(19) TZZ ¥_T

(11) EP 2 853 578 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C09K 11/02 (2006.01) C09K 11/56 (2006.01) 30.08.2017 Bulletin 2017/35 C09K 11/61 (2006.01) C09K 11/70 (2006.01) C09K 11/88 (2006.01) B82Y 20/00 (2011.01) (2011.01) (21) Application number: 14185782.1 B82Y 40/00

(22) Date of filing: 22.09.2014

(54) Nanocrystal particles and processes for synthesizing the same Nanokristallpartikel und Verfahren zur Synthetisierung davon Particules de nanocristal et procédés permettant de les synthétiser

(84) Designated Contracting States: • Kim, Taekhoon AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Hwaseong-si, GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Gyeonggi-do (KR) PL PT RO RS SE SI SK SM TR (74) Representative: Mullen, Lee Bryan et al (30) Priority: 26.09.2013 KR 20130114601 Elkington and Fife LLP 18.09.2014 KR 20140124542 Thavies Inn House 3-4 Holborn Circus (43) Date of publication of application: London EC1N 2HA (GB) 01.04.2015 Bulletin 2015/14 (56) References cited: (73) Proprietor: Samsung Electronics Co., Ltd. WO-A1-01/25316 WO-A1-2012/112120 Gyeonggi-do 443-742 (KR) WO-A2-2006/116337 WO-A2-2012/111009 US-A1- 2007 125 984 (72) Inventors: • Kim, Hyunki • CHEN ZHONG ET AL: "Photoluminescence Suwon-si, spectra of ZnS:X-(X=F and I) nanoparticles Gyeonggi-do (KR) synthesized via a solid-state reac", OPTICAL • Jun, Shin Ae MATERIALS, vol. 36, no. 6, 28 February 2014 Seongnam-si, (2014-02-28), pages 1007-1012, XP028627648, Gyeonggi-do (KR) ISSN: 0925-3467, DOI: • Kim,Yongwook 10.1016/J.OPTMAT.2014.01.002 Hwaseong-si, • K MANZOOR ET AL: "Synthesis and Gyeonggi-do (KR) photoluminescent properties of ZnS • Kim, Tae Gon nanocrystals doped with copper and halogen", Hwaseong-si, MATERIALS CHEMISTRY AND PHYSICS, vol. 82, Gyeonggi-do (KR) no. 3, 1 December 2003 (2003-12-01), pages • Won, Yuho 718-725, XP055169040, ISSN: 0254-0584, DOI: Seoul (KR) 10.1016/S0254-0584(03)00366-3 • Jang, Eun Joo Suwon-si, Gyeonggi-do (KR) • Jang, Hyo Sook Suwon-si, Gyeonggi-do (KR)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 853 578 B1

Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 2 853 578 B1

• MARSH J H ET AL: "Impurity induced disordering of GaInAs quantum wells with barriers of AlGaInAs or of GaInAsP (MQW waveguides)", INDIUM PHOSPHIDE AND RELATED MATERIALS, 1991., THIRD INTERNATIONAL CON FERENCE. CARDIFF, UK 8-11 APRIL 1991, NEW YORK, NY, USA,IEEE, US, 8 April 1991 (1991-04-08), pages 592-595, XP010038657, DOI: 10.1109/ICIPRM.1991.147446 ISBN: 978-0-87942-626-2

2 EP 2 853 578 B1

Description

FIELD OF THE INVENTION

5 [0001] A nanocrystal particle and a process for synthesizing the same are disclosed.

BACKGROUND OF THE INVENTION

[0002] Unlike bulk materials, nanocrystals may control their physical characteristics (e.g., energy bandgap and melting 10 point) that are known to be an intrinsic property by changing their particle size. For example, a nanocrystal (also known as a quantum dot) is a semiconductor material having a crystalline structure of a size of several nanometers. The semiconductor nanocrystal has a very small size so that it has a large surface area per unit volume and may exhibit a quantum confinement effect. Therefore, the semiconductor nanocrystal has different physicochemical characteristics from the bulk material having the same composition. In other words, the nanocrystal may adjust various characteristics 15 by controlling its size. A quantum dot may absorb light from an excitation source to be in an excited state, and may emit energy corresponding to its energy bandgap. [0003] The semiconductor nanocrystal may be synthesized by a vapor deposition method such as metal organic chemical vapor deposition ("MOCVD") and molecular beam epitaxy ("MBE"), or by a wet chemical method of adding a precursor to an organic solvent to grow crystals. In the wet chemical method, organic materials such as a dispersant 20 are coordinated to a surface of the semiconductor crystal during the crystal growth to control the crystal growth. Therefore, the nanocrystals produced by the wet chemical method usually have a more uniform size and shape than those produced by the vapor deposition method. [0004] Semiconductor nanocrystal materials having a core-shell structure may exhibit slightly enhanced quantum efficiency, but a need to develop technologies to enhance qualities (such as quantum efficiency) of the nanocrystals still 25 remains. [0005] US 2007/125984 (A1) discloses a photoluminescent phosphor coated with a coating of oxide. The phosphor comprises (1) an inorganic phosphor chosen from (a) a metal thiogallate phosphor and (b) a metal sulfide phosphor and (2) a coating that comprises at least one layer having at least one oxides. [0006] K Manzoor et al: "Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and 30 halogen", Materials chemistry and physics, vol 82, no. 3, 2003, pages 718-725 discloses a wet-chemical precipitation method optimised for the synthesis of ZnS nanocrystals doped with Cu+ and halogen. The structure and photo-physics of the crystals was characterized. By controlling the defect chemistry and suitable doping, photo-luminescence emission was tunable.

35 SUMMARY OF THE INVENTION

[0007] An embodiment provides semiconductor nanocrystals having enhanced light emitting properties such as a high quantum yield. [0008] Another embodiment provides a process of preparing the semiconductor nanocrystals having enhanced light 40 emitting properties. [0009] In an embodiment, a nanocrystal particle includes at least one semiconductor material and at least one halogen element, and has a core-shell structure including a core of a first semiconductor nanocrystal, and a shell surrounding the core and including a crystalline or amorphous material. The least one halogen element may present as being doped in the particle or as a metal halide. The halogen element may be substituted in the crystalline structure of the particle 45 or may be introduced therein as an interstitial atom. [0010] The at least one halogen element may comprises fluorine (F). [0011] The first semiconductor nanocrystal may include a Group II metal, a Group III metal, a Group IV metal, or a combination thereof, and the crystalline or amorphous material may include at least one metal being different from the metal included in the first semiconductor nanocrystal and being selected from a Group I metal, a Group II metal, a Group 50 III metal, a Group IV metal, or a combination thereof. [0012] For example, the first nanocrystal may be a first semiconductor material, and the crystalline material of the shellmay be a second semiconductor material that is deposited on the core and that isdifferent from thefirst semiconductor material. The halogen element may be included in the core, and/or the halogen element may be present at an interface between 55 the core and the shell, and/or the halogen element may be present in the shell. [0013] The shell may be a multi-layered shell having at least two layers, each of the layers including the same or different crystalline or amorphous materials, and the halogen element may be present in a core region, in an inner shell (i.e., an inner layer of the shell), in an outer shell (i.e., an outer layer of the shell being on the inner layer), at an inte rface

3 EP 2 853 578 B1

between the core and the shell, at an interface between the layers of the shell, or in at least one place of the foregoing. The halogen element may be present in all of the aforementioned regions. [0014] The halogen element may be included in an amount of greater than or equal to about 0.05 % based on a total molar amount of a metal of the core of the nanocrystal particle. The halogen element may be included in an amount of 5 less than or equal to about 200%, for example, less than or equal to about 190%, less than or equal to about 180%, less than or equal to about 170%, less than or equal to about 160%, less than or equal to about 150%, less than or equal to about 140%, less than or equal to about 130%, less than or equal to about 120%, less than or equal to about 110%, or less thanor equal to about 100% basedon a totalmolar amount of themetal of the coreof the nanocrystal particle. [0015] The at least one halogen element may be fluorine, and it may be present in the form of a fluoride including a 10 Group I metal, a fluoride including a Group II metal, a fluoride including a Group III metal, or a combination thereof. [0016] The first semiconductor nanocrystal of the core may include a Group II-VI compound, a Group III-V compound, a Group IV-VI compound, a Group IV compound, or a combination thereof, and the crystalline or amorphous material of the shell may include a Group II-VI compound, a Group III-V compound, a Group IV-VI compound, a Group IV compound, a halogen compound containing a metal, a metal oxide, or a combination thereof. 15 [0017] The crystalline or amorphous material may include at least one metal different from the metal included in the first semiconductor nanocrystal. [0018] The Group II-VI compound may be selected from:

a binary element compound selected from CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, 20 and a combination thereof; a ternary element compound selected from CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, and a combination thereof; and a quaternary element compound selected from HgZnTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, 25 CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, and a combination thereof.

[0019] The Group III-V compound may be selected from:

a binary element compound selected from GaN, GaP, GaAs, GaSb, AIN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and 30 a combination thereof; a ternary element compound selected from GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AINP, AlNAs, AlNSb, AlPAs, AlPSB, InNP, InNAs, InNSb, InPAs, InPSb, and a combination thereof; and a quaternary element compound selected from GaAlNP, GaAINAs, GaAINSb, GaAlPAs, GaAlPSb, GaInNP, GaIn- NAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAINAs, InAINSb, InAIPAs, InAIPSb, and a combination thereof. 35 [0020] The Group IV-VI compound may be selected from:

a binary element compound selected from SnS, SnSe, SnTe, PbS, PbSe, PbTe, and a combination thereof; a ternary element compound selected from SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, 40 SnPbTe, and a combination thereof; and a quaternary element compound selected from SnPbSSe, SnPbSeTe, SnPbSTe, and a combination thereof.

[0021] The Group IV compound may be selected from:

45 a singular element selected from Si, Ge, and a combination thereof; and a binary element compound selected from SiC, SiGe, and a combination thereof.

[0022] The halogen compound containing a metal may be selected from LiF, NaF, KF, BeF 2, MgF2, CaF2, SrF2, CuF, AgF, AuF, ZnF2, CdF2, HgF2, AlF3, GaF3, InF3, SnF2, PbF2, LiCl, NaCl, KCI, BeCl2, MgCl2, CaCl2, SrCl2, CuCl, AgCl, 50 AuCl, ZnCl2, CdCl2, HgCl2, AlCl3, GaCl3, InCl3, SnCl2, PbCl2, LiBr, NaBr, KBr, BeBr 2, MgBr2, CaBr2, SrBr2, CuBr, AgBr, AuBr, ZnBr2, CdBr2, HgBr2, AlBr3, GaBr3, InBr3, SnBr2, PbBr2, LiI, Nal, KI, BeI2, MgI2, CaI2, SrI2, CuI, AgI, Aul, ZnI2, CdI2, HgI2, AlI3, GaI3, InI3, SnI2, PbI2, and a combination thereof. [0023] The metal oxide may be selected from the group consisting of CdO, In2O3, PbO, HgO, MgO, Ga2O3, Al2O3, ZnO, SiO2, zinc oxysulfide, zinc oxyselenide, zinc oxysulfide selenide, indium phosphide oxide, indium phosphide ox- 55 ysulfide, and a combination thereof. [0024] The shell may include a material having a composition different from that of the first semiconductor nanocrystal, and having a larger bandgap than that of the first semiconductor nanocrystal [0025] The nanocrystal may have a ligand compound coordinating a surface thereof.

4 EP 2 853 578 B1

[0026] The ligand compound may include RCOOH, RNH 2, R2NH, R3N, RSH, R 3PO, R3P, ROH, RCOOR’, RPO(OH) 2, R2POOH (wherein R and R’ are each independently a C1 to C24 alkyl group, a C2 to C24 alkenyl group, or a C6 to C20 aryl group), or a combination thereof. [0027] In another embodiment, a process of synthesizing nanocrystals includes: 5 obtaining a first mixture including a first precursor, a ligand compound, and a solvent; optionally heating the first mixture; adding a source of a halogen element, a second precursor, and optionally a first nanocrystal to the (optionally heated) first mixture to obtain a second mixture; and 10 heating the second mixture to a reaction temperature to trigger a reaction between the first precursor and the second precursor to obtain a nanocrystal particle including at least one semiconductor material and the halogen element therein.

