? C22 C1 C42 103.1(10) . . ? C22 C1 C42 143.6(9) 8_575 . ? C31 C1 C42 41.8(10) . . ? C42 C1 C42 83(2) 8_575 . ? N1 C1 C43 101.6(6) . 8_575 ? C32 C1 C43 40.6(7) . 8_575 ? C32 C1 C43 138.9(9) 8_575 8_575 ? C21 C1 C43 99.2(9) 8_575 8_575 ? C21 C1 C43 60.6(8) . 8_575 ? C22 C1 C43 67.0(8) . 8_575 ? C22 C1 C43 117.0(8) 8_575 8_575 ? C31 C1 C43 80.4(7) . 8_575 ? C42 C1 C43 121.3(13) 8_575 8_575 ? C42 C1 C43 39.0(11) . 8_575 ? N1 C1 C43 101.6(6) . . ? C32 C1 C43 138.9(9) . . ? C32 C1 C43 40.6(7) 8_575 . ? C21 C1 C43 60.6(8) 8_575 . ? C21 C1 C43 99.2(9) . . ? C22 C1 C43 117.0(8) . . ? C22 C1 C43 67.0(8) 8_575 . ? C31 C1 C43 80.4(7) . . ? C42 C1 C43 39.0(11) 8_575 . ? C42 C1 C43 121.3(13) . . ? C43 C1 C43 153.5(11) 8_575 . ? N1 C4 Ga1 178.9(2) . . ? Ga1 C5 H5B 110.8(16) . . ? Ga1 C5 H5A 112(2) . . ? H5B C5 H5A 104(2) . . ? Ga1 C6 H6C 112.7(13) . . ? Ga1 C6 H6B 109.6(17) . . ? H6C C6 H6B 108(2) . . ? Ga1 C6 H6A 105(3) . . ? H6C C6 H6A 93(2) . . ? H6B C6 H6A 128(3) . . ? C21 C21 C1 70.5(5) 8_575 . ? C21 C21 C23 123.1(4) 8_575 8_575 ? C1 C21 C23 55.2(4) . 8_575 ?

155

C22 C22 C23 133.7(5) 8_575 8_575 ? C22 C22 C1 64.3(3) 8_575 . ? C23 C22 C1 71.0(5) 8_575 . ? C22 C23 C1 59.5(4) 8_575 . ? C22 C23 C21 102.9(6) 8_575 8_575 ? C1 C23 C21 48.2(4) . 8_575 ? C43 C42 C1 71.8(16) 8_575 . ? C42 C43 C1 69.1(17) 8_575 . ?

_diffrn_measured_fraction_theta_max 0.882 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 0.966 _refine_diff_density_max 0.533 _refine_diff_density_min -0.552 _refine_diff_density_rms 0.101

156

CIF File for Me3Al·C≡N(2,6-Me2C6H3)

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C12 H18 Al N' _chemical_formula_sum 'C12 H18 Al N'

_chemical_formula_weight 203.25 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Al' 'Al' 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting 'triclinic' _symmetry_space_group_name_H-M ' P-1' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z'

_cell_length_a 7.3776(4) _cell_length_b 10.6143(6) _cell_length_c 17.2858(10) _cell_angle_alpha 92.011(2) _cell_angle_beta 94.854(2) _cell_angle_gamma 91.323(2) _cell_volume 1347.47(13) _cell_formula_units_Z 4 _cell_measurement_temperature -133 _cell_measurement_reflns_used 5254 _cell_measurement_theta_min 1.18 _cell_measurement_theta_max 28.15

_exptl_crystal_description 'jagged square' _exptl_crystal_colour 'colorless' _exptl_crystal_size_max .25 _exptl_crystal_size_mid .25 _exptl_crystal_size_min .25 _exptl_crystal_density_meas ?

157

_exptl_crystal_density_diffrn 1.002 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 440 _exptl_absorpt_coefficient_mu 0.118 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.793 _exptl_absorpt_correction_T_max 1.000 _exptl_absorpt_process_details 'sadabs (Sheldrick, 1997)'

_exptl_special_details ; ? ;

_diffrn_ambient_temperature -133 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker platform with 6k CCD' _diffrn_measurement_method '10 scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 16421 _diffrn_reflns_av_R_equivalents 0.0437 _diffrn_reflns_av_sigmaI/netI 0.0395 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min -13 _diffrn_reflns_limit_k_max 13 _diffrn_reflns_limit_l_min -21 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 1.18 _diffrn_reflns_theta_max 26.00 _reflns_number_total 5254 _reflns_number_gt 4712 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630' _computing_cell_refinement 'Saintplus 5.45' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based

158

on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0950P)^2^+0.4048P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 5254 _refine_ls_number_parameters 337 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0627 _refine_ls_R_factor_gt 0.0574 _refine_ls_wR_factor_ref 0.1624 _refine_ls_wR_factor_gt 0.1576 _refine_ls_goodness_of_fit_ref 1.113 _refine_ls_restrained_S_all 1.113 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Al1 Al 0.29672(8) 0.90140(5) 0.35899(3) 0.03594(18) Uani 1 1 d . . . Al2 Al 0.27221(7) 1.45138(5) 1.12509(3) 0.02826(17) Uani 1 1 d . . . N1A N 0.2533(2) 1.21107(14) 1.00127(9) 0.0312(3) Uani 1 1 d . . . C10 C 0.2051(2) 0.56223(17) 0.59031(10) 0.0287(4) Uani 1 1 d . . . N1 N 0.26422(19) 0.66484(15) 0.47289(9) 0.0314(3) Uani 1 1 d . . . C5A C 0.2466(2) 1.10589(17) 0.94953(10) 0.0290(4) Uani 1 1 d . . . C1 C 0.2823(2) 0.75410(19) 0.43811(11) 0.0350(4) Uani 1 1 d . . . C6 C 0.2630(2) 0.43873(18) 0.47164(11) 0.0323(4) Uani 1 1 d . . . C7A C 0.2322(3) 1.0206(2) 0.82072(12) 0.0469(5) Uani 1 1 d . . . C1A C 0.2592(3) 1.29556(17) 1.04493(11) 0.0342(4) Uani 1 1 d . . . C12 C 0.1873(3) 0.6877(2) 0.63101(13) 0.0391(4) Uani 1 1 d . . . C5 C 0.2432(2) 0.55280(17) 0.51243(10) 0.0279(4) Uani 1 1 d . . . C9 C 0.1865(2) 0.45030(19) 0.62788(11) 0.0342(4) Uani 1 1 d . . . C6A C 0.2385(3) 1.12792(19) 0.87010(11) 0.0357(4) Uani 1 1 d . . . C10A C 0.2487(3) 0.98682(18) 0.98104(11) 0.0343(4) Uani 1 1 d . . .

159

C8 C 0.2059(3) 0.33502(19) 0.58938(13) 0.0391(4) Uani 1 1 d . . . C3A C 0.4996(3) 1.4210(2) 1.18864(13) 0.0457(5) Uani 1 1 d . . . H3X H 0.5213 1.4883 1.2288 0.069 Uiso 1 1 calc R . . H3Y H 0.6010 1.4198 1.1555 0.069 Uiso 1 1 calc R . . H3Z H 0.4898 1.3396 1.2133 0.069 Uiso 1 1 calc R . . C2A C 0.2697(4) 1.5917(2) 1.05326(13) 0.0491(5) Uani 1 1 d . . . H2X H 0.2750 1.6721 1.0831 0.074 Uiso 1 1 calc R . . H2Y H 0.1577 1.5861 1.0184 0.074 Uiso 1 1 calc R . . H2Z H 0.3752 1.5866 1.0225 0.074 Uiso 1 1 calc R . . C12A C 0.2574(4) 0.9719(2) 1.06779(13) 0.0443(5) Uani 1 1 d . . . C4A C 0.0485(3) 1.4227(2) 1.17718(13) 0.0458(5) Uani 1 1 d . . . H4X H 0.0358 1.4913 1.2157 0.069 Uiso 1 1 calc R . . H4Y H 0.0551 1.3422 1.2032 0.069 Uiso 1 1 calc R . . HZ H -0.0569 1.4204 1.1386 0.069 Uiso 1 1 calc R . . C7 C 0.2435(3) 0.32950(19) 0.51240(13) 0.0387(4) Uani 1 1 d . . . C8A C 0.2344(4) 0.9016(2) 0.84960(14) 0.0513(6) Uani 1 1 d . . . C9A C 0.2422(3) 0.8844(2) 0.92862(14) 0.0458(5) Uani 1 1 d . . . C11 C 0.3029(3) 0.4352(3) 0.38755(12) 0.0446(5) Uani 1 1 d . . . C11A C 0.2353(4) 1.2593(2) 0.84089(15) 0.0521(6) Uani 1 1 d . . . H11A H 0.410(4) 0.489(3) 0.3813(15) 0.054(7) Uiso 1 1 d . . . H9 H 0.164(3) 0.453(2) 0.6826(14) 0.041(6) Uiso 1 1 d . . . H11B H 0.318(4) 0.348(3) 0.3689(18) 0.070(8) Uiso 1 1 d . . . H8 H 0.191(3) 0.261(3) 0.6157(15) 0.049(6) Uiso 1 1 d . . . H7 H 0.256(3) 0.248(3) 0.4904(16) 0.058(7) Uiso 1 1 d . . . H9X H 0.244(4) 0.804(3) 0.9446(17) 0.073(9) Uiso 1 1 d . . . H12A H 0.289(4) 0.734(3) 0.6342(17) 0.065(8) Uiso 1 1 d . . . H12B H 0.101(5) 0.735(3) 0.604(2) 0.081(10) Uiso 1 1 d . . . H11C H 0.201(4) 0.467(3) 0.3567(17) 0.063(8) Uiso 1 1 d . . . H12Z H 0.364(4) 1.006(3) 1.0918(16) 0.058(7) Uiso 1 1 d . . . H12X H 0.149(4) 1.015(3) 1.0887(17) 0.066(8) Uiso 1 1 d . . . H12Y H 0.237(5) 0.897(4) 1.079(2) 0.089(11) Uiso 1 1 d . . . H11X H 0.338(5) 1.306(3) 0.8596(19) 0.080(10) Uiso 1 1 d . . . H12C H 0.149(4) 0.678(3) 0.684(2) 0.082(10) Uiso 1 1 d . . . H8X H 0.232(3) 0.828(3) 0.8164(16) 0.061(8) Uiso 1 1 d . . . H11Z H 0.129(4) 1.301(3) 0.8605(19) 0.078(9) Uiso 1 1 d . . . C2 C 0.5281(3) 0.9936(3) 0.38761(18) 0.0622(7) Uani 1 1 d . . . H2A H 0.5408 1.0631 0.3525 0.093 Uiso 1 1 calc R . . H2B H 0.6293 0.9362 0.3835 0.093 Uiso 1 1 calc R . . H2C H 0.5296 1.0274 0.4411 0.093 Uiso 1 1 calc R . . C3 C 0.0820(3) 1.0002(3) 0.37837(19) 0.0627(7) Uani 1 1 d . . . H3A H 0.0756 1.0720 0.3442 0.094 Uiso 1 1 calc R . . H3B H 0.0915 1.0309 0.4327 0.094 Uiso 1 1 calc R . . H3C H -0.0280 0.9468 0.3678 0.094 Uiso 1 1 calc R . . H11Y H 0.221(4) 1.255(3) 0.785(2) 0.088(10) Uiso 1 1 d . . . C4 C 0.2851(8) 0.7931(3) 0.26441(18) 0.0855(12) Uani 1 1 d . . . H7X H 0.226(3) 1.034(2) 0.7662(16) 0.050(7) Uiso 1 1 d . . . H4A H 0.173(5) 0.735(4) 0.257(2) 0.094(12) Uiso 1 1 d . . . H4B H 0.370(5) 0.727(4) 0.265(2) 0.101(13) Uiso 1 1 d . . . H4C H 0.290(8) 0.828(6) 0.222(4) 0.18(2) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23

160

_atom_site_aniso_U_13 _atom_site_aniso_U_12 Al1 0.0445(3) 0.0311(3) 0.0328(3) 0.0069(2) 0.0048(2) -0.0004(2) Al2 0.0329(3) 0.0255(3) 0.0265(3) -0.0018(2) 0.0042(2) 0.0018(2) N1A 0.0337(8) 0.0275(8) 0.0326(8) 0.0006(7) 0.0039(6) 0.0011(6) C10 0.0230(8) 0.0331(9) 0.0297(9) 0.0031(7) -0.0003(6) -0.0001(6) N1 0.0250(7) 0.0394(9) 0.0299(8) 0.0075(7) -0.0001(6) -0.0010(6) C5A 0.0319(8) 0.0268(9) 0.0280(9) -0.0037(7) 0.0027(7) 0.0017(7) C1 0.0323(9) 0.0407(11) 0.0321(9) 0.0061(8) 0.0019(7) -0.0013(8) C6 0.0218(8) 0.0417(10) 0.0330(9) -0.0009(8) 0.0009(7) 0.0024(7) C7A 0.0574(13) 0.0538(13) 0.0283(10) -0.0062(9) -0.0001(9) 0.0004(10) C1A 0.0411(10) 0.0275(9) 0.0342(9) 0.0002(8) 0.0051(8) 0.0009(7) C12 0.0435(11) 0.0364(11) 0.0375(11) 0.0007(8) 0.0039(9) 0.0009(9) C5 0.0206(7) 0.0323(9) 0.0307(9) 0.0076(7) -0.0002(6) -0.0012(6) C9 0.0288(9) 0.0407(11) 0.0337(10) 0.0085(8) 0.0039(7) 0.0001(7) C6A 0.0369(9) 0.0395(10) 0.0303(9) 0.0010(8) 0.0006(7) 0.0013(8) C10A 0.0407(10) 0.0293(9) 0.0329(9) 0.0015(7) 0.0024(7) 0.0034(7) C8 0.0351(10) 0.0321(10) 0.0505(12) 0.0124(9) 0.0020(8) 0.0003(8) C3A 0.0374(10) 0.0552(13) 0.0441(11) 0.0011(10) -0.0005(8) 0.0047(9) C2A 0.0711(15) 0.0328(11) 0.0432(12) 0.0047(9) 0.0034(10) -0.0001(10) C12A 0.0608(14) 0.0373(12) 0.0355(11) 0.0087(9) 0.0054(10) 0.0007(10) C4A 0.0387(10) 0.0596(14) 0.0397(11) -0.0029(10) 0.0089(8) 0.0004(9) C7 0.0335(10) 0.0322(10) 0.0497(12) -0.0029(9) 0.0008(8) 0.0040(7) C8A 0.0690(15) 0.0397(12) 0.0435(12) -0.0173(10) 0.0025(10) -0.0009(10) C9A 0.0638(14) 0.0255(10) 0.0480(12) -0.0037(9) 0.0045(10) 0.0025(9) C11 0.0360(11) 0.0620(15) 0.0356(11) -0.0061(10) 0.0046(8) 0.0053(10) C11A 0.0682(16) 0.0474(13) 0.0410(12) 0.0139(10) 0.0011(11) 0.0015(12) C2 0.0508(13) 0.0538(15) 0.0836(19) 0.0084(13) 0.0164(13) -0.0115(11) C3 0.0494(13) 0.0511(14) 0.088(2) 0.0109(13) 0.0035(13) 0.0082(11) C4 0.164(4) 0.0534(17) 0.0394(15) -0.0036(13) 0.0130(18) -0.005(2)

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Al1 C4 1.960(3) . ? Al1 C3 1.965(3) . ? Al1 C2 1.965(3) . ? Al1 C1 2.120(2) . ? Al2 C3A 1.965(2) . ? Al2 C4A 1.969(2) . ? Al2 C2A 1.972(2) . ? Al2 C1A 2.1153(19) . ? N1A C1A 1.149(2) . ?

161

N1A C5A 1.403(2) . ? C10 C9 1.383(3) . ? C10 C5 1.399(2) . ? C10 C12 1.498(3) . ? N1 C1 1.151(3) . ? N1 C5 1.404(2) . ? C5A C10A 1.394(3) . ? C5A C6A 1.397(3) . ? C6 C7 1.388(3) . ? C6 C5 1.396(3) . ? C6 C11 1.507(3) . ? C7A C8A 1.374(4) . ? C7A C6A 1.397(3) . ? C7A H7X 0.95(3) . ? C12 H12A 0.88(3) . ? C12 H12B 0.92(4) . ? C12 H12C 0.99(3) . ? C9 C8 1.388(3) . ? C9 H9 0.97(2) . ? C6A C11A 1.500(3) . ? C10A C9A 1.388(3) . ? C10A C12A 1.510(3) . ? C8 C7 1.382(3) . ? C8 H8 0.93(3) . ? C3A H3X 0.9800 . ? C3A H3Y 0.9800 . ? C3A H3Z 0.9800 . ? C2A H2X 0.9800 . ? C2A H2Y 0.9800 . ? C2A H2Z 0.9800 . ? C12A H12Z 0.92(3) . ? C12A H12X 1.02(3) . ? C12A H12Y 0.84(4) . ? C4A H4X 0.9800 . ? C4A H4Y 0.9800 . ? C4A HZ 0.9800 . ? C7 H7 0.95(3) . ? C8A C9A 1.381(3) . ? C8A H8X 0.95(3) . ? C9A H9X 0.90(3) . ? C11 H11A 0.98(3) . ? C11 H11B 0.98(3) . ? C11 H11C 0.96(3) . ? C11A H11X 0.93(3) . ? C11A H11Z 0.99(3) . ? C11A H11Y 0.96(4) . ? C2 H2A 0.9800 . ? C2 H2B 0.9800 . ? C2 H2C 0.9800 . ? C3 H3A 0.9800 . ? C3 H3B 0.9800 . ? C3 H3C 0.9800 . ? C4 H4A 1.01(4) . ? C4 H4B 0.95(4) . ? C4 H4C 0.83(6) . ?

162 loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C4 Al1 C3 117.87(19) . . ? C4 Al1 C2 116.47(18) . . ? C3 Al1 C2 113.34(12) . . ? C4 Al1 C1 96.56(12) . . ? C3 Al1 C1 102.65(10) . . ? C2 Al1 C1 106.51(10) . . ? C3A Al2 C4A 115.00(10) . . ? C3A Al2 C2A 118.12(11) . . ? C4A Al2 C2A 116.24(11) . . ? C3A Al2 C1A 101.55(9) . . ? C4A Al2 C1A 101.06(9) . . ? C2A Al2 C1A 100.37(9) . . ? C1A N1A C5A 178.56(19) . . ? C9 C10 C5 116.76(17) . . ? C9 C10 C12 121.82(17) . . ? C5 C10 C12 121.42(17) . . ? C1 N1 C5 177.54(18) . . ? C10A C5A C6A 124.64(17) . . ? C10A C5A N1A 117.64(16) . . ? C6A C5A N1A 117.72(17) . . ? N1 C1 Al1 171.06(16) . . ? C7 C6 C5 116.66(17) . . ? C7 C6 C11 122.01(18) . . ? C5 C6 C11 121.33(19) . . ? C8A C7A C6A 121.3(2) . . ? C8A C7A H7X 121.6(15) . . ? C6A C7A H7X 117.2(15) . . ? N1A C1A Al2 179.57(17) . . ? C10 C12 H12A 112.8(19) . . ? C10 C12 H12B 111(2) . . ? H12A C12 H12B 106(3) . . ? C10 C12 H12C 111(2) . . ? H12A C12 H12C 109(3) . . ? H12B C12 H12C 107(3) . . ? C6 C5 C10 124.03(17) . . ? C6 C5 N1 117.88(16) . . ? C10 C5 N1 118.09(16) . . ? C10 C9 C8 120.91(18) . . ? C10 C9 H9 119.1(14) . . ? C8 C9 H9 120.0(14) . . ? C7A C6A C5A 115.80(19) . . ? C7A C6A C11A 122.9(2) . . ? C5A C6A C11A 121.30(19) . . ? C9A C10A C5A 116.48(18) . . ? C9A C10A C12A 122.46(19) . . ? C5A C10A C12A 121.05(17) . . ? C7 C8 C9 120.67(19) . . ? C7 C8 H8 120.3(16) . . ?

163

C9 C8 H8 119.1(16) . . ? Al2 C3A H3X 109.5 . . ? Al2 C3A H3Y 109.5 . . ? H3X C3A H3Y 109.5 . . ? Al2 C3A H3Z 109.5 . . ? H3X C3A H3Z 109.5 . . ? H3Y C3A H3Z 109.5 . . ? Al2 C2A H2X 109.5 . . ? Al2 C2A H2Y 109.5 . . ? H2X C2A H2Y 109.5 . . ? Al2 C2A H2Z 109.5 . . ? H2X C2A H2Z 109.5 . . ? H2Y C2A H2Z 109.5 . . ? C10A C12A H12Z 111.0(17) . . ? C10A C12A H12X 108.7(17) . . ? H12Z C12A H12X 110(2) . . ? C10A C12A H12Y 112(2) . . ? H12Z C12A H12Y 113(3) . . ? H12X C12A H12Y 101(3) . . ? Al2 C4A H4X 109.5 . . ? Al2 C4A H4Y 109.5 . . ? H4X C4A H4Y 109.5 . . ? Al2 C4A HZ 109.5 . . ? H4X C4A HZ 109.5 . . ? H4Y C4A HZ 109.5 . . ? C8 C7 C6 120.98(18) . . ? C8 C7 H7 115.6(17) . . ? C6 C7 H7 123.4(17) . . ? C7A C8A C9A 120.93(19) . . ? C7A C8A H8X 121.8(17) . . ? C9A C8A H8X 117.2(17) . . ? C8A C9A C10A 120.9(2) . . ? C8A C9A H9X 117(2) . . ? C10A C9A H9X 122(2) . . ? C6 C11 H11A 109.6(15) . . ? C6 C11 H11B 110.4(18) . . ? H11A C11 H11B 112(2) . . ? C6 C11 H11C 109.2(16) . . ? H11A C11 H11C 109(2) . . ? H11B C11 H11C 107(2) . . ? C6A C11A H11X 112(2) . . ? C6A C11A H11Z 107.6(19) . . ? H11X C11A H11Z 107(3) . . ? C6A C11A H11Y 109(2) . . ? H11X C11A H11Y 112(3) . . ? H11Z C11A H11Y 109(3) . . ? Al1 C2 H2A 109.5 . . ? Al1 C2 H2B 109.5 . . ? H2A C2 H2B 109.5 . . ? Al1 C2 H2C 109.5 . . ? H2A C2 H2C 109.5 . . ? H2B C2 H2C 109.5 . . ? Al1 C3 H3A 109.5 . . ? Al1 C3 H3B 109.5 . . ? H3A C3 H3B 109.5 . . ? Al1 C3 H3C 109.5 . . ?

164

H3A C3 H3C 109.5 . . ? H3B C3 H3C 109.5 . . ? Al1 C4 H4A 114(2) . . ? Al1 C4 H4B 115(2) . . ? H4A C4 H4B 95(3) . . ? Al1 C4 H4C 118(4) . . ? H4A C4 H4C 105(4) . . ? H4B C4 H4C 107(5) . . ?

_diffrn_measured_fraction_theta_max 0.995 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 0.995 _refine_diff_density_max 0.707 _refine_diff_density_min -0.200 _refine_diff_density_rms 0.077

165

CIF File for Me3Ga·C≡N(2,6-Me2C6H3) data_sad

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C12 H18 Ga N' _chemical_formula_sum 'C12 H18 Ga N'

_chemical_formula_weight 245.99 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Ga' 'Ga' 0.2307 1.6083 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting 'triclinic' _symmetry_space_group_name_H-M 'P -1' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z'

_cell_length_a 7.3706(2) _cell_length_b 10.6485(3) _cell_length_c 17.2629(4) _cell_angle_alpha 92.170(1) _cell_angle_beta 95.034(1) _cell_angle_gamma 91.303(1) _cell_volume 1348.24(6) _cell_formula_units_Z 4 _cell_measurement_temperature –133 _cell_measurement_reflns_used 7642 _cell_measurement_theta_min 2.2 _cell_measurement_theta_max 28.28

_exptl_crystal_description 'cube' _exptl_crystal_colour 'colorless' _exptl_crystal_size_max .20 _exptl_crystal_size_mid .20

166

_exptl_crystal_size_min .20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.212 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 512 _exptl_absorpt_coefficient_mu 2.008 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.773 _exptl_absorpt_correction_T_max 1.000 _exptl_absorpt_process_details 'sadabs (Sheldrick, 1997)'

_exptl_special_details ; ? ;

_diffrn_ambient_temperature 140(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker platform with 6k CCD' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 18897 _diffrn_reflns_av_R_equivalents 0.0233 _diffrn_reflns_av_sigmaI/netI 0.0241 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_k_max 14 _diffrn_reflns_limit_l_min -23 _diffrn_reflns_limit_l_max 23 _diffrn_reflns_theta_min 1.19 _diffrn_reflns_theta_max 28.28 _reflns_number_total 6685 _reflns_number_gt 6198 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630' _computing_cell_refinement 'Saintplus 5.45' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of

167

F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0270P)^2^+0.3433P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 6685 _refine_ls_number_parameters 337 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0277 _refine_ls_R_factor_gt 0.0252 _refine_ls_wR_factor_ref 0.0657 _refine_ls_wR_factor_gt 0.0645 _refine_ls_goodness_of_fit_ref 1.106 _refine_ls_restrained_S_all 1.106 _refine_ls_shift/su_max 0.004 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ga1 Ga 0.29876(2) 0.903565(15) 0.357615(9) 0.03526(5) Uani 1 1 d . . . Ga1A Ga 0.27281(2) 1.455668(14) 1.125988(8) 0.02782(5) Uani 1 1 d . . . N1 N 0.26577(15) 0.66463(12) 0.47332(7) 0.0312(2) Uani 1 1 d . . . N1A N 0.25384(16) 1.21072(11) 1.00077(7) 0.0306(2) Uani 1 1 d . . . C1 C 0.2852(2) 0.75422(16) 0.43960(9) 0.0361(3) Uani 1 1 d . . . C1A C 0.2604(2) 1.29528(14) 1.04401(9) 0.0362(3) Uani 1 1 d . . . C2 C 0.5339(3) 0.9931(2) 0.38803(14) 0.0615(5) Uani 1 1 d . . . H2A H 0.5488 1.0629 0.3535 0.092 Uiso 1 1 calc R . . H2B H 0.6338 0.9348 0.3837 0.092 Uiso 1 1 calc R . . H2C H 0.5356 1.0260 0.4419 0.092 Uiso 1 1 calc R . . C2A C 0.2697(3) 1.59378(16) 1.05229(10) 0.0494(4) Uani 1 1 d . . . H2X H 0.2750 1.6748 1.0814 0.074 Uiso 1 1 calc R . . H2Y H 0.1574 1.5872 1.0173 0.074 Uiso 1 1 calc R . .

168

H2Z H 0.3752 1.5878 1.0217 0.074 Uiso 1 1 calc R . . C3 C 0.0830(3) 1.0009(2) 0.37930(15) 0.0625(5) Uani 1 1 d . . . H3A H 0.0743 1.0731 0.3457 0.094 Uiso 1 1 calc R . . H3B H 0.0945 1.0307 0.4340 0.094 Uiso 1 1 calc R . . H3C H -0.0269 0.9472 0.3690 0.094 Uiso 1 1 calc R . . C3A C 0.5024(2) 1.42309(19) 1.18900(10) 0.0462(4) Uani 1 1 d . . . H3X H 0.5262 1.4898 1.2296 0.069 Uiso 1 1 calc R . . H3Y H 0.6030 1.4215 1.1554 0.069 Uiso 1 1 calc R . . H3Z H 0.4920 1.3418 1.2133 0.069 Uiso 1 1 calc R . . C4 C 0.2838(6) 0.7920(3) 0.26303(14) 0.0841(10) Uani 1 1 d . . . C4A C 0.0464(2) 1.42457(19) 1.17679(10) 0.0466(4) Uani 1 1 d . . . H4X H 0.0316 1.4924 1.2155 0.070 Uiso 1 1 calc R . . H4Y H 0.0536 1.3441 1.2025 0.070 Uiso 1 1 calc R . . H4Z H -0.0582 1.4218 1.1375 0.070 Uiso 1 1 calc R . . C5 C 0.24328(17) 0.55262(13) 0.51218(8) 0.0269(3) Uani 1 1 d . . . C5A C 0.24708(19) 1.10562(13) 0.94911(8) 0.0282(3) Uani 1 1 d . . . C6 C 0.26323(18) 0.43930(15) 0.47123(8) 0.0321(3) Uani 1 1 d . . . C6A C 0.2388(2) 1.12636(15) 0.86942(8) 0.0353(3) Uani 1 1 d . . . C7 C 0.2427(2) 0.32989(15) 0.51168(10) 0.0390(3) Uani 1 1 d . . . C7A C 0.2325(3) 1.01999(19) 0.82019(9) 0.0468(4) Uani 1 1 d . . . C8 C 0.2040(2) 0.33522(15) 0.58887(10) 0.0387(3) Uani 1 1 d . . . C8A C 0.2349(3) 0.90086(18) 0.84929(11) 0.0525(5) Uani 1 1 d . . . C9 C 0.18445(19) 0.44933(15) 0.62750(9) 0.0330(3) Uani 1 1 d . . . C9A C 0.2424(3) 0.88429(16) 0.92861(11) 0.0474(4) Uani 1 1 d . . . C10 C 0.20414(17) 0.56215(13) 0.59017(8) 0.0279(3) Uani 1 1 d . . . C10A C 0.2489(2) 0.98695(14) 0.98073(8) 0.0346(3) Uani 1 1 d . . . C11 C 0.3037(2) 0.4360(2) 0.38736(10) 0.0450(4) Uani 1 1 d . . . C11A C 0.2361(3) 1.2574(2) 0.84023(12) 0.0524(5) Uani 1 1 d . . . C12 C 0.1868(2) 0.68632(16) 0.63142(10) 0.0380(3) Uani 1 1 d . . . C12A C 0.2580(3) 0.97274(18) 1.06751(10) 0.0449(4) Uani 1 1 d . . . H4A H 0.172(4) 0.738(3) 0.2609(18) 0.104(11) Uiso 1 1 d . . . H4B H 0.386(5) 0.734(3) 0.2661(18) 0.108(12) Uiso 1 1 d . . . H4C H 0.294(5) 0.836(4) 0.220(2) 0.140(14) Uiso 1 1 d . . . H7 H 0.256(3) 0.254(2) 0.4868(12) 0.053(6) Uiso 1 1 d . . . H7X H 0.227(3) 1.033(2) 0.7672(13) 0.058(6) Uiso 1 1 d . . . H8 H 0.188(3) 0.2604(19) 0.6153(11) 0.046(5) Uiso 1 1 d . . . H8X H 0.234(3) 0.830(2) 0.8150(14) 0.065(7) Uiso 1 1 d . . . H9 H 0.156(3) 0.4553(18) 0.6806(11) 0.040(5) Uiso 1 1 d . . . H9X H 0.244(3) 0.802(2) 0.9480(13) 0.062(6) Uiso 1 1 d . . . H11A H 0.407(3) 0.486(2) 0.3801(12) 0.053(6) Uiso 1 1 d . . . H11B H 0.320(3) 0.352(3) 0.3690(14) 0.070(7) Uiso 1 1 d . . . H11C H 0.215(3) 0.469(2) 0.3557(13) 0.054(6) Uiso 1 1 d . . . H11X H 0.345(4) 1.301(3) 0.8576(15) 0.080(8) Uiso 1 1 d . . . H11Y H 0.230(3) 1.255(2) 0.7872(15) 0.072(7) Uiso 1 1 d . . . H11Z H 0.139(4) 1.304(2) 0.8582(14) 0.069(7) Uiso 1 1 d . . . H12A H 0.300(3) 0.734(2) 0.6337(13) 0.063(6) Uiso 1 1 d . . . H12B H 0.106(3) 0.737(2) 0.6050(14) 0.069(7) Uiso 1 1 d . . . H12C H 0.146(3) 0.679(2) 0.6824(15) 0.077(8) Uiso 1 1 d . . . H12X H 0.159(3) 1.017(2) 1.0895(13) 0.061(6) Uiso 1 1 d . . . H12Y H 0.255(3) 0.891(3) 1.0813(14) 0.073(7) Uiso 1 1 d . . . H12Z H 0.368(3) 1.012(2) 1.0918(13) 0.062(6) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22

169

_atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ga1 0.04183(10) 0.03197(9) 0.03240(9) 0.00622(6) 0.00429(7) -0.00150(7) Ga1A 0.03010(8) 0.02695(8) 0.02643(8) -0.00146(6) 0.00363(6) 0.00084(6) N1 0.0227(5) 0.0406(7) 0.0301(6) 0.0085(5) 0.0002(4) -0.0034(5) N1A 0.0338(6) 0.0266(6) 0.0314(6) -0.0012(5) 0.0037(5) 0.0001(5) C1 0.0296(7) 0.0445(8) 0.0341(7) 0.0073(6) 0.0009(6) -0.0035(6) C1A 0.0423(8) 0.0306(7) 0.0360(7) -0.0006(6) 0.0060(6) 0.0004(6) C2 0.0466(10) 0.0573(12) 0.0822(15) 0.0094(10) 0.0161(10) -0.0136(9) C2A 0.0702(12) 0.0342(8) 0.0433(9) 0.0068(7) 0.0008(8) -0.0005(8) C3 0.0466(10) 0.0504(11) 0.0902(16) 0.0062(10) 0.0019(10) 0.0078(9) C3A 0.0322(8) 0.0588(11) 0.0469(9) 0.0039(8) -0.0007(7) 0.0027(7) C4 0.156(3) 0.0575(14) 0.0380(11) -0.0041(9) 0.0103(14) -0.0046(18) C4A 0.0343(8) 0.0658(11) 0.0404(8) -0.0024(8) 0.0094(6) 0.0003(8) C5 0.0184(5) 0.0331(7) 0.0291(6) 0.0072(5) -0.0003(5) -0.0021(5) C5A 0.0305(6) 0.0261(6) 0.0275(6) -0.0028(5) 0.0016(5) 0.0002(5) C6 0.0202(6) 0.0426(8) 0.0329(7) -0.0008(6) 0.0003(5) 0.0012(5) C6A 0.0373(7) 0.0393(8) 0.0287(7) 0.0028(6) 0.0001(6) 0.0001(6) C7 0.0317(7) 0.0339(8) 0.0504(9) -0.0036(7) -0.0013(6) 0.0039(6) C7A 0.0567(10) 0.0552(10) 0.0271(7) -0.0058(7) 0.0006(7) -0.0020(8) C8 0.0342(7) 0.0330(7) 0.0490(9) 0.0113(7) 0.0008(6) -0.0011(6) C8A 0.0687(12) 0.0423(9) 0.0444(9) -0.0193(8) 0.0035(8) -0.0011(8) C9 0.0279(7) 0.0399(8) 0.0317(7) 0.0096(6) 0.0026(5) -0.0007(6) C9A 0.0663(12) 0.0270(7) 0.0485(9) -0.0020(7) 0.0042(8) 0.0010(7) C10 0.0208(6) 0.0339(7) 0.0288(6) 0.0041(5) 0.0005(5) -0.0007(5) C10A 0.0409(8) 0.0301(7) 0.0326(7) 0.0009(5) 0.0025(6) 0.0012(6) C11 0.0329(8) 0.0678(12) 0.0341(8) -0.0059(8) 0.0041(6) 0.0046(8) C11A 0.0662(13) 0.0496(11) 0.0421(10) 0.0181(8) 0.0021(9) 0.0012(10) C12 0.0411(8) 0.0371(8) 0.0357(8) -0.0008(6) 0.0034(6) -0.0006(7) C12A 0.0622(11) 0.0380(9) 0.0353(8) 0.0091(7) 0.0053(8) 0.0030(8)

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ga1 C3 1.973(2) . ? Ga1 C4 1.976(2) . ? Ga1 C2 1.979(2) . ? Ga1 C1 2.1749(15) . ? Ga1A C3A 1.9746(16) . ? Ga1A C4A 1.9795(16) . ? Ga1A C2A 1.9799(17) . ?

