The Evolution of Color Patterns and Color Vision in the Bluefin Killfish

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Color Patterns and Color Vision in the Bluefin Killfish Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2003 The Evolution of Color Patterns and Color Vision in the Bluefin Killifish, Lucania Goodei Rebecca C. Fuller Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES THE EVOLUTION OF COLOR PATTERNS AND COLOR VISION IN THE BLUEFIN KILLIFISH, LUCANIA GOODEI By REBECCA C. FULLER A Dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2003 The members of the Committee approve the dissertation of Rebecca C. Fuller defended on _____________________________ Joseph Travis Professor Directing Dissertation _____________________________ David Gruender Outside Committee Member _____________________________ Jim Fadool Committee Member _____________________________ William Herrnkind Committee Member _____________________________ Don Levitan Committee Member Approved: __________________________________ Thomas M. Roberts, Chair, Department of Biological Science The Office of Graduate Studies has verified and approved the above named committee members. To my parents, Bert and Nancy Fuller, who taught me how to write. iii ACKNOWLEDGEMENTS First and foremost, I thank Joe Travis for his mentoring and support throughout this project. In many ways, Joe has been the perfect advisor giving me scientific freedom to pursue this project and also giving me tremendous amounts of help and support when needed. In addition, Joe continues to be a role model for me for the manner in which he achieves an exceedingly high level of excellence in all aspects of his work. My committee members, David Gruender, Jim Fadool, Doc Herrnkind, Don Levitan, and Ted Williams, have also been very helpful throughout this project. In addition to these people, I would like to thank Thomas Hansen, David Houle, Tom Miller, and Alice Winn for their help and advice and for making FSU a stimulating place to pursue science. In this same spirit, I also thank the area 3 graduate students for their fellowship and scientific interactions. My lab mates have been especially great throughout this project. These people include Matt Aresco, Charlie Baer, Andria Beeler, Taimi Hoag, Nate Jue, Paul Richards, Jean Richardson, Matt Schraeder, Angie Shelton, and Brian Storz. Undergraduates helping with this project include Jessica Draughon, Meghan McNeilly, Amber Polvere, Josh Shramo, Tommy Waltzek, and Eric Wheeler. Special thanks go to Margaret Gunzburger, Becca Hale, Lisa Horth, and Sheryl Soucy for help in the field and for help with life in general. iv Much of this work has been a collaboration. Chapter 5 was a collaborative study with Leo Fleishman and Manuel Leal (Union College), Ellis Loew (Cornell University), and Joe Travis. Chapters 6 and 7 were collaborative studies with Karen Carleton and Tyrone Spadey (University of New Hampshire), Jim Fadool, and Joe Travis. I thank them all for helping me to bridge the fields of physiology, molecular genetics, and evolution. This work was funded by a fellowship from Graduate Women in Science (to R. C. Fuller), a National Science Foundation Dissertation Improvement Grant (to J. Travis and R.C. Fuller), and a National Science Foundation Grant (to J. Travis). In addition, my stipend was funded by the National Science Foundation and Florida State University. Finally, I thank my beloved husband, Jeff, who, in addition to reading countless manuscripts and catching lots of fish in the Everglades, makes me a happier and healthier person. v TABLE OF CONTENTS List of Tables.....................................................................................................................vii List of Figures.....................................................................................................................ix Abstract..............................................................................................................................xii 1. Introduction.....................................................................................................................1 2. Lighting environment predicts relative abundance of male color morphs in bluefin killifish populations.............................................................................................................5 3. Multiple mating events reduce female choosiness: a model and its implications for experimental design...........................................................................................................29 4. Genetics, lighting environment, and heritable responses to lighting environment affect male color morph expression in bluefin killifish, Lucania goodei....................................53 5. Intraspecific variation in ultraviolet cone production and visual sensitivity in the bluefin killifish, Lucania goodei........................................................................................85 6. Relative opsin expression reflects population differences in vision physiology in Lucania goodei: a real-time PCR study...........................................................................106 7. Variable sensory systems in the bluefin killifish, Lucania goodei..............................126 8. Conclusions.................................................................................................................138 Literature cited.................................................................................................................142 Biographical sketch..........................................................................................................159 vi LIST OF TABLES Table 2.1. Data for male color morphs across the 30 sampled populations.....................18 Table 2.2. Summary of results for each color morph. Factors significant in initial model refers to effects that are statistically significant in the presence of all the other variables. 