[0028] In the above process, the first precursor may include two or more different compounds and/or the second 15 precursor may include two or more different compounds. These compounds may be added in any order or in the form of any mixture (for example, with a ligand compound and/or a solvent). [0029] The first precursor may include a Group II metal, a Group III metal, or a Group IV metal, and may be in the form of a metal powder, an alkylated metal compound, a metal alkoxide, a metal carboxylate, a metal nitrate, a metal perchlorate, a metal sulfate, a metal acetylacetonate, a metal halide, a metal cyanide, a metal hydroxide, a metal oxide, 20 or a metal peroxide, or a mixture thereof, and the second precursor may be a Group V element or a Group VI element or a compound containing the Group V element or the Group VI element or a compound containing a halogen element. [0030] The compound containing a Group V element or a Group VI element may be at least one selected from sulfur (S), (Se) or selenide, tellurium or telluride, phosphorous (P), arsenic (As) or arsenide, nitrogen (N), hexanethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, mercaptopropylsilane, sulfur-trioctylphosphine (S-TOP), sul- 25 fur-tributylphosphine (S-TBP), sulfur-triphenylphosphine (S-TPP), sulfur-trioctylamine (S-TOA), bis(trimethylsilyl)sulf- fide, ammonium sulfide, sodium sulfide, selenium-trioctylphosphine (Se-TOP), selenium-tributylphosphine (Se-TBP), selenium-triphenylphosphine (Se-TPP), tellurium-tributylphosphine (Te-TBP), tellurium-triphenylphosphine (Te-TPP), tris(trimethylsilyl)phosphine, tris(dimethylamino)phosphine, triethylphosphine, tributylphosphine, trioctylphosphine, triphenylphosphine, tricyclohexylphosphine, arsenic oxide, arsenic chloride, arsenic sulfate, arsenic bromide, arsenic 30 iodide, , nitric acid, ammonium nitrate, and a combination thereof.

[0031] The ligand compound may include RCOOH, RNH 2, R2NH, R3N, RSH, R 3PO, R3P, ROH, RCOOR’, RPO(OH) 2, R2POOH (wherein R and R’ are independently a C1 to C24 alkyl group, a C2 to C24 alkenyl group, or a C6 to C20 aryl group), or a combination thereof. [0032] The solvent may be selected from the group consisting of a C6 to C22 primary amine, a C6 to C22 secondary 35 amine, C6 to C40 tertiary amine, a heterocyclic compound having a nitrogen atom, a C6 to C40 olefin, a C6 to C40 aliphatic hydrocarbon, a C6 to C30 aromatic hydrocarbon substituted with a C1 to C20 alkyl group, a primary, secondary, or tertiary phosphine substituted with a C6 to C22 alkyl group, a primary, secondary, or tertiary phosphine oxide substituted with a C6 to C22 alkyl group, a C12 to C22 aromatic ether, and a combination thereof. [0033] The source of the halogen element may include HF, NH 4F, HCl, NH 4Cl, HBr, NH 4Br, LiF, NaF, KF, BeF 2, MgF2, 40 CaF2, SrF2, CuF, AgF, AuF, ZnF2, CdF2, HgF2, AlF3, GaF3, InF3, SnF2, PbF2, LiCl, NaCl, KCI, BeCl2, MgCl2, CaCl2, SrCl2, CuCl, AgCl, AuCl, ZnCl 2, CdCl2, HgCl2, AlCl3, GaCl3, InCl3, SnCl2, PbCl2, LiBr, NaBr, KBr, BeBr 2, MgBr2, CaBr2, SrBr2, CuBr, AgBr, AuBr, ZnBr2, CdBr2, HgBr2, AlBr3, GaBr3, InBr3, SnBr2, PbBr2, Lil, Nal, KI, BeI2, MgI2, CaI2, SrI2, CuI, AgI, Aul, ZnI2, CdI2, HgI2, AlI3, GaI3, InI3, SnI2, PbI2, HBF4, an ionic liquid including a halogen element, or a combination thereof. 45 [0034] The source of the halogen element may be added in the first mixture in an amount of greater than or equal to about 0.5 % based on a molar amount of the metal of the first precursor. [0035] The source of the halogen element (e.g., HF) may be added as a solution in an carrier solvent, and the carrier solvent may include water, a ketone such as acetone, a primary amine, a secondary amine, a tertiary amine, a heterocyclic compound having a nitrogen atom such as pyridine, a C6 to C40 olefin, a C6 to C40 aliphatic hydrocarbon, a C6 to C30 50 aromatic hydrocarbon substituted with a C1 to C20 alkyl group, a primary, secondary, or tertiary phosphine substituted with a C6 to C22 alkyl group, a primary, secondary, or tertiary phosphine oxide substituted with a C6 to C22 alkyl group, a C7 to C40 aromatic ether, a C6 to C40 aromatic alcohol, or a combination thereof. [0036] In the solution, a molar concentration of the source of the halogen element may be greater than or equal to about 0.001 (mol/L). 55 [0037] The heating the second mixture to the reaction temperature to trigger a reaction between the first precursor and the second precursor may be conducted without irradiation with microwaves. [0038] In another embodiment, a device may include the aforementioned nanocrystal particle. [0039] The device may be a light emitting diode (LED), an organic light emitting diode (OLED), a sensor, a imaging

5 EP 2 853 578 B1

sensor, a solar cell device, or a liquid crystal display (LCD). [0040] The foregoing method makes it possible to significantly enhance light emitting properties of the semiconductor nanocrystal.

5 BRIEF DESCRIPTION OF THE DRAWINGS

[0041] These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings, in which:

10 FIG. 1 to FIG. 3 schematically illustrate a distribution of a halogen element (e.g., fluorine) in the semiconductor nanocrystal particle; FIG. 4 includes photoluminescence (PL) spectra of the nanocrystals prepared in Example 2-1 and Comparative Example 1, respectively; FIG. 5 includes X-ray diffraction (XRD) spectra of the nanocrystals prepared in Example 2-1 and Comparative 15 Example 1, respectively; FIG. 6 is a view showing the results of the XPS element analysis of the nanocrystal prepared in Example 2-1; FIG. 7 is a view showing the results of the TEM-EDS analysis of the nanocrystal prepared in Example 2-1; FIG. 8 is an XRD spectrum of the nanocrystal prepared in Example 5; FIG. 9 is a view showing the results of TOF-SIMS analysis of the nanocrystal particle of Example 2-1; and 20 FIG. 10 and FIG. 11 show the results of the TEM-EDS analysis of the nanocrystal particle of Comparative Example 4.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0042] This disclosure will be described more fully hereinafter in the following detailed description, in which some but 25 not all embodiments of this disclosure are described. This disclosure may be embodied in many different forms and is not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will fully convey the scope of the invention to those skilled in the art. Thus, in some exemplary embodiments, well known technologies are not specifically explained to avoid ambiguous understanding of the present invention. Unless otherwise defined, all terms used in the specification (including technical and scientific terms) may be used with meanings 30 commonly understood by a person having ordinary knowledge in the art. Further, unless explicitly defined to the contrary, the terms defined in a generally-used dictionary are not ideally or excessively interpreted. In addition, unless explicitly described to the contrary, the word "comprise" and variations such as "comprises" or "comprising" will be understood to imply the inclusion of stated elements but not the exclusion of any other elements. [0043] Unless specifically described to the contrary, a singular form includes a plural form. 35 [0044] As used herein, the term "quantum yield" and "light emitting efficiency" may be used as an interchangeable word. [0045] As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. Expressions such as "at least one of," when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. [0046] It will be understood that, although the terms first, second, third, etc. may be used herein to describe various 40 elements, components, regions, layers, and/or sections, these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, or section from another element, component, region, layer, or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the present embodiments. 45 [0047] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. Unless specified otherwise, the term "or" means "and/or." [0048] As used herein, the term "nanocrystal particle" refers to a nano-sized particle including a crystalline material. [0049] As used herein, the term "halogen element" has substantially the same meaning as the term "halogen" and is 50 not limited to an elemental halogen. As used therein, the halogen element may constitute a halide. [0050] As used herein, the term "Group II" may include Group IIA and Group IIB, and examples of the Group II metal includes Cd, Zn, Hg and Mg, but are not limited thereto. As used herein, the term "Group III" may include Group IIIA and Group IIIB, and examples of the Group III metal include, but are not limited to, Al, In, Ga, and Tl. [0051] As used herein, the term "Group IV" may include Group IVA and Group IVB, and examples of the Group IV 55 metal may include, but are not limited to, Si, Ge, and Sn. As used herein, the term "metal" may also include a metalloid such as Si. [0052] As used herein, Group I may include Group IA and Group IB, and examples of the Group I metal may include, but are not limited to, Li, Na, K, Ru, Cs.

6 EP 2 853 578 B1

[0053] In an embodiment, a nanocrystal particle may include at least one semiconductor material and at least one halogen element. The nanocrystal may have a ligand compound coordinating a surface thereof. The halogen element may include fluorine (F), chlorine (CI), bromine (Br), iodine (I), or a combination thereof. The halogen element may be fluorine (F). The nanocrystal particle may have a core including a first nanocrystal, and a shell surrounding the core, the 5 shell including a crystalline or amorphous material. As used herein, the expression "the shell surrounding the core" includes the case where the shell at least partially (or wholly) surrounds the core. The shell may be a multi-layered shell having at least two layers, each of the layers including the same or different crystalline or amorphous materials. The core may include a first semiconductor material. The crystalline material of the shell may be a second semiconductor material that is deposited on the core and that is different from the first semiconductor material. 10 [0054] The first semiconductor nanocrystal of the core may include a Group II metal, a Group III metal, a Group IV metal, or a combination thereof, and the crystalline or amorphous material may include at least one metal that is different from the metal included in the first semiconductor nanocrystal and is selected from a Group I metal, a Group II metal, a Group III metal, a Group IV metal, and a combination thereof. [0055] The halogen element (e.g., fluorine) may be included in the nanocrystal particle (e.g., a semiconductor nanoc- 15 rystal particle), for example inside the particle (see FIG. 1). For example, the semiconductor nanocrystal particle having a core-shell structure includes the halogen element (e.g., fluorine) inside the core. The halogen element may be present at an interface between the core and the shell (see FIG. 2). In the nanocrystal particle, the presence of the halogen element at the interface between the core and the shell may be confirmed by the fact that the analysis of the nanocrystal particle detects a halogen compound (e.g., halide) including the halogen element and the core metal and a halogen 20 compound (e.g., halide) including the halogen element and the shell metal at the same time. Without wishing to be bound by any theory, such a result may suggest that the halogen element may be present at the interface between the core and the shell (e.g., a thin interlayer or a thin interdiffusion region formed between the core and the shell).. The halogen element may be present in the shell (see FIG. 3). When the semiconductor nanocrystal particle has a multi-shell structure, the halogen element may be present in the inner shell (i.e., an inner layer of the shell), in the outer shell (i.e., an outer 25 layer of the shell being on the inner layer), or both. The halogen element may be included in an amount of greater than or equal to about 0.05 % based on a molar amount of a metal of the core of the nanocrystal particle. The nanocrystal may have a ligand compound coordinating a surface thereof (not shown in the drawings), but it is not limited thereto. [0056] The presence of the halogen element included in the nanoparticle (e.g., a semiconductor nanocrystal) may be determined in various manners such as X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), 30 a time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like. The halogen element may be present in the particle by being doped therein. The halogen element may be present in the form of a metal halide such as a metal fluoride. The metal halide may be a halide including a Group I metal, a halide including a Group II metal, a halide including a Group III metal, or a combination thereof. The halogen element may be substituted into a crystalline structure of the particle or may be introduced as an interstitial atom in the crystalline structure thereof. The halogen element may be in 35 the core, at the interface between the core and the shell, and/or in the shell. In an embodiment, the shell may be a shell

consisting of a metal halide (e.g., a metal fluoride). The metal halide may include LiF, NaF, KF, BeF 2, MgF2, CaF2, SrF2, CuF, AgF, AuF, ZnF2, CdF2, HgF2, AlF3, GaF3, InF3, SnF2, PbF2, LiCl, NaCl, KCI, BeCl2, MgCl2, CaCl2, SrCl2, CuCl, AgCl, AuCl, ZnCl 2, CdCl2, HgCl2, AlCl3, GaCl3, InCl3, SnCl2, PbCl2, LiBr, NaBr, KBr, BeBr 2, MgBr2, CaBr2, SrBr2, CuBr, AgBr, AuBr, ZnBr2, CdBr2, HgBr2, AlBr3, GaBr3, InBr3, SnBr2, PbBr2, LiI, Nal, KI, BeI2, MgI2, CaI2, SrI2, CuI, AgI, Aul, 40 ZnI2, CdI2, HgI2, AlI3, GaI3, InI3, SnI2, PbI2, or a combination thereof. [0057] A nanocrystal particle including a semiconductor material (as used herein, it may also be referred to as a semiconductor nanocrystal particle) may have an energy bandgap controlled depending on the size and the composition thereof, and has high color purity in terms of light emitting properties. Therefore, it has attracted a lot of attention as a material that may be utilized in various fields such as a display, the energy industry, the semiconductor industry, and 45 biology related applications. However, most types of the semiconductor nanocrystal particles showing satisfactory prop- erties include cadmium (Cd). Cadmium is one of elements posing serious environmental threats and thus it is urgently desired to develop a cadmium-free semiconductor nanocrystal particle having excellent light-emitting properties. For instance, a Group III-V nanocrystal is an example of a Cd-free semiconductor nanocrystal, but its synthesis process requires a precursor that is far more susceptible to oxidation than a synthesis process for a Cd-based semiconductor 50 nanocrystal (e.g., a CdSe-based quantum dot) and the precursor thereof has poor reactivity, making the control of the reaction much more difficult. The InP/ZnS core-shell semiconductor nanocrystal is one of extensively researched Group III-V quantum dots. However, the InP based semiconductor nanocrystals generally tend to exhibit lower light emitting efficiency and poor light emitting properties. In addition, a size of the particle that is required to emit a desired wavelengt h of light ranges from 2 nm to 5 nm, and thus the synthesis of the InP-based nanocrystal is not easy. Meanwhile, the light 55 emitting properties of the Cd-free quantum dots such as the InP nanocrystal are lower than those of the CdSe based quantum dots. [0058] In contrast, in accordance with the aforementioned embodiments, the semiconductor nanocrystal may have significantly enhanced light emitting properties by introducing a halogen element into the semiconductor nanocrystal