170

Ga1A C1A 2.1715(15) . ? N1 C1 1.149(2) . ? N1 C5 1.4040(17) . ? N1A C1A 1.1450(19) . ? N1A C5A 1.4015(17) . ? C2 H2A 0.9800 . ? C2 H2B 0.9800 . ? C2 H2C 0.9800 . ? C2A H2X 0.9800 . ? C2A H2Y 0.9800 . ? C2A H2Z 0.9800 . ? C3 H3A 0.9800 . ? C3 H3B 0.9800 . ? C3 H3C 0.9800 . ? C3A H3X 0.9800 . ? C3A H3Y 0.9800 . ? C3A H3Z 0.9800 . ? C4 H4A 0.99(3) . ? C4 H4B 0.98(3) . ? C4 H4C 0.89(4) . ? C4A H4X 0.9800 . ? C4A H4Y 0.9800 . ? C4A H4Z 0.9800 . ? C5 C6 1.393(2) . ? C5 C10 1.4020(18) . ? C5A C10A 1.395(2) . ? C5A C6A 1.3977(19) . ? C6 C7 1.393(2) . ? C6 C11 1.503(2) . ? C6A C7A 1.387(2) . ? C6A C11A 1.501(2) . ? C7 C8 1.386(2) . ? C7 H7 0.92(2) . ? C7A C8A 1.382(3) . ? C7A H7X 0.93(2) . ? C8 C9 1.380(2) . ? C8 H8 0.94(2) . ? C8A C9A 1.384(3) . ? C8A H8X 0.94(2) . ? C9 C10 1.395(2) . ? C9 H9 0.959(19) . ? C9A C10A 1.386(2) . ? C9A H9X 0.95(2) . ? C10 C12 1.491(2) . ? C10A C12A 1.507(2) . ? C11 H11A 0.94(2) . ? C11 H11B 0.95(3) . ? C11 H11C 0.90(2) . ? C11A H11X 0.94(3) . ? C11A H11Y 0.91(3) . ? C11A H11Z 0.95(3) . ? C12 H12A 0.97(2) . ? C12 H12B 0.92(2) . ? C12 H12C 0.96(3) . ? C12A H12X 0.97(2) . ? C12A H12Y 0.91(3) . ?

171

C12A H12Z 0.96(2) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C3 Ga1 C4 118.35(15) . . ? C3 Ga1 C2 114.13(10) . . ? C4 Ga1 C2 117.32(15) . . ? C3 Ga1 C1 101.39(8) . . ? C4 Ga1 C1 96.06(9) . . ? C2 Ga1 C1 104.96(8) . . ? C3A Ga1A C4A 115.81(8) . . ? C3A Ga1A C2A 118.67(8) . . ? C4A Ga1A C2A 116.66(9) . . ? C3A Ga1A C1A 100.29(7) . . ? C4A Ga1A C1A 100.04(7) . . ? C2A Ga1A C1A 99.69(7) . . ? C1 N1 C5 177.98(16) . . ? C1A N1A C5A 178.81(15) . . ? N1 C1 Ga1 169.51(14) . . ? N1A C1A Ga1A 179.98(18) . . ? Ga1 C2 H2A 109.5 . . ? Ga1 C2 H2B 109.5 . . ? H2A C2 H2B 109.5 . . ? Ga1 C2 H2C 109.5 . . ? H2A C2 H2C 109.5 . . ? H2B C2 H2C 109.5 . . ? Ga1A C2A H2X 109.5 . . ? Ga1A C2A H2Y 109.5 . . ? H2X C2A H2Y 109.5 . . ? Ga1A C2A H2Z 109.5 . . ? H2X C2A H2Z 109.5 . . ? H2Y C2A H2Z 109.5 . . ? Ga1 C3 H3A 109.5 . . ? Ga1 C3 H3B 109.5 . . ? H3A C3 H3B 109.5 . . ? Ga1 C3 H3C 109.5 . . ? H3A C3 H3C 109.5 . . ? H3B C3 H3C 109.5 . . ? Ga1A C3A H3X 109.5 . . ? Ga1A C3A H3Y 109.5 . . ? H3X C3A H3Y 109.5 . . ? Ga1A C3A H3Z 109.5 . . ? H3X C3A H3Z 109.5 . . ? H3Y C3A H3Z 109.5 . . ? Ga1 C4 H4A 109.4(19) . . ? Ga1 C4 H4B 109.8(19) . . ? H4A C4 H4B 106(3) . . ? Ga1 C4 H4C 111(2) . . ? H4A C4 H4C 114(3) . . ? H4B C4 H4C 107(3) . . ?

172

Ga1A C4A H4X 109.5 . . ? Ga1A C4A H4Y 109.5 . . ? H4X C4A H4Y 109.5 . . ? Ga1A C4A H4Z 109.5 . . ? H4X C4A H4Z 109.5 . . ? H4Y C4A H4Z 109.5 . . ? C6 C5 C10 124.15(13) . . ? C6 C5 N1 118.07(12) . . ? C10 C5 N1 117.78(13) . . ? C10A C5A C6A 124.28(13) . . ? C10A C5A N1A 117.71(12) . . ? C6A C5A N1A 118.01(13) . . ? C5 C6 C7 116.71(13) . . ? C5 C6 C11 121.34(15) . . ? C7 C6 C11 121.95(16) . . ? C7A C6A C5A 116.28(14) . . ? C7A C6A C11A 122.86(15) . . ? C5A C6A C11A 120.86(15) . . ? C8 C7 C6 120.94(15) . . ? C8 C7 H7 119.9(13) . . ? C6 C7 H7 119.2(13) . . ? C8A C7A C6A 121.16(15) . . ? C8A C7A H7X 122.3(14) . . ? C6A C7A H7X 116.5(14) . . ? C9 C8 C7 120.71(14) . . ? C9 C8 H8 119.2(12) . . ? C7 C8 H8 120.1(12) . . ? C7A C8A C9A 120.80(16) . . ? C7A C8A H8X 119.7(14) . . ? C9A C8A H8X 119.4(14) . . ? C8 C9 C10 121.00(14) . . ? C8 C9 H9 122.2(11) . . ? C10 C9 H9 116.8(11) . . ? C8A C9A C10A 120.72(16) . . ? C8A C9A H9X 120.2(14) . . ? C10A C9A H9X 119.1(14) . . ? C9 C10 C5 116.48(13) . . ? C9 C10 C12 121.72(13) . . ? C5 C10 C12 121.80(13) . . ? C9A C10A C5A 116.77(14) . . ? C9A C10A C12A 122.27(15) . . ? C5A C10A C12A 120.96(14) . . ? C6 C11 H11A 111.4(13) . . ? C6 C11 H11B 110.7(15) . . ? H11A C11 H11B 110.0(19) . . ? C6 C11 H11C 113.1(14) . . ? H11A C11 H11C 103.7(18) . . ? H11B C11 H11C 108(2) . . ? C6A C11A H11X 110.1(17) . . ? C6A C11A H11Y 110.4(16) . . ? H11X C11A H11Y 106(2) . . ? C6A C11A H11Z 112.4(15) . . ? H11X C11A H11Z 107(2) . . ? H11Y C11A H11Z 110(2) . . ? C10 C12 H12A 110.6(14) . . ? C10 C12 H12B 112.8(15) . . ?

173

H12A C12 H12B 103(2) . . ? C10 C12 H12C 112.8(16) . . ? H12A C12 H12C 111(2) . . ? H12B C12 H12C 106(2) . . ? C10A C12A H12X 110.6(13) . . ? C10A C12A H12Y 113.1(16) . . ? H12X C12A H12Y 109(2) . . ? C10A C12A H12Z 109.8(14) . . ? H12X C12A H12Z 105.6(19) . . ? H12Y C12A H12Z 108(2) . . ?

_diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.317 _refine_diff_density_min -0.318 _refine_diff_density_rms 0.068

174

t CIF File For Bu3Al·C≡N(2,6-Me2C6H3)

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C21 H36 Al N' _chemical_formula_sum 'C21 H36 Al N' _chemical_formula_weight 329.49 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Al' 'Al' 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z'

_cell_length_a 8.8875(2) _cell_length_b 11.8471(2) _cell_length_c 11.9501(2) _cell_angle_alpha 64.0690(10) _cell_angle_beta 87.1090(10) _cell_angle_gamma 72.3300(10) _cell_volume 1073.19(4) _cell_formula_units_Z 2 _cell_measurement_temperature -133 _cell_measurement_reflns_used ? _cell_measurement_theta_min 2.412 _cell_measurement_theta_max 33.126

_exptl_crystal_description rectangle _exptl_crystal_colour colorless _exptl_crystal_size_max .30 _exptl_crystal_size_mid .25 _exptl_crystal_size_min .20

175

_exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.020 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 364 _exptl_absorpt_coefficient_mu 0.096 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.850 _exptl_absorpt_correction_T_max 1.000 _exptl_absorpt_process_details 'sadabs (Sheldrick, 1997)'

_exptl_special_details ; ? ;

_diffrn_ambient_temperature -133 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator 'graphite' _diffrn_measurement_device_type 'Bruker platform with 6k CCD' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 19702 _diffrn_reflns_av_R_equivalents 0.0279 _diffrn_reflns_av_sigmaI/netI 0.0393 _diffrn_reflns_limit_h_min -13 _diffrn_reflns_limit_h_max 13 _diffrn_reflns_limit_k_min -18 _diffrn_reflns_limit_k_max 17 _diffrn_reflns_limit_l_min -18 _diffrn_reflns_limit_l_max 17 _diffrn_reflns_theta_min 1.90 _diffrn_reflns_theta_max 33.32 _reflns_number_total 7553 _reflns_number_gt 6228 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630 ' _computing_cell_refinement 'Saintplus 5.45 ' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is

176

not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0484P)^2^+0.3523P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 7553 _refine_ls_number_parameters 352 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0649 _refine_ls_R_factor_gt 0.0496 _refine_ls_wR_factor_ref 0.1168 _refine_ls_wR_factor_gt 0.1116 _refine_ls_goodness_of_fit_ref 1.054 _refine_ls_restrained_S_all 1.054 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Al1 Al 0.32802(3) 0.36488(3) 0.29567(3) 0.01258(8) Uani 1 1 d . . . N1 N 0.26508(10) 0.20834(8) 0.58684(8) 0.01617(16) Uani 1 1 d . . . C1 C 0.28888(12) 0.26710(10) 0.48560(9) 0.01742(19) Uani 1 1 d . . . C2 C 0.55528(12) 0.36134(10) 0.30840(9) 0.01779(19) Uani 1 1 d . . . C3 C 0.28838(14) 0.24101(11) 0.23388(10) 0.0213(2) Uani 1 1 d . . . C4 C 0.15820(13) 0.54205(10) 0.24281(10) 0.0198(2) Uani 1 1 d . . . C5 C 0.23843(12) 0.13055(9) 0.70972(9) 0.01460(17) Uani 1 1 d . . . C6 C 0.32176(12) 0.12769(10) 0.80787(9) 0.01544(18) Uani 1 1 d . . . C7 C 0.29630(13) 0.04660(10) 0.92859(9) 0.01887(19) Uani 1 1 d . . . C8 C 0.19506(14) -0.02834(11) 0.94842(10) 0.0210(2) Uani 1 1 d . . . C9 C 0.11243(13) -0.02064(11) 0.84836(10) 0.0200(2) Uani 1 1 d . . . C10 C 0.13050(12) 0.06094(10) 0.72559(9) 0.01648(18) Uani 1 1 d . . . C11 C 0.43207(14) 0.20864(11) 0.78321(11) 0.0211(2) Uani 1 1 d . . . C12 C 0.03724(15) 0.07644(12) 0.61554(11) 0.0227(2) Uani 1 1 d . . .

177

C21 C 0.67484(15) 0.22523(13) 0.33931(14) 0.0313(3) Uani 1 1 d . . . C22 C 0.58900(15) 0.40023(14) 0.40946(11) 0.0270(2) Uani 1 1 d . . . C23 C 0.58980(14) 0.46013(13) 0.18224(11) 0.0243(2) Uani 1 1 d . . . C31 C 0.3488(2) 0.27262(17) 0.10406(14) 0.0408(4) Uani 1 1 d . . . C32 C 0.37309(19) 0.09459(12) 0.32063(14) 0.0329(3) Uani 1 1 d . . . C33 C 0.11131(18) 0.25731(15) 0.22126(13) 0.0319(3) Uani 1 1 d . . . C41 C 0.12465(18) 0.61395(13) 0.09973(12) 0.0332(3) Uani 1 1 d . . . C42 C 0.00163(15) 0.52692(14) 0.29878(15) 0.0327(3) Uani 1 1 d . . . C43 C 0.20601(17) 0.63346(13) 0.28379(14) 0.0311(3) Uani 1 1 d . . . H8 H 0.1821(18) -0.0848(15) 1.0322(14) 0.027(4) Uiso 1 1 d . . . H7 H 0.3501(17) 0.0423(14) 0.9987(13) 0.022(3) Uiso 1 1 d . . . H9 H 0.0449(18) -0.0731(15) 0.8644(14) 0.027(4) Uiso 1 1 d . . . H11A H 0.4688(19) 0.2052(15) 0.8596(15) 0.032(4) Uiso 1 1 d . . . H11B H 0.524(2) 0.1760(17) 0.7460(16) 0.039(4) Uiso 1 1 d . . . H11C H 0.3794(19) 0.3003(16) 0.7260(15) 0.031(4) Uiso 1 1 d . . . H12A H 0.105(2) 0.0546(17) 0.5577(16) 0.039(4) Uiso 1 1 d . . . H12B H -0.028(2) 0.1649(17) 0.5686(15) 0.035(4) Uiso 1 1 d . . . H12C H -0.025(2) 0.0175(18) 0.6431(17) 0.044(5) Uiso 1 1 d . . . H21A H 0.6675(19) 0.1957(16) 0.2776(15) 0.032(4) Uiso 1 1 d . . . H21B H 0.659(2) 0.1582(18) 0.4203(17) 0.043(5) Uiso 1 1 d . . . H21C H 0.786(2) 0.2281(19) 0.3457(18) 0.053(5) Uiso 1 1 d . . . H22A H 0.575(2) 0.3377(16) 0.4919(15) 0.035(4) Uiso 1 1 d . . . H22B H 0.518(2) 0.4889(17) 0.3979(15) 0.036(4) Uiso 1 1 d . . . H22C H 0.698(2) 0.4031(18) 0.4137(16) 0.044(5) Uiso 1 1 d . . . H23A H 0.5746(19) 0.4404(16) 0.1122(15) 0.032(4) Uiso 1 1 d . . . H23B H 0.521(2) 0.5516(17) 0.1575(15) 0.034(4) Uiso 1 1 d . . . H23C H 0.701(2) 0.4598(17) 0.1859(15) 0.037(4) Uiso 1 1 d . . . H31A H 0.300(2) 0.365(2) 0.0426(18) 0.049(5) Uiso 1 1 d . . . H31B H 0.466(3) 0.2555(19) 0.1063(18) 0.054(6) Uiso 1 1 d . . . H31C H 0.323(2) 0.220(2) 0.0688(19) 0.058(6) Uiso 1 1 d . . . H32A H 0.332(2) 0.0672(16) 0.4050(16) 0.037(4) Uiso 1 1 d . . . H32B H 0.350(2) 0.0393(19) 0.2899(17) 0.048(5) Uiso 1 1 d . . . H32C H 0.492(2) 0.0705(18) 0.3318(17) 0.050(5) Uiso 1 1 d . . . H33A H 0.051(2) 0.3443(17) 0.1616(16) 0.035(4) Uiso 1 1 d . . . H33B H 0.0657(19) 0.2363(16) 0.3018(16) 0.033(4) Uiso 1 1 d . . . H33C H 0.099(2) 0.1956(18) 0.1894(17) 0.049(5) Uiso 1 1 d . . . H41A H 0.222(2) 0.5978(17) 0.3730(17) 0.037(4) Uiso 1 1 d . . . H41B H 0.089(2) 0.5639(18) 0.0683(17) 0.045(5) Uiso 1 1 d . . . H41C H 0.040(2) 0.7025(19) 0.0719(17) 0.047(5) Uiso 1 1 d . . . H42A H -0.039(2) 0.4737(18) 0.2746(17) 0.044(5) Uiso 1 1 d . . . H42B H -0.080(2) 0.6128(18) 0.2675(17) 0.045(5) Uiso 1 1 d . . . H42C H 0.010(2) 0.4872(18) 0.3928(17) 0.046(5) Uiso 1 1 d . . . H43A H 0.225(2) 0.6323(17) 0.0566(16) 0.038(4) Uiso 1 1 d . . . H43B H 0.116(2) 0.7181(18) 0.2557(17) 0.045(5) Uiso 1 1 d . . . H43C H 0.304(2) 0.6542(17) 0.2485(15) 0.038(4) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Al1 0.01408(14) 0.01212(14) 0.01144(13) -0.00460(10) 0.00223(10) -0.00510(10) N1 0.0169(4) 0.0155(4) 0.0156(4) -0.0063(3) 0.0027(3) -0.0053(3)

178

C1 0.0176(4) 0.0172(4) 0.0177(4) -0.0073(4) 0.0020(3) -0.0064(4) C2 0.0164(4) 0.0193(5) 0.0163(4) -0.0062(4) 0.0031(3) -0.0063(4) C3 0.0317(6) 0.0208(5) 0.0184(4) -0.0109(4) 0.0084(4) -0.0150(4) C4 0.0186(5) 0.0162(5) 0.0209(5) -0.0060(4) 0.0003(4) -0.0038(4) C5 0.0159(4) 0.0128(4) 0.0134(4) -0.0047(3) 0.0036(3) -0.0042(3) C6 0.0157(4) 0.0138(4) 0.0158(4) -0.0061(3) 0.0029(3) -0.0041(3) C7 0.0216(5) 0.0186(5) 0.0145(4) -0.0064(4) 0.0022(4) -0.0053(4) C8 0.0254(5) 0.0192(5) 0.0151(4) -0.0042(4) 0.0060(4) -0.0087(4) C9 0.0223(5) 0.0186(5) 0.0202(5) -0.0073(4) 0.0070(4) -0.0107(4) C10 0.0181(4) 0.0154(4) 0.0170(4) -0.0077(3) 0.0038(3) -0.0061(3) C11 0.0224(5) 0.0203(5) 0.0213(5) -0.0073(4) 0.0016(4) -0.0105(4) C12 0.0256(5) 0.0251(5) 0.0202(5) -0.0100(4) 0.0009(4) -0.0113(4) C21 0.0181(5) 0.0267(6) 0.0394(7) -0.0101(5) 0.0048(5) -0.0014(4) C22 0.0262(6) 0.0394(7) 0.0202(5) -0.0123(5) 0.0009(4) -0.0180(5) C23 0.0239(5) 0.0305(6) 0.0201(5) -0.0086(4) 0.0070(4) -0.0156(5) C31 0.0743(12) 0.0465(9) 0.0282(6) -0.0277(6) 0.0266(7) -0.0407(8) C32 0.0443(8) 0.0185(5) 0.0408(7) -0.0160(5) 0.0145(6) -0.0135(5) C33 0.0387(7) 0.0358(7) 0.0294(6) -0.0126(5) -0.0008(5) -0.0247(6) C41 0.0371(7) 0.0238(6) 0.0241(6) -0.0008(5) -0.0077(5) -0.0031(5) C42 0.0178(5) 0.0275(6) 0.0446(8) -0.0127(6) 0.0049(5) -0.0016(5) C43 0.0334(7) 0.0217(6) 0.0419(7) -0.0194(5) 0.0050(5) -0.0060(5)

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Al1 C2 2.0196(11) . ? Al1 C4 2.0239(11) . ? Al1 C3 2.0274(11) . ? Al1 C1 2.1166(11) . ? N1 C1 1.1489(13) . ? N1 C5 1.4056(12) . ? C2 C21 1.5311(16) . ? C2 C23 1.5378(15) . ? C2 C22 1.5385(16) . ? C3 C33 1.5332(18) . ? C3 C32 1.5374(17) . ? C3 C31 1.5379(17) . ? C4 C43 1.5353(17) . ? C4 C41 1.5366(16) . ? C4 C42 1.5390(17) . ? C5 C10 1.4004(14) . ? C5 C6 1.4011(14) . ? C6 C7 1.3937(14) . ?

179

C6 C11 1.5041(14) . ? C7 C8 1.3905(15) . ? C7 H7 0.960(14) . ? C8 C9 1.3891(15) . ? C8 H8 0.956(15) . ? C9 C10 1.3938(14) . ? C9 H9 0.946(16) . ? C10 C12 1.5021(15) . ? C11 H11A 0.965(16) . ? C11 H11B 0.970(18) . ? C11 H11C 0.969(16) . ? C12 H12A 0.965(18) . ? C12 H12B 0.948(17) . ? C12 H12C 0.957(19) . ? C21 H21A 0.956(17) . ? C21 H21B 0.985(18) . ? C21 H21C 1.01(2) . ? C22 H22A 0.970(16) . ? C22 H22B 0.999(17) . ? C22 H22C 0.984(19) . ? C23 H23A 0.987(16) . ? C23 H23B 0.985(17) . ? C23 H23C 0.993(17) . ? C31 H31A 0.982(19) . ? C31 H31B 1.00(2) . ? C31 H31C 0.97(2) . ? C32 H32A 1.001(17) . ? C32 H32B 0.95(2) . ? C32 H32C 1.01(2) . ? C33 H33A 0.958(17) . ? C33 H33B 0.982(17) . ? C33 H33C 0.995(19) . ? C41 H41B 0.958(19) . ? C41 H41C 1.009(19) . ? C41 H43A 1.039(18) . ? C42 H42A 0.959(19) . ? C42 H42B 0.973(19) . ? C42 H42C 1.007(18) . ? C43 H41A 0.959(18) . ? C43 H43B 1.002(19) . ? C43 H43C 0.996(18) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 Al1 C4 116.93(5) . . ? C2 Al1 C3 116.39(5) . . ? C4 Al1 C3 116.63(5) . . ? C2 Al1 C1 102.22(4) . . ? C4 Al1 C1 100.62(4) . . ? C3 Al1 C1 99.18(4) . . ?

180

C1 N1 C5 177.04(10) . . ? N1 C1 Al1 175.59(9) . . ? C21 C2 C23 107.65(10) . . ? C21 C2 C22 106.86(10) . . ? C23 C2 C22 107.97(9) . . ? C21 C2 Al1 112.83(8) . . ? C23 C2 Al1 108.96(7) . . ? C22 C2 Al1 112.36(7) . . ? C33 C3 C32 107.01(10) . . ? C33 C3 C31 107.85(11) . . ? C32 C3 C31 108.11(11) . . ? C33 C3 Al1 111.88(8) . . ? C32 C3 Al1 112.91(8) . . ? C31 C3 Al1 108.89(8) . . ? C43 C4 C41 107.29(10) . . ? C43 C4 C42 106.72(10) . . ? C41 C4 C42 108.03(10) . . ? C43 C4 Al1 112.65(8) . . ? C41 C4 Al1 110.18(8) . . ? C42 C4 Al1 111.74(8) . . ? C10 C5 C6 124.49(9) . . ? C10 C5 N1 117.67(9) . . ? C6 C5 N1 117.84(9) . . ? C7 C6 C5 116.45(9) . . ? C7 C6 C11 122.19(9) . . ? C5 C6 C11 121.36(9) . . ? C8 C7 C6 120.86(10) . . ? C8 C7 H7 119.8(9) . . ? C6 C7 H7 119.3(9) . . ? C9 C8 C7 120.78(9) . . ? C9 C8 H8 120.2(9) . . ? C7 C8 H8 119.0(9) . . ? C8 C9 C10 120.90(10) . . ? C8 C9 H9 119.1(9) . . ? C10 C9 H9 120.0(9) . . ? C9 C10 C5 116.44(9) . . ? C9 C10 C12 122.23(10) . . ? C5 C10 C12 121.32(9) . . ? C6 C11 H11A 111.1(10) . . ? C6 C11 H11B 110.7(10) . . ? H11A C11 H11B 107.9(14) . . ? C6 C11 H11C 110.8(9) . . ? H11A C11 H11C 108.4(13) . . ? H11B C11 H11C 107.8(14) . . ? C10 C12 H12A 111.8(10) . . ? C10 C12 H12B 111.8(10) . . ? H12A C12 H12B 105.7(14) . . ? C10 C12 H12C 110.0(11) . . ? H12A C12 H12C 106.7(14) . . ? H12B C12 H12C 110.6(14) . . ? C2 C21 H21A 112.7(10) . . ? C2 C21 H21B 110.9(10) . . ? H21A C21 H21B 107.6(14) . . ? C2 C21 H21C 109.9(11) . . ? H21A C21 H21C 108.0(14) . . ? H21B C21 H21C 107.6(15) . . ?

181

C2 C22 H22A 111.2(10) . . ? C2 C22 H22B 114.0(9) . . ? H22A C22 H22B 106.0(13) . . ? C2 C22 H22C 113.1(10) . . ? H22A C22 H22C 106.5(14) . . ? H22B C22 H22C 105.6(14) . . ? C2 C23 H23A 113.3(9) . . ? C2 C23 H23B 112.8(9) . . ? H23A C23 H23B 105.7(13) . . ? C2 C23 H23C 110.6(10) . . ? H23A C23 H23C 106.9(13) . . ? H23B C23 H23C 107.2(13) . . ? C3 C31 H31A 113.3(11) . . ? C3 C31 H31B 112.6(11) . . ? H31A C31 H31B 106.6(16) . . ? C3 C31 H31C 110.7(12) . . ? H31A C31 H31C 105.1(16) . . ? H31B C31 H31C 108.1(16) . . ? C3 C32 H32A 111.3(9) . . ? C3 C32 H32B 110.7(11) . . ? H32A C32 H32B 104.1(14) . . ? C3 C32 H32C 114.3(11) . . ? H32A C32 H32C 108.7(14) . . ? H32B C32 H32C 107.2(16) . . ? C3 C33 H33A 112.4(10) . . ? C3 C33 H33B 112.0(10) . . ? H33A C33 H33B 109.3(14) . . ? C3 C33 H33C 108.5(11) . . ? H33A C33 H33C 106.3(14) . . ? H33B C33 H33C 108.1(14) . . ? C4 C41 H41B 111.5(11) . . ? C4 C41 H41C 111.2(10) . . ? H41B C41 H41C 107.4(15) . . ? C4 C41 H43A 111.6(9) . . ? H41B C41 H43A 108.3(15) . . ? H41C C41 H43A 106.7(14) . . ? C4 C42 H42A 112.0(11) . . ? C4 C42 H42B 110.1(11) . . ? H42A C42 H42B 105.8(15) . . ? C4 C42 H42C 113.8(10) . . ? H42A C42 H42C 107.4(15) . . ? H42B C42 H42C 107.3(15) . . ? C4 C43 H41A 112.3(10) . . ? C4 C43 H43B 108.0(10) . . ? H41A C43 H43B 106.0(14) . . ? C4 C43 H43C 113.5(10) . . ? H41A C43 H43C 108.0(14) . . ? H43B C43 H43C 108.7(14) . . ?

_diffrn_measured_fraction_theta_max 0.909 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.536 _refine_diff_density_min -0.190 _refine_diff_density_rms 0.053

182

t CIF File For Bu3Ga·C≡N(2,6-Me2C6H3)

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C21 H36 Ga N' _chemical_formula_sum 'C21 H36 Ga N'

_chemical_formula_weight 372.23 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Ga' 'Ga' 0.2307 1.6083 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z'

_cell_length_a 8.9135(2) _cell_length_b 11.8766(2) _cell_length_c 11.9732(3) _cell_angle_alpha 64.1920(10) _cell_angle_beta 87.1740(10) _cell_angle_gamma 72.3710(10) _cell_volume 1082.45(4) _cell_formula_units_Z 2 _cell_measurement_temperature -133 _cell_measurement_reflns_used ? _cell_measurement_theta_min 1.90 _cell_measurement_theta_max 28.29

_exptl_crystal_description rectangle _exptl_crystal_colour colorless _exptl_crystal_size_max .35 _exptl_crystal_size_mid .30 _exptl_crystal_size_min .25 _exptl_crystal_density_meas ?

183

_exptl_crystal_density_diffrn 1.142 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 400 _exptl_absorpt_coefficient_mu 1.272 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.858 _exptl_absorpt_correction_T_max 1.000 _exptl_absorpt_process_details 'sadabs (Sheldrick, 1997)'

_exptl_special_details ; ? ;

_diffrn_ambient_temperature -133 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator 'graphite' _diffrn_measurement_device_type 'Bruker platform with 6k CCD' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 15412 _diffrn_reflns_av_R_equivalents 0.0199 _diffrn_reflns_av_sigmaI/netI 0.0218 _diffrn_reflns_limit_h_min -11 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_k_min -15 _diffrn_reflns_limit_k_max 15 _diffrn_reflns_limit_l_min -15 _diffrn_reflns_limit_l_max 15 _diffrn_reflns_theta_min 1.90 _diffrn_reflns_theta_max 28.29 _reflns_number_total 5367 _reflns_number_gt 5143 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630 ' _computing_cell_refinement 'Saintplus 5.45 ' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based

184

on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0262P)^2^+0.3121P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 5367 _refine_ls_number_parameters 352 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0245 _refine_ls_R_factor_gt 0.0231 _refine_ls_wR_factor_ref 0.0602 _refine_ls_wR_factor_gt 0.0595 _refine_ls_goodness_of_fit_ref 1.103 _refine_ls_restrained_S_all 1.103 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ga1 Ga 0.327132(14) 0.366666(11) 0.291640(11) 0.01961(5) Uani 1 1 d . . . N1 N 0.26427(12) 0.20768(10) 0.58634(10) 0.0247(2) Uani 1 1 d . . . C1 C 0.28780(15) 0.26679(13) 0.48568(12) 0.0271(2) Uani 1 1 d . . . C2 C 0.55544(15) 0.36069(13) 0.30740(12) 0.0273(2) Uani 1 1 d . . . C3 C 0.28465(19) 0.24242(14) 0.23068(13) 0.0331(3) Uani 1 1 d . . . C4 C 0.15720(16) 0.54369(13) 0.24269(13) 0.0312(3) Uani 1 1 d . . . C5 C 0.23814(14) 0.13038(11) 0.70892(11) 0.0223(2) Uani 1 1 d . . . C6 C 0.32143(14) 0.12736(12) 0.80668(12) 0.0240(2) Uani 1 1 d . . . C7 C 0.29622(16) 0.04718(13) 0.92702(12) 0.0283(3) Uani 1 1 d . . . C8 C 0.19480(17) -0.02707(14) 0.94724(13) 0.0312(3) Uani 1 1 d . . . C9 C 0.11236(17) -0.01933(13) 0.84748(13) 0.0303(3) Uani 1 1 d . . . C10 C 0.13016(15) 0.06130(12) 0.72537(12) 0.0253(2) Uani 1 1 d . . . C11 C 0.43184(18) 0.20775(15) 0.78200(14) 0.0322(3) Uani 1 1 d . . . C12 C 0.03687(19) 0.07596(16) 0.61581(14) 0.0343(3) Uani 1 1 d . . . C21 C 0.6719(2) 0.22473(18) 0.3387(2) 0.0482(4) Uani 1 1 d . . .

185

C22 C 0.5876(2) 0.3989(2) 0.40883(15) 0.0416(4) Uani 1 1 d . . . C23 C 0.59009(19) 0.45941(17) 0.18252(14) 0.0374(3) Uani 1 1 d . . . C31 C 0.3438(4) 0.2745(2) 0.1016(2) 0.0614(6) Uani 1 1 d . . . C32 C 0.3686(3) 0.09736(16) 0.3179(2) 0.0494(4) Uani 1 1 d . . . C33 C 0.1074(2) 0.26036(19) 0.22001(18) 0.0466(4) Uani 1 1 d . . . C41 C 0.1246(3) 0.61563(18) 0.10065(18) 0.0513(4) Uani 1 1 d . . . C42 C 0.0021(2) 0.52708(19) 0.2996(2) 0.0494(4) Uani 1 1 d . . . C43 C 0.2072(2) 0.63166(17) 0.2861(2) 0.0480(4) Uani 1 1 d . . . H8 H 0.181(2) -0.0817(17) 1.0302(17) 0.037(4) Uiso 1 1 d . . . H7 H 0.3497(19) 0.0439(16) 0.9940(15) 0.029(4) Uiso 1 1 d . . . H9 H 0.047(2) -0.0700(17) 0.8617(16) 0.035(4) Uiso 1 1 d . . . H11B H 0.519(2) 0.1778(19) 0.7427(18) 0.047(5) Uiso 1 1 d . . . H23A H 0.579(2) 0.4340(18) 0.1146(18) 0.043(5) Uiso 1 1 d . . . H11A H 0.470(2) 0.2040(19) 0.8570(18) 0.045(5) Uiso 1 1 d . . . H22C H 0.702(2) 0.3970(19) 0.4109(18) 0.048(5) Uiso 1 1 d . . . H23B H 0.521(2) 0.553(2) 0.1598(18) 0.050(5) Uiso 1 1 d . . . H11C H 0.383(2) 0.298(2) 0.7251(18) 0.045(5) Uiso 1 1 d . . . H22A H 0.577(2) 0.333(2) 0.489(2) 0.057(6) Uiso 1 1 d . . . H22B H 0.519(2) 0.488(2) 0.3956(19) 0.053(6) Uiso 1 1 d . . . H23C H 0.704(3) 0.459(2) 0.183(2) 0.061(6) Uiso 1 1 d . . . H21A H 0.661(2) 0.2006(18) 0.2739(17) 0.036(4) Uiso 1 1 d . . . H21B H 0.652(2) 0.162(2) 0.420(2) 0.050(5) Uiso 1 1 d . . . H12B H -0.026(2) 0.162(2) 0.5694(18) 0.045(5) Uiso 1 1 d . . . H12A H 0.105(2) 0.056(2) 0.5567(19) 0.050(5) Uiso 1 1 d . . . H12C H -0.028(3) 0.022(2) 0.644(2) 0.058(6) Uiso 1 1 d . . . H32A H 0.329(3) 0.073(2) 0.399(2) 0.060(6) Uiso 1 1 d . . . H32C H 0.484(3) 0.072(2) 0.329(2) 0.062(6) Uiso 1 1 d . . . H21C H 0.788(3) 0.225(2) 0.347(2) 0.064(6) Uiso 1 1 d . . . H32B H 0.340(3) 0.046(2) 0.283(2) 0.069(7) Uiso 1 1 d . . . H41A H 0.217(2) 0.593(2) 0.374(2) 0.046(5) Uiso 1 1 d . . . H42A H -0.039(3) 0.479(2) 0.270(2) 0.061(6) Uiso 1 1 d . . . H43A H 0.224(3) 0.633(2) 0.063(2) 0.061(6) Uiso 1 1 d . . . H31A H 0.295(3) 0.364(2) 0.041(2) 0.063(7) Uiso 1 1 d . . . H42B H -0.075(3) 0.607(2) 0.272(2) 0.066(7) Uiso 1 1 d . . . H43C H 0.309(3) 0.648(2) 0.254(2) 0.056(6) Uiso 1 1 d . . . H31B H 0.455(3) 0.257(2) 0.103(2) 0.065(7) Uiso 1 1 d . . . H42C H 0.015(3) 0.485(2) 0.394(2) 0.074(7) Uiso 1 1 d . . . H41B H 0.083(3) 0.565(2) 0.068(2) 0.068(7) Uiso 1 1 d . . . H31C H 0.317(3) 0.224(2) 0.068(2) 0.075(7) Uiso 1 1 d . . . H43B H 0.118(3) 0.714(2) 0.263(2) 0.069(7) Uiso 1 1 d . . . H41C H 0.042(3) 0.703(3) 0.075(2) 0.074(7) Uiso 1 1 d . . . H33A H 0.045(2) 0.350(2) 0.1593(19) 0.048(5) Uiso 1 1 d . . . H33B H 0.063(2) 0.236(2) 0.303(2) 0.055(6) Uiso 1 1 d . . . H33C H 0.095(3) 0.202(2) 0.188(2) 0.063(6) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ga1 0.02077(7) 0.01769(7) 0.02020(7) -0.00744(5) 0.00300(5) -0.00734(5) N1 0.0257(5) 0.0223(5) 0.0248(5) -0.0094(4) 0.0049(4) -0.0079(4) C1 0.0273(6) 0.0264(6) 0.0281(6) -0.0114(5) 0.0043(5) -0.0105(5)

186

C2 0.0232(6) 0.0306(6) 0.0258(6) -0.0090(5) 0.0036(4) -0.0109(5) C3 0.0474(8) 0.0316(7) 0.0327(7) -0.0192(6) 0.0137(6) -0.0228(6) C4 0.0284(6) 0.0238(6) 0.0362(7) -0.0108(5) -0.0003(5) -0.0044(5) C5 0.0238(5) 0.0178(5) 0.0228(5) -0.0082(4) 0.0060(4) -0.0051(4) C6 0.0237(5) 0.0197(5) 0.0276(6) -0.0104(5) 0.0042(4) -0.0058(4) C7 0.0312(6) 0.0274(6) 0.0251(6) -0.0116(5) 0.0029(5) -0.0076(5) C8 0.0366(7) 0.0284(6) 0.0246(6) -0.0076(5) 0.0091(5) -0.0121(5) C9 0.0337(7) 0.0272(6) 0.0325(7) -0.0123(5) 0.0099(5) -0.0154(5) C10 0.0278(6) 0.0222(5) 0.0276(6) -0.0124(5) 0.0063(5) -0.0086(5) C11 0.0327(7) 0.0308(7) 0.0348(7) -0.0122(6) 0.0024(6) -0.0155(6) C12 0.0384(8) 0.0354(7) 0.0337(7) -0.0156(6) 0.0028(6) -0.0169(6) C21 0.0274(7) 0.0420(9) 0.0626(11) -0.0176(9) 0.0056(7) -0.0027(7) C22 0.0388(8) 0.0594(11) 0.0337(8) -0.0198(8) 0.0026(6) -0.0258(8) C23 0.0358(8) 0.0481(9) 0.0318(7) -0.0139(7) 0.0094(6) -0.0245(7) C31 0.1082(19) 0.0695(14) 0.0468(11) -0.0431(11) 0.0392(12) -0.0602(14) C32 0.0611(11) 0.0278(7) 0.0667(12) -0.0259(8) 0.0211(9) -0.0183(8) C33 0.0569(10) 0.0506(10) 0.0462(9) -0.0214(8) 0.0003(8) -0.0347(9) C41 0.0559(11) 0.0351(8) 0.0406(9) -0.0019(7) -0.0121(8) -0.0041(8) C42 0.0284(8) 0.0413(9) 0.0695(13) -0.0222(9) 0.0073(8) -0.0029(7) C43 0.0496(10) 0.0322(8) 0.0667(12) -0.0294(8) 0.0045(9) -0.0073(7)

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ga1 C2 2.0299(12) . ? Ga1 C4 2.0356(13) . ? Ga1 C3 2.0389(13) . ? Ga1 C1 2.1679(13) . ? N1 C1 1.1475(17) . ? N1 C5 1.4049(15) . ? C2 C21 1.524(2) . ? C2 C23 1.5340(19) . ? C2 C22 1.535(2) . ? C3 C31 1.530(2) . ? C3 C32 1.532(2) . ? C3 C33 1.533(2) . ? C4 C43 1.529(2) . ? C4 C41 1.530(2) . ? C4 C42 1.539(2) . ? C5 C6 1.3984(17) . ? C5 C10 1.3990(17) . ? C6 C7 1.3915(18) . ? C6 C11 1.5041(18) . ?

187

C7 C8 1.3889(19) . ? C7 H7 0.934(16) . ? C8 C9 1.388(2) . ? C8 H8 0.948(18) . ? C9 C10 1.3892(18) . ? C9 H9 0.921(18) . ? C10 C12 1.5045(19) . ? C11 H11B 0.94(2) . ? C11 H11A 0.954(19) . ? C11 H11C 0.96(2) . ? C12 H12B 0.92(2) . ? C12 H12A 0.97(2) . ? C12 H12C 0.93(2) . ? C21 H21A 0.955(18) . ? C21 H21B 0.99(2) . ? C21 H21C 1.05(2) . ? C22 H22C 1.01(2) . ? C22 H22A 0.96(2) . ? C22 H22B 0.99(2) . ? C23 H23A 1.000(19) . ? C23 H23B 1.01(2) . ? C23 H23C 1.01(2) . ? C31 H31A 0.96(2) . ? C31 H31B 0.95(2) . ? C31 H31C 0.94(3) . ? C32 H32A 0.97(2) . ? C32 H32C 0.98(2) . ? C32 H32B 0.97(2) . ? C33 H33A 0.99(2) . ? C33 H33B 1.00(2) . ? C33 H33C 0.96(2) . ? C41 H43A 1.01(2) . ? C41 H41B 1.00(2) . ? C41 H41C 1.00(3) . ? C42 H42A 0.94(2) . ? C42 H42B 0.91(2) . ? C42 H42C 1.02(2) . ? C43 H41A 0.94(2) . ? C43 H43C 1.01(2) . ? C43 H43B 0.99(2) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 Ga1 C4 117.31(5) . . ? C2 Ga1 C3 117.02(6) . . ? C4 Ga1 C3 117.11(6) . . ? C2 Ga1 C1 101.19(5) . . ? C4 Ga1 C1 99.62(5) . . ? C3 Ga1 C1 98.67(5) . . ? C1 N1 C5 177.56(13) . . ?

188

N1 C1 Ga1 175.15(11) . . ? C21 C2 C23 108.55(13) . . ? C21 C2 C22 107.17(14) . . ? C23 C2 C22 108.03(12) . . ? C21 C2 Ga1 112.48(10) . . ? C23 C2 Ga1 108.24(9) . . ? C22 C2 Ga1 112.23(9) . . ? C31 C3 C32 108.97(16) . . ? C31 C3 C33 108.66(16) . . ? C32 C3 C33 107.41(13) . . ? C31 C3 Ga1 108.08(10) . . ? C32 C3 Ga1 112.41(11) . . ? C33 C3 Ga1 111.24(10) . . ? C43 C4 C41 107.99(14) . . ? C43 C4 C42 107.00(14) . . ? C41 C4 C42 108.83(15) . . ? C43 C4 Ga1 112.25(10) . . ? C41 C4 Ga1 109.06(11) . . ? C42 C4 Ga1 111.59(10) . . ? C6 C5 C10 124.14(11) . . ? C6 C5 N1 118.04(11) . . ? C10 C5 N1 117.81(11) . . ? C7 C6 C5 116.70(11) . . ? C7 C6 C11 122.04(12) . . ? C5 C6 C11 121.26(11) . . ? C8 C7 C6 120.88(12) . . ? C8 C7 H7 120.7(10) . . ? C6 C7 H7 118.5(10) . . ? C9 C8 C7 120.49(12) . . ? C9 C8 H8 120.4(10) . . ? C7 C8 H8 119.1(10) . . ? C8 C9 C10 121.12(12) . . ? C8 C9 H9 119.9(11) . . ? C10 C9 H9 118.9(11) . . ? C9 C10 C5 116.58(12) . . ? C9 C10 C12 122.14(12) . . ? C5 C10 C12 121.27(12) . . ? C6 C11 H11B 110.4(12) . . ? C6 C11 H11A 111.7(11) . . ? H11B C11 H11A 109.1(16) . . ? C6 C11 H11C 112.2(11) . . ? H11B C11 H11C 104.9(16) . . ? H11A C11 H11C 108.3(16) . . ? C10 C12 H12B 112.1(12) . . ? C10 C12 H12A 111.9(12) . . ? H12B C12 H12A 104.1(16) . . ? C10 C12 H12C 109.5(13) . . ? H12B C12 H12C 108.3(17) . . ? H12A C12 H12C 110.8(17) . . ? C2 C21 H21A 109.5(11) . . ? C2 C21 H21B 108.6(12) . . ? H21A C21 H21B 112.4(16) . . ? C2 C21 H21C 110.3(12) . . ? H21A C21 H21C 108.9(16) . . ? H21B C21 H21C 107.1(17) . . ? C2 C22 H22C 108.9(11) . . ?

189

C2 C22 H22A 109.5(13) . . ? H22C C22 H22A 105.6(16) . . ? C2 C22 H22B 113.4(12) . . ? H22C C22 H22B 108.4(16) . . ? H22A C22 H22B 110.7(17) . . ? C2 C23 H23A 110.9(11) . . ? C2 C23 H23B 112.0(11) . . ? H23A C23 H23B 110.9(15) . . ? C2 C23 H23C 112.2(12) . . ? H23A C23 H23C 103.5(16) . . ? H23B C23 H23C 107.0(17) . . ? C3 C31 H31A 113.7(14) . . ? C3 C31 H31B 113.0(15) . . ? H31A C31 H31B 108(2) . . ? C3 C31 H31C 109.7(15) . . ? H31A C31 H31C 104.3(19) . . ? H31B C31 H31C 108(2) . . ? C3 C32 H32A 110.8(13) . . ? C3 C32 H32C 115.6(13) . . ? H32A C32 H32C 108.4(18) . . ? C3 C32 H32B 106.6(14) . . ? H32A C32 H32B 106.4(19) . . ? H32C C32 H32B 108.6(19) . . ? C3 C33 H33A 112.7(12) . . ? C3 C33 H33B 112.1(12) . . ? H33A C33 H33B 110.8(17) . . ? C3 C33 H33C 107.2(14) . . ? H33A C33 H33C 106.1(17) . . ? H33B C33 H33C 107.5(17) . . ? C4 C41 H43A 109.3(12) . . ? C4 C41 H41B 111.1(13) . . ? H43A C41 H41B 112.7(18) . . ? C4 C41 H41C 110.1(14) . . ? H43A C41 H41C 107.1(19) . . ? H41B C41 H41C 106.4(19) . . ? C4 C42 H42A 110.4(14) . . ? C4 C42 H42B 110.5(15) . . ? H42A C42 H42B 103.5(19) . . ? C4 C42 H42C 112.4(14) . . ? H42A C42 H42C 111.1(19) . . ? H42B C42 H42C 109(2) . . ? C4 C43 H41A 108.6(12) . . ? C4 C43 H43C 113.3(12) . . ? H41A C43 H43C 110.3(17) . . ? C4 C43 H43B 107.9(14) . . ? H41A C43 H43B 103.2(18) . . ? H43C C43 H43B 113.1(18) . . ?

_diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.511 _refine_diff_density_min -0.297 _refine_diff_density_rms 0.046

190

CIF File For [3-methylindolyl(AlMe2)]2

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C22 H28 Al2 N2' _chemical_formula_sum 'C22 H28 Al2 N2'

_chemical_formula_weight 374.42 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Al' 'Al' 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M P2(1)/c loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2'

_cell_length_a 7.9554(4) _cell_length_b 18.7424(10) _cell_length_c 14.6172(7) _cell_angle_alpha 90.00 _cell_angle_beta 104.9450(10) _cell_angle_gamma 90.00 _cell_volume 2105.75(18) _cell_formula_units_Z 4 _cell_measurement_temperature -133 _cell_measurement_reflns_used _cell_measurement_theta_min 1.81 _cell_measurement_theta_max 26.00

_exptl_crystal_description brick _exptl_crystal_colour colorless _exptl_crystal_size_max .30

191

_exptl_crystal_size_mid .30 _exptl_crystal_size_min .25 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.181 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 800 _exptl_absorpt_coefficient_mu 0.146 _exptl_absorpt_correction_type ? _exptl_absorpt_correction_T_min 0.895 _exptl_absorpt_correction_T_max 1.00 _exptl_absorpt_process_details ?

_exptl_special_details ; ? ;

_diffrn_ambient_temperature -133 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator 'graphite' _diffrn_measurement_device_type 'Bruker platform with 6k CCD' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 14293 _diffrn_reflns_av_R_equivalents 0.0211 _diffrn_reflns_av_sigmaI/netI 0.0262 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min -20 _diffrn_reflns_limit_k_max 23 _diffrn_reflns_limit_l_min -18 _diffrn_reflns_limit_l_max 16 _diffrn_reflns_theta_min 1.81 _diffrn_reflns_theta_max 26.00 _reflns_number_total 4133 _reflns_number_gt 3778 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630 ' _computing_cell_refinement 'Saintplus 5.45 ' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based

192

on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0887P)^2^+1.1754P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 4133 _refine_ls_number_parameters 377 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0597 _refine_ls_R_factor_gt 0.0556 _refine_ls_wR_factor_ref 0.1643 _refine_ls_wR_factor_gt 0.1614 _refine_ls_goodness_of_fit_ref 1.146 _refine_ls_restrained_S_all 1.146 _refine_ls_shift/su_max 0.080 _refine_ls_shift/su_mean 0.014 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Al1 Al 0.45089(9) 0.71324(3) 0.19894(4) 0.0303(2) Uani 1 1 d . . . Al2 Al 0.51240(8) 0.64212(3) 0.03571(4) 0.0275(2) Uani 1 1 d . A . C1 C 0.2174(4) 0.73838(15) 0.2065(2) 0.0536(7) Uani 1 1 d . A . H1A H 0.2236 0.7615 0.2658 0.080 Uiso 1 1 calc R . . H1B H 0.1482 0.6959 0.2019 0.080 Uiso 1 1 calc R . . H1C H 0.1653 0.7701 0.1554 0.080 Uiso 1 1 calc R . . C2 C 0.6490(4) 0.74076(15) 0.30206(18) 0.0559(7) Uani 1 1 d . A . H2A H 0.6082 0.7637 0.3510 0.084 Uiso 1 1 calc R . . H2B H 0.7218 0.7731 0.2787 0.084 Uiso 1 1 calc R . . H2C H 0.7147 0.6990 0.3273 0.084 Uiso 1 1 calc R . . C3 C 0.3260(4) 0.61290(16) -0.07178(19) 0.0544(7) Uani 1 1 d . . . H3A H 0.3745 0.5903 -0.1181 0.082 Uiso 1 1 calc R A .

193

H3B H 0.2601 0.6540 -0.0993 0.082 Uiso 1 1 calc R . . H3C H 0.2511 0.5799 -0.0511 0.082 Uiso 1 1 calc R . . C4 C 0.7507(3) 0.62352(14) 0.03087(19) 0.0456(6) Uani 1 1 d . . . H4A H 0.7501 0.5997 -0.0274 0.068 Uiso 1 1 calc R A . H4B H 0.8070 0.5938 0.0833 0.068 Uiso 1 1 calc R . . H4C H 0.8124 0.6678 0.0343 0.068 Uiso 1 1 calc R . . C12 C 0.4887(3) 0.85151(10) -0.00152(14) 0.0263(4) Uani 1 1 d . . . N1 N 0.5121(5) 0.74454(17) 0.0795(2) 0.0213(8) Uiso 0.56 1 d P A 3 C10 C 0.6769(7) 0.7781(2) 0.0935(3) 0.0248(9) Uani 0.56 1 d P A 3 H10A H 0.7796 0.7591 0.1311 0.030 Uiso 0.56 1 calc PR A 3 C11 C 0.6688(5) 0.84073(18) 0.0463(2) 0.0255(7) Uani 0.56 1 d P A 3 C13 C 0.4039(6) 0.9054(2) -0.0630(3) 0.0364(9) Uani 0.56 1 d P A 3 H13A H 0.4657 0.9438 -0.0782 0.044 Uiso 0.56 1 calc PR A 3 C14 C 0.2273(9) 0.9000(4) -0.1001(5) 0.0406(15) Uani 0.56 1 d P A 3 H14A H 0.1691 0.9350 -0.1414 0.049 Uiso 0.56 1 calc PR A 3 C15 C 0.1334(9) 0.8429(3) -0.0769(4) 0.0410(13) Uani 0.56 1 d P A 3 H15A H 0.0132 0.8416 -0.1012 0.049 Uiso 0.56 1 calc PR A 3 C16 C 0.2157(6) 0.7881(3) -0.0184(3) 0.0292(9) Uani 0.56 1 d P A 3 H16A H 0.1532 0.7495 -0.0042 0.035 Uiso 0.56 1 calc PR A 3 C17 C 0.3953(5) 0.79289(19) 0.0184(2) 0.0208(7) Uani 0.56 1 d P A 3 C18 C 0.8149(9) 0.8898(4) 0.0448(5) 0.0424(17) Uani 0.56 1 d P A 3 H18A H 0.9219 0.8699 0.0822 0.064 Uiso 0.56 1 calc PR A 3 H18B H 0.7949 0.9352 0.0703 0.064 Uiso 0.56 1 calc PR A 3 H18C H 0.8224 0.8958 -0.0193 0.064 Uiso 0.56 1 calc PR A 3 N1A N 0.4541(6) 0.7421(2) 0.0653(3) 0.0219(10) Uiso 0.44 1 d P A 1 C10A C 0.2934(10) 0.7699(3) 0.0073(4) 0.0286(11) Uani 0.44 1 d P A 1 H10D H 0.1883 0.7457 -0.0022 0.034 Uiso 0.44 1 calc PR A 1 C11A C 0.3065(7) 0.8325(3) -0.0312(3) 0.0334(11) Uani 0.44 1 d P A 1 C13A C 0.7593(11) 0.9133(4) 0.0215(6) 0.0368(18) Uani 0.44 1 d P A 1 H13D H 0.8244 0.9516 0.0092 0.044 Uiso 0.44 1 calc PR A 1 C14A C 0.5820(7) 0.9121(3) -0.0183(4) 0.0369(11) Uani 0.44 1 d P A 1 H14D H 0.5259 0.9499 -0.0550 0.044 Uiso 0.44 1 calc PR A 1 C15A C 0.8421(9) 0.8588(4) 0.0793(5) 0.0395(15) Uani 0.44 1 d P A 1 H15D H 0.9614 0.8615 0.1059 0.047 Uiso 0.44 1 calc PR A 1 C16A C 0.7500(9) 0.7994(3) 0.0986(4) 0.0310(12) Uani 0.44 1 d P A 1 H16D H 0.8064 0.7629 0.1378 0.037 Uiso 0.44 1 calc PR A 1 C17A C 0.5766(8) 0.7966(3) 0.0585(4) 0.0268(9) Uani 0.44 1 d P A 1 C18A C 0.1651(11) 0.8759(5) -0.0917(6) 0.042(2) Uani 0.44 1 d P A 1 H18D H 0.0564 0.8512 -0.1005 0.062 Uiso 0.44 1 calc PR A 1 H18E H 0.1887 0.8836 -0.1521 0.062 Uiso 0.44 1 calc PR A 1 H18F H 0.1586 0.9210 -0.0617 0.062 Uiso 0.44 1 calc PR A 1 C22 C 0.4443(3) 0.50332(10) 0.22984(14) 0.0266(4) Uani 1 1 d . . . N2 N 0.4993(5) 0.61222(17) 0.1677(2) 0.0254(7) Uiso 0.56 1 d P A 1 C20 C 0.6585(7) 0.5830(3) 0.2263(3) 0.0275(9) Uani 0.56 1 d P A 1 H20A H 0.7655 0.6058 0.2362 0.033 Uiso 0.56 1 calc PR A 1 C21 C 0.6382(5) 0.5204(2) 0.2648(2) 0.0285(8) Uani 0.56 1 d P A 1 C23 C 0.3575(6) 0.44518(19) 0.2499(3) 0.0333(8) Uani 0.56 1 d P A 1 H23A H 0.4132 0.4085 0.2890 0.040 Uiso 0.56 1 calc PR A 1 C24 C 0.1797(7) 0.4447(3) 0.2079(4) 0.0386(10) Uani 0.56 1 d P A 1 H24A H 0.1129 0.4066 0.2193 0.046 Uiso 0.56 1 calc PR A 1 C25 C 0.0996(12) 0.5001(4) 0.1489(6) 0.0383(16) Uani 0.56 1 d P A 1 H25A H -0.0195 0.4983 0.1210 0.046 Uiso 0.56 1 calc PR A 1 C26 C 0.1965(6) 0.5582(3) 0.1315(3) 0.0312(10) Uani 0.56 1 d P A 1 H26A H 0.1436 0.5953 0.0924 0.037 Uiso 0.56 1 calc PR A 1 C27 C 0.3740(5) 0.55914(18) 0.1739(3) 0.0260(8) Uani 0.56 1 d P A 1 C28 C 0.7706(11) 0.4739(4) 0.3261(5) 0.0385(15) Uani 0.56 1 d P A 1