7 EP 2 853 578 B1

even when it does not include cadmium. In this regard, there was an attempt to increase light emitting efficiency by treating the semiconductor nanocrystal with hydrofluoric acid and thereby removing an oxide or a dangling bond from a surface of the nanocrystal particle (see J. Chem. Phys. 123, 084706, 2005). However, the enhancement attainable by the hydrofluoric acid is quite limited. There was another attempt to treat a surface of an InP nanocrystal before shelling 5 thereon, and it was confirmed that such shelling is very difficult to produce (see J. Mater. Chem., 18, 2653, 2008). Meanwhile, a Cd-free semiconductor nanocrystal is often prepared to have a core-shell structure. For example, it is often desired to shell other semiconductor materials such as ZnSe, ZnS, CdS, and the like on the Group III-V core (e.g., an InP core), but it is quite difficult to form a shell on a core with other semiconductor materials and thus enhancing light emitting properties by introducing a core-shell structure may become more difficult (see Comparative Example 4). For 10 example, quantum efficiency of an InP core-shell semiconductor nanocrystal may be normally at most about 40 %. [0059] By contrast, the aforementioned semiconductor nanocrystal may show greatly improved light-emitting properties (e.g., high quantum efficiency and narrow full width at half maximum) by introducing a halogen element into the semi- conductor nanocrystal particle having a core-shell structure (for example, in the core, in the shell, and/or at an interface therebetween). In particular, the aforementioned semiconductor nanocrystal may have a quantum yield that is comparable 15 or higher than that of the Cd-based semiconductor nanocrystal even when it does not include the cadmium. [0060] The ligand compound may be any of ligand compounds known in the art without particular limitation. For

example, the ligand compound may include RCOOH, RNH 2, R2NH, R 3N, RSH, R 3PO, R3P, ROH, RCOOR’, RPO(OH) 2, R2POOH (wherein R and R’ are independently a C1 to C24 alkyl group, a C2 to C24 alkenyl group, or a C6 to C20 aryl group), or a combination thereof. The organic ligand compound may coordinate the surface of the nanocrystals as 20 prepared, playing a role of well-dispersing the nanocrystals in a solution, and it may have an effect on the light-emitting and electrical characteristics of the nanocrystals. Examples of the organic ligand compound may include, but are not limited to, methanethiol, ethanethiol, propanethiol, butanethiol, pentanethiol, hexanethiol, octanethiol, dodecanethiol, hexadecanethiol, octadecanethiol, benzylthiol, methaneamine, ethaneamine, propaneamine, butaneamine, pentaneam- ine, hexaneamine, octaneamine, dodecaneamine, hexadecylamine, octadecylamine, dimethylamine, diethylamine, 25 dipropylamine, methanoic acid, ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, dodecanoic acid, hexadecanoic acid, octadecanoic acid, oleic acid, benzoic acid, a phosphine such as methylphosphine, ethylphosphine, propylphosphine, butylphosphine, pentylphosphine, and the like, a phosphine oxide compound such as methylphosphine oxide, ethylphosphine oxide, propylphosphine oxide, butylphosphine oxide, and the like, a diphenylphosphine compound, a triphenylphosphine compound, an oxide compound thereof, and the 30 like, and a phosphonic acid. The organic ligand compound may be used alone or as a mixture of two or more compounds. [0061] The first nanocrystal (or the first semiconductor material) may include a Group II-VI compound, a Group III-V compound, a Group IV-VI compound, a Group IV compound, or a combination thereof. [0062] The crystalline material (or the second semiconductor material) or the amorphous material may have a different composition from the first nanocrystal (or the first semiconductor material), and may include a Group II-VI compound, 35 a Group III-V compound, a Group IV-VI compound, a Group IV compound, a halogen compound containing a metal (for

example, a halide selected from LiF, NaF, KF, BeF 2, MgF2, CaF2, SrF2, CuF, AgF, AuF, ZnF 2, CdF2, HgF2, AlF3, GaF3, InF3, SnF2, PbF2, LiCl, NaCl, KCI, BeCl2, MgCl2, CaCl2, SrCl2, CuCl, AgCl, AuCl, ZnCl2, CdCl2, HgCl2, AlCl3, GaCl3, InCl3, SnCl2, PbCl2, LiBr, NaBr, KBr, BeBr 2, MgBr 2, CaBr2, SrBr2, CuBr, AgBr, AuBr, ZnBr 2, CdBr2, HgBr 2, AlBr3, GaBr3, InBr3, SnBr2, PbBr2, Lil, Nal, KI, BeI 2, MgI2, CaI2, SrI2, CuI, AgI, Aul, ZnI2, CdI2, HgI2, AlI3, GaI3, InI3, SnI2, PbI2, and a 40 combination thereof), a metal oxide, or a combination thereof. [0063] The Group II-VI compound may be selected from:

a binary element compound selected from CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, and a combination thereof; 45 a ternary element compound selected from CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, and a combination thereof; and a quaternary element compound selected from HgZnTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, and a combination thereof. 50 [0064] The Group III-V compound may be selected from:

a binary element compound selected from GaN, GaP, GaAs, GaSb, AIN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and a combination thereof; 55 a ternary element compound selected from GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AINP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, and a combination thereof; and a quaternary element compound selected from GaAlNP, GaAINAs, GaAINSb, GaAlPAs, GaAlPSb, GaInNP, GaIn- NAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAINAs, InAINSb, InAIPAs, InAIPSb, and a combination thereof.

8 EP 2 853 578 B1

[0065] The Group IV-VI compound may be selected from:

a binary element compound selected from SnS, SnSe, SnTe, PbS, PbSe, PbTe, and a combination thereof; a ternary element compound selected from SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, 5 SnPbTe, and a combination thereof; and a quaternary element compound selected from SnPbSSe, SnPbSeTe, SnPbSTe, and a combination thereof.

[0066] The Group IV compound may be a singular element selected from:

10 Si, Ge, and a combination thereof; and a binary element compound selected from SiC, SiGe, and a combination thereof.

[0067] The semiconductor nanocrystal may absorb light of a wavelength of about 300 nm to about 700 nm and emit light of a wavelength from about 400 nm to about 600 nm, from about 600 nm to about 700 nm, or from about 550 nm 15 to about 650 nm. The wavelength of the emitted light may be easily adjusted by controlling the composition and the size of the semiconductor nanocrystal. [0068] The semiconductor nanocrystal may have a quantum yield of about 30 % to about 100 %, for example, greater than or equal to about 50 %, greater than or equal to about 60 %, greater than or equal to about 70 %, greater than or equal to about 80 %, or greater than or equal to about 90 %. If desired, the semiconductor nanocrystal may have a wider 20 or narrower full width at half maximum (FWHM) in its photoluminescence spectrum. For example, in order to be used in a display, the semiconductor nanocrystal may have a narrow FWHM to realize enhanced color purity or color repro- ducibility. In this case, the semiconductor nanocrystal may have a FWHM of less than or equal to about 50 nm, for example, less than or equal to about 40 nm in its photoluminescence spectrum. [0069] The semiconductor nanocrystal may have a particle diameter (the longest diameter in case of a non-spherical 25 particle) ranging from about 1 nm to about 100 nm, for example about 1 nm to about 20 nm. [0070] The shape of the semiconductor nanocrystal is not particularly limited. By way of an example, the nanocrystal may have a spherical shape, a pyramidal shape, a multi-arm shape, or a cubic shape. The nanocrystal particle may be in the form of a nanoparticle (e.g., nanosphere), a nanotube, a nanowire, a nano-fiber, a nano-plate, or the like. [0071] In another embodiment, a process of synthesizing a nanocrystal particle includes: 30 obtaining a first mixture including a first precursor, a ligand compound, and a solvent; optionally heating the first mixture; adding a source of a halogen element, a second precursor, and optionally a first nanocrystal to the (optionally heated) first mixture to obtain a second mixture; and 35 heating the second mixture to a reaction temperature to trigger a reaction between the first precursor and the second precursor to obtain a nanocrystal particle including at least one semiconductor material and the halogen element.

[0072] The first precursor may include at least two compounds. The second precursor may include at least two com- pounds. When the at least two compounds are used for the first or second precursor, they may be added at the same 40 time or with a time lag therebetween to the first mixture (optionally heated) either at the same temperature or at different temperatures. In case of the first precursor, a mixture including an additional precursor compound, a ligand, and a solvent is first prepared and then added to the first mixture already prepared. [0073] The first precursor may include a Group II metal, a Group III metal, or a Group IV metal, and may be a metal powder, an alkylated metal compound, a metal alkoxide, a metal carboxylate, a metal nitrate, a metal perchlorate, a 45 metal sulfate, a metal acetylacetonate, a metal halide, a metal cyanide, a metal hydroxide, a metal oxide, a metal peroxide, or a combination thereof. Examples of the first precursor may include, but are not limited to, dimethyl zinc, diethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, zinc cyanide, zinc nitrate, a zinc oxide, zinc peroxide, zinc perchlorate, zinc sulfate, zinc stearate, dimethyl cadmium, diethyl cadmium, cadmium acetate, cadmium acetylacetonate, cadmium iodide, cadmium bromide, cadmium chloride, 50 cadmium fluoride, cadmium carbonate, cadmium nitrate, , cadmium perchlorate, cadmium phosphide, cadmium sulfate, mercury acetate, mercury iodide, mercury bromide, mercury chloride, mercury fluoride, mercury cya- nide, mercury nitrate, mercury oxide, mercury perchlorate, mercury sulfate, lead acetate, lead bromide, lead chloride, lead fluoride, lead oxide, lead perchlorate, lead nitrate, lead sulfate, lead carbonate, tin acetate, tin bis(acetylacetonate), tinbromide, tin chloride, tin fluoride,tin oxide, tin sulfate, germanium tetrachloride,germanium oxide, germanium ethoxide, 55 trimethyl gallium, triethyl gallium, gallium acetylacetonate, gallium chloride, gallium fluoride, gallium oxide, gallium nitrat e, gallium sulfate, trimethyl indium, indium acetate, indium hydroxide, indium chloride, indium oxide, indium nitrate, indium sulfate, thallium acetate, thallium acetylacetonate, thallium chloride, thallium oxide, thallium ethoxide, thallium nitrate, thallium sulfate, and thallium carbonate. The first precursor may be used alone or in a combination of at least two

9 EP 2 853 578 B1

compounds depending on the composition of the nanocrystal intended to be synthesized. [0074] The second precursor may be appropriately selected without any particular limitation depending on the types of the nanocrystal intended to be synthesized. In a non-limiting example, the second precursor may be a compound including a Group V element or a Group VI element. In another example, the second precursor may be a compound 5 including a halogen element (e.g., HF). In some examples, the source of the halogen element and the second precursor may be the same compound. Non-limiting examples of the second precursor may include, but are not limited to, hex- anethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, mercaptopropylsilane, sulfur-trioctylphosphine (S- TOP), sulfur-tributylphosphine (S-TBP), sulfur-triphenylphosphine (S-TPP), sulfur-trioctylamine (S-TOA), bis(trimethyl- silyl)sulfide, ammonium sulfide, sodium sulfide, selenium-trioctylphosphine (Se-TOP), selenium-tributylphosphine (Se- 10 TBP), selenium-triphenylphosphine (Se-TPP), tellurium-tributylphosphine (Te-TBP), tellurium-triphenylphosphine (Te- TPP), tris(trimethylsilyl)phosphine, tris(dimethylamino)phosphine, triethylphosphine, tributylphosphine, trioctylphos- phine, triphenylphosphine, tricyclohexylphosphine, arsenic oxide, arsenic chloride, arsenic sulfate, arsenic bromide,

arsenic iodide, nitric oxide, nitric acid, ammonium nitrate, HF, NH 4F, HCl, NH 4Cl, HBr, NH 4Br, LiF, NaF, KF, BeF 2, MgF2, CaF2, SrF2, CuF, AgF, AuF, ZnF2, CdF2, HgF2, AlF3, GaF3, InF3, SnF2, PbF2, LiCl, NaCl, KCI, BeCl2, MgCl2, CaCl2, 15 SrCl2, CuCl, AgCl, AuCl, ZnCl 2, CdCl2, HgCl2, AlCl3, GaCl3, InCl3, SnCl2, PbCl2, LiBr, NaBr, KBr, BeBr 2, MgBr2, CaBr2, SrBr2, CuBr, AgBr, AuBr, ZnBr2, CdBr2, HgBr2, AlBr3, GaBr3, InBr3, SnBr2, PbBr2, LiI, Nal, KI, BeI2, MgI2, CaI2, SrI2, CuI, AgI, Aul, ZnI2, CdI2, HgI2, AlI3, GaI3, InI3, SnI2, PbI2, or an ionic liquid including a halogen element (e.g., fluorine). The second precursor may be used alone or in a combination of at least two compounds depending on the composition of the nanocrystal intended to be synthesized. 20 [0075] The ligand compound is the same as set forth above. [0076] The solvent may be selected from the group consisting of a C6 to C22 primary amine such as hexadecyl amine; a C6 to C22 secondary amine such as dioctyl amine; a C6 to C40 tertiary amine such as trioctyl amine; a heterocyclic compound having a nitrogen atom such as pyridine; a C6 to C40 aliphatic hydrocarbon (e.g., an alkane, an alkene, or an alkyne) such as hexadecane, octadecane, octadecene, squalane, and the like; a C6 to C30 aromatic hydrocarbon 25 such as phenyl dodecane, phenyl tetradecane, phenyl hexadecane, and the like; a phosphine substituted with a C6 to C22 alkyl group such as trioctyl phosphine; a phosphine oxide substituted with a C6 to C22 alkyl group such as trioctyl phosphine oxide; a C12 to C22 aromatic ether such as phenyl ether, benzyl ether, and the like; and a combination thereof. [0077] In the first mixture, the amount of the first precursor, the ligand compound, and the solvent may be selected appropriately without any particular limitations. 30 [0078] The optional heating of the first mixture may be carried out by heating the first mixture under vacuum at a temperature of greater than or equal to about 40 °C, for example, greater than or equal to about 50 °C, greater than or equal to about 60 °C, greater than or equal to about 70 °C, greater than or equal to about 80 °C, greater than or equal to about 90 °C, greater than or equal to about 100 °C, or greater than or equal to about 120 °C, and/or heating the same under a nitrogen atmosphere at a temperature of greater than or equal to about 100 °C, for example, greater than or 35 equal to about 150 °C, greater than or equal to about 180 °C, or greater than or equal to about 200 °C. [0079] A source of the halogen element and a second precursor are added to the first mixture (as optionally heated) to obtain a second mixture. In an embodiment, the method may further include adding a first nanocrystal to the (optionally heated) first mixture, and thereby the final nanocrystal particle may have a core-shell structure wherein a nanocrystal formed by the reaction between the first and second precursors is deposited on the surface of the first nanocrystal 40 particle (i.e., the core). When the first nanocrystal has a core-shell structure, the final nanocrystal may have a core- multishell structure, and the halogen element may be present at an outer shell. [0080] In the second mixture, the amounts of the source of the halogen element, the second precursor, and the first nanocrystal optionally being added are not particularly limited, and may be selected depending on the nanocrystal structure intended to be obtained. 45 [0081] The source of the halogen element, the second precursor, and optionally the first nanocrystal may be added simultaneously or sequentially. For example, when the source of the halogen element, the second precursor, and optionally the first nanocrystal are added sequentially, the sequence therebetween is not particularly limited. In other words, the source of the halogen element, the second precursor, and optionally the first nanocrystal are added in any order. When the source of the halogen element, the second precursor, and optionally the first nanocrystal are added, 50 the aforementioned solvent and the like may be used together. [0082] The source of the halogen element may include HF, NH 4F, HCl, NH4Cl, HBr, NH 4Br LiF, NaF, KF, BeF 2, MgF2, CaF2, SrF2, CuF, AgF, AuF, ZnF2, CdF2, HgF2, AlF3, GaF3, InF3, SnF2, PbF2, LiCl, NaCl, KCI, BeCl2, MgCl2, CaCl2, SrCl2, CuCl, AgCl, AuCl, ZnCl 2, CdCl2, HgCl2, AlCl3, GaCl3, InCl3, SnCl2, PbCl2, LiBr, NaBr, KBr, BeBr 2, MgBr2, CaBr2, SrBr2, CuBr, AgBr, AuBr, ZnBr2, CdBr2, HgBr2, AlBr3, GaBr3, InBr3, SnBr2, PbBr2, Lil, Nal, KI, BeI2, MgI2, CaI2, SrI2, 55 CuI, AgI, Aul, ZnI2, CdI2, HgI2, AlI3, GaI3, InI3, SnI2, PbI2, an ionic liquid containing a halogen element (e.g., fluorine), or a combination thereof. [0083] The source of the halogen element may be used together with a solvent for example, a heterocyclic compound containing nitrogen such as pyridine, H2O, a C3 to C12 ketone such as acetone, methyl ethyl ketone, and the like, a C1

10 EP 2 853 578 B1

to C40 primary, secondary, tertiary amine such as trioctylamine, or a combination thereof. In an embodiment, the source of the halogen element (e.g., HF) may be dissolved in a carrier solvent to be prepared as a solution, which is then added to the first mixture. The carrier solvent may be water, a heterocyclic compound containing nitrogen such as pyridine, a C3 to C12 ketone such as acetone, methyl ethyl ketone, a primary amine for example having 1 to 40 carbon atoms, a 5 primary alcohol for example having 1 to 40 carbon atoms, a secondary amine for example having 2 to 40 carbon atoms, a secondary alcohol for example having 2 to 40 carbon atoms, a tertiary amine for example having 3 to 40 carbon atoms, a tertiary alcohol for example having 3 to 40 carbon atoms, a heterocyclic compound having nitrogen, an olefin, an aliphatic hydrocarbon, an aromatic hydrocarbon having an alkyl substituent, a phosphine having an alkyl substituent, a phosphine oxide having an alkyl substituent, an aromatic ether, or a combination thereof. In the solution dissolved in 10 the carrier solvent, a molar concentration of the source of the halogen element may be greater than or equal to about 0.001 mol/L. [0084] The ionic liquid is a salt in a liquid state and it consists of an ion and a counter ion thereof. In an embodiment, the ionic liquid may be a substituted or unsubstituted imidazolium salt, a substituted or unsubstituted pyrazolium salt, a substituted or unsubstituted triazolium salt, a substituted or unsubstituted thiazolium salt, a substituted or unsubstituted 15 oxazolium salt, a substituted or unsubstituted pyridazinium salt, a substituted or unsubstituted pyrimidinium salt, a substituted or unsubstituted ammonium salt, a substituted or unsubstituted phosphonium salt, a substituted or unsub- stituted sulfonium salt, a substituted or unsubstituted pyridinium salt, a substituted or unsubstituted pyrrolidinium salt, - - or a combination thereof. The ionic liquid may have a halide anion such as, F a tetrafluoroborate anion (BF4 ), a - - hexafluorophosphate anion (PF 6 ), a perchlorate anion (ClO 4 ), an acetate anion, a trifluoroacetate anion, a triflate anion, 20 a hydrogen sulfate anion, an alkyl sulfate anion, a sulphite anion, a hydrogen sulphite anion, a chloroaluminate anion, a tetrabromoaluminate anion, a nitrite anion, a nitrate anion, a dichlorocuprate anion, a phosphate anion, a hydrogen phosphate anion, a dihydrogen phosphate anion, a carbonate anion, a hydrogen carbonate anion, a sulfonate anion, a tosylate anion, or a bis(trifluoromethyl sulphonyl)imide anion. In an embodiment, the ionic liquid may be an imidazolium - - - salt, a pyridinium salt, a phosphonium salt, or an ammonium salt, and it may have F, BF4 , or PF6 as an anion. The 25 ionic liquid may be used alone or in a combination of at least two salts. [0085] The source of the halogen element may be added to the first mixture in an amount of greater than or equal to about 0.5 %, for example greater than or equal to about 5%, or greater than or equal to about 10 % based on the amount (mole) of the first metal precursor. [0086] The heating the second mixture to the reaction temperature to trigger a reaction between the first precursor 30 and the second precursor may be conducted without irradiation with microwaves. [0087] The reaction temperature is not particularly limited and may be selected properly in light of the types of the first precursor, the second precursor, the source of the halogen element, the solvent as used, and the like. For example, the reaction temperature may be about 100 °C to 350 °C, for example, about 220 °C to 320 °C. [0088] The first semiconductor nanocrystal may include a Group II-VI compound, a Group III-V compound, a Group 35 IV-VI compound, a Group IV compound, or a combination thereof. In an embodiment, the first nanocrystal may include a Group III-V compound. [0089] The nanocrystal formed by the reaction between the first precursor and the second precursor may include at least one selected from a Group II-VI compound, a Group III-V compound, a Group IV-VI compound, a Group IV compound, , LiF, NaF, KF, BeF2, MgF2, CaF2, SrF2, CuF, AgF, AuF, ZnF2, CdF2, HgF2, AlF3, GaF3, InF3, SnF2, PbF2, 40 LiCl, NaCl, KCI, BeCl 2, MgCl2, CaCl2, SrCl2, CuCl, AgCl, AuCl, ZnCl2, CdCl2, HgCl2, AlCl3, GaCl3, InCl3, SnCl2, PbCl2, LiBr, NaBr, KBr, BeBr 2, MgBr 2, CaBr2, SrBr 2, CuBr, AgBr, AuBr, ZnBr 2, CdBr 2, HgBr 2, AlBr3, GaBr 3, InBr3, SnBr2, PbBr2, Lil, Nal, KI, BeI2, MgI2, CaI2, SrI2, CuI, AgI, Aul, ZnI 2, CdI2, HgI2, AlI3, GaI3, InI3, SnI2, PbI2, and a combination thereof. [0090] The Group II-VI compound, the Group III-V compound, and the Group IV-VI compound are the same as set forth above. When the semiconductor nanocrystal includes at least two kinds of compounds or when it is a binary element 45 compound, a ternary element compound, or a quaternary element compound, it may be present in a form of an alloy, or in a form of a structure wherein at least two different crystalline structures coexist as layers such as a core/shell or as compartments such as multi-pods. [0091] The aforementioned method of synthesizing a nanocrystal particle may further include: adding a non-solvent to the reaction product between the first and second precursors to separate a nanocrystal particle, to which the ligand 50 compound is coordinated. The non-solvent may be a polar solvent that may be mixed with the solvent used during the reaction, but is not capable of dispersing nanocrystals. The non-solvent may be selected depending on the types of the solvent being used in the reaction. For example, the non-solvent may be selected from acetone, ethanol, butanol, isopropanol, water, tetrahydrofuran ("THF"), dimethyl sulfoxide ("DMSO"), diethylether, formaldehyde, acetaldehyde, ethylene glycol, a solvent having a similar solubility parameter to the foregoing solvent, and a combination thereof. The 55 separation may be performed using centrifugation, precipitation, chromatography, or distillation. The separated nanoc- rystals may be added into a washing solvent as needed. The washing solvent is not particularly limited, and may be a solventhaving a similar solubilityparameter to the ligand,such as hexane, heptane, octane,chloroform, toluene, benzene, and the like.