194

H28A H 0.8826 0.4964 0.3379 0.058 Uiso 0.56 1 calc PR A 1 H28B H 0.7739 0.4290 0.2951 0.058 Uiso 0.56 1 calc PR A 1 H28C H 0.7413 0.4661 0.3850 0.058 Uiso 0.56 1 calc PR A 1 N2A N 0.4359(6) 0.6116(2) 0.1501(3) 0.0215(9) Uiso 0.44 1 d P A 3 C20A C 0.2638(8) 0.5820(3) 0.1296(4) 0.0266(12) Uani 0.44 1 d P A 3 H20D H 0.1674 0.6041 0.0901 0.032 Uiso 0.44 1 calc PR A 3 C21A C 0.2554(6) 0.5200(3) 0.1723(3) 0.0260(9) Uani 0.44 1 d P A 3 C23A C 0.6778(8) 0.4459(3) 0.3285(3) 0.0301(10) Uani 0.44 1 d P A 3 H23D H 0.7263 0.4084 0.3684 0.036 Uiso 0.44 1 calc PR A 3 C24A C 0.5011(6) 0.4467(2) 0.2860(3) 0.0250(9) Uani 0.44 1 d P A 3 H24D H 0.4268 0.4108 0.2956 0.030 Uiso 0.44 1 calc PR A 3 C25A C 0.7836(12) 0.5011(4) 0.3116(6) 0.0299(16) Uani 0.44 1 d P A 3 H25D H 0.9024 0.4996 0.3404 0.036 Uiso 0.44 1 calc PR A 3 C26A C 0.7165(8) 0.5581(3) 0.2530(4) 0.0265(11) Uani 0.44 1 d P A 3 H26D H 0.7883 0.5943 0.2415 0.032 Uiso 0.44 1 calc PR A 3 C27A C 0.5375(6) 0.5593(2) 0.2117(3) 0.0192(8) Uani 0.44 1 d P A 3 C28A C 0.1033(15) 0.4746(5) 0.1701(8) 0.039(2) Uani 0.44 1 d P A 3 H28D H 0.0011 0.4960 0.1300 0.058 Uiso 0.44 1 calc PR A 3 H28E H 0.0890 0.4698 0.2331 0.058 Uiso 0.44 1 calc PR A 3 H28F H 0.1208 0.4283 0.1459 0.058 Uiso 0.44 1 calc PR A 3 loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Al1 0.0504(4) 0.0184(3) 0.0257(3) 0.0018(2) 0.0162(3) 0.0018(2) Al2 0.0398(4) 0.0195(3) 0.0253(3) -0.0004(2) 0.0122(3) 0.0004(2) C1 0.0724(18) 0.0494(15) 0.0510(15) 0.0123(12) 0.0378(14) 0.0206(13) C2 0.086(2) 0.0450(15) 0.0313(12) 0.0042(11) 0.0057(13) -0.0137(14) C3 0.0593(16) 0.0553(17) 0.0455(15) -0.0130(13) 0.0080(12) -0.0161(13) C4 0.0516(14) 0.0426(13) 0.0469(14) 0.0035(11) 0.0205(11) 0.0138(11) C12 0.0396(11) 0.0210(9) 0.0216(9) 0.0010(7) 0.0137(8) 0.0041(8) C10 0.020(2) 0.025(2) 0.029(2) -0.0038(17) 0.0050(19) 0.0013(19) C11 0.0330(18) 0.0211(17) 0.0268(17) -0.0055(14) 0.0156(15) -0.0047(15) C13 0.062(3) 0.0232(18) 0.0281(18) 0.0055(15) 0.0188(18) 0.0137(18) C14 0.060(5) 0.038(3) 0.025(2) 0.008(2) 0.012(3) 0.028(3) C15 0.037(3) 0.055(4) 0.030(3) 0.001(3) 0.006(2) 0.017(3) C16 0.024(2) 0.036(2) 0.029(2) -0.0003(18) 0.0085(18) 0.0016(19) C17 0.023(2) 0.0223(17) 0.0169(16) 0.0005(13) 0.0057(14) 0.0042(16) C18 0.043(5) 0.036(5) 0.050(5) -0.002(3) 0.016(4) -0.012(3) C10A 0.023(3) 0.033(3) 0.029(3) -0.003(2) 0.004(2) 0.004(3) C11A 0.040(3) 0.035(3) 0.023(2) -0.003(2) 0.005(2) 0.011(2) C13A 0.048(5) 0.026(4) 0.044(4) -0.003(3) 0.023(4) -0.009(3) C14A 0.056(3) 0.023(2) 0.035(3) 0.003(2) 0.017(2) 0.000(2) C15A 0.033(3) 0.038(4) 0.048(4) -0.005(3) 0.011(3) -0.004(3) C16A 0.034(3) 0.028(3) 0.032(3) 0.002(2) 0.013(3) 0.002(3) C17A 0.037(3) 0.022(2) 0.026(2) -0.0030(19) 0.017(2) 0.000(2) C18A 0.040(6) 0.046(7) 0.034(4) 0.011(5) 0.003(4) 0.015(4) C22 0.0377(11) 0.0216(9) 0.0236(9) -0.0023(8) 0.0132(8) 0.0014(8) C20 0.028(3) 0.028(2) 0.025(2) -0.0025(17) 0.0034(17) 0.000(2) C21 0.038(2) 0.0245(19) 0.0227(17) -0.0023(14) 0.0071(16) 0.0034(18) C23 0.050(3) 0.0202(17) 0.0323(19) 0.0024(14) 0.0151(18) -0.0014(16)

195

C24 0.047(3) 0.030(2) 0.043(3) -0.0037(19) 0.020(2) -0.012(2) C25 0.031(3) 0.047(5) 0.038(4) -0.002(3) 0.010(2) 0.000(3) C26 0.028(3) 0.029(3) 0.034(2) 0.001(2) 0.005(2) 0.003(2) C27 0.034(2) 0.0182(16) 0.0276(17) -0.0006(14) 0.0115(17) -0.0008(15) C28 0.044(4) 0.033(4) 0.035(3) 0.008(3) 0.004(2) 0.004(4) C20A 0.020(3) 0.027(3) 0.031(3) -0.001(2) 0.004(2) 0.001(2) C21A 0.023(2) 0.029(3) 0.028(2) -0.002(2) 0.0087(18) -0.003(2) C23A 0.044(3) 0.019(2) 0.029(2) 0.0050(19) 0.011(2) 0.008(2) C24A 0.035(3) 0.017(2) 0.027(2) -0.0010(16) 0.0139(19) -0.0016(17) C25A 0.029(3) 0.030(4) 0.030(4) 0.002(3) 0.006(2) -0.001(4) C26A 0.025(3) 0.023(3) 0.029(3) 0.002(2) 0.004(2) -0.004(2) C27A 0.025(2) 0.0142(19) 0.0183(19) 0.0000(15) 0.0050(17) 0.0000(17) C28A 0.030(3) 0.041(6) 0.046(6) 0.006(4) 0.010(4) -0.003(5)

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Al1 C1 1.947(3) . ? Al1 C2 1.949(3) . ? Al1 N2 2.008(3) . ? Al1 N1 2.016(3) . ? Al1 N2A 2.027(4) . ? Al1 N1A 2.033(4) . ? Al1 Al2 2.8828(8) . ? Al2 C3 1.941(3) . ? Al2 C4 1.946(2) . ? Al2 N1A 2.004(4) . ? Al2 N2A 2.004(4) . ? Al2 N1 2.024(3) . ? Al2 N2 2.037(3) . ? C1 H1A 0.9600 . ? C1 H1B 0.9600 . ? C1 H1C 0.9600 . ? C2 H2A 0.9600 . ? C2 H2B 0.9600 . ? C2 H2C 0.9600 . ? C3 H3A 0.9600 . ? C3 H3B 0.9600 . ? C3 H3C 0.9600 . ? C4 H4A 0.9600 . ? C4 H4B 0.9600 . ? C4 H4C 0.9600 . ? C12 C17 1.399(5) . ?

196

C12 C13 1.404(4) . ? C12 C14A 1.412(5) . ? C12 C17A 1.415(6) . ? C12 C11 1.438(4) . ? C12 C11A 1.446(6) . ? N1 C10 1.421(6) . ? N1 C17 1.433(5) . ? C10 C11 1.354(6) . ? C10 H10A 0.9300 . ? C11 C18 1.487(7) . ? C13 C14 1.373(8) . ? C13 H13A 0.9300 . ? C14 C15 1.395(8) . ? C14 H14A 0.9300 . ? C15 C16 1.389(8) . ? C15 H15A 0.9300 . ? C16 C17 1.394(5) . ? C16 H16A 0.9300 . ? C18 H18A 0.9600 . ? C18 H18B 0.9600 . ? C18 H18C 0.9600 . ? N1A C17A 1.433(6) . ? N1A C10A 1.438(8) . ? C10A C11A 1.316(8) . ? C10A H10D 0.9300 . ? C11A C18A 1.483(9) . ? C13A C15A 1.379(9) . ? C13A C14A 1.381(10) . ? C13A H13D 0.9300 . ? C14A H14D 0.9300 . ? C15A C16A 1.401(10) . ? C15A H15D 0.9300 . ? C16A C17A 1.353(8) . ? C16A H16D 0.9300 . ? C18A H18D 0.9600 . ? C18A H18E 0.9600 . ? C18A H18F 0.9600 . ? C22 C24A 1.347(5) . ? C22 C27A 1.349(5) . ? C22 C27 1.356(4) . ? C22 C23 1.362(4) . ? C22 C21 1.528(5) . ? C22 C21A 1.553(5) . ? N2 C27 1.428(5) . ? N2 C20 1.442(6) . ? C20 C21 1.329(6) . ? C20 H20A 0.9300 . ? C21 C28 1.478(8) . ? C23 C24 1.389(7) . ? C23 H23A 0.9300 . ? C24 C25 1.395(7) . ? C24 H24A 0.9300 . ? C25 C26 1.396(9) . ? C25 H25A 0.9300 . ? C26 C27 1.388(6) . ? C26 H26A 0.9300 . ?

197

C28 H28A 0.9600 . ? C28 H28B 0.9600 . ? C28 H28C 0.9600 . ? N2A C27A 1.432(6) . ? N2A C20A 1.435(8) . ? C20A C21A 1.330(8) . ? C20A H20D 0.9300 . ? C21A C28A 1.473(12) . ? C23A C24A 1.383(8) . ? C23A C25A 1.396(8) . ? C23A H23D 0.9300 . ? C24A H24D 0.9300 . ? C25A C26A 1.388(10) . ? C25A H25D 0.9300 . ? C26A C27A 1.396(7) . ? C26A H26D 0.9300 . ? C28A H28D 0.9600 . ? C28A H28E 0.9600 . ? C28A H28F 0.9600 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 Al1 C2 119.04(14) . . ? C1 Al1 N2 118.88(14) . . ? C2 Al1 N2 105.14(15) . . ? C1 Al1 N1 115.18(13) . . ? C2 Al1 N1 105.36(14) . . ? N2 Al1 N1 88.51(13) . . ? C1 Al1 N2A 106.09(16) . . ? C2 Al1 N2A 118.92(16) . . ? N2 Al1 N2A 14.34(12) . . ? N1 Al1 N2A 88.51(14) . . ? C1 Al1 N1A 103.80(16) . . ? C2 Al1 N1A 117.68(16) . . ? N2 Al1 N1A 88.94(15) . . ? N1 Al1 N1A 12.94(13) . . ? N2A Al1 N1A 85.75(16) . . ? C1 Al1 Al2 121.79(10) . . ? C2 Al1 Al2 119.11(10) . . ? N2 Al1 Al2 44.95(9) . . ? N1 Al1 Al2 44.58(9) . . ? N2A Al1 Al2 44.04(11) . . ? N1A Al1 Al2 44.03(11) . . ? C3 Al2 C4 117.91(13) . . ? C3 Al2 N1A 105.53(17) . . ? C4 Al2 N1A 117.19(16) . . ? C3 Al2 N2A 105.18(16) . . ? C4 Al2 N2A 119.16(15) . . ? N1A Al2 N2A 87.11(16) . . ? C3 Al2 N1 117.44(14) . . ?

198

C4 Al2 N1 105.20(14) . . ? N1A Al2 N1 13.00(13) . . ? N2A Al2 N1 88.91(14) . . ? C3 Al2 N2 118.30(14) . . ? C4 Al2 N2 105.85(13) . . ? N1A Al2 N2 88.94(15) . . ? N2A Al2 N2 14.29(12) . . ? N1 Al2 N2 87.52(13) . . ? C3 Al2 Al1 122.89(10) . . ? C4 Al2 Al1 119.19(9) . . ? N1A Al2 Al1 44.83(11) . . ? N2A Al2 Al1 44.66(11) . . ? N1 Al2 Al1 44.37(9) . . ? N2 Al2 Al1 44.15(9) . . ? Al1 C1 H1A 109.5 . . ? Al1 C1 H1B 109.5 . . ? H1A C1 H1B 109.5 . . ? Al1 C1 H1C 109.5 . . ? H1A C1 H1C 109.5 . . ? H1B C1 H1C 109.5 . . ? Al1 C2 H2A 109.5 . . ? Al1 C2 H2B 109.5 . . ? H2A C2 H2B 109.5 . . ? Al1 C2 H2C 109.5 . . ? H2A C2 H2C 109.5 . . ? H2B C2 H2C 109.5 . . ? Al2 C3 H3A 109.5 . . ? Al2 C3 H3B 109.5 . . ? H3A C3 H3B 109.5 . . ? Al2 C3 H3C 109.5 . . ? H3A C3 H3C 109.5 . . ? H3B C3 H3C 109.5 . . ? Al2 C4 H4A 109.5 . . ? Al2 C4 H4B 109.5 . . ? H4A C4 H4B 109.5 . . ? Al2 C4 H4C 109.5 . . ? H4A C4 H4C 109.5 . . ? H4B C4 H4C 109.5 . . ? C17 C12 C13 120.4(3) . . ? C17 C12 C14A 177.7(3) . . ? C13 C12 C14A 59.8(3) . . ? C17 C12 C17A 60.2(3) . . ? C13 C12 C17A 178.4(3) . . ? C14A C12 C17A 119.7(4) . . ? C17 C12 C11 107.7(2) . . ? C13 C12 C11 131.8(3) . . ? C14A C12 C11 72.3(3) . . ? C17A C12 C11 47.5(3) . . ? C17 C12 C11A 47.4(3) . . ? C13 C12 C11A 73.0(3) . . ? C14A C12 C11A 132.6(3) . . ? C17A C12 C11A 107.7(3) . . ? C11 C12 C11A 155.1(3) . . ? C10 N1 C17 103.6(3) . . ? C10 N1 Al1 115.1(3) . . ? C17 N1 Al1 117.5(2) . . ?

199

C10 N1 Al2 112.9(3) . . ? C17 N1 Al2 117.1(3) . . ? Al1 N1 Al2 91.05(13) . . ? C11 C10 N1 112.9(4) . . ? C11 C10 H10A 123.5 . . ? N1 C10 H10A 123.5 . . ? C10 C11 C12 106.3(3) . . ? C10 C11 C18 127.5(5) . . ? C12 C11 C18 126.2(4) . . ? C14 C13 C12 118.2(4) . . ? C14 C13 H13A 120.9 . . ? C12 C13 H13A 120.9 . . ? C13 C14 C15 121.3(6) . . ? C13 C14 H14A 119.4 . . ? C15 C14 H14A 119.4 . . ? C16 C15 C14 121.3(7) . . ? C16 C15 H15A 119.3 . . ? C14 C15 H15A 119.3 . . ? C15 C16 C17 117.6(4) . . ? C15 C16 H16A 121.2 . . ? C17 C16 H16A 121.2 . . ? C16 C17 C12 121.1(3) . . ? C16 C17 N1 129.4(4) . . ? C12 C17 N1 109.4(3) . . ? C11 C18 H18A 109.5 . . ? C11 C18 H18B 109.5 . . ? H18A C18 H18B 109.5 . . ? C11 C18 H18C 109.5 . . ? H18A C18 H18C 109.5 . . ? H18B C18 H18C 109.5 . . ? C17A N1A C10A 102.6(4) . . ? C17A N1A Al2 116.9(3) . . ? C10A N1A Al2 115.6(3) . . ? C17A N1A Al1 115.7(3) . . ? C10A N1A Al1 115.7(3) . . ? Al2 N1A Al1 91.14(17) . . ? C11A C10A N1A 114.8(6) . . ? C11A C10A H10D 122.6 . . ? N1A C10A H10D 122.6 . . ? C10A C11A C12 106.0(5) . . ? C10A C11A C18A 127.8(7) . . ? C12 C11A C18A 126.2(6) . . ? C15A C13A C14A 121.4(8) . . ? C15A C13A H13D 119.3 . . ? C14A C13A H13D 119.3 . . ? C13A C14A C12 117.7(5) . . ? C13A C14A H14D 121.1 . . ? C12 C14A H14D 121.2 . . ? C13A C15A C16A 121.3(8) . . ? C13A C15A H15D 119.3 . . ? C16A C15A H15D 119.3 . . ? C17A C16A C15A 118.1(6) . . ? C17A C16A H16D 121.0 . . ? C15A C16A H16D 121.0 . . ? C16A C17A C12 121.7(4) . . ? C16A C17A N1A 129.3(5) . . ?

200

C12 C17A N1A 109.0(5) . . ? C11A C18A H18D 109.5 . . ? C11A C18A H18E 109.5 . . ? H18D C18A H18E 109.5 . . ? C11A C18A H18F 109.5 . . ? H18D C18A H18F 109.5 . . ? H18E C18A H18F 109.5 . . ? C24A C22 C27A 128.1(3) . . ? C24A C22 C27 175.3(3) . . ? C27A C22 C27 56.3(3) . . ? C24A C22 C23 49.2(3) . . ? C27A C22 C23 177.3(3) . . ? C27 C22 C23 126.4(3) . . ? C24A C22 C21 79.1(3) . . ? C27A C22 C21 49.1(2) . . ? C27 C22 C21 105.3(3) . . ? C23 C22 C21 128.3(3) . . ? C24A C22 C21A 127.9(3) . . ? C27A C22 C21A 104.0(3) . . ? C27 C22 C21A 47.7(2) . . ? C23 C22 C21A 78.7(3) . . ? C21 C22 C21A 153.1(3) . . ? C27 N2 C20 102.6(3) . . ? C27 N2 Al1 117.6(2) . . ? C20 N2 Al1 114.4(3) . . ? C27 N2 Al2 117.3(3) . . ? C20 N2 Al2 114.6(3) . . ? Al1 N2 Al2 90.90(13) . . ? C21 C20 N2 113.8(4) . . ? C21 C20 H20A 123.1 . . ? N2 C20 H20A 123.1 . . ? C20 C21 C28 129.2(5) . . ? C20 C21 C22 105.4(3) . . ? C28 C21 C22 125.4(4) . . ? C22 C23 C24 115.1(4) . . ? C22 C23 H23A 122.4 . . ? C24 C23 H23A 122.4 . . ? C23 C24 C25 121.3(5) . . ? C23 C24 H24A 119.3 . . ? C25 C24 H24A 119.3 . . ? C24 C25 C26 120.5(7) . . ? C24 C25 H25A 119.8 . . ? C26 C25 H25A 119.7 . . ? C27 C26 C25 118.3(6) . . ? C27 C26 H26A 120.8 . . ? C25 C26 H26A 120.8 . . ? C22 C27 C26 118.3(3) . . ? C22 C27 N2 112.9(3) . . ? C26 C27 N2 128.8(4) . . ? C21 C28 H28A 109.5 . . ? C21 C28 H28B 109.5 . . ? H28A C28 H28B 109.5 . . ? C21 C28 H28C 109.5 . . ? H28A C28 H28C 109.5 . . ? H28B C28 H28C 109.5 . . ? C27A N2A C20A 102.7(4) . . ?

201

C27A N2A Al2 118.4(3) . . ? C20A N2A Al2 114.5(3) . . ? C27A N2A Al1 116.7(3) . . ? C20A N2A Al1 113.8(3) . . ? Al2 N2A Al1 91.31(16) . . ? C21A C20A N2A 113.6(5) . . ? C21A C20A H20D 123.2 . . ? N2A C20A H20D 123.2 . . ? C20A C21A C28A 129.5(6) . . ? C20A C21A C22 105.7(4) . . ? C28A C21A C22 124.8(5) . . ? C24A C23A C25A 120.1(5) . . ? C24A C23A H23D 119.9 . . ? C25A C23A H23D 119.9 . . ? C22 C24A C23A 115.1(4) . . ? C22 C24A H24D 122.4 . . ? C23A C24A H24D 122.4 . . ? C26A C25A C23A 121.8(7) . . ? C26A C25A H25D 119.1 . . ? C23A C25A H25D 119.1 . . ? C25A C26A C27A 117.8(6) . . ? C25A C26A H26D 121.1 . . ? C27A C26A H26D 121.1 . . ? C22 C27A C26A 117.0(4) . . ? C22 C27A N2A 114.0(4) . . ? C26A C27A N2A 129.0(5) . . ? C21A C28A H28D 109.5 . . ? C21A C28A H28E 109.5 . . ? H28D C28A H28E 109.5 . . ? C21A C28A H28F 109.5 . . ? H28D C28A H28F 109.5 . . ? H28E C28A H28F 109.5 . . ?

_diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.478 _refine_diff_density_min -0.425 _refine_diff_density_rms 0.068

202

CIF File For [{di(3-methylindolyl)phenylmethane}(AlMe2)2]

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C29 H32 Al2 N2' _chemical_formula_sum 'C29 H32 Al2 N2'

_chemical_formula_weight 462.53 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Al' 'Al' 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting 'Triclinic' _symmetry_space_group_name_H-M 'P -1' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z'

_cell_length_a 11.9211(18) _cell_length_b 12.4867(19) _cell_length_c 18.489(3) _cell_angle_alpha 91.419(3) _cell_angle_beta 107.696(3) _cell_angle_gamma 101.049(3) _cell_volume 2563.2(7) _cell_formula_units_Z 4 _cell_measurement_temperature -133 _cell_measurement_reflns_used 6800 _cell_measurement_theta_min 2.206 _cell_measurement_theta_max 28.336

_exptl_crystal_description 'rectangular Brick' _exptl_crystal_colour 'Colorless' _exptl_crystal_size_max .35 _exptl_crystal_size_mid .35 _exptl_crystal_size_min .25 _exptl_crystal_density_meas ?

203

_exptl_crystal_density_diffrn 1.199 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 984 _exptl_absorpt_coefficient_mu 0.133 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min .800 _exptl_absorpt_correction_T_max 1.00 _exptl_absorpt_process_details 'sadabs (Sheldrick, 1997)'

_exptl_special_details ; ? ;

_diffrn_ambient_temperature -133 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator 'graphite' _diffrn_measurement_device_type 'Bruker platform with 4k CCD' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 19281 _diffrn_reflns_av_R_equivalents 0.0234 _diffrn_reflns_av_sigmaI/netI 0.0327 _diffrn_reflns_limit_h_min -14 _diffrn_reflns_limit_h_max 14 _diffrn_reflns_limit_k_min -15 _diffrn_reflns_limit_k_max 15 _diffrn_reflns_limit_l_min -17 _diffrn_reflns_limit_l_max 22 _diffrn_reflns_theta_min 1.16 _diffrn_reflns_theta_max 26.00 _reflns_number_total 10067 _reflns_number_gt 8574 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630 ' _computing_cell_refinement 'Saintplus 5.45 ' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based

204

on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0706P)^2^+2.3039P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens diffmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 10067 _refine_ls_number_parameters 591 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0645 _refine_ls_R_factor_gt 0.0547 _refine_ls_wR_factor_ref 0.1486 _refine_ls_wR_factor_gt 0.1422 _refine_ls_goodness_of_fit_ref 1.026 _refine_ls_restrained_S_all 1.026 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Al1 Al 0.65780(6) 0.88497(5) 0.19976(4) 0.02694(15) Uani 1 1 d . . . Al2 Al 0.41366(6) 0.77009(6) 0.13826(4) 0.03305(17) Uani 1 1 d . . . Al2A Al 0.88450(6) 0.26276(6) 0.31488(4) 0.03072(16) Uani 1 1 d . . . Al1A Al 1.13235(6) 0.36420(5) 0.35924(4) 0.02904(16) Uani 1 1 d . . . N1 N 0.57115(17) 0.73139(14) 0.19347(10) 0.0283(4) Uani 1 1 d . . . N2 N 0.49598(16) 0.90373(14) 0.20751(9) 0.0259(4) Uani 1 1 d . . . N1A N 1.03638(16) 0.21171(15) 0.32305(10) 0.0271(4) Uani 1 1 d . . . N2A N 0.98226(17) 0.39406(15) 0.28713(10) 0.0280(4) Uani 1 1 d . . . C2 C 0.6920(3) 0.9268(2) 0.10629(14) 0.0439(6) Uani 1 1 d . . . H2A H 0.7752 0.9681 0.1190 0.066 Uiso 1 1 calc R . . H2B H 0.6368 0.9726 0.0800 0.066 Uiso 1 1 calc R . . H2C H 0.6812 0.8608 0.0730 0.066 Uiso 1 1 calc R . . C3 C 0.7884(2) 0.9375(2) 0.29540(13) 0.0353(5) Uani 1 1 d . . . H3A H 0.8601 0.9755 0.2839 0.053 Uiso 1 1 calc R . . H3B H 0.8072 0.8751 0.3244 0.053 Uiso 1 1 calc R . .

205

H3C H 0.7631 0.9882 0.3255 0.053 Uiso 1 1 calc R . . C4 C 0.2762(3) 0.6716(3) 0.15265(19) 0.0656(9) Uani 1 1 d . . . H4A H 0.2081 0.6610 0.1055 0.098 Uiso 1 1 calc R . . H4B H 0.2540 0.7034 0.1940 0.098 Uiso 1 1 calc R . . H4C H 0.2973 0.6009 0.1657 0.098 Uiso 1 1 calc R . . C5 C 0.3903(3) 0.7973(2) 0.03112(14) 0.0511(7) Uani 1 1 d . . . H5A H 0.3080 0.7625 0.0003 0.077 Uiso 1 1 calc R . . H5B H 0.4478 0.7667 0.0131 0.077 Uiso 1 1 calc R . . H5C H 0.4033 0.8764 0.0265 0.077 Uiso 1 1 calc R . . C11 C 0.59722(19) 0.63831(17) 0.16132(12) 0.0279(4) Uani 1 1 d . . . C12 C 0.6106(2) 0.62323(19) 0.08968(12) 0.0330(5) Uani 1 1 d . . . H12A H 0.6027 0.6783 0.0550 0.040 Uiso 1 1 calc R . . C13 C 0.6361(2) 0.5241(2) 0.07133(13) 0.0368(5) Uani 1 1 d . . . H13A H 0.6464 0.5110 0.0232 0.044 Uiso 1 1 calc R . . C14 C 0.6468(2) 0.4434(2) 0.12226(14) 0.0386(6) Uani 1 1 d . . . H14A H 0.6647 0.3765 0.1082 0.046 Uiso 1 1 calc R . . C15 C 0.6320(2) 0.45857(19) 0.19252(13) 0.0338(5) Uani 1 1 d . . . H15A H 0.6392 0.4031 0.2269 0.041 Uiso 1 1 calc R . . C16 C 0.60598(18) 0.55787(17) 0.21194(12) 0.0273(4) Uani 1 1 d . . . C17 C 0.58612(19) 0.59920(17) 0.27981(12) 0.0273(4) Uani 1 1 d . . . C18 C 0.56628(19) 0.70186(17) 0.26842(12) 0.0262(4) Uani 1 1 d . . . C19 C 0.5945(2) 0.53343(19) 0.34714(13) 0.0351(5) Uani 1 1 d . . . H19A H 0.5784 0.5748 0.3873 0.053 Uiso 1 1 calc R . . H19B H 0.6755 0.5182 0.3664 0.053 Uiso 1 1 calc R . . H19C H 0.5351 0.4642 0.3318 0.053 Uiso 1 1 calc R . . C21 C 0.46378(18) 1.00748(17) 0.19723(12) 0.0263(4) Uani 1 1 d . . . C22 C 0.4401(2) 1.06196(19) 0.13150(13) 0.0324(5) Uani 1 1 d . . . H22A H 0.4397 1.0291 0.0845 0.039 Uiso 1 1 calc R . . C23 C 0.4170(2) 1.1657(2) 0.13680(14) 0.0365(5) Uani 1 1 d . . . H23A H 0.4012 1.2051 0.0928 0.044 Uiso 1 1 calc R . . C24 C 0.4166(2) 1.2134(2) 0.20576(14) 0.0367(5) Uani 1 1 d . . . H24A H 0.4010 1.2850 0.2079 0.044 Uiso 1 1 calc R . . C25 C 0.4384(2) 1.15878(19) 0.27072(13) 0.0334(5) Uani 1 1 d . . . H25A H 0.4373 1.1916 0.3173 0.040 Uiso 1 1 calc R . . C26 C 0.46242(18) 1.05332(18) 0.26659(12) 0.0269(4) Uani 1 1 d . . . C27 C 0.4933(2) 0.97713(18) 0.32293(12) 0.0288(5) Uani 1 1 d . . . C28 C 0.51131(19) 0.88846(17) 0.28744(11) 0.0259(4) Uani 1 1 d . . . C29 C 0.5087(2) 0.9998(2) 0.40602(13) 0.0383(5) Uani 1 1 d . . . H29A H 0.5294 0.9364 0.4332 0.057 Uiso 1 1 calc R . . H29B H 0.4333 1.0134 0.4116 0.057 Uiso 1 1 calc R . . H29C H 0.5732 1.0644 0.4274 0.057 Uiso 1 1 calc R . . C2A C 1.2749(2) 0.4029(2) 0.32807(17) 0.0470(6) Uani 1 1 d . . . H2AA H 1.3424 0.4414 0.3713 0.070 Uiso 1 1 calc R . . H2AB H 1.2598 0.4506 0.2864 0.070 Uiso 1 1 calc R . . H2AC H 1.2947 0.3362 0.3107 0.070 Uiso 1 1 calc R . . C3A C 1.1515(3) 0.4038(2) 0.46589(13) 0.0459(6) Uani 1 1 d . . . H3AA H 1.2349 0.4414 0.4920 0.069 Uiso 1 1 calc R . . H3AB H 1.1321 0.3374 0.4906 0.069 Uiso 1 1 calc R . . H3AC H 1.0972 0.4525 0.4685 0.069 Uiso 1 1 calc R . . C4A C 0.7451(2) 0.1951(2) 0.22868(16) 0.0440(6) Uani 1 1 d . . . H4AA H 0.6754 0.1717 0.2464 0.066 Uiso 1 1 calc R . . H4AB H 0.7624 0.1313 0.2055 0.066 Uiso 1 1 calc R . . H4AC H 0.7275 0.2482 0.1909 0.066 Uiso 1 1 calc R . . C5A C 0.8496(3) 0.2800(3) 0.41021(17) 0.0535(7) Uani 1 1 d . . . H5AA H 0.7648 0.2475 0.4025 0.080 Uiso 1 1 calc R . . H5AB H 0.8659 0.3581 0.4269 0.080 Uiso 1 1 calc R . .