11 EP 2 853 578 B1

[0092] The nanocrystal prepared in accordance with the aforementioned process may exhibit a high level of quantum yield. The semiconductor nanocrystal compositions may find their utility in various fields such as a light emitting diode ("LED"), a solar cell, a biosensor, or image sensor. According to the aforementioned method, it is possible to obtain a semiconductor nanocrystal particle having enhanced light emitting properties. 5 [0093] Hereinafter, the present invention is illustrated in more detail with reference to specific examples. However, they are exemplary embodiments of the present invention, and the present invention is not limited thereto.

[Examples]

10 Example I

Reference Example 1: Preparation of InP Core

[0094] 0.2 mmol of indium acetate, 0.6 mmol of palmitic acid, and 10 mL of 1-octadecene are placed in a flask, subjected 15 to a vacuum state at 120 °C for one hour, and then heated to 280 °C after the atmosphere in the flask is exchanged with N2. Then, a mixed solution of 0.1 mmol of tris(trimethylsilyl)phosphine (TMS3P) and 0.5 mL of trioctylphosphine (TOP) is quickly injected and the reaction proceeds for 20 minutes. The reaction mixture then is rapidly cooled and acetone is added thereto to produce nanocrystals, which are then separated by centrifugation and dispersed in toluene. UV first absorption maximum of the InP core nanocrystals thus prepared is 420-600 nm. 20 Example 1: Preparation of InP(F) nanocrystal

[0095] As used therein, the term "composition of the compound (halogen atom)" (e.g., "InP(F)") refers to the case where the halogen atom (e.g., fluorine) is included in the semiconductor nanocrystal particle of a certain composition 25 (e.g., InP) in any manner (for example, as a doped element, as a metal halide (InF), and/or being substituted into a crystalline structure or being introduced as an intersticial atom. [0096] 0.2 mmol of indium acetate, 0.6 mmol of palmitic acid, and 10 mL of 1-octadecene are placed in a flask, subjected to a vacuum state at 120 °C for one hour, and then heated to 280 °C after the atmosphere in the flask is exchanged with

N2. A solution of a mixture of 0.07 mmol of HF and 1.5 mL of trioctyl amine is quickly injected thereto and then a mixed 30 solution of 0.1 mmol of tris(trimethylsilyl)phosphine (TMS3P) and 0.5 mL of trioctylphosphine (TOP) is quickly injected. The reaction proceeds for 20 minutes. The reaction mixture is then rapidly cooled to room temperature and acetone is added thereto to produce nanocrystals, which are then separated by centrifugation and dispersed in toluene.

Example II 35 Example 2-1: Preparation of an InP/ZnS(F) nanocrystal particle

[0097] 1.2mmoL (0.224g) of zinc acetate, 2.4mmol (0.757g) of oleic acid, and 10 mL of trioctylamine are placed in a flask, subjected to a vacuum state at 120 °C for 10 minutes, and then heated to 280 °C after the atmosphere in the flask 40 is exchanged with N2. A toluene dispersion of the InP semiconductor nanocrystal prepared in Reference Example 1 (OD= optical density of 1st excitonic absorption, OD:0.15, or 1 ml of a 1 wt% toluene solution) is added thereto within 10 seconds, and then 1.5 mL of a mixed solution including 0.14 mmol of HF (6 uL of an aqueous solution) in trioctylamine (TOA, a carrier solvent) is quickly injected, immediately after which 2.4 mmol of S/TOP is added thereto and the reaction proceeds for 120 minutes. After that, the reaction mixture is rapidly cooled to room temperature and acetone is added 45 thereto to produce nanocrystal particles, which are then separated by centrifugation and dispersed again in toluene.

Example 2-2:

[0098] InP/ZnS(F) nanocrystal particles are prepared in the same manner as set forth in Example 2-1, except that HF 50 is used in an amount of 0.07 mmol instead of 0.14 mmol.

Example 2-3:

[0099] InP/ZnS(F) nanocrystal particles are prepared in the same manner as set forth in Example 2-1, except that HF 55 is used in an amount of 0.2 mmol instead of 0.14mmol.

12 EP 2 853 578 B1

Example 2-4:

[0100] InP/ZnS(F) nanocrystal particles are prepared in the same manner as set forth in Example 2-1, except that HF is used in an amount of 0.4 mmol instead of 0.14mmol. 5 Example 2-5:

[0101] InP/ZnS(F) nanocrystal particles are prepared in the same manner as set forth in Example 2-1, except that instead of HF, pyridine-HF is used as a fluorine source. 10 Example 2-6:

[0102] InP/ZnS(F) nanocrystal particles are prepared in the same manner as set forth in Example 2-1, except that

instead of HF, NH4F is used as a fluorine source. 15 Example 2-7:

[0103] InP/ZnS(F) nanocrystal particles are prepared in the same manner as set forth in Example 2-1, except that instead of HF, ZnF2 is used as a fluorine source. 20 Example 2-8:

[0104] InP/ZnS(F) nanocrystal particles are prepared in the same manner as set forth in Example 2-1, except that instead of HF, an ionic liquid, 1-Butyl-3-methylimidazolium tetrafluoroborate is used as a fluorine source. 25 Examples 2-9 to 2-11

[0105] Quantum yield depending on the introduction sequence of the first nanocrystal, the source of the fluorine element, and the second precursor 30 [0106] InP/ZnS(F) nanocrystal particles are prepared in the same manner as set forth in Example 2-1, except that (1) an InP core, (2) an HF/TOA solution, and (3) 0.6 mmol of S/TOP are introduced according to the sequence set forth in Table 1.

Table 1 35 Example 2-1 Example 2-9 Example 2-10 Example 2-11 Introduction (1) → (2) → (1) →5 min.→ (2) → ((1)+(2) 5 min. mixing) → (1) → (3) → 5min. → sequence (3) (3) (3) (2)

40 Example 2-12:

[0107] InP/ZnS(F) nanocrystal particles are prepared in the same manner as set forth in Example 2-1, except that 1.5 mL of a mixed solution including 0.14 mmol HF (aqueous solution 6 uL)/ acetone (a carrier solvent) is used instead of a mixed solution of HF/TOA. 45 Comparative Example 1: Preparation of InP/ZnS nanocrystal

[0108] An InP/ZnS nanocrystal particle is prepared in the same manner as set forth in Example 2-1, except that the mixed solution including 0.14 mmol of HF (6 uL of an aqueous solution) in trioctylamine (TOA, a carrier solvent) is not used. 50 Evaluation II

[0109] The structures of the nanocrystals of Example 2-1 and Comparative Example 1 are determined. [0110] An X-ray diffraction analysis is made for the nanocrystal particles prepared above using Philips XPert PRO at 55 a power of 3 kW to find out the crystalline structure of InP/ZnS. The results are shown in FIG. 5. FIG. 5 confirms that the nanocrystals of Example 2-1 and Comparative Example 1 have a crystalline structure of InP/ZnS. [0111] An X-ray photoelectron spectroscopy elemental analysis is made for the nanocrystal particles prepared using

13 EP 2 853 578 B1

Quantum 2000 of Physical Electronics under the following conditions: 0.5 ∼15 keV, 300 W, minimum analysis region: 10 micro, sputter rate: 0.1 nm/min. The results are shown in Table 2 and FIG. 6. The results of Table 2 confirm that the particles have fluorine thereinside. The upward shift of Zn 2P binding energy may confirm the Zn-F bonding. The results confirm that the nanocrystal particle of Comparative Example 1 does not have fluorine therein. 5 Table 2 XPS analysis (mole ratio) F P S Zn In F/Zn F/In InP (Reference Example 1) 0 2.83 0.00 0.00 5.77 10 InP/ZnS (Comparative Example 1) 0 2.2 3.75 5.98 2.99 0.00 InP/ZnS(F) (Example 2) 0.12 2.18 0.75 2.00 1.40 0.06 0.08

[0112] In addition, a transmission electronic microscopy - electron dispersive spectroscopy (TEM-EDS) analysis is 15 made to prove the presence of fluorine in the nanocrystal particle of Example 2-1 and the synthesis of InP/ZnS(F). The results are shown in FIG. 7. The TEM results of FIG. 7 confirm that an InP/ZnS(F) nanocrystal particle as synthesized has a size of about 2 to 5 nm. The EDS results of FIG. 7 confirm that fluorine is present inside the nanocrystal particle. [0113] For the nanocrystals of Example 2-1 and Comparative Example 1, A Time-of-Flight Secondary Ion Mass Spec- trometry (TOF-SIMS) analysis is made using TOF-SIMS V (ION-TOF GmbH, Germany) equipped with a 25 keV Bi+ ion 20 gun, and the result are shown in Table 3 and FIG. 9. [0114] For TOF-SIMS imaging, the ion gun is operated at 5 kHz with a 0.2 pA (Bi+) average current at the sample holder. A bunch pulse of a 0.7 ns duration resulted in mass resolution (M/DM)> 8000. A 200X200 mm 2 area is rastered by primary ions to obtain the SIMS spectra while maintaining the ion dose about 10^12 ions cm -2. The negative ion mass spectra are internally calibrated using C-, CH-, C 2H-, and C4H- peaks. 25 [0115] The results of Table 3 and FIG. 9 confirm that the nanocrystal of Example 2-1 include an In-F 2 bonding (whose peak is detected at m/z 152.900) and a Zn-F bonding. The XPS spectrum confirms the presence of the Zn-F bonding, and thus it may be understood that in the nanocrystal of Example 2-1, the fluorine is present at an interface of the InP core and the ZnS shell (O denotes the presence and X denotes the absence of the specified bonding).

30 Table 3

TOF-SIMS sample InP InF InF2 ZnS ZnF InP/ZnS (Comparative Example 1) O X X O X InP/ZnS(F) (Example 2-1) OXOOO 35

[0116] The quantum yields of the nanocrystals of Examples 2-1 to 2-12 and Comparative Example 1 are evaluated. [0117] To this end, using a spectrometer (manufactured by Hitachi Co. Ltd., model name: F-7000), a photolumines- cence spectrum is obtained for the nanocrystal particles prepared in Example 2-1 and Comparative Example 1 and the 40 results are shown in FIG. 4. The results of FIG. 4 confirm that the semiconductor nanocrystals of Example 2-1 has a very high quantum yield of 73 % at a wavelength of 618 nm in comparison with the nanocrystal of Comparative Example 1 having a quantum yield of 31 % at a wavelength of 624 nm. The quantum yield may be improved by at least about two times. [0118] The quantum yields and the wavelength of emitted light (nm) at the maximum QY for the nanocrystals of 45 Examples 2-1 to 2-4 and Comparative Example 1 are summarized in Table 4.

Table 4 Comp. Example 1 Example 2-2 Example 2-1 Example 2-3 Example 2-4

50 Quantum yield (%) 31 % 69 % 73 % 73 % 66 % Wavelengthof emittedlight (nm) 624 618 618 618 627

[0119] The results of Table 4 confirm that the nanocrystals of Examples 2-1 to 2-4 have greatly improved values of 55 the quantum yield in comparison with the nanocrystal of Comparative Example 1. [0120] Table5 shows thequantum yields of thenanocrystals ofExamples 2-5 to 2-8and Example 2-12 and Comparative Example 1.

14 EP 2 853 578 B1

Table 5 Comp. Example 1 Example 2-5 Example 2-6 Example 2-7 Example 2-8 Example 2-12

5 Quantum yield (%) 31 % 64 % 66 % 50 % 63 % 85%

[0121] The results of Table 5 confirm that the nanocrystals of Examples 2-1 to 2-8 and Example 2-12 have greatly improved values of the quantum yield in comparison with the nanocrystal of Comparative Example 1. [0122] Table 6 shows the quantum yields of the nanocrystals of Examples 2-9 to 2-11 and Comparative Example 1. 10 Table 6 Comp. Example 1 Example 2-1 Example 2-9 Example 2-10 Example 2-11 Quantum yield (%) 31% 73 % 57 % 42 % 64 % 15

[0123] Referringto Table 6, thesequence of introducingthe reactantsmay control the quantum yieldof thenanocrystals, and the nanocrystals of Examples 2-1 and 2-9 to 2-11 have greatly improved values of the quantum yield in comparison with the nanocrystal of Comparative Example 1. 20 Example III

Example 3: Preparation of InP/ZnSe(F) nanocrystal

25 [0124] An InP/ZnSe(F) nanocrystal particle is prepared in the same manner as set forth in Example 2-1, except that 2.4 mmol of Se/TOP is used instead of S/TOP.

Comparative Example 2: Preparation of InP/ZnSe nanocrystal

30 [0125] An InP/ZnSe nanocrystal particle is prepared in the same manner as set forth in Example 2-1, except that HF is not used and 2.4 mmol of Se/TOP is added instead of S/TOP.

Evaluation III

35 [0126] For the nanocrystals of Example 3 and Comparative Example 2, the photoluminescence spectrums are obtained in the same manner as Evaluation II and the results of the quantum yield and the light-emitting wavelength at the maximum efficiency are shown in Table 7.

Table 7 40 Comp. Example 2 Example 3 InP/ZnSe InP/ZnSe(F) Quantum yield (%) 21 40 Light emitting wavelength of the maximum efficiency (nm) 642 637 45

[0127] Referring to Table 7, the nanocrystals of Example 3 shows greatly improved value of the quantum yield in comparison with the nanocrystal of Comparative Example 2.

50 Example IV

Example 4: Preparation of InP/ZnSeS(F) nanocrystal

[0128] An InP/ZnSeS(F) nanocrystal particle is prepared in the same manner as set forth in Example 2-1, except that 55 1.2 mmol of Se/TOP is used together with 1.2 mmol of S/TOP.

15 EP 2 853 578 B1

Comparative Example 3: Preparation of InP/ZnSeS nanocrystal

[0129] An InP/ZnSe nanocrystal particle is prepared in the same manner as set forth in Example 2-1, except that HF is not used and 1.2 mmol of Se/TOP is added together with 1.2 mmol of S/TOP. 5 Evaluation IV

[0130] For the nanocrystals of Example 4 and Comparative Example 3, the photoluminescence spectrums are obtained in the same manner as Evaluation II and the results of the quantum yield and the light-emitting wavelength at the 10 maximum efficiency are shown in Table 8.

Table 8 Comp. Example 3 Example 4

15 InP/ZnSeS InP/ZnSeS(F) Quantum yield (%) 35 50 Light emitting wavelength of the maximum efficiency (nm) 619 621

20 [0131] Referring to Table 8, the nanocrystals of Example 4 shows greatly improved value of the quantum yield in comparison with the nanocrystal of Comparative Example 3.

Example V

25 Example 5: Preparation of InP/ZnF2 nanocrystal

[0132] An InP/ZnF2 nanocrystal particle is prepared in the same manner as set forth in Example 2-1, except that S/TOP is not used.

30 Example 6: Preparation of InP/ZnS/ZnS(F)

[0133] An InP/ZnS/ZnS(F) nanocrystal particle is prepared in the same manner as set forth in Example 2-1, except that the InP/ZnS nanocrystal obtained in Comparative Example 2 is used instead of the InP nanocrystal.

35 Evaluation V-1

[0134] The crystalline structure of the nanocrystal particle obtained in Example 5 is confirmed. [0135] An XRD analysis is made in the same manner as set forth in Evaluation II and the results are shown in FIG. 8, which confirms the presence of the ZnF2 crystal. A TOF-SIMS analysis is made in the same manner as set forth in 40 Evaluation II and the results are compiled in Table 9, which confirms the presence of ZnF bonding (O denotes the presence and X denotes the absence of the specified bonding).

Table 9 TOF-SIMS Sample InP InF InF ZnS ZnF 45 2 Comp. InP/ZnS OXXOX Example 1

Example 5 InP/ZnF2 OXX X O 50

[0136] For the nanocrystal particle of Example 6, the results of the ICP-AES confirm the formation of a ZnS(F) shell. In this case, fluorine is not present at the interface between InP and ZnS but is present in the outer ZnS shell.

Evaluation V-2 55

[0137] The photoluminescence spectrums of the nanocrystals prepared in Examples 5 and 6 are obtained in the same manner as Evaluation II and the results are shown in Table 10.

16 EP 2 853 578 B1

Table 10 Comp. Example 5 Example 6

5 InP/ZnF2 InP/ZnS/ZnS (F) Quantum yield (%) 49 60

[0138] Referring to Table 10, the nanocrystals of Examples 5 and 6 shows an enhanced quantum yield. 10 Example VI

Example 7: Preparation of InP/ZnS(Cl) nanocrystal particles

15 [0139] InP/ZnS(Cl) nanocrystal particles are prepared in the same manner as set forth in Example 2-1, except that HCl is used instead of HF.

Evaluation VI

20 [0140] An XPS analysis is made in the same manner as set forth in Evaluation II and the results show that the nanocrystal particle of Example 7 includes chlorine in an amount of 1 % based on the amount of Zn. The PL spectrum of the nanocrystal particle of Example 7 is obtained in the same manner as set forth in Evaluation II, and it show that the quantum yield of the InP/ZnS(Cl) nanocrystal of Example 7 is about 36 %, which is higher than that of InP/ZnS by 5 %.

25 Comparative Example 4: ZnS shelling after the HF etching

[0141] The InP cores prepared in Reference Example 1 are dispersed in a mixed solution of 0.14 mmol HF (in water) and 1.5 ml TOA, and irradiated with UV for 10 minutes. Ethanol is added thereto to cause precipitation of the nanocrystals, which are then separated by centrifugation and re-dispersed in toluene. 30 [0142] 1.2mmoL (0.224g) of zinc acetate, 2.4mmol (0.757g) of oleic acid, and 10 mL of trioctylamine are placed in a flask, subjected to a vacuum state at 120 °C for 10 minutes, and then heated to 280 °C after the atmosphere in the flask is exchanged with N2. A toluene dispersion of the InP core being treated with HF as above is added thereto within 10 seconds, and 2.4 mmol of S/TOP is added thereto and the reaction proceeds for 120 minutes. After that, the reaction mixture is rapidly cooled to room temperature and acetone is added thereto to produce nanocrystal particles, which are 35 then separated by centrifugation and dispersed again in toluene. [0143] The quantum yield of the nanocrystal thus obtained is measured in accordance with the same manner as Example II, and the results confirm that no substantial increase is found in quantum yield. The XPS analysis, the EDS analysis, and the TOF-SIMS analysis may confirm that no fluorine is present in the nanocrystal thus obtained. A TEM- EDS analysis is made in the same manner as set forth in Evaluation II and the results are shown in FIG. 10 and FIG. 40 11, confirming that fluorine does not exist in the nanocrystals as prepared. [0144] Whilethis inventionhas been described inconnection withwhat ispresently consideredto be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims.

45 Claims

1. A nanocrystal particle comprising at least one semiconductor material and at least one halogen element, wherein the nanocrystal particle is capable of emitting light, 50 wherein the nanocrystal particle has a core-shell structure including a core comprising a first semiconductor nanoc- rystal and a shell surrounding the core and comprising a crystalline or amorphous material, wherein the at least one halogen element is present in the nanocrystal particle as being doped therein or as a metal halide, wherein the first semiconductor nanocrystal comprises a metal being selected from a Group II metal, a Group III 55 metal, a Group IV metal, and a combination thereof, and the crystalline or amorphous material comprises at least one metal being different from the metal included in the first semiconductor nanocrystal and being selected from a Group I metal, a Group II metal, a Group III metal, a Group IV metal, and a combination thereof,

17 EP 2 853 578 B1

wherein the nanocrystal particle has a diameter of 1 nm to 20 nm, and wherein the first semiconductor nanocrystal comprises a Group II-VI compound, a Group III-V compound, a Group IV-VI compound, a Group IV compound, or a combination thereof, and wherein the crystalline or amorphous material comprises a Group II-VI compound, a Group III-V compound, a Group 5 IV-VI compound, a Group IV compound, a metal oxide, a halogen compound containing a metal, or a combination thereof.

2. The nanocrystal particle of Claim 1, wherein the at least one halogen element comprises fluorine.

10 3. The nanocrystal particle of any of Claim 1 or 2, wherein the halogen element is included in at least one selected from the core, the shell, and the interface between the core and the shell.

4. The nanocrystal particle of Claim 3, wherein the shell is a multi-layered shell having at least two layers, each of the layers including the same or different crystalline or amorphous materials and having a composition different from 15 one another, and the halogen element is included in at least one region selected from the core, an inner shell, an outer shell, the interface between the core and the shell, and the interface between the layers of the shell.

5. The nanocrystal particle of any of Claims 1-4, wherein the halogen element is included in the shell, at the interface between the core and the shell, or in the shell and at the interface between the core and the shell. 20 6. The nanocrystal particle of any of Claims 1-5, wherein the crystalline or amorphous material comprises at least one metal different from the metal included in the first semiconductor nanocrystal.

7. The nanocrystal particle of any of Claims 1-6, wherein the Group II-VI compound is selected from: 25 a binary element compound selected from CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, and a combination thereof; a ternary element compound selected from CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, 30 and a combination thereof; and a quaternary element compound selected from HgZnTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHg- SeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, and a combination thereof, the Group III-V compound is selected from:

35 a binary element compound selected from GaN, GaP, GaAs, GaSb, AIN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, and a combination thereof; a ternary element compound selected from GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AINP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, and a combination thereof; and a quaternary element compound selected from GaAlNP, GaAINAs, GaAINSb, GaAlPAs, GaAlPSb, GaInNP, 40 GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAINAs, InAINSb, InAIPAs, InAIPSb, and a combination thereof, the Group IV-VI compound is selected from:

a binary element compound selected from SnS, SnSe, SnTe, PbS, PbSe, PbTe, and a combination 45 thereof; a ternary element compound selected from SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, and a combination thereof; and a quaternary element selected from SnPbSSe, SnPbSeTe, SnPbSTe, and a combination thereof, the Group IV compound is selected from: 50 a singular element compound selected from Si, Ge, and a combination thereof; and a binary element compound selected from SiC, SiGe, and a combination thereof,

the halogen compound containing a metal is selected from LiF, NaF, KF, BeF 2, MgF2, CaF2, SrF2, CuF, AgF, AuF, ZnF 2, CdF2, HgF2, AlF3, GaF3, InF3, SnF2, PbF2 , LiCl, NaCl, KCI, BeCl2, MgCl2, 55 CaCl2, SrCl 2, CuCl, AgCl, AuCl, ZnCl 2, CdCl2, HgCl2, AlCl3, GaCl3, InCl 3, SnCl 2, PbCl2, LiBr, NaBr, KBr, BeBr2, MgBr2, CaBr2, SrBr2, CuBr, AgBr, AuBr, ZnBr2, CdBr2, HgBr2, AlBr3, GaBr3, InBr3, SnBr2, PbBr2, Lil, Nal, KI, BeI2, MgI2, CaI2, SrI2, CuI, AgI, Aul, ZnI2, CdI2, HgI2, AlI3, GaI3, InI3, SnI2, PbI2, and a combination thereof, and

18 EP 2 853 578 B1

the metal oxide is selected from CdO, In2O3, PbO, HgO, MgO, Ga2O3, Al2O3, ZnO, SiO2, ZnOS, ZnOSe, ZnOSeS, InPO, InPOS, and a combination thereof.

8. The nanocrystal particle of any of Claims 1-7, wherein the shell comprises a material having a composition different 5 from the first semiconductor nanocrystal and a bandgap larger than the first semiconductor nanocrystal.

9. The nanocrystal particle of any of Claims 1-8, wherein the nanocrystal particle has a ligand compound coordinating to a surface thereof.

10 10. A device including the nanocrystal particle of any of Claims 1-9.

11. The device of Claim 10, wherein the device is a light emitting diode, an organic light emitting diode, a sensor, a solar cell, an imaging sensor, or a liquid crystal display.

15 12. A process of synthesizing a nanocrystal particle according to any of Claims 1-9, which comprises:

obtaining a first mixture including a first precursor, a ligand compound, and a solvent; optionally heating the first mixture; adding a source of a halogen element, a second precursor, and optionally a first nanocrystal to the first mixture 20 being optionally heated to obtain a second mixture; and heating the second mixture to a reaction temperature to trigger a reaction between the first precursor and the second precursor to obtain a nanocrystal particle comprising at least one semiconductor material and the halogen element.