206

H5AC H 0.9007 0.2430 0.4491 0.080 Uiso 1 1 calc R . . C11A C 1.08216(18) 0.12815(17) 0.36650(12) 0.0273(4) Uani 1 1 d . . . C12A C 1.0914(2) 0.11033(19) 0.44188(13) 0.0328(5) Uani 1 1 d . . . H12B H 1.0658 0.1571 0.4721 0.039 Uiso 1 1 calc R . . C13A C 1.1391(2) 0.0223(2) 0.47124(14) 0.0388(5) Uani 1 1 d . . . H13B H 1.1461 0.0082 0.5225 0.047 Uiso 1 1 calc R . . C14A C 1.1773(2) -0.0461(2) 0.42704(15) 0.0407(6) Uani 1 1 d . . . H14B H 1.2102 -0.1059 0.4487 0.049 Uiso 1 1 calc R . . C15A C 1.1681(2) -0.02822(19) 0.35248(14) 0.0363(5) Uani 1 1 d . . . H15B H 1.1945 -0.0750 0.3227 0.044 Uiso 1 1 calc R . . C16A C 1.11925(18) 0.06007(18) 0.32128(12) 0.0285(4) Uani 1 1 d . . . C17A C 1.09315(19) 0.09876(18) 0.24573(12) 0.0291(5) Uani 1 1 d . . . C18A C 1.04437(19) 0.18819(17) 0.24774(12) 0.0273(4) Uani 1 1 d . B . C19A C 1.1155(2) 0.0398(2) 0.18125(14) 0.0387(5) Uani 1 1 d . . . H19D H 1.0924 0.0784 0.1352 0.058 Uiso 1 1 calc R . . H19E H 1.0676 -0.0352 0.1717 0.058 Uiso 1 1 calc R . . H19F H 1.2012 0.0379 0.1948 0.058 Uiso 1 1 calc R . . C21A C 0.96451(19) 0.50282(18) 0.28989(12) 0.0275(4) Uani 1 1 d . . . C22A C 0.9546(2) 0.5651(2) 0.35037(13) 0.0345(5) Uani 1 1 d . . . H22B H 0.9572 0.5356 0.3976 0.041 Uiso 1 1 calc R . . C23A C 0.9408(2) 0.6714(2) 0.33920(14) 0.0417(6) Uani 1 1 d . . . H23B H 0.9334 0.7156 0.3794 0.050 Uiso 1 1 calc R . . C24A C 0.9375(2) 0.7150(2) 0.27003(16) 0.0443(6) Uani 1 1 d . . . H24B H 0.9293 0.7888 0.2643 0.053 Uiso 1 1 calc R . . C25A C 0.9460(2) 0.6534(2) 0.21011(14) 0.0374(5) Uani 1 1 d . . . H25B H 0.9432 0.6836 0.1631 0.045 Uiso 1 1 calc R . . C26A C 0.95869(19) 0.54491(18) 0.21982(12) 0.0290(5) Uani 1 1 d . . . C27A C 0.96740(19) 0.45940(18) 0.16928(12) 0.0288(5) Uani 1 1 d . . . C28A C 0.98276(19) 0.37127(18) 0.20964(11) 0.0277(4) Uani 1 1 d . B . C29A C 0.9540(2) 0.4734(2) 0.08658(13) 0.0385(6) Uani 1 1 d . . . H29D H 0.9631 0.4064 0.0623 0.058 Uiso 1 1 calc R . . H29E H 1.0159 0.5351 0.0828 0.058 Uiso 1 1 calc R . . H29F H 0.8741 0.4878 0.0609 0.058 Uiso 1 1 calc R . . C1 C 0.55542(19) 0.78965(18) 0.32361(12) 0.0276(4) Uani 1 1 d . A . H1A H 0.6395 0.8192 0.3576 0.033 Uiso 1 1 calc R . . C31 C 0.4846(2) 0.74550(18) 0.37702(13) 0.0346(5) Uani 1 1 d . . . C32C C 0.3695(4) 0.7204(4) 0.3620(3) 0.0362(12) Uiso 0.64 1 d P A 1 H32A H 0.3208 0.7257 0.3115 0.043 Uiso 0.64 1 calc PR A 1 C33C C 0.3116(4) 0.6858(4) 0.4151(3) 0.0418(10) Uiso 0.64 1 d P A 1 H33A H 0.2263 0.6680 0.4011 0.050 Uiso 0.64 1 calc PR A 1 C34C C 0.3818(6) 0.6783(3) 0.4878(3) 0.0399(9) Uiso 0.64 1 d P A 1 H34A H 0.3437 0.6533 0.5243 0.048 Uiso 0.64 1 calc PR A 1 C35C C 0.5067(5) 0.7059(4) 0.5100(3) 0.0429(11) Uiso 0.64 1 d P A 1 H35A H 0.5536 0.6998 0.5609 0.051 Uiso 0.64 1 calc PR A 1 C36C C 0.5616(5) 0.7431(4) 0.4558(3) 0.0357(11) Uiso 0.64 1 d P A 1 H36A H 0.6466 0.7661 0.4695 0.043 Uiso 0.64 1 calc PR A 1 C32D C 0.3462(7) 0.7252(6) 0.3393(5) 0.0297(17) Uiso 0.36 1 d P A 3 H32C H 0.3113 0.7358 0.2872 0.036 Uiso 0.36 1 calc PR A 3 C33D C 0.2763(7) 0.6913(6) 0.3848(5) 0.0373(16) Uiso 0.36 1 d P A 3 H33B H 0.1910 0.6784 0.3646 0.045 Uiso 0.36 1 calc PR A 3 C34D C 0.3325(7) 0.6758(5) 0.4618(5) 0.0322(14) Uiso 0.36 1 d P A 3 H34B H 0.2823 0.6527 0.4922 0.039 Uiso 0.36 1 calc PR A 3 C35D C 0.4539(9) 0.6918(6) 0.4954(4) 0.0310(14) Uiso 0.36 1 d P A 3 H35B H 0.4897 0.6824 0.5476 0.037 Uiso 0.36 1 calc PR A 3 C36D C 0.5221(8) 0.7234(7) 0.4461(4) 0.0348(19) Uiso 0.36 1 d P A 3 H36B H 0.6065 0.7290 0.4671 0.042 Uiso 0.36 1 calc PR A 3

207

C1A C 0.9868(2) 0.25585(19) 0.18341(12) 0.0315(5) Uani 1 1 d . . . C31A C 1.0505(4) 0.2630(3) 0.1201(2) 0.0245(10) Uiso 0.66 1 d P B 1 C32A C 1.1602(4) 0.3287(4) 0.1283(2) 0.0300(8) Uiso 0.66 1 d P B 1 H32D H 1.2025 0.3728 0.1748 0.036 Uiso 0.66 1 calc PR B 1 C33A C 1.2104(4) 0.3318(4) 0.0702(2) 0.0406(9) Uiso 0.66 1 d P B 1 H33C H 1.2869 0.3774 0.0767 0.049 Uiso 0.66 1 calc PR B 1 C34A C 1.1480(4) 0.2678(4) 0.0021(3) 0.0420(10) Uiso 0.66 1 d P B 1 H34C H 1.1836 0.2700 -0.0375 0.050 Uiso 0.66 1 calc PR B 1 C35A C 1.0346(5) 0.2001(4) -0.0101(2) 0.0412(9) Uiso 0.66 1 d P B 1 H35C H 0.9929 0.1560 -0.0566 0.049 Uiso 0.66 1 calc PR B 1 C36A C 0.9855(4) 0.2010(4) 0.0504(2) 0.0390(10) Uiso 0.66 1 d P B 1 H36C H 0.908(4) 0.150(4) 0.048(3) 0.047 Uiso 0.66 1 d P C 1 C31B C 1.0185(7) 0.2385(7) 0.1144(4) 0.0224(19) Uiso 0.34 1 d P B 3 C32B C 1.1302(8) 0.2939(7) 0.1136(5) 0.0348(19) Uiso 0.34 1 d P B 3 H32E H 1.1811 0.3379 0.1585 0.042 Uiso 0.34 1 calc PR B 3 C33B C 1.1733(7) 0.2901(7) 0.0526(5) 0.0343(16) Uiso 0.34 1 d P B 3 H33D H 1.2504 0.3300 0.0541 0.041 Uiso 0.34 1 calc PR B 3 C34B C 1.0996(9) 0.2270(7) -0.0079(4) 0.0276(13) Uiso 0.34 1 d P B 3 H34D H 1.1250 0.2229 -0.0517 0.033 Uiso 0.34 1 calc PR B 3 C35B C 0.9812(9) 0.1628(8) -0.0120(5) 0.046(2) Uiso 0.34 1 d P B 3 H35D H 0.9314 0.1169 -0.0562 0.056 Uiso 0.34 1 calc PR B 3 C36B C 0.9451(9) 0.1725(8) 0.0524(6) 0.039(2) Uiso 0.34 1 d P B 3 H36D H 0.8689 0.1327 0.0527 0.047 Uiso 0.34 1 calc PR B 3 H1 H 0.900(2) 0.216(2) 0.1631(15) 0.038(7) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Al1 0.0339(3) 0.0254(3) 0.0256(3) 0.0022(2) 0.0137(3) 0.0090(3) Al2 0.0367(4) 0.0329(4) 0.0268(3) -0.0032(3) 0.0071(3) 0.0063(3) Al2A 0.0314(4) 0.0309(4) 0.0339(4) 0.0034(3) 0.0150(3) 0.0083(3) Al1A 0.0314(3) 0.0304(3) 0.0257(3) -0.0008(3) 0.0101(3) 0.0060(3) N1 0.0387(10) 0.0248(9) 0.0247(9) 0.0008(7) 0.0129(8) 0.0098(8) N2 0.0319(9) 0.0267(9) 0.0222(8) 0.0029(7) 0.0105(7) 0.0097(7) N1A 0.0318(9) 0.0288(9) 0.0238(9) 0.0024(7) 0.0119(7) 0.0085(8) N2A 0.0358(10) 0.0280(9) 0.0238(9) 0.0002(7) 0.0132(7) 0.0092(8) C2 0.0614(17) 0.0414(14) 0.0388(13) 0.0069(11) 0.0298(12) 0.0113(12) C3 0.0324(12) 0.0354(12) 0.0390(12) 0.0023(10) 0.0120(10) 0.0086(10) C4 0.0459(17) 0.071(2) 0.0606(19) -0.0035(16) 0.0071(14) -0.0172(15) C5 0.0683(19) 0.0565(17) 0.0268(12) -0.0032(11) 0.0056(12) 0.0251(15) C11 0.0309(11) 0.0243(10) 0.0274(10) -0.0030(8) 0.0081(9) 0.0056(9) C12 0.0430(13) 0.0306(12) 0.0268(11) -0.0006(9) 0.0112(9) 0.0110(10) C13 0.0425(13) 0.0385(13) 0.0294(11) -0.0069(10) 0.0096(10) 0.0121(11) C14 0.0441(14) 0.0320(12) 0.0384(13) -0.0080(10) 0.0079(10) 0.0143(11) C15 0.0375(12) 0.0270(11) 0.0360(12) 0.0011(9) 0.0082(10) 0.0101(10) C16 0.0250(10) 0.0253(11) 0.0286(10) -0.0018(8) 0.0058(8) 0.0029(8) C17 0.0265(10) 0.0267(11) 0.0276(10) 0.0013(8) 0.0082(8) 0.0037(8) C18 0.0283(11) 0.0272(11) 0.0245(10) 0.0016(8) 0.0109(8) 0.0047(8) C19 0.0447(13) 0.0319(12) 0.0318(11) 0.0069(9) 0.0142(10) 0.0117(10) C21 0.0236(10) 0.0285(11) 0.0272(10) 0.0008(8) 0.0073(8) 0.0078(8) C22 0.0365(12) 0.0369(12) 0.0275(11) 0.0042(9) 0.0109(9) 0.0148(10)

208

C23 0.0407(13) 0.0391(13) 0.0354(12) 0.0118(10) 0.0127(10) 0.0196(11) C24 0.0382(13) 0.0315(12) 0.0460(13) 0.0044(10) 0.0154(11) 0.0170(10) C25 0.0363(12) 0.0323(12) 0.0353(12) -0.0004(9) 0.0137(10) 0.0124(10) C26 0.0251(10) 0.0290(11) 0.0276(10) -0.0004(8) 0.0094(8) 0.0067(8) C27 0.0322(11) 0.0310(11) 0.0257(10) 0.0012(9) 0.0117(9) 0.0081(9) C28 0.0280(10) 0.0284(11) 0.0234(10) 0.0027(8) 0.0113(8) 0.0057(9) C29 0.0548(15) 0.0370(13) 0.0271(11) -0.0007(10) 0.0164(10) 0.0139(11) C2A 0.0358(13) 0.0496(16) 0.0562(16) 0.0002(13) 0.0191(12) 0.0035(12) C3A 0.0585(17) 0.0476(15) 0.0267(12) -0.0044(11) 0.0065(11) 0.0121(13) C4A 0.0336(13) 0.0347(13) 0.0596(16) 0.0038(12) 0.0088(11) 0.0071(10) C5A 0.0587(18) 0.0635(19) 0.0561(17) 0.0119(14) 0.0389(15) 0.0201(15) C11A 0.0235(10) 0.0268(11) 0.0308(11) 0.0019(9) 0.0094(8) 0.0020(8) C12A 0.0330(12) 0.0359(12) 0.0307(11) 0.0051(9) 0.0127(9) 0.0052(10) C13A 0.0405(13) 0.0409(14) 0.0335(12) 0.0111(10) 0.0100(10) 0.0070(11) C14A 0.0418(14) 0.0367(13) 0.0447(14) 0.0122(11) 0.0110(11) 0.0140(11) C15A 0.0359(12) 0.0316(12) 0.0428(13) 0.0031(10) 0.0122(10) 0.0104(10) C16A 0.0237(10) 0.0270(11) 0.0331(11) 0.0005(9) 0.0084(8) 0.0026(8) C17A 0.0300(11) 0.0274(11) 0.0299(11) -0.0013(9) 0.0111(9) 0.0037(9) C18A 0.0309(11) 0.0277(11) 0.0242(10) -0.0010(8) 0.0111(8) 0.0046(9) C19A 0.0499(15) 0.0330(12) 0.0386(13) -0.0026(10) 0.0185(11) 0.0147(11) C21A 0.0259(10) 0.0277(11) 0.0289(10) -0.0016(8) 0.0087(8) 0.0059(9) C22A 0.0381(12) 0.0366(13) 0.0309(11) -0.0021(9) 0.0120(10) 0.0112(10) C23A 0.0484(15) 0.0392(14) 0.0396(13) -0.0075(11) 0.0126(11) 0.0176(11) C24A 0.0520(15) 0.0319(13) 0.0522(15) 0.0018(11) 0.0146(12) 0.0192(11) C25A 0.0434(14) 0.0342(13) 0.0387(13) 0.0084(10) 0.0139(10) 0.0156(11) C26A 0.0255(10) 0.0306(11) 0.0312(11) 0.0021(9) 0.0083(8) 0.0074(9) C27A 0.0297(11) 0.0333(12) 0.0254(10) 0.0037(9) 0.0095(8) 0.0095(9) C28A 0.0308(11) 0.0315(11) 0.0233(10) -0.0004(8) 0.0110(8) 0.0088(9) C29A 0.0496(14) 0.0450(14) 0.0271(11) 0.0100(10) 0.0134(10) 0.0213(12) C1 0.0299(11) 0.0291(11) 0.0255(10) 0.0023(8) 0.0105(8) 0.0073(9) C31 0.0513(14) 0.0277(11) 0.0374(12) 0.0069(9) 0.0279(11) 0.0148(10) C1A 0.0332(12) 0.0358(12) 0.0271(11) -0.0018(9) 0.0091(9) 0.0122(10)

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Al1 C2 1.954(2) . ? Al1 C3 1.964(2) . ? Al1 N1 1.9785(19) . ? Al1 N2 2.0339(19) . ? Al1 Al2 2.8510(10) . ? Al2 C4 1.943(3) . ? Al2 C5 1.963(3) . ?

209

Al2 N2 1.9722(19) . ? Al2 N1 2.002(2) . ? Al2A C5A 1.946(3) . ? Al2A C4A 1.949(3) . ? Al2A N2A 1.996(2) . ? Al2A N1A 1.9971(19) . ? Al2A Al1A 2.8368(10) . ? Al1A C2A 1.936(3) . ? Al1A C3A 1.954(2) . ? Al1A N2A 1.9870(19) . ? Al1A N1A 2.005(2) . ? N1 C11 1.420(3) . ? N1 C18 1.458(3) . ? N2 C21 1.421(3) . ? N2 C28 1.455(3) . ? N1A C11A 1.423(3) . ? N1A C18A 1.451(3) . ? N2A C21A 1.416(3) . ? N2A C28A 1.456(3) . ? C2 H2A 0.9800 . ? C2 H2B 0.9800 . ? C2 H2C 0.9800 . ? C3 H3A 0.9800 . ? C3 H3B 0.9800 . ? C3 H3C 0.9800 . ? C4 H4A 0.9800 . ? C4 H4B 0.9800 . ? C4 H4C 0.9800 . ? C5 H5A 0.9800 . ? C5 H5B 0.9800 . ? C5 H5C 0.9800 . ? C11 C16 1.387(3) . ? C11 C12 1.394(3) . ? C12 C13 1.387(3) . ? C12 H12A 0.9500 . ? C13 C14 1.394(4) . ? C13 H13A 0.9500 . ? C14 C15 1.376(3) . ? C14 H14A 0.9500 . ? C15 C16 1.398(3) . ? C15 H15A 0.9500 . ? C16 C17 1.446(3) . ? C17 C18 1.357(3) . ? C17 C19 1.497(3) . ? C18 C1 1.529(3) . ? C19 H19A 0.9800 . ? C19 H19B 0.9800 . ? C19 H19C 0.9800 . ? C21 C22 1.388(3) . ? C21 C26 1.397(3) . ? C22 C23 1.382(3) . ? C22 H22A 0.9500 . ? C23 C24 1.396(3) . ? C23 H23A 0.9500 . ? C24 C25 1.376(3) . ? C24 H24A 0.9500 . ?

210

C25 C26 1.405(3) . ? C25 H25A 0.9500 . ? C26 C27 1.441(3) . ? C27 C28 1.358(3) . ? C27 C29 1.504(3) . ? C28 C1 1.524(3) . ? C29 H29A 0.9800 . ? C29 H29B 0.9800 . ? C29 H29C 0.9800 . ? C2A H2AA 0.9800 . ? C2A H2AB 0.9800 . ? C2A H2AC 0.9800 . ? C3A H3AA 0.9800 . ? C3A H3AB 0.9800 . ? C3A H3AC 0.9800 . ? C4A H4AA 0.9800 . ? C4A H4AB 0.9800 . ? C4A H4AC 0.9800 . ? C5A H5AA 0.9800 . ? C5A H5AB 0.9800 . ? C5A H5AC 0.9800 . ? C11A C12A 1.391(3) . ? C11A C16A 1.397(3) . ? C12A C13A 1.381(3) . ? C12A H12B 0.9500 . ? C13A C14A 1.395(4) . ? C13A H13B 0.9500 . ? C14A C15A 1.377(4) . ? C14A H14B 0.9500 . ? C15A C16A 1.400(3) . ? C15A H15B 0.9500 . ? C16A C17A 1.452(3) . ? C17A C18A 1.359(3) . ? C17A C19A 1.503(3) . ? C18A C1A 1.541(3) . ? C19A H19D 0.9800 . ? C19A H19E 0.9800 . ? C19A H19F 0.9800 . ? C21A C22A 1.394(3) . ? C21A C26A 1.397(3) . ? C22A C23A 1.381(3) . ? C22A H22B 0.9500 . ? C23A C24A 1.395(4) . ? C23A H23B 0.9500 . ? C24A C25A 1.373(4) . ? C24A H24B 0.9500 . ? C25A C26A 1.402(3) . ? C25A H25B 0.9500 . ? C26A C27A 1.441(3) . ? C27A C28A 1.355(3) . ? C27A C29A 1.506(3) . ? C28A C1A 1.523(3) . ? C29A H29D 0.9800 . ? C29A H29E 0.9800 . ? C29A H29F 0.9800 . ? C1 C31 1.532(3) . ?

211

C1 H1A 1.0000 . ? C31 C36D 1.275(8) . ? C31 C32C 1.287(5) . ? C31 C36C 1.472(5) . ? C31 C32D 1.550(8) . ? C32C C33C 1.393(7) . ? C32C H32A 0.9500 . ? C33C C34C 1.367(7) . ? C33C H33A 0.9500 . ? C34C C35C 1.389(7) . ? C34C H34A 0.9500 . ? C35C C36C 1.398(6) . ? C35C H35A 0.9500 . ? C36C H36A 0.9500 . ? C32D C33D 1.374(11) . ? C32D H32C 0.9500 . ? C33D C34D 1.414(11) . ? C33D H33B 0.9500 . ? C34D C35D 1.363(11) . ? C34D H34B 0.9500 . ? C35D C36D 1.411(11) . ? C35D H35B 0.9500 . ? C36D H36B 0.9500 . ? C1A C31B 1.458(7) . ? C1A C31A 1.572(5) . ? C1A H1 1.01(3) . ? C31A C32A 1.367(7) . ? C31A C36A 1.405(6) . ? C32A C33A 1.376(6) . ? C32A H32D 0.9500 . ? C33A C34A 1.390(6) . ? C33A H33C 0.9500 . ? C34A C35A 1.400(7) . ? C34A H34C 0.9500 . ? C35A C36A 1.413(7) . ? C35A H35C 0.9500 . ? C36A H36C 1.00(5) . ? C31B C36B 1.352(13) . ? C31B C32B 1.383(12) . ? C32B C33B 1.376(11) . ? C32B H32E 0.9500 . ? C33B C34B 1.319(12) . ? C33B H33D 0.9500 . ? C34B C35B 1.462(12) . ? C34B H34D 0.9500 . ? C35B C36B 1.392(14) . ? C35B H35D 0.9500 . ? C36B H36C 0.46(5) . ? C36B H36D 0.9500 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1

212

_geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 Al1 C3 115.97(12) . . ? C2 Al1 N1 114.09(10) . . ? C3 Al1 N1 115.52(9) . . ? C2 Al1 N2 116.29(10) . . ? C3 Al1 N2 111.55(9) . . ? N1 Al1 N2 77.82(8) . . ? C2 Al1 Al2 100.37(9) . . ? C3 Al1 Al2 143.57(8) . . ? N1 Al1 Al2 44.58(6) . . ? N2 Al1 Al2 43.77(5) . . ? C4 Al2 C5 112.74(14) . . ? C4 Al2 N2 121.06(12) . . ? C5 Al2 N2 111.96(11) . . ? C4 Al2 N1 113.14(13) . . ? C5 Al2 N1 115.20(11) . . ? N2 Al2 N1 78.73(7) . . ? C4 Al2 Al1 148.77(11) . . ? C5 Al2 Al1 98.01(10) . . ? N2 Al2 Al1 45.51(5) . . ? N1 Al2 Al1 43.93(6) . . ? C5A Al2A C4A 114.37(13) . . ? C5A Al2A N2A 116.16(11) . . ? C4A Al2A N2A 111.63(10) . . ? C5A Al2A N1A 115.50(11) . . ? C4A Al2A N1A 115.69(10) . . ? N2A Al2A N1A 78.78(8) . . ? C5A Al2A Al1A 101.18(10) . . ? C4A Al2A Al1A 144.32(9) . . ? N2A Al2A Al1A 44.46(6) . . ? N1A Al2A Al1A 44.96(6) . . ? C2A Al1A C3A 116.47(13) . . ? C2A Al1A N2A 115.43(11) . . ? C3A Al1A N2A 113.32(10) . . ? C2A Al1A N1A 114.76(10) . . ? C3A Al1A N1A 112.47(10) . . ? N2A Al1A N1A 78.80(8) . . ? C2A Al1A Al2A 146.43(9) . . ? C3A Al1A Al2A 97.08(9) . . ? N2A Al1A Al2A 44.70(6) . . ? N1A Al1A Al2A 44.75(5) . . ? C11 N1 C18 104.29(16) . . ? C11 N1 Al1 126.05(15) . . ? C18 N1 Al1 110.49(13) . . ? C11 N1 Al2 116.08(14) . . ? C18 N1 Al2 107.23(13) . . ? Al1 N1 Al2 91.49(8) . . ? C21 N2 C28 104.64(16) . . ? C21 N2 Al2 124.65(14) . . ? C28 N2 Al2 113.93(13) . . ? C21 N2 Al1 119.30(14) . . ? C28 N2 Al1 101.44(12) . . ? Al2 N2 Al1 90.73(7) . . ? C11A N1A C18A 104.96(16) . . ? C11A N1A Al2A 128.07(14) . . ?

213

C18A N1A Al2A 110.28(13) . . ? C11A N1A Al1A 115.01(13) . . ? C18A N1A Al1A 106.31(13) . . ? Al2A N1A Al1A 90.29(8) . . ? C21A N2A C28A 104.55(17) . . ? C21A N2A Al1A 117.15(14) . . ? C28A N2A Al1A 108.59(13) . . ? C21A N2A Al2A 126.51(14) . . ? C28A N2A Al2A 108.05(13) . . ? Al1A N2A Al2A 90.85(8) . . ? Al1 C2 H2A 109.5 . . ? Al1 C2 H2B 109.5 . . ? H2A C2 H2B 109.5 . . ? Al1 C2 H2C 109.5 . . ? H2A C2 H2C 109.5 . . ? H2B C2 H2C 109.5 . . ? Al1 C3 H3A 109.5 . . ? Al1 C3 H3B 109.5 . . ? H3A C3 H3B 109.5 . . ? Al1 C3 H3C 109.5 . . ? H3A C3 H3C 109.5 . . ? H3B C3 H3C 109.5 . . ? Al2 C4 H4A 109.5 . . ? Al2 C4 H4B 109.5 . . ? H4A C4 H4B 109.5 . . ? Al2 C4 H4C 109.5 . . ? H4A C4 H4C 109.5 . . ? H4B C4 H4C 109.5 . . ? Al2 C5 H5A 109.5 . . ? Al2 C5 H5B 109.5 . . ? H5A C5 H5B 109.5 . . ? Al2 C5 H5C 109.5 . . ? H5A C5 H5C 109.5 . . ? H5B C5 H5C 109.5 . . ? C16 C11 C12 122.2(2) . . ? C16 C11 N1 109.86(18) . . ? C12 C11 N1 127.9(2) . . ? C13 C12 C11 116.9(2) . . ? C13 C12 H12A 121.5 . . ? C11 C12 H12A 121.5 . . ? C12 C13 C14 121.2(2) . . ? C12 C13 H13A 119.4 . . ? C14 C13 H13A 119.4 . . ? C15 C14 C13 121.4(2) . . ? C15 C14 H14A 119.3 . . ? C13 C14 H14A 119.3 . . ? C14 C15 C16 118.2(2) . . ? C14 C15 H15A 120.9 . . ? C16 C15 H15A 120.9 . . ? C11 C16 C15 120.0(2) . . ? C11 C16 C17 108.07(18) . . ? C15 C16 C17 131.9(2) . . ? C18 C17 C16 106.96(19) . . ? C18 C17 C19 131.6(2) . . ? C16 C17 C19 121.41(19) . . ? C17 C18 N1 110.81(18) . . ?

214

C17 C18 C1 130.23(19) . . ? N1 C18 C1 118.51(17) . . ? C17 C19 H19A 109.5 . . ? C17 C19 H19B 109.5 . . ? H19A C19 H19B 109.5 . . ? C17 C19 H19C 109.5 . . ? H19A C19 H19C 109.5 . . ? H19B C19 H19C 109.5 . . ? C22 C21 C26 122.2(2) . . ? C22 C21 N2 128.39(19) . . ? C26 C21 N2 109.42(18) . . ? C23 C22 C21 117.6(2) . . ? C23 C22 H22A 121.2 . . ? C21 C22 H22A 121.2 . . ? C22 C23 C24 121.1(2) . . ? C22 C23 H23A 119.5 . . ? C24 C23 H23A 119.5 . . ? C25 C24 C23 121.3(2) . . ? C25 C24 H24A 119.4 . . ? C23 C24 H24A 119.4 . . ? C24 C25 C26 118.5(2) . . ? C24 C25 H25A 120.7 . . ? C26 C25 H25A 120.7 . . ? C21 C26 C25 119.3(2) . . ? C21 C26 C27 107.90(18) . . ? C25 C26 C27 132.7(2) . . ? C28 C27 C26 107.40(18) . . ? C28 C27 C29 128.5(2) . . ? C26 C27 C29 123.97(19) . . ? C27 C28 N2 110.61(18) . . ? C27 C28 C1 127.59(19) . . ? N2 C28 C1 121.46(17) . . ? C27 C29 H29A 109.5 . . ? C27 C29 H29B 109.5 . . ? H29A C29 H29B 109.5 . . ? C27 C29 H29C 109.5 . . ? H29A C29 H29C 109.5 . . ? H29B C29 H29C 109.5 . . ? Al1A C2A H2AA 109.5 . . ? Al1A C2A H2AB 109.5 . . ? H2AA C2A H2AB 109.5 . . ? Al1A C2A H2AC 109.5 . . ? H2AA C2A H2AC 109.5 . . ? H2AB C2A H2AC 109.5 . . ? Al1A C3A H3AA 109.5 . . ? Al1A C3A H3AB 109.5 . . ? H3AA C3A H3AB 109.5 . . ? Al1A C3A H3AC 109.5 . . ? H3AA C3A H3AC 109.5 . . ? H3AB C3A H3AC 109.5 . . ? Al2A C4A H4AA 109.5 . . ? Al2A C4A H4AB 109.5 . . ? H4AA C4A H4AB 109.5 . . ? Al2A C4A H4AC 109.5 . . ? H4AA C4A H4AC 109.5 . . ? H4AB C4A H4AC 109.5 . . ?

215

Al2A C5A H5AA 109.5 . . ? Al2A C5A H5AB 109.5 . . ? H5AA C5A H5AB 109.5 . . ? Al2A C5A H5AC 109.5 . . ? H5AA C5A H5AC 109.5 . . ? H5AB C5A H5AC 109.5 . . ? C12A C11A C16A 121.8(2) . . ? C12A C11A N1A 128.8(2) . . ? C16A C11A N1A 109.39(18) . . ? C13A C12A C11A 117.7(2) . . ? C13A C12A H12B 121.2 . . ? C11A C12A H12B 121.2 . . ? C12A C13A C14A 121.3(2) . . ? C12A C13A H13B 119.4 . . ? C14A C13A H13B 119.4 . . ? C15A C14A C13A 120.9(2) . . ? C15A C14A H14B 119.5 . . ? C13A C14A H14B 119.5 . . ? C14A C15A C16A 118.9(2) . . ? C14A C15A H15B 120.6 . . ? C16A C15A H15B 120.6 . . ? C11A C16A C15A 119.4(2) . . ? C11A C16A C17A 107.71(18) . . ? C15A C16A C17A 132.8(2) . . ? C18A C17A C16A 107.21(18) . . ? C18A C17A C19A 131.0(2) . . ? C16A C17A C19A 121.7(2) . . ? C17A C18A N1A 110.69(18) . . ? C17A C18A C1A 130.83(19) . . ? N1A C18A C1A 118.09(17) . . ? C17A C19A H19D 109.5 . . ? C17A C19A H19E 109.5 . . ? H19D C19A H19E 109.5 . . ? C17A C19A H19F 109.5 . . ? H19D C19A H19F 109.5 . . ? H19E C19A H19F 109.5 . . ? C22A C21A C26A 121.7(2) . . ? C22A C21A N2A 128.8(2) . . ? C26A C21A N2A 109.55(18) . . ? C23A C22A C21A 117.6(2) . . ? C23A C22A H22B 121.2 . . ? C21A C22A H22B 121.2 . . ? C22A C23A C24A 121.3(2) . . ? C22A C23A H23B 119.4 . . ? C24A C23A H23B 119.4 . . ? C25A C24A C23A 121.3(2) . . ? C25A C24A H24B 119.4 . . ? C23A C24A H24B 119.4 . . ? C24A C25A C26A 118.5(2) . . ? C24A C25A H25B 120.7 . . ? C26A C25A H25B 120.7 . . ? C21A C26A C25A 119.7(2) . . ? C21A C26A C27A 107.84(19) . . ? C25A C26A C27A 132.5(2) . . ? C28A C27A C26A 107.24(18) . . ? C28A C27A C29A 130.5(2) . . ?

216

C26A C27A C29A 122.2(2) . . ? C27A C28A N2A 110.75(18) . . ? C27A C28A C1A 129.87(19) . . ? N2A C28A C1A 119.04(18) . . ? C27A C29A H29D 109.5 . . ? C27A C29A H29E 109.5 . . ? H29D C29A H29E 109.5 . . ? C27A C29A H29F 109.5 . . ? H29D C29A H29F 109.5 . . ? H29E C29A H29F 109.5 . . ? C28 C1 C18 115.50(17) . . ? C28 C1 C31 110.17(17) . . ? C18 C1 C31 114.30(18) . . ? C28 C1 H1A 105.3 . . ? C18 C1 H1A 105.3 . . ? C31 C1 H1A 105.3 . . ? C36D C31 C32C 102.3(5) . . ? C36D C31 C36C 17.7(4) . . ? C32C C31 C36C 118.8(3) . . ? C36D C31 C1 130.0(5) . . ? C32C C31 C1 127.7(3) . . ? C36C C31 C1 113.2(3) . . ? C36D C31 C32D 116.6(5) . . ? C32C C31 C32D 14.4(4) . . ? C36C C31 C32D 133.0(4) . . ? C1 C31 C32D 113.4(4) . . ? C31 C32C C33C 124.3(5) . . ? C31 C32C H32A 117.9 . . ? C33C C32C H32A 117.9 . . ? C34C C33C C32C 117.8(5) . . ? C34C C33C H33A 121.1 . . ? C32C C33C H33A 121.1 . . ? C33C C34C C35C 122.3(5) . . ? C33C C34C H34A 118.9 . . ? C35C C34C H34A 118.9 . . ? C34C C35C C36C 118.4(5) . . ? C34C C35C H35A 120.8 . . ? C36C C35C H35A 120.8 . . ? C35C C36C C31 118.4(5) . . ? C35C C36C H36A 120.8 . . ? C31 C36C H36A 120.8 . . ? C33D C32D C31 116.9(7) . . ? C33D C32D H32C 121.6 . . ? C31 C32D H32C 121.6 . . ? C32D C33D C34D 119.4(8) . . ? C32D C33D H33B 120.3 . . ? C34D C33D H33B 120.3 . . ? C35D C34D C33D 124.3(7) . . ? C35D C34D H34B 117.9 . . ? C33D C34D H34B 117.9 . . ? C34D C35D C36D 114.5(7) . . ? C34D C35D H35B 122.8 . . ? C36D C35D H35B 122.8 . . ? C31 C36D C35D 128.1(8) . . ? C31 C36D H36B 115.9 . . ? C35D C36D H36B 115.9 . . ?

217

C31B C1A C28A 119.1(4) . . ? C31B C1A C18A 112.9(3) . . ? C28A C1A C18A 114.88(18) . . ? C31B C1A C31A 15.5(3) . . ? C28A C1A C31A 108.8(2) . . ? C18A C1A C31A 111.6(2) . . ? C31B C1A H1 97.2(15) . . ? C28A C1A H1 105.4(15) . . ? C18A C1A H1 104.0(15) . . ? C31A C1A H1 112.0(15) . . ? C32A C31A C36A 119.6(4) . . ? C32A C31A C1A 124.0(3) . . ? C36A C31A C1A 116.3(4) . . ? C31A C32A C33A 121.0(4) . . ? C31A C32A H32D 119.5 . . ? C33A C32A H32D 119.5 . . ? C32A C33A C34A 119.4(5) . . ? C32A C33A H33C 120.3 . . ? C34A C33A H33C 120.3 . . ? C33A C34A C35A 122.3(4) . . ? C33A C34A H34C 118.9 . . ? C35A C34A H34C 118.9 . . ? C34A C35A C36A 116.4(4) . . ? C34A C35A H35C 121.8 . . ? C36A C35A H35C 121.8 . . ? C31A C36A C35A 121.2(5) . . ? C31A C36A H36C 117(3) . . ? C35A C36A H36C 121(3) . . ? C36B C31B C32B 119.2(8) . . ? C36B C31B C1A 123.7(8) . . ? C32B C31B C1A 117.1(7) . . ? C33B C32B C31B 125.0(8) . . ? C33B C32B H32E 117.5 . . ? C31B C32B H32E 117.5 . . ? C34B C33B C32B 115.0(8) . . ? C34B C33B H33D 122.5 . . ? C32B C33B H33D 122.5 . . ? C33B C34B C35B 124.2(7) . . ? C33B C34B H34D 117.9 . . ? C35B C34B H34D 117.9 . . ? C36B C35B C34B 116.6(8) . . ? C36B C35B H35D 121.7 . . ? C34B C35B H35D 121.7 . . ? C31B C36B C35B 120.0(10) . . ? C31B C36B H36C 132(8) . . ? C35B C36B H36C 108(8) . . ? C31B C36B H36D 120.0 . . ? C35B C36B H36D 120.0 . . ? H36C C36B H36D 12.0 . . ? _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 0.481 _refine_diff_density_min -0.339

218

CIF File For [{tri(3-methylindolyl)methane}(AlMe2)3]•0.60(C7H8)

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C34 H40 Al3 N3, 0.60 •0.60(C7 H8)' _chemical_formula_sum ' C34 H40 Al3 N3, 0.60 •0.60(C7 H8)'

_chemical_formula_weight 626.91 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Al' 'Al' 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting 'Triclinic' _symmetry_space_group_name_H-M 'P -1' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z'

_cell_length_a 10.2695(12) _cell_length_b 12.3448(14) _cell_length_c 15.0435(18) _cell_angle_alpha 77.768(3) _cell_angle_beta 86.788(2) _cell_angle_gamma 88.308(3) _cell_volume 1860.6(4) _cell_formula_units_Z 2 _cell_measurement_temperature –133 _cell_measurement_reflns_used 984 _cell_measurement_theta_min 2.85 _cell_measurement_theta_max 33.19

_exptl_crystal_description 'rectangular brick' _exptl_crystal_colour 'colorless' _exptl_crystal_size_max .40 _exptl_crystal_size_mid .35 _exptl_crystal_size_min .30 _exptl_crystal_density_meas ?

219

_exptl_crystal_density_diffrn 1.119 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 668 _exptl_absorpt_coefficient_mu 0.130 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.861 _exptl_absorpt_correction_T_max 1.000 _exptl_absorpt_process_details 'sadabs (Sheldrick, 1997)'

_exptl_special_details ; ? ;

_diffrn_ambient_temperature –133 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator 'graphite' _diffrn_measurement_device_type 'Bruker platform with 4k CCD' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 13288 _diffrn_reflns_av_R_equivalents 0.0171 _diffrn_reflns_av_sigmaI/netI 0.0235 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -15 _diffrn_reflns_limit_k_max 14 _diffrn_reflns_limit_l_min -17 _diffrn_reflns_limit_l_max 18 _diffrn_reflns_theta_min 1.69 _diffrn_reflns_theta_max 26.00 _reflns_number_total 7270 _reflns_number_gt 6868 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630 ' _computing_cell_refinement 'Saintplus 5.45 ' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based

220

on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1062P)^2^+1.4420P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens diffmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 7270 _refine_ls_number_parameters 387 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0571 _refine_ls_R_factor_gt 0.0548 _refine_ls_wR_factor_ref 0.1733 _refine_ls_wR_factor_gt 0.1700 _refine_ls_goodness_of_fit_ref 1.045 _refine_ls_restrained_S_all 1.045 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Al1 Al 0.37533(5) 0.98079(5) 0.17363(4) 0.02463(17) Uani 1 1 d . . . Al2 Al 0.34285(6) 0.88702(5) 0.40971(4) 0.02775(17) Uani 1 1 d . . . Al3 Al 0.29578(6) 0.70930(5) 0.26463(4) 0.02716(17) Uani 1 1 d . . . N1 N 0.30846(15) 0.99940(13) 0.29736(11) 0.0250(3) Uani 1 1 d . . . N2 N 0.23958(15) 0.77068(14) 0.37328(11) 0.0255(3) Uani 1 1 d . . . N3 N 0.26470(15) 0.85079(13) 0.17543(11) 0.0241(3) Uani 1 1 d . . . C1 C 0.09229(17) 0.91422(15) 0.28100(13) 0.0236(4) Uani 1 1 d . . . H1A H -0.0004 0.9357 0.2804 0.028 Uiso 1 1 calc R . . C2 C 0.5621(2) 0.94615(19) 0.16897(16) 0.0342(5) Uani 1 1 d . . . H2A H 0.5897 0.9382 0.1086 0.051 Uiso 1 1 calc R . . H2B H 0.5793 0.8782 0.2115 0.051 Uiso 1 1 calc R . . H2C H 0.6092 1.0051 0.1845 0.051 Uiso 1 1 calc R . . C3 C 0.3051(2) 1.10521(18) 0.08566(15) 0.0328(5) Uani 1 1 d . . . H3A H 0.3350 1.0994 0.0252 0.049 Uiso 1 1 calc R . . H3B H 0.3341 1.1735 0.0980 0.049 Uiso 1 1 calc R . .

221

H3C H 0.2115 1.1039 0.0905 0.049 Uiso 1 1 calc R . . C4 C 0.2438(2) 0.9313(2) 0.51127(16) 0.0389(5) Uani 1 1 d . . . H4A H 0.2899 0.9877 0.5311 0.058 Uiso 1 1 calc R . . H4B H 0.2332 0.8682 0.5607 0.058 Uiso 1 1 calc R . . H4C H 0.1597 0.9598 0.4920 0.058 Uiso 1 1 calc R . . C5 C 0.5275(2) 0.8474(2) 0.42210(18) 0.0426(6) Uani 1 1 d . . . H5A H 0.5718 0.9064 0.4396 0.064 Uiso 1 1 calc R . . H5B H 0.5651 0.8356 0.3650 0.064 Uiso 1 1 calc R . . H5C H 0.5363 0.7807 0.4678 0.064 Uiso 1 1 calc R . . C6 C 0.4777(2) 0.6584(2) 0.2666(2) 0.0446(6) Uani 1 1 d . . . H6A H 0.4855 0.5902 0.3109 0.067 Uiso 1 1 calc R . . H6B H 0.5309 0.7134 0.2825 0.067 Uiso 1 1 calc R . . H6C H 0.5063 0.6464 0.2076 0.067 Uiso 1 1 calc R . . C7 C 0.1650(2) 0.60411(18) 0.25017(17) 0.0375(5) Uani 1 1 d . . . H7A H 0.1783 0.5353 0.2926 0.056 Uiso 1 1 calc R . . H7B H 0.1726 0.5917 0.1892 0.056 Uiso 1 1 calc R . . H7C H 0.0795 0.6335 0.2616 0.056 Uiso 1 1 calc R . . C10 C 0.16833(18) 1.01346(16) 0.29171(13) 0.0242(4) Uani 1 1 d . . . C11 C 0.1271(2) 1.11752(17) 0.29454(14) 0.0286(4) Uani 1 1 d . . . C12 C 0.2419(2) 1.17902(17) 0.30342(14) 0.0316(4) Uani 1 1 d . . . C13 C 0.2601(3) 1.2896(2) 0.30802(18) 0.0440(6) Uani 1 1 d . . . H13A H 0.1896 1.3390 0.3061 0.053 Uiso 1 1 calc R . . C14 C 0.3853(3) 1.3236(2) 0.3154(2) 0.0520(7) Uani 1 1 d . . . H14A H 0.3989 1.3969 0.3183 0.062 Uiso 1 1 calc R . . C15 C 0.4913(3) 1.2505(2) 0.31864(19) 0.0480(6) Uani 1 1 d . . . H15A H 0.5742 1.2756 0.3245 0.058 Uiso 1 1 calc R . . C16 C 0.4758(2) 1.1407(2) 0.31333(16) 0.0373(5) Uani 1 1 d . . . H16A H 0.5468 1.0920 0.3147 0.045 Uiso 1 1 calc R . . C17 C 0.3497(2) 1.10687(17) 0.30583(13) 0.0292(4) Uani 1 1 d . . . C18 C -0.0076(2) 1.16638(19) 0.28683(18) 0.0397(5) Uani 1 1 d . . . H18A H -0.0676 1.1102 0.2813 0.060 Uiso 1 1 calc R . . H18B H -0.0099 1.2256 0.2340 0.060 Uiso 1 1 calc R . . H18C H -0.0319 1.1948 0.3402 0.060 Uiso 1 1 calc R . . C20 C 0.10877(18) 0.81636(16) 0.35952(13) 0.0241(4) Uani 1 1 d . . . C21 C 0.01964(19) 0.76189(16) 0.42095(14) 0.0271(4) Uani 1 1 d . . . C22 C 0.0900(2) 0.67530(17) 0.48083(14) 0.0292(4) Uani 1 1 d . . . C23 C 0.0496(2) 0.59421(19) 0.55666(16) 0.0384(5) Uani 1 1 d . . . H23A H -0.0377 0.5888 0.5768 0.046 Uiso 1 1 calc R . . C24 C 0.1426(3) 0.5224(2) 0.60076(18) 0.0476(6) Uani 1 1 d . . . H24A H 0.1174 0.4684 0.6514 0.057 Uiso 1 1 calc R . . C25 C 0.2741(3) 0.5298(2) 0.57046(18) 0.0487(6) Uani 1 1 d . . . H25A H 0.3349 0.4805 0.6014 0.058 Uiso 1 1 calc R . . C26 C 0.3154(2) 0.6088(2) 0.49544(17) 0.0390(5) Uani 1 1 d . . . H26A H 0.4026 0.6134 0.4750 0.047 Uiso 1 1 calc R . . C27 C 0.2213(2) 0.68154(17) 0.45159(14) 0.0291(4) Uani 1 1 d . . . C28 C -0.1241(2) 0.7836(2) 0.42892(18) 0.0393(5) Uani 1 1 d . . . H28A H -0.1477 0.8453 0.3817 0.059 Uiso 1 1 calc R . . H28B H -0.1470 0.8004 0.4873 0.059 Uiso 1 1 calc R . . H28C H -0.1698 0.7191 0.4228 0.059 Uiso 1 1 calc R . . C30 C 0.12952(18) 0.88074(15) 0.19166(13) 0.0236(4) Uani 1 1 d . . . C31 C 0.0543(2) 0.87000(16) 0.12337(14) 0.0284(4) Uani 1 1 d . . . C32 C 0.1399(2) 0.83338(17) 0.05539(15) 0.0306(4) Uani 1 1 d . . . C33 C 0.1177(3) 0.8075(2) -0.02877(17) 0.0426(6) Uani 1 1 d . . . H33A H 0.0345 0.8131 -0.0508 0.051 Uiso 1 1 calc R . . C34 C 0.2233(3) 0.7734(2) -0.07820(17) 0.0477(6) Uani 1 1 d . . . H34A H 0.2102 0.7557 -0.1341 0.057 Uiso 1 1 calc R . .

222

C35 C 0.3482(3) 0.7651(2) -0.04600(17) 0.0426(6) Uani 1 1 d . . . H35A H 0.4172 0.7427 -0.0811 0.051 Uiso 1 1 calc R . . C36 C 0.3719(2) 0.78943(18) 0.03722(16) 0.0340(5) Uani 1 1 d . . . H36A H 0.4554 0.7835 0.0589 0.041 Uiso 1 1 calc R . . C37 C 0.2661(2) 0.82313(16) 0.08700(14) 0.0272(4) Uani 1 1 d . . . C38 C -0.0900(2) 0.8880(2) 0.11759(18) 0.0414(5) Uani 1 1 d . . . H38A H -0.1248 0.9123 0.1708 0.062 Uiso 1 1 calc R . . H38B H -0.1299 0.8197 0.1140 0.062 Uiso 1 1 calc R . . H38C H -0.1078 0.9433 0.0642 0.062 Uiso 1 1 calc R . . C50 C -0.2131(10) 0.5890(11) -0.0435(7) 0.118(6) Uiso 0.30 1 d PG A 1 C51 C -0.1521(8) 0.5785(10) 0.0382(8) 0.100(5) Uiso 0.30 1 d PG A 1 C55 C -0.2189(10) 0.5339(10) 0.1201(7) 0.098(5) Uiso 0.30 1 d PG A 1 C52 C -0.3467(10) 0.4998(10) 0.1204(5) 0.089(4) Uiso 0.30 1 d PG A 1 C53 C -0.4078(8) 0.5103(8) 0.0387(6) 0.093(4) Uiso 0.30 1 d PG . 1 C54 C -0.3410(10) 0.5549(10) -0.0432(5) 0.095(4) Uiso 0.30 1 d PG . 1 C56 C -0.5472(9) 0.4796(14) 0.0313(10) 0.128(7) Uiso 0.30 1 d PG . 1 C60 C -0.0978(8) 0.5541(10) 0.0595(8) 0.104(5) Uiso 0.30 1 d PG B 3 C61 C -0.1547(10) 0.5127(11) 0.1456(7) 0.103(5) Uiso 0.30 1 d PG B 3 C62 C -0.2878(10) 0.4929(10) 0.1562(6) 0.100(5) Uiso 0.30 1 d PG B 3 C63 C -0.3640(8) 0.5145(8) 0.0807(7) 0.109(5) Uiso 0.30 1 d PG B 3 C64 C -0.3071(10) 0.5559(11) -0.0054(6) 0.126(7) Uiso 0.30 1 d PG B 3 C65 C -0.1740(11) 0.5757(12) -0.0159(7) 0.096(5) Uiso 0.30 1 d PG B 3 C66 C -0.5207(9) 0.4795(14) 0.0745(12) 0.120(6) Uiso 0.30 1 d PG B 3 loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Al1 0.0203(3) 0.0256(3) 0.0269(3) -0.0029(2) -0.0008(2) -0.0019(2) Al2 0.0236(3) 0.0307(3) 0.0276(3) -0.0017(2) -0.0052(2) -0.0039(2) Al3 0.0234(3) 0.0224(3) 0.0337(3) -0.0019(2) -0.0015(2) 0.0027(2) N1 0.0224(8) 0.0244(8) 0.0278(8) -0.0042(6) -0.0029(6) -0.0032(6) N2 0.0202(8) 0.0247(8) 0.0291(8) 0.0008(7) -0.0041(6) 0.0000(6) N3 0.0205(8) 0.0247(8) 0.0270(8) -0.0052(6) -0.0016(6) 0.0005(6) C1 0.0184(8) 0.0228(9) 0.0284(10) -0.0029(7) -0.0016(7) 0.0016(7) C2 0.0236(10) 0.0378(12) 0.0400(12) -0.0063(9) 0.0019(8) -0.0025(8) C3 0.0329(11) 0.0339(11) 0.0290(10) -0.0006(8) -0.0017(8) -0.0022(9) C4 0.0411(12) 0.0446(13) 0.0323(11) -0.0095(10) -0.0028(9) -0.0084(10) C5 0.0269(11) 0.0531(15) 0.0441(13) 0.0012(11) -0.0110(9) -0.0048(10) C6 0.0304(11) 0.0358(12) 0.0621(16) -0.0003(11) -0.0004(11) 0.0110(9) C7 0.0417(12) 0.0254(10) 0.0453(13) -0.0069(9) -0.0004(10) -0.0044(9) C10 0.0225(9) 0.0254(9) 0.0233(9) -0.0022(7) 0.0002(7) -0.0005(7) C11 0.0338(11) 0.0241(9) 0.0258(9) -0.0022(8) 0.0040(8) -0.0003(8) C12 0.0416(12) 0.0271(10) 0.0252(10) -0.0044(8) 0.0034(8) -0.0044(9) C13 0.0599(16) 0.0270(11) 0.0448(13) -0.0087(10) 0.0059(11) -0.0056(10) C14 0.0710(19) 0.0298(12) 0.0572(16) -0.0123(11) -0.0001(13) -0.0178(12) C15 0.0551(15) 0.0413(14) 0.0485(14) -0.0073(11) -0.0057(12) -0.0232(12) C16 0.0386(12) 0.0365(12) 0.0362(11) -0.0036(9) -0.0064(9) -0.0121(9) C17 0.0355(11) 0.0267(10) 0.0247(9) -0.0036(8) -0.0007(8) -0.0067(8) C18 0.0377(12) 0.0300(11) 0.0492(14) -0.0065(10) 0.0055(10) 0.0076(9) C20 0.0202(9) 0.0232(9) 0.0288(10) -0.0053(7) -0.0029(7) -0.0002(7) C21 0.0252(10) 0.0249(9) 0.0309(10) -0.0055(8) 0.0013(8) -0.0015(7)

223

C22 0.0311(10) 0.0261(10) 0.0296(10) -0.0040(8) 0.0001(8) -0.0032(8) C23 0.0424(12) 0.0347(12) 0.0345(11) -0.0003(9) 0.0059(9) -0.0063(9) C24 0.0559(15) 0.0413(13) 0.0375(13) 0.0102(10) 0.0000(11) -0.0061(11) C25 0.0495(15) 0.0430(14) 0.0460(14) 0.0111(11) -0.0157(11) 0.0016(11) C26 0.0317(11) 0.0376(12) 0.0425(13) 0.0051(10) -0.0090(9) 0.0001(9) C27 0.0303(10) 0.0258(10) 0.0296(10) -0.0008(8) -0.0046(8) -0.0037(8) C28 0.0256(11) 0.0354(12) 0.0519(14) -0.0008(10) 0.0091(9) -0.0001(9) C30 0.0199(9) 0.0205(9) 0.0289(10) -0.0018(7) -0.0027(7) 0.0005(7) C31 0.0265(10) 0.0253(10) 0.0334(10) -0.0048(8) -0.0074(8) 0.0006(7) C32 0.0335(11) 0.0267(10) 0.0321(11) -0.0063(8) -0.0060(8) 0.0002(8) C33 0.0494(14) 0.0437(13) 0.0386(13) -0.0148(10) -0.0140(10) 0.0010(11) C34 0.0638(17) 0.0490(14) 0.0351(12) -0.0190(11) -0.0057(11) -0.0003(12) C35 0.0529(14) 0.0367(12) 0.0395(13) -0.0134(10) 0.0059(11) -0.0002(10) C36 0.0357(11) 0.0295(10) 0.0367(11) -0.0081(9) 0.0033(9) -0.0016(9) C37 0.0317(10) 0.0214(9) 0.0283(10) -0.0044(7) -0.0025(8) -0.0025(7) C38 0.0276(11) 0.0503(14) 0.0494(14) -0.0149(11) -0.0151(10) 0.0046(10)

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Al1 C3 1.952(2) . ? Al1 C2 1.954(2) . ? Al1 N3 1.9882(17) . ? Al1 N1 2.0044(18) . ? Al2 C4 1.953(2) . ? Al2 C5 1.953(2) . ? Al2 N1 1.9876(18) . ? Al2 N2 1.9940(18) . ? Al3 C7 1.948(2) . ? Al3 C6 1.954(2) . ? Al3 N2 1.9930(18) . ? Al3 N3 1.9938(18) . ? N1 C17 1.438(3) . ? N1 C10 1.449(2) . ? N2 C27 1.439(3) . ? N2 C20 1.450(2) . ? N3 C37 1.441(3) . ? N3 C30 1.447(2) . ? C1 C20 1.513(3) . ? C1 C10 1.514(3) . ? C1 C30 1.514(3) . ? C1 H1A 0.9800 . ? C2 H2A 0.9600 . ?

224

C2 H2B 0.9600 . ? C2 H2C 0.9600 . ? C3 H3A 0.9600 . ? C3 H3B 0.9600 . ? C3 H3C 0.9600 . ? C4 H4A 0.9600 . ? C4 H4B 0.9600 . ? C4 H4C 0.9600 . ? C5 H5A 0.9600 . ? C5 H5B 0.9600 . ? C5 H5C 0.9600 . ? C6 H6A 0.9600 . ? C6 H6B 0.9600 . ? C6 H6C 0.9600 . ? C7 H7A 0.9600 . ? C7 H7B 0.9600 . ? C7 H7C 0.9600 . ? C10 C11 1.349(3) . ? C11 C12 1.448(3) . ? C11 C18 1.494(3) . ? C12 C17 1.397(3) . ? C12 C13 1.400(3) . ? C13 C14 1.382(4) . ? C13 H13A 0.9300 . ? C14 C15 1.389(4) . ? C14 H14A 0.9300 . ? C15 C16 1.388(3) . ? C15 H15A 0.9300 . ? C16 C17 1.390(3) . ? C16 H16A 0.9300 . ? C18 H18A 0.9600 . ? C18 H18B 0.9600 . ? C18 H18C 0.9600 . ? C20 C21 1.350(3) . ? C21 C22 1.448(3) . ? C21 C28 1.495(3) . ? C22 C27 1.394(3) . ? C22 C23 1.401(3) . ? C23 C24 1.382(4) . ? C23 H23A 0.9300 . ? C24 C25 1.401(4) . ? C24 H24A 0.9300 . ? C25 C26 1.382(3) . ? C25 H25A 0.9300 . ? C26 C27 1.394(3) . ? C26 H26A 0.9300 . ? C28 H28A 0.9600 . ? C28 H28B 0.9600 . ? C28 H28C 0.9600 . ? C30 C31 1.350(3) . ? C31 C32 1.447(3) . ? C31 C38 1.496(3) . ? C32 C37 1.398(3) . ? C32 C33 1.402(3) . ? C33 C34 1.386(4) . ? C33 H33A 0.9300 . ?

225

C34 C35 1.390(4) . ? C34 H34A 0.9300 . ? C35 C36 1.384(3) . ? C35 H35A 0.9300 . ? C36 C37 1.389(3) . ? C36 H36A 0.9300 . ? C38 H38A 0.9600 . ? C38 H38B 0.9600 . ? C38 H38C 0.9600 . ? C50 C51 1.3900 . ? C50 C54 1.3900 . ? C51 C55 1.3900 . ? C55 C52 1.3900 . ? C52 C53 1.3900 . ? C53 C56 1.155(18) 2_465 ? C53 C54 1.3900 . ? C53 C56 1.5083 . ? C54 C56 1.23(2) 2_465 ? C56 C53 1.16(3) 2_465 ? C56 C54 1.227(16) 2_465 ? C56 C56 1.34(2) 2_465 ? C60 C61 1.3900 . ? C60 C65 1.3900 . ? C61 C62 1.3900 . ? C62 C63 1.3900 . ? C63 C64 1.3900 . ? C63 C66 1.6922 . ? C64 C65 1.3900 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C3 Al1 C2 119.78(10) . . ? C3 Al1 N3 107.33(8) . . ? C2 Al1 N3 113.40(9) . . ? C3 Al1 N1 106.85(9) . . ? C2 Al1 N1 112.42(9) . . ? N3 Al1 N1 93.80(7) . . ? C4 Al2 C5 119.02(11) . . ? C4 Al2 N1 107.89(9) . . ? C5 Al2 N1 113.27(9) . . ? C4 Al2 N2 106.49(9) . . ? C5 Al2 N2 113.37(10) . . ? N1 Al2 N2 93.70(7) . . ? C7 Al3 C6 117.41(11) . . ? C7 Al3 N2 107.58(9) . . ? C6 Al3 N2 112.59(10) . . ? C7 Al3 N3 108.16(9) . . ? C6 Al3 N3 114.00(9) . . ? N2 Al3 N3 94.60(7) . . ? C17 N1 C10 103.20(16) . . ?

226

C17 N1 Al2 110.46(12) . . ? C10 N1 Al2 107.84(12) . . ? C17 N1 Al1 106.03(12) . . ? C10 N1 Al1 105.45(12) . . ? Al2 N1 Al1 122.19(9) . . ? C27 N2 C20 103.01(15) . . ? C27 N2 Al3 109.70(13) . . ? C20 N2 Al3 107.53(12) . . ? C27 N2 Al2 107.87(13) . . ? C20 N2 Al2 106.45(12) . . ? Al3 N2 Al2 120.82(8) . . ? C37 N3 C30 103.17(15) . . ? C37 N3 Al1 111.31(12) . . ? C30 N3 Al1 109.18(12) . . ? C37 N3 Al3 106.49(12) . . ? C30 N3 Al3 105.51(12) . . ? Al1 N3 Al3 119.78(8) . . ? C20 C1 C10 112.08(16) . . ? C20 C1 C30 110.07(15) . . ? C10 C1 C30 111.46(15) . . ? C20 C1 H1A 107.7 . . ? C10 C1 H1A 107.7 . . ? C30 C1 H1A 107.7 . . ? Al1 C2 H2A 109.5 . . ? Al1 C2 H2B 109.5 . . ? H2A C2 H2B 109.5 . . ? Al1 C2 H2C 109.5 . . ? H2A C2 H2C 109.5 . . ? H2B C2 H2C 109.5 . . ? Al1 C3 H3A 109.5 . . ? Al1 C3 H3B 109.5 . . ? H3A C3 H3B 109.5 . . ? Al1 C3 H3C 109.5 . . ? H3A C3 H3C 109.5 . . ? H3B C3 H3C 109.5 . . ? Al2 C4 H4A 109.5 . . ? Al2 C4 H4B 109.5 . . ? H4A C4 H4B 109.5 . . ? Al2 C4 H4C 109.5 . . ? H4A C4 H4C 109.5 . . ? H4B C4 H4C 109.5 . . ? Al2 C5 H5A 109.5 . . ? Al2 C5 H5B 109.5 . . ? H5A C5 H5B 109.5 . . ? Al2 C5 H5C 109.5 . . ? H5A C5 H5C 109.5 . . ? H5B C5 H5C 109.5 . . ? Al3 C6 H6A 109.5 . . ? Al3 C6 H6B 109.5 . . ? H6A C6 H6B 109.5 . . ? Al3 C6 H6C 109.5 . . ? H6A C6 H6C 109.5 . . ? H6B C6 H6C 109.5 . . ? Al3 C7 H7A 109.5 . . ? Al3 C7 H7B 109.5 . . ? H7A C7 H7B 109.5 . . ?

227

Al3 C7 H7C 109.5 . . ? H7A C7 H7C 109.5 . . ? H7B C7 H7C 109.5 . . ? C11 C10 N1 112.50(17) . . ? C11 C10 C1 130.19(18) . . ? N1 C10 C1 117.28(16) . . ? C10 C11 C12 106.68(18) . . ? C10 C11 C18 129.0(2) . . ? C12 C11 C18 124.27(19) . . ? C17 C12 C13 119.6(2) . . ? C17 C12 C11 107.80(18) . . ? C13 C12 C11 132.6(2) . . ? C14 C13 C12 118.4(2) . . ? C14 C13 H13A 120.8 . . ? C12 C13 H13A 120.8 . . ? C13 C14 C15 121.3(2) . . ? C13 C14 H14A 119.3 . . ? C15 C14 H14A 119.3 . . ? C16 C15 C14 121.3(2) . . ? C16 C15 H15A 119.3 . . ? C14 C15 H15A 119.3 . . ? C15 C16 C17 117.2(2) . . ? C15 C16 H16A 121.4 . . ? C17 C16 H16A 121.4 . . ? C16 C17 C12 122.2(2) . . ? C16 C17 N1 127.9(2) . . ? C12 C17 N1 109.81(18) . . ? C11 C18 H18A 109.5 . . ? C11 C18 H18B 109.5 . . ? H18A C18 H18B 109.5 . . ? C11 C18 H18C 109.5 . . ? H18A C18 H18C 109.5 . . ? H18B C18 H18C 109.5 . . ? C21 C20 N2 112.58(17) . . ? C21 C20 C1 130.33(17) . . ? N2 C20 C1 117.10(16) . . ? C20 C21 C22 106.58(17) . . ? C20 C21 C28 128.50(19) . . ? C22 C21 C28 124.92(18) . . ? C27 C22 C23 119.8(2) . . ? C27 C22 C21 107.89(18) . . ? C23 C22 C21 132.3(2) . . ? C24 C23 C22 118.4(2) . . ? C24 C23 H23A 120.8 . . ? C22 C23 H23A 120.8 . . ? C23 C24 C25 121.1(2) . . ? C23 C24 H24A 119.5 . . ? C25 C24 H24A 119.5 . . ? C26 C25 C24 121.2(2) . . ? C26 C25 H25A 119.4 . . ? C24 C25 H25A 119.4 . . ? C25 C26 C27 117.5(2) . . ? C25 C26 H26A 121.2 . . ? C27 C26 H26A 121.2 . . ? C26 C27 C22 122.0(2) . . ? C26 C27 N2 128.1(2) . . ?