25 13. The process of synthesizing a nanocrystal particle of Claim 12, wherein the first precursor comprises a Group II metal, a Group III metal, a Group IV metal, or a combination thereof, and a type of the metal may be a metal powder, an alkylated metal compound, a metal alkoxide, a metal carboxylate, a metal nitrate, a metal perchlorate, a metal sulfate, a metal acetylacetonate, a metal halide, a metal cyanide, a metal hydroxide, a metal oxide, a metal peroxide, ora combination thereof,and/or the second precursorcomprises a Group V element, a Group VIelement, a compound 30 containing the Group V element or the Group VI element, a compound containing a halogen element, or a combination thereof and wherein the second precursor optionally is selected from sulfur (S), selenium (Se) or selenide, tellurium or telluride, phosphorous (P), arsenic (As) or arsenide, nitrogen (N), hexanethiol, octanethiol, decanethiol, do- decanethiol, hexadecanethiol, mercaptopropylsilane, sulfur-trioctylphosphine (S-TOP), sulfur-tributylphosphine (S- TBP), sulfurtriphenylphosphine (S-TPP), sulfur-trioctylamine (S-TOA), bis(trimethylsilyl)sulfide, ammonium sulfide, 35 sodium sulfide, seleniumtrioctylphosphine (Se-TOP), selenium-tributylphosphine (Se-TBP), seleniumtriphenylphos- phine (Se-TPP), tellurium-tributylphosphine (Te-TBP), telluriumtriphenylphosphine (Te-TPP), tris(trimethylsi- lyl)phosphine, tris(dimethylamino)phosphine, triethylphosphine, tributylphosphine, trioctylphosphine, triphenylphos- phine, tricyclohexylphosphine, arsenic oxide, arsenic chloride, arsenic sulfate, arsenic bromide, arsenic iodide, nitric oxide, nitric acid, ammonium nitrate, and a combination thereof. 40 14. The process of synthesizing a nanocrystal particle of Claim 12 or 13, wherein adding the source of the halogen element to the first mixture comprises dissolving the source of the halogen element in an carrier solvent to obtain a solution and adding the solution to the first mixture, and the carrier solvent comprises water, a ketone, a primary amine, a secondary amine, a tertiary amine, a heterocyclic 45 compound having a nitrogen atom, a C6 to C40 olefin, a C6 to C40 aliphatic hydrocarbon, a C6 to C30 aromatic hydrocarbon substituted with an alkyl group, a primary, secondary, or tertiary phosphine substituted with a C6 to C22 alkyl group, a primary, secondary, or tertiary phosphine oxide substituted with a C6 to C22 alkyl group, an aromatic ether, an aromatic alcohol, or a combination thereof.

50 Patentansprüche

1. Nanokristallpartikel, das mindestens ein Halbleitermaterial und mindestens ein Halogenelement umfasst, wobei das Nanokristallpartikel in der Lage ist, Licht auszustrahlen, 55 wobei das Nanokristallpartikel eine Kern-Schale-Struktur einschließlich eines Kerns, der ein erstes Halbleiter-Na- nokristall umfasst, und eine Schale, die den Kern umgibt und ein kristallines oder amorphes Material umfasst, aufweist, wobei das mindestens eine Halogenelement im Nanokristallpartikel als darin eindotiert oder als ein Metallhalogenid

19 EP 2 853 578 B1

vorhanden ist, wobei das erste Halbleiter-Nanokristall ein Metall umfasst, das aus einem Gruppe-II-Metall, einem Gruppe-III-Metall, einem Gruppe-IV-Metall und einer Kombination davon ausgewählt ist, und das kristalline oder amorphe Material mindestens ein Metall umfasst, das sich von dem Metall unterscheidet, das 5 im ersten Halbleiter-Nanokristall enthalten ist und aus einem Gruppe-I-Metall, einem Gruppe-II-Metall, einem Grup- pe-III-Metall, einem Gruppe-IV-Metall und einer Kombination davon ausgewählt ist, wobei das Nanokristallpartikel einen Durchmesser von 1 nm bis 20 nm aufweist, und wobei das erste Halbleiter-Nanokristall eine Gruppe-II-VI-Verbindung, eine Gruppe-III-V-Verbindung, eine Gruppe- IV-VI-Verbindung, eine Gruppe-IV-Verbindung oder eine Kombination davon umfasst, und 10 wobei das kristalline oder amorphe Material eine Gruppe-II-VI-Verbindung, eine Gruppe-III-V-Verbindung, eine Gruppe-IV-VI-Verbindung, eine Gruppe-IV-Verbindung, ein Metalloxid, eine Halogenverbindung, die ein Metall ent- hält, oder eine Kombination davon umfasst.

2. Nanokristallpartikel nach Anspruch 1, wobei das mindestens eine Halogenmaterial Fluor umfasst. 15 3. Nanokristallpartikel nach einem der Ansprüche 1 oder 2, wobei das Halogenelement in mindestens einem, das aus dem Kern, der Schale und der Schnittstelle zwischen Kern und Schale ausgewählt ist, enthalten ist.

4. Nanokristallpartikel nach Anspruch 3, wobei die Schale eine mehrschichtige Schale mit mindestens zwei Schichten 20 ist, wobei jede Schicht das gleiche oder unterschiedliche kristalline oder amorphe Material/Materialien beinhaltet und eine sich von der jeweils anderen unterscheidende Zusammensetzung aufweist, und das Halogenelement in mindestens einem Bereich enthalten ist, der aus dem Kern, einer inneren Schale, einer äußeren Schale, der Schnitt- stelle zwischen dem Kern und der Schale und der Schnittstelle zwischen den Schichten der Schale ausgewählt ist.

25 5. Nanokristallpartikel nach einem der Ansprüche 1 - 4, wobei das Halogenelement in der Schale, an der Schnittstelle zwischen dem Kern und der Schale oder in der Schale und an der Schnittstelle zwischen dem Kern und der Schale enthalten ist.

6. Nanokristallpartikel nach einem der Ansprüche 1 - 5, wobei das kristalline oder amorphe Material mindestens ein 30 Metall umfasst, das sich von dem Metall unterscheidet, das im ersten Halbleiter-Nanokristall enthalten ist.

7. Nanokristallpartikel nach einem der Ansprüche 1 - 6, wobei die Crruppe-II-VI-Verbindung aus Folgendem ausgewählt ist:

35 einer Zwei-Elemente-Verbindung, die aus CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS und einer Kombination davon ausgewählt ist; einer Drei-Elemente-Verbindung, die aus CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS und einer Kombination davon ausgewählt ist; und 40 einer Vier-Elemente-Verbindung, die aus HgZnTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe und einer Kombination davon ausgewählt ist;

die Crruppe-III-V-Verbindung aus Folgendem ausgewählt ist:

45 einer Zwei-Elemente-Verbindung, die aus GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb und einer Kombination davon ausgewählt ist; einer Drei-Elemente-Verbindung, die aus GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb und einer Kombination davon ausgewählt ist; und einerVier-Elemente-Verbindung, die aus GaAlNP, GaAlNAs, GaAlNSb,GaAlPAs, GaAlPSb, GaInNP, GaInNAs, 50 GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb und einer Kombination davon ausgewählt ist;

die Crruppe-IV-VI-Verbindung aus Folgendem ausgewählt ist:

55 einer Zwei-Elemente-Verbindung, die aus SnS, SnSe, SnTe, PbS, PbSe, PbTe und einer Kombination davon ausgewählt ist; einer Drei-Elemente-Verbindung, die aus SnSeS, SnSeTe , SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe und einer Kombination davon ausgewählt ist; und

20 EP 2 853 578 B1

eine Vier-Elemente-Verbindung, die aus SnPbSSe, SnPbSeTe, SnPbSTe und einer Kombination davon aus- gewählt ist;

die Gruppe-IV-Verbindung aus Folgendem ausgewählt ist: 5 einer Ein-Element-Verbindung, die aus Si, Ge und einer Kombination davon ausgewählt ist; und eine Zwei-Elemente-Verbindung, die aus SiC, SiGe und einer Kombination davon ausgewählt ist;

die ein Metall enthaltende Halogenverbindung aus LiF, NaF, KF, BeF2, MgF2, CaF2, SrF2, CuF, AgF, AuF, ZnF2, 10 CdF2, HgF2, AlF3, GaF3, InF3, SnF2, PbF2, LiCl, NaCl, KCl, BeCl2, MgCl2, CaCl2, SrCl2, CuCl, AgCl, AuCl, ZnCl2, CdCl2, HgCl2, AlCl3, GaCl3, InCl3, SnCl2, PbCl2, LiBr, NaBr, KBr, BeBr2, MgBr2, CaBr2, SrBr2, CuBr, AgBr, AuBr, ZnBr2, CdBr2, HgBr2, AlBr3, GaBr3, InBr3, SnBr2, PbBr2, LiI, NaI, KI, BeI 2, MgI2, CaI2, SrI2, CuI, AgI, AuI, ZnI 2, CdI2, HgI2, AlI3, GaI3, InI3, SnI2, PbI2 und einer Kombination davon ausgewählt ist, und das Metalloxid aus CdO, In 2O3, PbO, HgO, MgO, Ga 2O3, Al2O3, ZnO, SiO2, ZnOS, ZnOSe, ZnOSeS, InPO, InPOS 15 und einer Kombination davon ausgewählt ist.

8. Nanokristallpartikel nach einem der Ansprüche 1 - 7, wobei die Schale ein Material mit einer Zusammensetzung, diesich vom ersten Halbleiter-Nanokristall unterscheidet und einemBandabstand, der größerals das erste Halbleiter- Nanokristall ist, umfasst. 20 9. Nanokristallpartikel nach einem der Ansprüche 1 - 8, wobei das Nanokristallpartikel eine Ligandenverbindung auf- weist, die sich an einer Oberfläche davon anlagert.

10. Vorrichtung, die das Nanokristallpartikel nach einem der Ansprüche 1 - 9 beinhaltet. 25 11. Vorrichtung nach Anspruch 10, wobei die Vorrichtung eine Leuchtdiode, eine organische Leuchtdiode, ein Sensor, eine Solarzelle, ein Bildsensor oder eine Flüssigkristallanzeige ist.

12. Verfahren zum Synthetisieren eines Nanokristallpartikels nach einem der Ansprüche 1 - 9, das Folgendes umfasst: 30 Erhalten eines ersten Gemischs, das einen ersten Vorläufer, eine Ligandenverbindung und ein Lösungsmittel beinhaltet; wahlweises Erhitzen des ersten Gemischs; Hinzufügen einer Quelle eines Halogenelements, eines zweiten Vorläufers und wahlweise eines ersten Nano- 35 kristalls zum ersten Gemisch, das wahlweise erhitzt wird, um ein zweites Gemisch zu erhalten; und Erhitzen des zweiten Gemischs auf eine Reaktionstemperatur, um eine Reaktion zwischen dem ersten Vorläufer und dem zweiten Vorläufer auszulösen, um ein Nanokristallpartikel zu erhalten, das mindestens ein Halbleiter- material und das Halogenelement umfasst.

40 13. Verfahren zum Synthetisieren eines Nanokristallpartikels nach Anspruch 12, wobei der erste Vorläufer ein Gruppe- II-Metall, ein Gruppe-III-Metall, ein Gruppe-IV-Metall oder eine Kombination davon umfasst und eine Art des Metalls ein Metallpulver, eine alkylierte Metallverbindung, ein Metallalkoxid, ein Metallcarboxylat, ein Metallnitrat, ein Me- tallperchlorat, ein Metallsulfat, ein Metallacetylacetonat, ein Metallhalogenid, ein Metallcyanid, ein Metallhydroxid, ein Metalloxid, ein Metallperoxid oder eine Kombination davon sein kann und/oder der zweite Vorläufer ein Gruppe- 45 V-Element, ein Gruppe-VI-Element, eine das Gruppe-V-Element oder das Gruppe-VI-Element enthaltende Verbin- dung, eine ein Halogenelement enthaltende Verbindung oder eine Kombination davon umfasst und wobei der zweite Vorläufer wahlweise aus Schwefel (S), Selen (Se) oder Selenid, Tellur oder Tellurid, Phosphor (P), Arsen (As) oder Arsenid, Stickstoff (N), Hexanthiol, Octanthiol, Decanthiol, Dodecanthiol, Hexadecanthiol, Mercaptopropylsilan, Schwefel-Trioctylphosphin (S-TOP), Schwefel-Tributylphosphin (S-TBP), Schwefel-Triphenylphosphin (S-TPP), 50 Schwefel-Trioctylamin (S-TOA), Bis(trimethylsilyl)sulfid, Ammoniumsulfid, Natriumsulfid, Selen-Trioctylphosphin (Se-TOP),Selen-Tributylphosphin (Se-TBP), Selen-Triphenylphosphin (Se-TPP),Tellur-Tributylphosphin (Te-TBP), Tellur-Triphenylphosphin (Te-TPP), Tris(trimethylsilyl)phosphin, Tris(dimethylamin)phosphin, Triethylphosphin, Tri- butylphosphin, Trioctylphosphin, Triphenylphosphin, Tricyclohexylphosphin, Arsenoxid, Arsenchlorid, Arsensulfat, Arsenbromid, Arseniodid, Stickstoffmonoxid, Salpetersäure, Ammoniumnitrat und einer Kombination davon ausge- 55 wählt ist.