228

C22 C27 N2 109.94(17) . . ? C21 C28 H28A 109.5 . . ? C21 C28 H28B 109.5 . . ? H28A C28 H28B 109.5 . . ? C21 C28 H28C 109.5 . . ? H28A C28 H28C 109.5 . . ? H28B C28 H28C 109.5 . . ? C31 C30 N3 112.63(17) . . ? C31 C30 C1 129.94(18) . . ? N3 C30 C1 117.38(16) . . ? C30 C31 C32 106.63(18) . . ? C30 C31 C38 128.2(2) . . ? C32 C31 C38 125.17(19) . . ? C37 C32 C33 119.5(2) . . ? C37 C32 C31 107.86(18) . . ? C33 C32 C31 132.6(2) . . ? C34 C33 C32 118.2(2) . . ? C34 C33 H33A 120.9 . . ? C32 C33 H33A 120.9 . . ? C33 C34 C35 121.4(2) . . ? C33 C34 H34A 119.3 . . ? C35 C34 H34A 119.3 . . ? C36 C35 C34 121.3(2) . . ? C36 C35 H35A 119.4 . . ? C34 C35 H35A 119.4 . . ? C35 C36 C37 117.4(2) . . ? C35 C36 H36A 121.3 . . ? C37 C36 H36A 121.3 . . ? C36 C37 C32 122.3(2) . . ? C36 C37 N3 128.02(19) . . ? C32 C37 N3 109.69(18) . . ? C31 C38 H38A 109.5 . . ? C31 C38 H38B 109.5 . . ? H38A C38 H38B 109.5 . . ? C31 C38 H38C 109.5 . . ? H38A C38 H38C 109.5 . . ? H38B C38 H38C 109.5 . . ? C51 C50 C54 120.0 . . ? C55 C51 C50 120.0 . . ? C51 C55 C52 120.0 . . ? C53 C52 C55 120.0 . . ? C56 C53 C54 56.7(11) 2_465 . ? C56 C53 C52 176.7(11) 2_465 . ? C54 C53 C52 120.0 . . ? C56 C53 C56 58.9(11) 2_465 . ? C54 C53 C56 115.6 . . ? C52 C53 C56 124.4 . . ? C56 C54 C53 51.9(10) 2_465 . ? C56 C54 C50 171.9(10) 2_465 . ? C53 C54 C50 120.0 . . ? C53 C56 C54 71.3(10) 2_465 2_465 ? C53 C56 C56 73.8(16) 2_465 2_465 ? C54 C56 C56 145(2) 2_465 2_465 ? C53 C56 C53 121.1(14) 2_465 . ? C54 C56 C53 167.3(18) 2_465 . ? C56 C56 C53 47.3(7) 2_465 . ?

229

C61 C60 C65 120.0 . . ? C60 C61 C62 120.0 . . ? C63 C62 C61 120.0 . . ? C62 C63 C64 120.0 . . ? C62 C63 C66 128.2 . . ? C64 C63 C66 111.2 . . ? C63 C64 C65 120.0 . . ? C64 C65 C60 120.0 . . ?

_diffrn_measured_fraction_theta_max 0.993 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 0.993 _refine_diff_density_max 1.023 _refine_diff_density_min -0.342 _refine_diff_density_rms 0.090

230

CIF File for [{di(3-methylindolyl)imidazolylmethane}AlEt]

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C32 H32 Al N4' _chemical_formula_sum 'C32 H32 Al N4'

_chemical_formula_weight 499.60 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Al' 'Al' 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting triclinic _symmetry_space_group_name_H-M P-1 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z'

_cell_length_a 11.3139(11) _cell_length_b 15.6164(14) _cell_length_c 17.2642(16) _cell_angle_alpha 86.455(2) _cell_angle_beta 87.184(2) _cell_angle_gamma 76.554(2) _cell_volume 2959.1(5) _cell_formula_units_Z 4 _cell_measurement_temperature –133 _cell_measurement_reflns_used ? _cell_measurement_theta_min 1.83 _cell_measurement_theta_max 26.00

_exptl_crystal_description Square _exptl_crystal_colour light green _exptl_crystal_size_max .30 _exptl_crystal_size_mid 30 _exptl_crystal_size_min .30

231

_exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.121 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1060 _exptl_absorpt_coefficient_mu 0.094 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.837 _exptl_absorpt_correction_T_max 1.00 _exptl_absorpt_process_details 'sadabs (Sheldrick, 1997)'

_exptl_special_details ; ? ;

_diffrn_ambient_temperature –133 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator 'graphite' _diffrn_measurement_device_type 'Bruker platform with 4k CCD' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 21154 _diffrn_reflns_av_R_equivalents 0.0159 _diffrn_reflns_av_sigmaI/netI 0.0243 _diffrn_reflns_limit_h_min -13 _diffrn_reflns_limit_h_max 13 _diffrn_reflns_limit_k_min -17 _diffrn_reflns_limit_k_max 19 _diffrn_reflns_limit_l_min -21 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 1.83 _diffrn_reflns_theta_max 26.00 _reflns_number_total 11565 _reflns_number_gt 10423 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630 ' _computing_cell_refinement 'Saintplus 5.45 ' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is

232

not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1016P)^2^+2.5183P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 11565 _refine_ls_number_parameters 667 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0673 _refine_ls_R_factor_gt 0.0620 _refine_ls_wR_factor_ref 0.1814 _refine_ls_wR_factor_gt 0.1756 _refine_ls_goodness_of_fit_ref 1.032 _refine_ls_restrained_S_all 1.032 _refine_ls_shift/su_max 15.000 _refine_ls_shift/su_mean 0.026 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Al1 Al 0.21163(5) 0.44708(4) 0.18193(3) 0.02554(15) Uani 1 1 d . . . Al2 Al 0.29006(5) -0.07185(4) 0.31232(3) 0.02657(15) Uani 1 1 d . . . N1 N 0.05321(15) 0.43851(11) 0.21095(9) 0.0253(3) Uani 1 1 d . . . N2 N 0.28911(15) 0.37980(11) 0.26684(10) 0.0268(4) Uani 1 1 d . . . N3 N 0.19955(16) 0.55711(11) 0.23124(10) 0.0271(4) Uani 1 1 d . . . N4 N 0.14378(16) 0.63179(11) 0.33566(10) 0.0282(4) Uani 1 1 d . . . N11 N 0.24276(16) -0.11107(11) 0.22085(10) 0.0281(4) Uani 1 1 d . . . N12 N 0.15628(16) -0.08887(11) 0.37417(11) 0.0302(4) Uani 1 1 d . . . N13 N 0.21899(17) 0.05180(11) 0.28664(11) 0.0316(4) Uani 1 1 d . . . N14 N 0.06331(18) 0.14772(11) 0.23842(11) 0.0338(4) Uani 1 1 d . . . C1 C 0.11586(17) 0.47287(12) 0.33847(11) 0.0234(4) Uani 1 1 d . . . H1A H 0.0835 0.4825 0.3917 0.028 Uiso 1 1 calc R . . C2 C 0.2712(2) 0.43206(17) 0.07513(13) 0.0401(5) Uani 1 1 d . . . H2A H 0.2881 0.3697 0.0656 0.048 Uiso 1 1 calc R . .

233

H2B H 0.2065 0.4619 0.0414 0.048 Uiso 1 1 calc R . . C3 C 0.3833(3) 0.4653(2) 0.05203(18) 0.0596(8) Uani 1 1 d . . . H3A H 0.4049 0.4544 -0.0015 0.089 Uiso 1 1 calc R . . H3B H 0.4491 0.4353 0.0838 0.089 Uiso 1 1 calc R . . H3C H 0.3673 0.5275 0.0591 0.089 Uiso 1 1 calc R . . C4 C 0.4524(2) -0.10649(17) 0.35223(13) 0.0370(5) Uani 1 1 d . . . H4A H 0.4678 -0.1679 0.3706 0.044 Uiso 1 1 calc R . . H4B H 0.5110 -0.1015 0.3102 0.044 Uiso 1 1 calc R . . C5 C 0.4722(3) -0.0509(2) 0.41857(16) 0.0505(6) Uani 1 1 d . . . H5A H 0.5539 -0.0711 0.4357 0.076 Uiso 1 1 calc R . . H5B H 0.4159 -0.0566 0.4610 0.076 Uiso 1 1 calc R . . H5C H 0.4590 0.0099 0.4005 0.076 Uiso 1 1 calc R . . C6 C 0.04578(19) -0.01290(13) 0.25964(13) 0.0320(5) Uani 1 1 d . . . H6A H -0.0373 0.0080 0.2416 0.038 Uiso 1 1 calc R . . C10 C 0.02035(17) 0.45169(12) 0.28899(11) 0.0233(4) Uani 1 1 d . . . C11 C -0.09422(18) 0.44142(12) 0.30786(12) 0.0256(4) Uani 1 1 d . . . C12 C -0.13967(18) 0.42019(13) 0.23701(12) 0.0272(4) Uani 1 1 d . . . C13 C -0.2502(2) 0.40224(15) 0.21751(14) 0.0354(5) Uani 1 1 d . . . H13A H -0.3115 0.4013 0.2552 0.043 Uiso 1 1 calc R . . C14 C -0.2664(2) 0.38597(16) 0.14141(15) 0.0400(5) Uani 1 1 d . . . H14A H -0.3396 0.3746 0.1279 0.048 Uiso 1 1 calc R . . C15 C -0.1737(2) 0.38632(15) 0.08431(14) 0.0385(5) Uani 1 1 d . . . H15A H -0.1866 0.3751 0.0335 0.046 Uiso 1 1 calc R . . C16 C -0.0636(2) 0.40309(14) 0.10212(12) 0.0321(5) Uani 1 1 d . . . H16A H -0.0026 0.4032 0.0641 0.039 Uiso 1 1 calc R . . C17 C -0.04670(18) 0.41985(12) 0.17887(12) 0.0263(4) Uani 1 1 d . . . C18 C -0.1620(2) 0.45272(15) 0.38435(13) 0.0340(5) Uani 1 1 d . . . H18A H -0.1110 0.4671 0.4220 0.051 Uiso 1 1 calc R . . H18B H -0.1850 0.3989 0.4011 0.051 Uiso 1 1 calc R . . H18C H -0.2337 0.4994 0.3791 0.051 Uiso 1 1 calc R . . C20 C 0.22843(18) 0.39781(12) 0.33834(11) 0.0247(4) Uani 1 1 d . . . C21 C 0.2818(2) 0.34242(13) 0.39749(12) 0.0296(4) Uani 1 1 d . . . C22 C 0.3852(2) 0.28524(14) 0.36202(13) 0.0331(5) Uani 1 1 d . . . C23 C 0.4771(2) 0.21543(15) 0.39093(17) 0.0451(6) Uani 1 1 d . . . H23A H 0.4772 0.1976 0.4433 0.054 Uiso 1 1 calc R . . C24 C 0.5669(2) 0.17389(17) 0.34036(19) 0.0541(7) Uani 1 1 d . . . H24A H 0.6281 0.1277 0.3591 0.065 Uiso 1 1 calc R . . C25 C 0.5680(2) 0.19975(17) 0.26144(19) 0.0503(7) Uani 1 1 d . . . H25A H 0.6304 0.1708 0.2288 0.060 Uiso 1 1 calc R . . C26 C 0.4781(2) 0.26774(15) 0.23083(16) 0.0391(5) Uani 1 1 d . . . H26A H 0.4784 0.2843 0.1782 0.047 Uiso 1 1 calc R . . C27 C 0.38716(19) 0.31034(13) 0.28192(13) 0.0301(4) Uani 1 1 d . . . C28 C 0.2445(2) 0.34102(16) 0.48174(13) 0.0411(5) Uani 1 1 d . . . H28A H 0.1716 0.3857 0.4901 0.062 Uiso 1 1 calc R . . H28B H 0.3082 0.3521 0.5116 0.062 Uiso 1 1 calc R . . H28C H 0.2298 0.2843 0.4976 0.062 Uiso 1 1 calc R . . C30 C 0.15107(17) 0.55501(12) 0.30336(11) 0.0247(4) Uani 1 1 d . . . C31 C 0.1902(2) 0.68592(14) 0.28174(13) 0.0346(5) Uani 1 1 d . . . H31A H 0.1967 0.7433 0.2883 0.041 Uiso 1 1 calc R . . C32 C 0.2244(2) 0.63932(14) 0.21763(13) 0.0319(4) Uani 1 1 d . . . H32A H 0.2588 0.6593 0.1720 0.038 Uiso 1 1 calc R . . C33 C 0.0958(3) 0.65507(16) 0.41333(14) 0.0422(6) Uani 1 1 d . . . H33A H 0.0696 0.6061 0.4391 0.063 Uiso 1 1 calc R . . H33B H 0.0281 0.7051 0.4097 0.063 Uiso 1 1 calc R . . H33C H 0.1582 0.6694 0.4424 0.063 Uiso 1 1 calc R . . C40 C -0.1348(2) 0.67072(16) 0.16875(14) 0.0426(6) Uani 1 1 d . . .

234

C41 C -0.1149(3) 0.7187(2) 0.22940(19) 0.0644(9) Uani 1 1 d . . . H41A H -0.0494 0.7455 0.2273 0.077 Uiso 1 1 calc R . . C42 C -0.1976(5) 0.7263(3) 0.29572(19) 0.0888(15) Uani 1 1 d . . . H42A H -0.1861 0.7579 0.3376 0.107 Uiso 1 1 calc R . . C43 C -0.2946(4) 0.6862(3) 0.2967(2) 0.0813(13) Uani 1 1 d . . . H43A H -0.3489 0.6911 0.3393 0.098 Uiso 1 1 calc R . . C44 C -0.3107(3) 0.6407(2) 0.2368(2) 0.0735(10) Uani 1 1 d . . . H44A H -0.3765 0.6143 0.2381 0.088 Uiso 1 1 calc R . . C45 C -0.2329(3) 0.63210(18) 0.17400(18) 0.0541(7) Uani 1 1 d . . . H45A H -0.2461 0.5993 0.1334 0.065 Uiso 1 1 calc R . . C46 C -0.0509(3) 0.6595(2) 0.09797(18) 0.0663(9) Uani 1 1 d . . . H46A H 0.0128 0.6896 0.1036 0.099 Uiso 1 1 calc R . . H46B H -0.0959 0.6837 0.0529 0.099 Uiso 1 1 calc R . . H46C H -0.0161 0.5979 0.0922 0.099 Uiso 1 1 calc R . . C50 C -0.3166(3) -0.0648(2) 0.00875(16) 0.0543(7) Uani 1 1 d . . . C51 C -0.3185(2) -0.12471(19) 0.07205(16) 0.0471(6) Uani 1 1 d . . . H51A H -0.2948 -0.1849 0.0650 0.056 Uiso 1 1 calc R . . C52 C -0.3549(3) -0.0954(2) 0.14440(17) 0.0522(7) Uani 1 1 d . . . H52A H -0.3540 -0.1358 0.1864 0.063 Uiso 1 1 calc R . . C53 C -0.3927(3) -0.0068(2) 0.15529(19) 0.0627(8) Uani 1 1 d . . . H53A H -0.4179 0.0130 0.2045 0.075 Uiso 1 1 calc R . . C54 C -0.3932(4) 0.0523(2) 0.0933(2) 0.0696(9) Uani 1 1 d . . . H54A H -0.4190 0.1124 0.1005 0.084 Uiso 1 1 calc R . . C55 C -0.3560(3) 0.0237(2) 0.02053(18) 0.0611(8) Uani 1 1 d . . . H55A H -0.3575 0.0646 -0.0212 0.073 Uiso 1 1 calc R . . C56 C -0.27302(9) -0.09458(7) -0.07007(6) 0.0926(13) Uani 1 1 d . . . H56A H -0.2784 -0.0442 -0.1056 0.139 Uiso 1 1 calc R . . H56B H -0.3226 -0.1315 -0.0872 0.139 Uiso 1 1 calc R . . H56C H -0.1900 -0.1273 -0.0682 0.139 Uiso 1 1 calc R . . C74 C 0.50129(9) 0.46258(7) 0.40914(6) 0.080(2) Uiso 0.50 1 d PR . 1 C73 C 0.45529(9) 0.53910(7) 0.36438(6) 0.161(6) Uiso 0.50 1 d PR A 1 C72 C 0.42189(9) 0.61971(7) 0.39889(6) 0.47(3) Uiso 0.50 1 d PR A 1 C71 C 0.43450(9) 0.62381(7) 0.47817(6) 0.339(17) Uiso 0.50 1 d PR . 1 C70 C 0.48050(9) 0.54730(7) 0.52294(6) 0.090(3) Uiso 0.50 1 d PR . 1 C75 C 0.51389(9) 0.46668(7) 0.48843(6) 2.0(3) Uiso 0.50 1 d PR . 1 C60 C 0.51155(9) 0.49451(7) 0.53689(6) 0.0572(14) Uiso 0.50 1 d PR . 3 C61 C 0.53844(9) 0.42706(7) 0.48541(6) 0.330(19) Uiso 0.50 1 d PR . 3 C62 C 0.51277(9) 0.44522(7) 0.40739(6) 0.43(3) Uiso 0.50 1 d PR . 3 C63 C 0.46022(9) 0.53082(7) 0.38084(6) 0.0503(14) Uiso 0.50 1 d PR . 3 C64 C 0.43333(9) 0.59827(7) 0.43232(6) 0.085(2) Uiso 0.50 1 d PR . 3 C65 C 0.45900(9) 0.58012(7) 0.51034(6) 0.0414(11) Uiso 0.50 1 d PR . 3 C110 C 0.12097(9) -0.07658(7) 0.20346(6) 0.0297(4) Uani 1 1 d R . . C111 C 0.09135(9) -0.10531(7) 0.13514(6) 0.0331(5) Uani 1 1 d R . . C112 C 0.20075(9) -0.16287(7) 0.10698(6) 0.0318(5) Uani 1 1 d R . . C113 C 0.23101(9) -0.21303(7) 0.04112(6) 0.0395(5) Uani 1 1 d R . . H11A H 0.1730 -0.2126 0.0047 0.047 Uiso 1 1 calc R . . C114 C 0.3480(3) -0.26297(17) 0.03113(14) 0.0440(6) Uani 1 1 d . . . H11B H 0.3685 -0.2964 -0.0124 0.053 Uiso 1 1 calc R . . C115 C 0.4364(2) -0.26411(17) 0.08553(14) 0.0419(5) Uani 1 1 d . . . H11C H 0.5146 -0.2983 0.0775 0.050 Uiso 1 1 calc R . . C116 C 0.4097(2) -0.21547(15) 0.15084(13) 0.0343(5) Uani 1 1 d . . . H11D H 0.4685 -0.2166 0.1869 0.041 Uiso 1 1 calc R . . C117 C 0.2921(2) -0.16468(13) 0.16101(12) 0.0293(4) Uani 1 1 d . . . C118 C -0.0285(2) -0.08257(18) 0.09627(16) 0.0465(6) Uani 1 1 d . . . H11E H -0.0867 -0.0423 0.1269 0.070 Uiso 1 1 calc R . . H11F H -0.0569 -0.1353 0.0914 0.070 Uiso 1 1 calc R . .

235

H11G H -0.0187 -0.0555 0.0456 0.070 Uiso 1 1 calc R . . C120 C 0.04364(19) -0.05610(13) 0.34077(13) 0.0311(4) Uani 1 1 d . . . C121 C -0.0507(2) -0.07042(14) 0.38828(15) 0.0353(5) Uani 1 1 d . . . C122 C 0.0037(2) -0.11655(14) 0.45667(14) 0.0347(5) Uani 1 1 d . . . C123 C -0.0422(2) -0.15435(17) 0.52448(15) 0.0445(6) Uani 1 1 d . . . H12A H -0.1255 -0.1483 0.5329 0.053 Uiso 1 1 calc R . . C124 C 0.0382(3) -0.20046(18) 0.57822(15) 0.0490(6) Uani 1 1 d . . . H12B H 0.0086 -0.2270 0.6224 0.059 Uiso 1 1 calc R . . C125 C 0.1634(3) -0.20804(17) 0.56748(14) 0.0446(6) Uani 1 1 d . . . H12C H 0.2154 -0.2384 0.6052 0.054 Uiso 1 1 calc R . . C126 C 0.2116(2) -0.17120(15) 0.50179(13) 0.0360(5) Uani 1 1 d . . . H12D H 0.2949 -0.1762 0.4951 0.043 Uiso 1 1 calc R . . C127 C 0.1317(2) -0.12646(13) 0.44598(12) 0.0305(4) Uani 1 1 d . . . C128 C -0.1845(2) -0.04243(17) 0.37471(19) 0.0505(7) Uani 1 1 d . . . H12E H -0.1971 -0.0126 0.3245 0.076 Uiso 1 1 calc R . . H12F H -0.2235 -0.0033 0.4139 0.076 Uiso 1 1 calc R . . H12G H -0.2185 -0.0934 0.3771 0.076 Uiso 1 1 calc R . . C130 C 0.1062(2) 0.06361(13) 0.26180(13) 0.0313(4) Uani 1 1 d . . . C131 C 0.1524(2) 0.19269(14) 0.25017(14) 0.0387(5) Uani 1 1 d . . . H13B H 0.1472 0.2526 0.2399 0.046 Uiso 1 1 calc R . . C132 C 0.2481(2) 0.13307(14) 0.27933(13) 0.0356(5) Uani 1 1 d . . . H13C H 0.3214 0.1448 0.2923 0.043 Uiso 1 1 calc R . . C133 C -0.0566(2) 0.18552(15) 0.20751(16) 0.0460(6) Uani 1 1 d . . . H13D H -0.1005 0.1400 0.2054 0.069 Uiso 1 1 calc R . . H13E H -0.0475 0.2111 0.1562 0.069 Uiso 1 1 calc R . . H13F H -0.1006 0.2302 0.2406 0.069 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Al1 0.0310(3) 0.0226(3) 0.0223(3) 0.0005(2) 0.0025(2) -0.0059(2) Al2 0.0295(3) 0.0252(3) 0.0275(3) -0.0016(2) -0.0037(2) -0.0106(2) N1 0.0308(8) 0.0234(8) 0.0218(8) -0.0011(6) -0.0015(6) -0.0065(7) N2 0.0278(8) 0.0226(8) 0.0290(9) 0.0003(6) -0.0004(7) -0.0045(7) N3 0.0323(9) 0.0220(8) 0.0273(8) 0.0024(6) 0.0003(7) -0.0084(7) N4 0.0336(9) 0.0220(8) 0.0302(9) -0.0017(7) -0.0012(7) -0.0088(7) N11 0.0319(9) 0.0238(8) 0.0306(9) -0.0003(7) -0.0053(7) -0.0100(7) N12 0.0302(9) 0.0269(9) 0.0347(9) 0.0017(7) -0.0025(7) -0.0095(7) N13 0.0392(10) 0.0244(9) 0.0345(9) -0.0024(7) -0.0025(8) -0.0135(7) N14 0.0462(11) 0.0195(8) 0.0348(10) -0.0015(7) 0.0017(8) -0.0064(7) C1 0.0290(9) 0.0217(9) 0.0204(9) 0.0004(7) -0.0014(7) -0.0078(7) C2 0.0501(14) 0.0400(13) 0.0294(11) -0.0018(9) 0.0075(10) -0.0108(11) C3 0.0479(15) 0.070(2) 0.0545(17) 0.0078(14) 0.0119(13) -0.0071(14) C4 0.0299(11) 0.0471(13) 0.0348(12) -0.0040(10) -0.0013(9) -0.0098(9) C5 0.0537(15) 0.0643(17) 0.0419(14) -0.0023(12) -0.0125(12) -0.0283(13) C6 0.0309(10) 0.0217(10) 0.0439(12) 0.0027(9) -0.0089(9) -0.0069(8) C10 0.0291(10) 0.0188(9) 0.0221(9) 0.0007(7) -0.0022(7) -0.0056(7) C11 0.0281(10) 0.0203(9) 0.0280(10) 0.0003(7) -0.0015(8) -0.0050(7) C12 0.0299(10) 0.0205(9) 0.0299(10) 0.0000(7) -0.0047(8) -0.0030(7) C13 0.0307(11) 0.0316(11) 0.0442(13) -0.0028(9) -0.0053(9) -0.0066(9) C14 0.0366(12) 0.0374(12) 0.0482(14) -0.0035(10) -0.0147(10) -0.0098(10)

236

C15 0.0490(13) 0.0332(11) 0.0344(12) -0.0024(9) -0.0163(10) -0.0085(10) C16 0.0416(12) 0.0274(10) 0.0270(10) -0.0004(8) -0.0060(9) -0.0065(9) C17 0.0318(10) 0.0182(9) 0.0283(10) 0.0004(7) -0.0060(8) -0.0040(7) C18 0.0331(11) 0.0379(12) 0.0320(11) -0.0025(9) 0.0040(9) -0.0112(9) C20 0.0291(10) 0.0216(9) 0.0252(9) 0.0009(7) -0.0026(7) -0.0096(8) C21 0.0363(11) 0.0227(9) 0.0319(11) 0.0017(8) -0.0093(8) -0.0100(8) C22 0.0358(11) 0.0233(10) 0.0421(12) 0.0013(9) -0.0142(9) -0.0088(8) C23 0.0477(14) 0.0291(11) 0.0575(16) 0.0008(11) -0.0256(12) -0.0030(10) C24 0.0443(14) 0.0327(13) 0.082(2) -0.0059(13) -0.0279(14) 0.0048(11) C25 0.0329(12) 0.0368(13) 0.079(2) -0.0160(13) -0.0045(12) 0.0006(10) C26 0.0330(11) 0.0308(11) 0.0530(14) -0.0073(10) 0.0008(10) -0.0054(9) C27 0.0281(10) 0.0203(9) 0.0433(12) -0.0024(8) -0.0046(9) -0.0076(8) C28 0.0557(15) 0.0387(12) 0.0296(11) 0.0076(9) -0.0112(10) -0.0124(11) C30 0.0274(9) 0.0205(9) 0.0265(10) -0.0003(7) -0.0032(7) -0.0058(7) C31 0.0450(12) 0.0216(10) 0.0395(12) 0.0020(8) -0.0008(10) -0.0136(9) C32 0.0374(11) 0.0250(10) 0.0345(11) 0.0057(8) -0.0001(9) -0.0115(8) C33 0.0614(15) 0.0331(12) 0.0356(12) -0.0115(10) 0.0077(11) -0.0172(11) C40 0.0488(14) 0.0346(12) 0.0355(12) 0.0040(10) -0.0053(10) 0.0078(10) C41 0.069(2) 0.0522(17) 0.064(2) -0.0052(14) -0.0266(16) 0.0060(14) C42 0.132(4) 0.067(2) 0.0412(17) -0.0156(16) -0.030(2) 0.039(2) C43 0.087(3) 0.072(2) 0.057(2) 0.0160(18) 0.0143(19) 0.031(2) C44 0.070(2) 0.0567(19) 0.076(2) 0.0227(18) 0.0144(18) 0.0115(16) C45 0.0583(17) 0.0379(14) 0.0586(17) 0.0088(12) -0.0033(13) 0.0015(12) C46 0.070(2) 0.066(2) 0.0477(16) 0.0103(14) 0.0097(14) 0.0096(16) C50 0.0453(15) 0.079(2) 0.0418(14) 0.0053(13) -0.0027(11) -0.0221(14) C51 0.0408(13) 0.0480(15) 0.0517(15) 0.0054(12) -0.0042(11) -0.0104(11) C52 0.0523(15) 0.0586(17) 0.0469(15) 0.0150(13) -0.0001(12) -0.0201(13) C53 0.079(2) 0.0622(19) 0.0497(17) -0.0053(14) 0.0074(15) -0.0231(16) C54 0.095(3) 0.0478(17) 0.069(2) 0.0040(15) -0.0017(18) -0.0241(17) C55 0.075(2) 0.0618(19) 0.0524(17) 0.0231(14) -0.0110(15) -0.0322(16) C56 0.091(3) 0.142(4) 0.0464(19) -0.011(2) 0.0100(18) -0.032(3) C110 0.0341(11) 0.0214(9) 0.0359(11) 0.0036(8) -0.0098(9) -0.0106(8) C111 0.0421(12) 0.0248(10) 0.0361(11) 0.0051(8) -0.0123(9) -0.0145(9) C112 0.0444(12) 0.0275(10) 0.0287(10) 0.0040(8) -0.0067(9) -0.0190(9) C113 0.0571(15) 0.0391(12) 0.0294(11) -0.0001(9) -0.0079(10) -0.0244(11) C114 0.0596(16) 0.0465(14) 0.0329(12) -0.0111(10) 0.0055(11) -0.0259(12) C115 0.0444(13) 0.0436(13) 0.0414(13) -0.0103(10) 0.0081(10) -0.0176(11) C116 0.0375(11) 0.0350(11) 0.0347(11) -0.0047(9) -0.0006(9) -0.0164(9) C117 0.0397(11) 0.0243(10) 0.0281(10) 0.0005(8) -0.0024(8) -0.0163(8) C118 0.0488(14) 0.0457(14) 0.0484(14) 0.0044(11) -0.0223(12) -0.0155(11) C120 0.0303(10) 0.0215(9) 0.0417(12) -0.0019(8) -0.0021(9) -0.0060(8) C121 0.0310(11) 0.0222(10) 0.0525(14) -0.0089(9) 0.0047(9) -0.0053(8) C122 0.0386(12) 0.0242(10) 0.0426(12) -0.0105(9) 0.0093(9) -0.0097(9) C123 0.0496(14) 0.0414(13) 0.0455(14) -0.0159(11) 0.0194(11) -0.0175(11) C124 0.0709(18) 0.0497(15) 0.0316(12) -0.0084(11) 0.0153(12) -0.0265(13) C125 0.0665(17) 0.0440(14) 0.0281(11) -0.0024(10) -0.0022(11) -0.0222(12) C126 0.0466(13) 0.0335(11) 0.0309(11) -0.0045(9) -0.0009(9) -0.0149(10) C127 0.0382(11) 0.0234(10) 0.0319(11) -0.0062(8) 0.0045(9) -0.0108(8) C128 0.0307(12) 0.0380(13) 0.080(2) -0.0068(13) 0.0055(12) -0.0032(10) C130 0.0396(11) 0.0217(10) 0.0330(11) -0.0006(8) -0.0017(9) -0.0080(8) C131 0.0564(14) 0.0222(10) 0.0402(12) -0.0049(9) 0.0066(10) -0.0156(10) C132 0.0490(13) 0.0281(11) 0.0347(11) -0.0063(9) 0.0054(10) -0.0188(10) C133 0.0545(15) 0.0250(11) 0.0539(15) 0.0040(10) -0.0090(12) 0.0001(10)

_geom_special_details ;

237

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Al1 N1 1.8699(18) . ? Al1 N2 1.8785(18) . ? Al1 N3 1.9380(18) . ? Al1 C2 1.941(2) . ? Al2 N12 1.8696(19) . ? Al2 N11 1.8735(18) . ? Al2 C4 1.939(2) . ? Al2 N13 1.9439(19) . ? N1 C17 1.380(3) . ? N1 C10 1.395(2) . ? N2 C27 1.382(3) . ? N2 C20 1.394(3) . ? N3 C30 1.337(3) . ? N3 C32 1.381(3) . ? N4 C30 1.337(3) . ? N4 C31 1.385(3) . ? N4 C33 1.457(3) . ? N11 C117 1.383(3) . ? N11 C110 1.398(2) . ? N12 C127 1.382(3) . ? N12 C120 1.397(3) . ? N13 C130 1.335(3) . ? N13 C132 1.381(3) . ? N14 C130 1.334(3) . ? N14 C131 1.385(3) . ? N14 C133 1.461(3) . ? C1 C30 1.513(3) . ? C1 C10 1.516(3) . ? C1 C20 1.517(3) . ? C2 C3 1.506(4) . ? C4 C5 1.534(3) . ? C6 C130 1.511(3) . ? C6 C120 1.518(3) . ? C6 C110 1.516(2) . ? C10 C11 1.364(3) . ? C11 C12 1.436(3) . ? C11 C18 1.493(3) . ? C12 C13 1.404(3) . ? C12 C17 1.417(3) . ? C13 C14 1.382(3) . ? C14 C15 1.404(4) . ? C15 C16 1.384(3) . ?