14. Verfahren zum Synthetisieren eines Nanokristallpartikels nach Anspruch 12 oder 13, wobei das Hinzufügen der Quelle des Halogenelements zum ersten Gemisch das Auflösen der Quelle des Halogenelements in einem Träger-

21 EP 2 853 578 B1

lösungsmittel, um eine Lösung zu erhalten, und das Hinzufügen der Lösung zum ersten Gemisch umfasst, und das Trägerlösungsmittel Wasser, ein Keton, ein primäres Amin, ein sekundäres Amin, ein tertiäres Amin, eine heterocyclische Verbindung mit einem Stickstoffatom, ein C6- bis C40-Olefin, einen aliphatischen C6- bis C40- Kohlenwasserstoff, einen mit einer Alkylgruppe substituierten aromatischen C6- bis C30-Kohlenwasserstoff, ein mit 5 einer C6- bis C22-Alkylgruppe substituiertes primäres, sekundäres oder tertiäres Phosphin, ein mit einer C6- bis C22-Alkylgruppe substituiertes primäres, sekundäres oder tertiäres Phosphinoxid, einen aromatischen Ether, einen aromatischen Alkohol oder eine Kombination davon umfasst.

10 Revendications

1. Particule de nanocristal comprenant au moins un matériau semiconducteur et au moins un élément halogéné, ladite particule de nanocristal étant capable d’émettre de la lumière, ladite particule de nanocristal possédant une structure noyau-enveloppe comportant un noyau comprenant un 15 premier nanocristal semiconducteur et une enveloppe entourant le noyau et comprenant un matériau cristallin ou amorphe, ledit au moins un élément halogéné étant présent dans la particule de nanocristal comme étant dopé en son sein ou sous forme d’halogénure métallique, ledit premier nanocristal semiconducteur comprenant un métal choisi parmi un métal du groupe II, un métal du 20 groupe III, un métal du groupe IV, et une combinaison de ceux-ci, et le matériau cristallin ou amorphe comprenant au moins un métal différent du métal inclus dans le premier nanocristal semiconducteur et choisi parmi un métal du groupe I, un métal du groupe II, un métal du groupe III, un métal du groupe IV et une combinaison de ceux-ci, ladite particule de nanocristal ayant un diamètre de 1 nm à 20 nm, et 25 ledit premier nanocristal semiconducteur comprenant un composé du groupe II-VI, un composé du groupe III-V, un composé du groupe IV-VI, un composé du groupe IV, ou une combinaison de ceux-ci, et ledit matériau cristallin ou amorphe comprenant un composé du groupe II-IV, un composé du groupe III-V, un composé du groupe IV-VI, un composé du groupe IV, un oxyde métallique, un composé halogéné comprenant un métal, ou une combinaison de ceux-ci. 30 2. Particule de nanocristal selon la revendication 1, ledit au moins un élément halogéné comprenant du fluor.

3. Particule de nanocristal selon l’une quelconque des revendications 1 ou 2, ledit élément halogéné étant compris dans au moins l’un parmi le noyau, l’enveloppe, et l’interface entre le noyau et l’enveloppe. 35 4. Particule de nanocristal selon la revendication 3, ladite enveloppe étant une enveloppe multicouche possédant au moins deux couches, chacune des couches comportant des matériaux cristallins ou amorphes identiques ou diffé- rents et ayant une composition différente les unes des autres, et l’élément halogéné étant inclus dans au moins une région choisie parmi le noyau, une enveloppe interne, une enveloppe externe, l’interface entre le noyau et 40 l’enveloppe, et l’interface entre les couches de l’enveloppe.

5. Particule de nanocristal selon l’une quelconque des revendications 1 à 4, ledit élément halogéné étant inclus dans le noyau, à l’interface entre le noyau et l’enveloppe, ou dans le noyau et à l’interface entre le noyau et l’enveloppe.

45 6. Particule de nanocristal selon l’une quelconque des revendications 1 à 5, ledit matériau cristallin ou amorphe comprenant au moins un métal différent du métal inclus dans le premier nanocristal semiconducteur.

7. Particule de nanocristal selon l’une quelconque des revendications 1 à 6, ledit composé du groupe II-VI étant choisi parmi : 50 un composé d’élément binaire choisi parmi CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, et une combinaison de ceux-ci ; un composé d’élément tertiaire choisi parmi CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, Hg- SeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, 55 MgZnS, et une combinaison de ceux-ci ; et un composé d’élément quaternaire choisi parmi HgZnTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, Cd- HgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, et une combinaison de ceux-ci, ledit composé du groupe III-V étant choisi parmi :

22 EP 2 853 578 B1

un composé d’élément binaire choisi parmi GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, et une combinaison de ceux-ci ; un composé d’élément ternaire choisi parmi GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AINSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, et une combinaison de ceux-ci ; et 5 un composé d’élément quaternaire choisi parmi GaAlNP, GaAINAs, GaAINSb, GaAlPAs, GaAlPSb, GaIn- NP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAINAs, InAINSb, InAIPAs, InAlPSb, et une com- binaison de ceux-ci, le composé du groupe IV-VI étant choisi parmi :

10 un composé d’élément binaire choisi parmi SnS, SnSe, SnTe, PbS, PbSe, PbTe, et une combinaison de ceux-ci ; un composé d’élément ternaire choisi parmi SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, et une combinaison de ceux-ci ; et un composé d’élément quaternaire choisi parmi SnPbSSe, SnPbSeTe, SnPbSTe, et une combinaison 15 de ceux-ci, le composé du groupe IV étant choisi parmi :

un composé d’élément singulier choisi parmi Si, Ge, et une combinaison de ceux-ci ; et un composé d’élément binaire choisi parmi SiC, SiGe, et une combinaison de ceux-ci, 20 le composé halogéné contenant un métal étant choisi parmi LiF, NaF, KF, BeF2, MgF2, CaF2, SrF2, CuF, AgF, AuF, ZnF2, CdF2, HgF2, AlF3, GaF3, InF3, SnF2, PbF2, LiCl, NaCl, KCl, BeCl2, MgCl2, CaCl2, SrCl2, CuCl, AgCl, AuCl, ZnCl2, CdCl2, HgCl2, AlCl3, GaCl3, InCl3, SnCl2, PbCl2, LiBr, NaBr, KBr, BeBr2, MgBr2, CaBr2, SrBr2, CuBr, AgBr, AuBr, ZnBr2, CdBr2, HgBr2, AlBr3, GaBr3, InBr3, SnBr2, PbBr2, LiI, NaI, KI, BeI 2, MgI2, CaI2, SrI2, CuI, AgI, AuI, ZnI 2, CdI2, HgI2, AlI3, 25 GaI3, InI3, SnI2, PbI2, et une combinaison de ceux-ci, et l’oxyde métallique étant choisi parmi CdO, In2O3, PbO, HgO, MgO, Ga2O3, Al2O3, ZnO, SiO2, ZnOS, ZnOSe, ZnOSeS, InPO, InPOS, et une combinaison de ceux-ci.

8. Particule de nanocristal selon l’une quelconque des revendications 1 à 7, ladite enveloppe comprenant un matériau 30 ayant une composition différente du premier nanocristal semiconducteur et une bande interdite plus grande que le premier nanocristal semiconducteur.

9. Particule de nanocristal selon l’une quelconque des revendications 1 à 8, ladite particule de nanocristal possédant un composé ligand se coordonnant à une surface de celle-ci. 35 10. Dispositif comportant la particule de nanocristal selon l’une quelconque des revendications 1 à 9.

11. Dispositif selon la revendication 10, ledit dispositif étant une diode électroluminescente, une diode électrolumines- cente organique, un capteur, une cellule solaire, un capteur d’imagerie ou un écran à cristaux liquides. 40 12. Procédé de synthèse d’une particule de nanocristal selon l’une quelconque des revendications 1 à 9, qui comprend :

l’obtention d’un premier mélange comprenant un premier précurseur, un composé de ligand, et un solvant ; le chauffage éventuel du premier mélange ; 45 l’ajout d’une source d’un élément halogéné, d’un second précurseur, et éventuellement d’un premier nanocristal au premier mélange éventuellement chauffé pour obtenir un second mélange ; et le chauffage du second mélange à une température de réaction pour déclencher une réaction entre le premier précurseur et le second précurseur pour obtenir une particule de nanocristal comprenant au moins un matériau semiconducteur et l’élément halogéné. 50 13. Procédé de synthèse d’une particule de nanocristal selon la revendication 12, ledit premier précurseur comprenant un métal du groupe II, un métal du groupe III, un métal du groupe IV, ou une combinaison de ceux-ci, et un type du métal pouvant être une poudre métallique, un composé métallique alkylé, un alcoxyde métallique, un carboxylate métallique, un nitrate métallique, un perchlorate métallique, un sulfate métallique, un acétylacétonate métallique, 55 un halogénure métallique, un cyanure métallique, un hydroxyde métallique, un oxyde métallique, un peroxyde métallique, ou une combinaison de ceux-ci, et/ou le second précurseur comprenant un élément du groupe V, un élément du groupe VI, un composé comprenant l’élément du groupe V ou l’élément du groupe VI, un composé contenant un élément halogéné, ou une combinaison de ceux-ci et ledit second précurseur étant éventuellement

23 EP 2 853 578 B1

choisi parmi le soufre (S), le sélénium (Se) ou un séléniure, le tellure ou un tellurure, le phosphore (P), l’arsenic (As) ou un arséniure, l’azote (N), l’hexanethiol, l’octanethiol, le décanethiol, le dodécanethiol, l’hexadécanethiol, le mercaptopropylsilane, la soufre-trioctylphosphine (S-TOP), la soufre-tributylphosphine (S-TBP), la soufre-triphényl- phosphine (S-TPP), la soufre-trioctylamine (S-TOA), le bis(triméthylsilyl)sulfure, le sulfure d’ammonium, le sulfure 5 de sodium, la séléniumtrioctylphosphine (Se-TOP), la sélénium-tributylphosphine (Se-TBP), la séléniumtriphényl- phosphine (Se-TPP), la tellure-tributylphosphine (Te-TBP), la telluretriphénylphosphine (Te-TPP), la tris(triméthyl- silyl)phosphine, la tris(diméthylamino)phosphine, la triéthylphosphine, la tributylphosphine, la trioctylphosphine, la triphénylphosphine, la tricyclohexylphosphine, l’oxyde d’arsenic, le chlorure d’arsenic, le sulfate d’arsenic, le bromure d’arsenic, l’iodure d’arsenic, l’oxyde nitrique, l’acide nitrique, le nitrate d’ammonium, et une combinaison de ceux-ci. 10 14. Procédé de synthèse d’une particule de nanocristal selon la revendication 12 ou 13, l’ajout de la source de l’élément halogéné au premier mélange comprenant la dissolution de la source de l’élément halogéné dans un solvant véhicule pour obtenir une solution et l’ajout de la solution au premier mélange, et le solvant véhicule comprenant de l’eau, une cétone, une amine primaire, une amine secondaire, une amine tertiaire, 15 un composé hétérocyclique comportant un atome d’azote, une oléfine en C6 à C40, un hydrocarbure aliphatique en C6 à C40, un hydrocarbure aromatique en C6 à C30 substitué par un groupe alkyle, une phosphine primaire, secondaire ou tertiaire substituée par un groupe alkyle en C6 à C22, un oxyde de phosphine primaire, secondaire ou tertiaire substitué par un groupe alkyle en C6 à C22, un éther aromatique, un alcool aromatique, ou une combi- naison de ceux-ci. 20

25

30

35

40

45

50

55

24 EP 2 853 578 B1

25 EP 2 853 578 B1

26 EP 2 853 578 B1

27 EP 2 853 578 B1

28 EP 2 853 578 B1

29 EP 2 853 578 B1

30 EP 2 853 578 B1

31 EP 2 853 578 B1

32 EP 2 853 578 B1

33 EP 2 853 578 B1

34 EP 2 853 578 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 2007125984 A1 [0005]

Non-patent literature cited in the description

• K MANZOOR et al. Synthesis and photoluminescent • J. Chem. Phys., 2005, vol. 123, 084706 [0058] properties of ZnS nanocrystals doped with copper • J. Mater. Chem., 2008, vol. 18, 2653 [0058] and halogen. Materials chemistry and physics, 2003, vol. 82 (3), 718-725 [0006]

35