238

C16 C17 1.397(3) . ? C20 C21 1.365(3) . ? C21 C22 1.433(3) . ? C21 C28 1.495(3) . ? C22 C23 1.405(3) . ? C22 C27 1.414(3) . ? C23 C24 1.375(4) . ? C24 C25 1.397(4) . ? C25 C26 1.387(4) . ? C26 C27 1.394(3) . ? C31 C32 1.353(3) . ? C40 C41 1.381(4) . ? C40 C45 1.378(4) . ? C40 C46 1.503(4) . ? C41 C42 1.436(6) . ? C42 C43 1.384(6) . ? C43 C44 1.334(6) . ? C44 C45 1.355(4) . ? C50 C55 1.375(5) . ? C50 C51 1.396(4) . ? C50 C56 1.489(3) . ? C51 C52 1.368(4) . ? C52 C53 1.373(5) . ? C53 C54 1.369(5) . ? C54 C55 1.372(5) . ? C74 C70 1.1948(19) 2_666 ? C74 C73 1.3900 . ? C74 C75 1.3900 . ? C73 C72 1.3900 . ? C72 C71 1.3900 . ? C71 C70 1.3900 . ? C71 C75 1.490(2) 2_666 ? C70 C75 0.296(2) 2_666 ? C70 C74 1.1948(19) 2_666 ? C70 C75 1.3900 . ? C70 C70 1.677(2) 2_666 ? C75 C70 0.296(2) 2_666 ? C75 C75 1.108(2) 2_666 ? C75 C71 1.490(2) 2_666 ? C60 C61 1.268(2) 2_666 ? C60 C60 1.3057(19) 2_666 ? C60 C62 1.361(2) 2_666 ? C60 C61 1.3900 . ? C60 C65 1.3900 . ? C60 C65 1.430(2) 2_666 ? C60 C63 1.4806(19) 2_666 ? C60 C64 1.513(2) 2_666 ? C61 C65 0.128(2) 2_666 ? C61 C60 1.268(2) 2_666 ? C61 C62 1.3900 . ? C61 C64 1.4806(19) 2_666 ? C62 C60 1.361(2) 2_666 ? C62 C63 1.3900 . ? C62 C65 1.4807(19) 2_666 ? C63 C64 1.3900 . ? C63 C60 1.4806(19) 2_666 ?

239

C64 C65 1.3900 . ? C64 C61 1.481(2) 2_666 ? C64 C60 1.513(2) 2_666 ? C65 C61 0.128(2) 2_666 ? C65 C60 1.430(2) 2_666 ? C65 C62 1.481(2) 2_666 ? C110 C111 1.3708 . ? C111 C112 1.4331 . ? C111 C118 1.501(3) . ? C112 C113 1.4039 . ? C112 C117 1.420(2) . ? C113 C114 1.380(3) . ? C114 C115 1.402(4) . ? C115 C116 1.380(3) . ? C116 C117 1.391(3) . ? C120 C121 1.366(3) . ? C121 C122 1.433(3) . ? C121 C128 1.500(3) . ? C122 C123 1.410(3) . ? C122 C127 1.424(3) . ? C123 C124 1.380(4) . ? C124 C125 1.398(4) . ? C125 C126 1.385(3) . ? C126 C127 1.394(3) . ? C131 C132 1.349(4) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 Al1 N2 97.15(8) . . ? N1 Al1 N3 94.79(7) . . ? N2 Al1 N3 92.62(8) . . ? N1 Al1 C2 120.40(10) . . ? N2 Al1 C2 123.47(10) . . ? N3 Al1 C2 121.33(9) . . ? N12 Al2 N11 96.39(8) . . ? N12 Al2 C4 120.26(9) . . ? N11 Al2 C4 124.71(9) . . ? N12 Al2 N13 94.33(8) . . ? N11 Al2 N13 94.34(8) . . ? C4 Al2 N13 119.77(9) . . ? C17 N1 C10 105.39(16) . . ? C17 N1 Al1 139.45(14) . . ? C10 N1 Al1 115.13(13) . . ? C27 N2 C20 105.63(17) . . ? C27 N2 Al1 139.64(15) . . ? C20 N2 Al1 114.50(13) . . ? C30 N3 C32 106.73(17) . . ? C30 N3 Al1 111.73(13) . . ? C32 N3 Al1 141.53(15) . . ? C30 N4 C31 107.59(17) . . ?

240

C30 N4 C33 126.62(18) . . ? C31 N4 C33 125.79(18) . . ? C117 N11 C110 105.86(15) . . ? C117 N11 Al2 139.67(15) . . ? C110 N11 Al2 114.46(11) . . ? C127 N12 C120 105.90(17) . . ? C127 N12 Al2 139.30(15) . . ? C120 N12 Al2 114.80(14) . . ? C130 N13 C132 106.69(18) . . ? C130 N13 Al2 111.56(13) . . ? C132 N13 Al2 141.49(16) . . ? C130 N14 C131 107.46(19) . . ? C130 N14 C133 126.1(2) . . ? C131 N14 C133 126.40(19) . . ? C30 C1 C10 108.55(15) . . ? C30 C1 C20 108.22(16) . . ? C10 C1 C20 109.86(15) . . ? C3 C2 Al1 116.37(19) . . ? C5 C4 Al2 113.41(17) . . ? C130 C6 C120 108.69(18) . . ? C130 C6 C110 107.00(16) . . ? C120 C6 C110 110.92(15) . . ? C11 C10 N1 112.85(17) . . ? C11 C10 C1 130.91(18) . . ? N1 C10 C1 116.23(16) . . ? C10 C11 C12 105.26(17) . . ? C10 C11 C18 128.42(19) . . ? C12 C11 C18 126.28(18) . . ? C13 C12 C17 119.54(19) . . ? C13 C12 C11 133.6(2) . . ? C17 C12 C11 106.89(17) . . ? C14 C13 C12 119.0(2) . . ? C13 C14 C15 120.9(2) . . ? C16 C15 C14 121.3(2) . . ? C15 C16 C17 118.2(2) . . ? N1 C17 C16 129.3(2) . . ? N1 C17 C12 109.60(17) . . ? C16 C17 C12 121.15(19) . . ? C21 C20 N2 112.70(18) . . ? C21 C20 C1 130.66(18) . . ? N2 C20 C1 116.64(16) . . ? C20 C21 C22 105.10(19) . . ? C20 C21 C28 128.7(2) . . ? C22 C21 C28 126.24(19) . . ? C23 C22 C27 119.2(2) . . ? C23 C22 C21 133.4(2) . . ? C27 C22 C21 107.40(18) . . ? C24 C23 C22 118.8(3) . . ? C23 C24 C25 121.3(2) . . ? C26 C25 C24 121.4(2) . . ? C25 C26 C27 117.5(2) . . ? N2 C27 C26 129.1(2) . . ? N2 C27 C22 109.16(19) . . ? C26 C27 C22 121.7(2) . . ? N4 C30 N3 110.25(17) . . ? N4 C30 C1 128.76(18) . . ?

241

N3 C30 C1 120.97(17) . . ? C32 C31 N4 106.85(18) . . ? C31 C32 N3 108.57(19) . . ? C41 C40 C45 119.0(3) . . ? C41 C40 C46 121.2(3) . . ? C45 C40 C46 119.8(3) . . ? C40 C41 C42 118.5(4) . . ? C43 C42 C41 119.3(3) . . ? C44 C43 C42 120.3(4) . . ? C43 C44 C45 121.3(4) . . ? C44 C45 C40 121.7(3) . . ? C55 C50 C51 118.4(3) . . ? C55 C50 C56 119.9(2) . . ? C51 C50 C56 121.7(3) . . ? C52 C51 C50 120.5(3) . . ? C51 C52 C53 120.3(3) . . ? C54 C53 C52 119.5(3) . . ? C53 C54 C55 120.6(3) . . ? C54 C55 C50 120.6(3) . . ? C70 C74 C73 129.91(10) 2_666 . ? C70 C74 C75 9.93(10) 2_666 . ? C73 C74 C75 120.0 . . ? C74 C73 C72 120.0 . . ? C71 C72 C73 120.0 . . ? C72 C71 C70 120.0 . . ? C72 C71 C75 108.88(7) . 2_666 ? C70 C71 C75 11.13(7) . 2_666 ? C75 C70 C74 126.0(5) 2_666 2_666 ? C75 C70 C75 16.1(4) 2_666 . ? C74 C70 C75 110.08(10) 2_666 . ? C75 C70 C71 104.0(4) 2_666 . ? C74 C70 C71 129.91(10) 2_666 . ? C75 C70 C71 120.0 . . ? C75 C70 C70 13.3(3) 2_666 2_666 ? C74 C70 C70 112.87(14) 2_666 2_666 ? C75 C70 C70 2.81(7) . 2_666 ? C71 C70 C70 117.21(7) . 2_666 ? C70 C75 C75 159.7(5) 2_666 2_666 ? C70 C75 C70 163.9(4) 2_666 . ? C75 C75 C70 4.25(10) 2_666 . ? C70 C75 C74 44.0(4) 2_666 . ? C75 C75 C74 115.77(10) 2_666 . ? C70 C75 C74 120.0 . . ? C70 C75 C71 64.9(4) 2_666 2_666 ? C75 C75 C71 135.34(16) 2_666 2_666 ? C70 C75 C71 131.12(7) . 2_666 ? C74 C75 C71 108.87(7) . 2_666 ? C61 C60 C60 65.35(10) 2_666 2_666 ? C61 C60 C62 63.71(9) 2_666 2_666 ? C60 C60 C62 129.04(16) 2_666 2_666 ? C61 C60 C61 121.38(9) 2_666 . ? C60 C60 C61 56.03(9) 2_666 . ? C62 C60 C61 174.79(8) 2_666 . ? C61 C60 C65 1.78(9) 2_666 . ? C60 C60 C65 63.98(9) 2_666 . ? C62 C60 C65 65.11(8) 2_666 . ?

242

C61 C60 C65 120.0 . . ? C61 C60 C65 126.21(15) 2_666 2_666 ? C60 C60 C65 60.88(8) 2_666 2_666 ? C62 C60 C65 169.83(16) 2_666 2_666 ? C61 C60 C65 4.96(8) . 2_666 ? C65 C60 C65 124.86(8) . 2_666 ? C61 C60 C63 122.08(14) 2_666 2_666 ? C60 C60 C63 172.25(16) 2_666 2_666 ? C62 C60 C63 58.39(8) 2_666 2_666 ? C61 C60 C63 116.49(8) . 2_666 ? C65 C60 C63 123.50(8) . 2_666 ? C65 C60 C63 111.61(13) 2_666 2_666 ? C61 C60 C64 176.73(17) 2_666 2_666 ? C60 C60 C64 117.16(14) 2_666 2_666 ? C62 C60 C64 113.70(13) 2_666 2_666 ? C61 C60 C64 61.17(7) . 2_666 ? C65 C60 C64 178.51(8) . 2_666 ? C65 C60 C64 56.29(7) 2_666 2_666 ? C63 C60 C64 55.33(7) 2_666 2_666 ? C65 C61 C60 160.4(10) 2_666 2_666 ? C65 C61 C60 105.6(9) 2_666 . ? C60 C61 C60 58.62(9) 2_666 . ? C65 C61 C62 133.1(9) 2_666 . ? C60 C61 C62 61.39(9) 2_666 . ? C60 C61 C62 120.0 . . ? C65 C61 C64 43.3(8) 2_666 2_666 ? C60 C61 C64 122.08(14) 2_666 2_666 ? C60 C61 C64 63.51(8) . 2_666 ? C62 C61 C64 176.37(7) . 2_666 ? C60 C62 C63 65.11(8) 2_666 . ? C60 C62 C61 54.90(8) 2_666 . ? C63 C62 C61 120.0 . . ? C60 C62 C65 58.39(8) 2_666 2_666 ? C63 C62 C65 123.50(8) . 2_666 ? C61 C62 C65 3.63(7) . 2_666 ? C64 C63 C62 120.0 . . ? C64 C63 C60 63.51(8) . 2_666 ? C62 C63 C60 56.50(8) . 2_666 ? C65 C64 C63 120.0 . . ? C65 C64 C61 3.63(7) . 2_666 ? C63 C64 C61 116.49(8) . 2_666 ? C65 C64 C60 58.84(7) . 2_666 ? C63 C64 C60 61.17(7) . 2_666 ? C61 C64 C60 55.33(7) 2_666 2_666 ? C61 C65 C64 133.1(9) 2_666 . ? C61 C65 C60 17.9(9) 2_666 . ? C64 C65 C60 120.0 . . ? C61 C65 C60 69.4(9) 2_666 2_666 ? C64 C65 C60 64.87(8) . 2_666 ? C60 C65 C60 55.14(8) . 2_666 ? C61 C65 C62 43.3(8) 2_666 2_666 ? C64 C65 C62 176.37(7) . 2_666 ? C60 C65 C62 56.50(8) . 2_666 ? C60 C65 C62 111.61(13) 2_666 2_666 ? C111 C110 N11 112.38(8) . . ? C111 C110 C6 130.88(9) . . ?

243

N11 C110 C6 116.70(12) . . ? C110 C111 C112 105.3 . . ? C110 C111 C118 128.58(12) . . ? C112 C111 C118 126.13(12) . . ? C113 C112 C117 118.81(10) . . ? C113 C112 C111 133.8 . . ? C117 C112 C111 107.37(10) . . ? C114 C113 C112 119.14(11) . . ? C113 C114 C115 121.0(2) . . ? C116 C115 C114 121.3(2) . . ? C115 C116 C117 117.9(2) . . ? N11 C117 C116 129.10(19) . . ? N11 C117 C112 109.09(17) . . ? C116 C117 C112 121.80(18) . . ? C121 C120 N12 112.4(2) . . ? C121 C120 C6 131.2(2) . . ? N12 C120 C6 116.42(18) . . ? C120 C121 C122 105.66(19) . . ? C120 C121 C128 128.4(2) . . ? C122 C121 C128 125.9(2) . . ? C123 C122 C127 119.0(2) . . ? C123 C122 C121 133.9(2) . . ? C127 C122 C121 107.00(19) . . ? C124 C123 C122 119.0(2) . . ? C123 C124 C125 121.2(2) . . ? C126 C125 C124 121.3(3) . . ? C125 C126 C127 118.2(2) . . ? N12 C127 C126 129.6(2) . . ? N12 C127 C122 109.07(19) . . ? C126 C127 C122 121.3(2) . . ? N14 C130 N13 110.37(19) . . ? N14 C130 C6 128.5(2) . . ? N13 C130 C6 121.07(18) . . ? C132 C131 N14 106.95(19) . . ? C131 C132 N13 108.5(2) . . ?

_diffrn_measured_fraction_theta_max 0.996 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 0.996 _refine_diff_density_max 1.133 _refine_diff_density_min -0.920 _refine_diff_density_rms 0.069

244

CIF File For [(tris(pyrrolyl-α-methyl)amine)Al(HNMe2)]

_audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C23 H29 Al N5' _chemical_formula_sum 'C23 H29 Al N5'

_chemical_formula_weight 402.49 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Al' 'Al' 0.0645 0.0514 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M P2(1)/n loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2'

_cell_length_a 12.3285(6) _cell_length_b 10.4147(5) _cell_length_c 17.4485(8) _cell_angle_alpha 90.00 _cell_angle_beta 97.7140(10) _cell_angle_gamma 90.00 _cell_volume 2220.07(18) _cell_formula_units_Z 4 _cell_measurement_temperature -133 _cell_measurement_reflns_used ? _cell_measurement_theta_min 1.91 _cell_measurement_theta_max 26.00

_exptl_crystal_description Rectangle _exptl_crystal_colour Colorless _exptl_crystal_size_max .45 _exptl_crystal_size_mid .40

245

_exptl_crystal_size_min .40 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.204 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 860 _exptl_absorpt_coefficient_mu 0.110 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.892 _exptl_absorpt_correction_T_max 1.000 _exptl_absorpt_process_details 'sadabs (Sheldrick, 1997)

_exptl_special_details ; ? ;

_diffrn_ambient_temperature –133 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator 'graphite' _diffrn_measurement_device_type 'Bruker platform with 4k CCD' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 14974 _diffrn_reflns_av_R_equivalents 0.0168 _diffrn_reflns_av_sigmaI/netI 0.0172 _diffrn_reflns_limit_h_min -11 _diffrn_reflns_limit_h_max 15 _diffrn_reflns_limit_k_min -12 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_l_min -21 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 1.91 _diffrn_reflns_theta_max 26.00 _reflns_number_total 4355 _reflns_number_gt 4093 _reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Smart 5.630 ' _computing_cell_refinement 'Saintplus 5.45 ' _computing_data_reduction 'Saintplus 5.45' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of

246

F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ;

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0674P)^2^+0.5590P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 4355 _refine_ls_number_parameters 391 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0375 _refine_ls_R_factor_gt 0.0353 _refine_ls_wR_factor_ref 0.1083 _refine_ls_wR_factor_gt 0.1056 _refine_ls_goodness_of_fit_ref 1.096 _refine_ls_restrained_S_all 1.096 _refine_ls_shift/su_max 0.014 _refine_ls_shift/su_mean 0.001 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Al1 Al 0.91964(3) 0.07290(3) 0.236341(19) 0.01939(12) Uani 1 1 d . . . N4 N 0.98569(8) -0.09025(10) 0.23241(6) 0.0221(2) Uani 1 1 d . . . N5 N 0.82485(9) 0.03129(11) 0.31972(6) 0.0251(2) Uani 1 1 d . . . N1 N 1.02936(8) 0.12132(10) 0.15795(6) 0.0228(2) Uani 1 1 d . . . C10 C 1.08280(10) 0.25921(12) 0.26619(7) 0.0242(3) Uani 1 1 d . . . N3 N 0.81264(9) 0.11547(10) 0.15272(6) 0.0234(2) Uani 1 1 d . . . N2 N 0.98753(9) 0.21467(10) 0.29059(6) 0.0229(2) Uani 1 1 d . . . C1 C 1.12584(10) 0.18189(12) 0.20479(8) 0.0259(3) Uani 1 1 d . . . C3 C 1.05867(11) 0.00080(12) 0.12029(8) 0.0264(3) Uani 1 1 d . . . C13 C 0.96367(11) 0.29948(12) 0.34680(7) 0.0256(3) Uani 1 1 d . . . C30 C 1.05690(10) -0.10473(12) 0.17789(7) 0.0231(3) Uani 1 1 d . . . C33 C 0.98874(11) -0.20595(12) 0.27157(8) 0.0257(3) Uani 1 1 d . . . C31 C 1.10380(11) -0.22443(13) 0.18335(8) 0.0279(3) Uani 1 1 d . . .

247

C2 C 0.96974(11) 0.21253(13) 0.10164(8) 0.0281(3) Uani 1 1 d . . . C12 C 1.04121(11) 0.39400(13) 0.35750(8) 0.0289(3) Uani 1 1 d . . . C20 C 0.85200(11) 0.17399(12) 0.09034(7) 0.0266(3) Uani 1 1 d . . . C11 C 1.11807(11) 0.36847(13) 0.30572(8) 0.0281(3) Uani 1 1 d . . . C23 C 0.70146(11) 0.09937(13) 0.13090(8) 0.0276(3) Uani 1 1 d . . . C32 C 1.05951(11) -0.28898(13) 0.24345(8) 0.0295(3) Uani 1 1 d . . . C21 C 0.76784(13) 0.19264(14) 0.03146(8) 0.0339(3) Uani 1 1 d . . . C22 C 0.67190(12) 0.14590(14) 0.05763(8) 0.0341(3) Uani 1 1 d . . . C40 C 0.23396(11) 0.40146(13) 0.05801(8) 0.0289(3) Uani 1 1 d . . . C45 C 0.27932(13) 0.28211(14) 0.04582(9) 0.0354(3) Uani 1 1 d . . . C46 C 0.27252(14) 0.47912(16) 0.12908(9) 0.0376(3) Uani 1 1 d . . . C41 C 0.15094(12) 0.44795(16) 0.00298(9) 0.0365(3) Uani 1 1 d . . . C43 C 0.16068(15) 0.2611(2) -0.07498(10) 0.0497(5) Uani 1 1 d . . . C44 C 0.24255(16) 0.21164(17) -0.02073(11) 0.0468(4) Uani 1 1 d . . . C42 C 0.11503(14) 0.37888(19) -0.06310(9) 0.0456(4) Uani 1 1 d . . . C4 C 0.74172(13) -0.07266(15) 0.30128(10) 0.0346(3) Uani 1 1 d . . . C5 C 0.89043(13) 0.00594(14) 0.39688(8) 0.0314(3) Uani 1 1 d . . . H2A H 0.9779(14) 0.2963(17) 0.1256(10) 0.035(4) Uiso 1 1 d . . . H13 H 0.9002(14) 0.2873(15) 0.3708(9) 0.030(4) Uiso 1 1 d . . . H2B H 1.0006(14) 0.2126(16) 0.0533(10) 0.034(4) Uiso 1 1 d . . . H23 H 0.6557(13) 0.0586(15) 0.1659(9) 0.030(4) Uiso 1 1 d . . . H3A H 1.0018(13) -0.0147(15) 0.0753(9) 0.029(4) Uiso 1 1 d . . . H12 H 1.0401(14) 0.4608(17) 0.3934(10) 0.036(4) Uiso 1 1 d . . . H1B H 1.1745(13) 0.1134(16) 0.2279(9) 0.032(4) Uiso 1 1 d . . . H5D H 0.7875(13) 0.1006(17) 0.3242(9) 0.028(4) Uiso 1 1 d . . . H1A H 1.1687(13) 0.2337(15) 0.1731(9) 0.026(4) Uiso 1 1 d . . . H11 H 1.1839(14) 0.4160(15) 0.2977(9) 0.030(4) Uiso 1 1 d . . . H3B H 1.1318(13) 0.0108(15) 0.1010(9) 0.028(4) Uiso 1 1 d . . . H32 H 1.0749(14) -0.3713(19) 0.2618(10) 0.042(5) Uiso 1 1 d . . . H31 H 1.1545(14) -0.2553(17) 0.1529(10) 0.034(4) Uiso 1 1 d . . . H33 H 0.9462(14) -0.2188(16) 0.3134(10) 0.034(4) Uiso 1 1 d . . . H22 H 0.6028(17) 0.1432(19) 0.0287(11) 0.051(5) Uiso 1 1 d . . . H21 H 0.7746(17) 0.228(2) -0.0185(12) 0.055(5) Uiso 1 1 d . . . H45 H 0.3347(15) 0.2497(17) 0.0823(10) 0.037(4) Uiso 1 1 d . . . H41 H 0.1160(16) 0.534(2) 0.0094(11) 0.052(5) Uiso 1 1 d . . . H46A H 0.3213(16) 0.4274(19) 0.1680(11) 0.049(5) Uiso 1 1 d . . . H42 H 0.0572(17) 0.409(2) -0.1019(12) 0.055(6) Uiso 1 1 d . . . H5C H 0.9416(19) 0.076(2) 0.4136(13) 0.065(6) Uiso 1 1 d . . . H46B H 0.3131(19) 0.556(2) 0.1172(12) 0.062(6) Uiso 1 1 d . . . H44 H 0.2749(17) 0.135(2) -0.0253(12) 0.052(5) Uiso 1 1 d . . . H4C H 0.677(2) -0.042(3) 0.2734(16) 0.088(8) Uiso 1 1 d . . . H46C H 0.2085(19) 0.511(2) 0.1537(13) 0.066(6) Uiso 1 1 d . . . H5A H 0.9319(17) -0.074(2) 0.3950(12) 0.058(6) Uiso 1 1 d . . . H5B H 0.8440(18) 0.007(2) 0.4326(13) 0.064(6) Uiso 1 1 d . . . H43 H 0.1334(18) 0.214(2) -0.1220(13) 0.062(6) Uiso 1 1 d . . . H4A H 0.766(2) -0.135(3) 0.2706(17) 0.098(9) Uiso 1 1 d . . . H4B H 0.723(2) -0.104(3) 0.3432(17) 0.094(9) Uiso 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12

248

Al1 0.0204(2) 0.0187(2) 0.0201(2) 0.00108(12) 0.00623(14) 0.00027(13) N4 0.0227(5) 0.0205(5) 0.0238(5) 0.0013(4) 0.0061(4) -0.0006(4) N5 0.0264(5) 0.0232(5) 0.0275(6) 0.0000(4) 0.0103(4) -0.0004(5) N1 0.0251(5) 0.0209(5) 0.0239(5) 0.0026(4) 0.0088(4) 0.0015(4) C10 0.0220(6) 0.0212(6) 0.0298(6) 0.0048(5) 0.0055(5) 0.0005(5) N3 0.0241(5) 0.0230(5) 0.0237(5) 0.0003(4) 0.0052(4) 0.0023(4) N2 0.0233(5) 0.0221(5) 0.0243(5) 0.0004(4) 0.0068(4) -0.0016(4) C1 0.0229(6) 0.0229(6) 0.0336(7) 0.0036(5) 0.0100(5) -0.0010(5) C3 0.0302(7) 0.0249(6) 0.0264(6) 0.0000(5) 0.0123(5) 0.0027(5) C13 0.0271(6) 0.0259(6) 0.0244(6) -0.0012(5) 0.0055(5) 0.0003(5) C30 0.0215(6) 0.0230(6) 0.0256(6) -0.0016(5) 0.0061(5) -0.0003(5) C33 0.0284(6) 0.0215(6) 0.0277(6) 0.0035(5) 0.0053(5) -0.0021(5) C31 0.0256(6) 0.0243(6) 0.0347(7) -0.0033(5) 0.0073(5) 0.0028(5) C2 0.0342(7) 0.0263(7) 0.0256(6) 0.0075(5) 0.0109(5) 0.0038(5) C12 0.0316(7) 0.0241(6) 0.0299(7) -0.0029(5) 0.0001(5) 0.0005(5) C20 0.0340(7) 0.0236(6) 0.0232(6) 0.0021(5) 0.0072(5) 0.0057(5) C11 0.0245(6) 0.0233(6) 0.0362(7) 0.0027(5) 0.0026(5) -0.0021(5) C23 0.0252(6) 0.0250(6) 0.0321(7) -0.0046(5) 0.0028(5) 0.0015(5) C32 0.0323(7) 0.0201(6) 0.0358(7) 0.0024(5) 0.0032(6) 0.0013(5) C21 0.0445(8) 0.0327(7) 0.0237(6) 0.0008(5) 0.0021(6) 0.0081(6) C22 0.0331(7) 0.0337(7) 0.0329(7) -0.0053(6) -0.0051(6) 0.0060(6) C40 0.0326(7) 0.0294(7) 0.0262(6) -0.0002(5) 0.0092(5) -0.0053(5) C45 0.0415(8) 0.0329(7) 0.0349(7) 0.0002(6) 0.0162(7) -0.0015(6) C46 0.0434(8) 0.0347(8) 0.0341(8) -0.0062(6) 0.0024(7) 0.0010(7) C41 0.0322(7) 0.0405(8) 0.0370(8) 0.0039(6) 0.0055(6) -0.0086(6) C43 0.0505(10) 0.0669(12) 0.0342(8) -0.0146(8) 0.0145(7) -0.0301(9) C44 0.0592(11) 0.0357(8) 0.0528(10) -0.0132(7) 0.0339(9) -0.0123(8) C42 0.0381(8) 0.0640(11) 0.0343(8) -0.0005(8) 0.0030(7) -0.0187(8) C4 0.0310(8) 0.0348(8) 0.0394(8) 0.0035(6) 0.0102(6) -0.0099(6) C5 0.0407(8) 0.0313(7) 0.0241(6) 0.0017(5) 0.0111(6) -0.0035(6)

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Al1 N3 1.8838(11) . ? Al1 N2 1.8878(11) . ? Al1 N4 1.8894(11) . ? Al1 N5 2.0314(11) . ? Al1 N1 2.1099(10) . ? N4 C33 1.3833(16) . ? N4 C30 1.3866(16) . ? N5 C4 1.4958(18) . ? N5 C5 1.4978(18) . ?

249

N1 C3 1.4839(16) . ? N1 C2 1.4880(16) . ? N1 C1 1.4898(17) . ? C10 C11 1.3708(19) . ? C10 N2 1.3821(16) . ? C10 C1 1.4934(18) . ? N3 C23 1.3826(17) . ? N3 C20 1.3905(16) . ? N2 C13 1.3807(16) . ? C3 C30 1.4915(17) . ? C13 C12 1.3674(19) . ? C30 C31 1.3721(18) . ? C33 C32 1.3655(19) . ? C31 C32 1.4154(19) . ? C2 C20 1.4934(19) . ? C12 C11 1.419(2) . ? C20 C21 1.372(2) . ? C23 C22 1.370(2) . ? C21 C22 1.410(2) . ? C40 C45 1.391(2) . ? C40 C41 1.393(2) . ? C40 C46 1.5031(19) . ? C45 C44 1.397(2) . ? C41 C42 1.381(2) . ? C43 C42 1.377(3) . ? C43 C44 1.387(3) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N3 Al1 N2 114.93(5) . . ? N3 Al1 N4 116.36(5) . . ? N2 Al1 N4 123.87(5) . . ? N3 Al1 N5 101.22(5) . . ? N2 Al1 N5 93.83(5) . . ? N4 Al1 N5 97.25(5) . . ? N3 Al1 N1 83.39(4) . . ? N2 Al1 N1 81.86(4) . . ? N4 Al1 N1 82.79(4) . . ? N5 Al1 N1 174.74(5) . . ? C33 N4 C30 105.45(10) . . ? C33 N4 Al1 138.48(9) . . ? C30 N4 Al1 116.00(8) . . ? C4 N5 C5 109.72(11) . . ? C4 N5 Al1 116.34(9) . . ? C5 N5 Al1 112.85(8) . . ? C3 N1 C2 112.06(10) . . ? C3 N1 C1 112.16(10) . . ? C2 N1 C1 112.28(10) . . ? C3 N1 Al1 107.48(7) . . ? C2 N1 Al1 106.13(8) . . ?

250

C1 N1 Al1 106.24(7) . . ? C11 C10 N2 110.41(11) . . ? C11 C10 C1 133.58(12) . . ? N2 C10 C1 116.01(11) . . ? C23 N3 C20 105.95(11) . . ? C23 N3 Al1 138.59(9) . . ? C20 N3 Al1 115.32(9) . . ? C10 N2 C13 105.97(10) . . ? C10 N2 Al1 116.49(8) . . ? C13 N2 Al1 137.23(9) . . ? N1 C1 C10 106.71(10) . . ? N1 C3 C30 107.37(10) . . ? C12 C13 N2 110.23(12) . . ? C31 C30 N4 110.54(11) . . ? C31 C30 C3 132.24(12) . . ? N4 C30 C3 116.75(10) . . ? C32 C33 N4 110.51(11) . . ? C30 C31 C32 106.39(11) . . ? N1 C2 C20 107.51(10) . . ? C13 C12 C11 107.00(12) . . ? C21 C20 N3 109.87(12) . . ? C21 C20 C2 133.20(12) . . ? N3 C20 C2 116.72(11) . . ? C10 C11 C12 106.38(11) . . ? C22 C23 N3 110.11(13) . . ? C33 C32 C31 107.10(12) . . ? C20 C21 C22 106.94(12) . . ? C23 C22 C21 107.13(13) . . ? C45 C40 C41 118.58(14) . . ? C45 C40 C46 121.19(14) . . ? C41 C40 C46 120.22(14) . . ? C40 C45 C44 120.29(16) . . ? C42 C41 C40 121.21(16) . . ? C42 C43 C44 120.18(15) . . ? C43 C44 C45 119.84(16) . . ? C43 C42 C41 119.88(17) . . ?

_diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 26.00 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.283 _refine_diff_density_min -0.256 _refine_diff_density_rms 0.048

251