'Robust to removal of outlier?' refers to whether or not the significant factors in either the initial or final model still have statistically significant effects upon removal of the outlier................................................................................................19 Table 3.1. Regression analyses between female preference and male quality for two measures of preference, latency to spawn and interspawn interval...................................44 Table 4.1. Number of animals at various life-stages for each family in the greenhouse experiment..........................................................................................................................65 Table 5.1. Mean and coefficient of variation (CV) of λmax calculated across individuals for the spring and swamp populations. N = 11 for spring. N = 10 for swamp. Note that CV λmax is approximately 1% for all opsin classes............................................................98 Table 5.2. Mean frequencies for each cone class in each of the two populations. N = 11 for spring. N = 10 for swamp. Values in bold indicate statistically significant differences after bonferonni adjustment at P < 0.01..........................................................................101 Table 6.1. Primers and probes.........................................................................................113 Table 6.2. Efficiencies for the spring and swamp populations. Means and standard errors are shown. N=3...............................................................................................................116 Table 6.3. Repeatabilities and coefficients of variation (CV). Coefficients of variation are calculated without the far outlier. N=6 for CV (across individual means). N=18 for CV (all measures). Average CV (within samples) is the average CV across the six individuals. Average CV (within samples) represents experimental error whereas CV (individual means) represents the true coefficient of variation among individuals.........118 vii Table 6.4. Relative cone frequency and relative opsin expression for each opsin/cone type. Means and standard errors are listed for both populations plus the grand mean. Relative cone frequency: spring N=11, swamp N=10, grand mean N=21. Relative opsin expression: spring N=10, swamp N=10, grand mean N=20..................................121 Table 7.1. Effects of sires, dams within sires, environment and the interaction between sires and environment......................................................................................................131 viii LIST OF FIGURES Figure 2.1. Location of sampled populations. Only sampled drainages are shown.........10 Figure 2.2. Schematic diagram of apparatus used to measure light transmission through the water. (A) Reflectance probe in contact with test cap. (B) Reflectance probe 20 mm away from the test cap.......................................................................................................11 Figure 2.3. (A) Component loading of PC1 and PC2 onto light transmission of each wavelength between 360 - 800 nm. (B) Means and standard errors of UV/blue transmission (PC2) across drainages.................................................................................16 Figure 2.4. Factors accounting for significant amounts of variation in blue and red morph abundance. Each data point represents a population. Arrows point to outliers with high leverage. (a) Relationship between
Recommended publications
  • Dedication Donald Perrin De Sylva
    Dedication The Proceedings of the First International Symposium on Mangroves as Fish Habitat are dedicated to the memory of University of Miami Professors Samuel C. Snedaker and Donald Perrin de Sylva. Samuel C. Snedaker Donald Perrin de Sylva (1938–2005) (1929–2004) Professor Samuel Curry Snedaker Our longtime collaborator and dear passed away on March 21, 2005 in friend, University of Miami Professor Yakima, Washington, after an eminent Donald P. de Sylva, passed away in career on the faculty of the University Brooksville, Florida on January 28, of Florida and the University of Miami. 2004. Over the course of his diverse A world authority on mangrove eco- and productive career, he worked systems, he authored numerous books closely with mangrove expert and and publications on topics as diverse colleague Professor Samuel Snedaker as tropical ecology, global climate on relationships between mangrove change, and wetlands and fish communities. Don pollutants made major scientific contributions in marine to this area of research close to home organisms in south and sedi- Florida ments. One and as far of his most afield as enduring Southeast contributions Asia. He to marine sci- was the ences was the world’s publication leading authority on one of the most in 1974 of ecologically important inhabitants of “The ecology coastal mangrove habitats—the great of mangroves” (coauthored with Ariel barracuda. His 1963 book Systematics Lugo), a paper that set the high stan- and Life History of the Great Barracuda dard by which contemporary mangrove continues to be an essential reference ecology continues to be measured. for those interested in the taxonomy, Sam’s studies laid the scientific bases biology, and ecology of this species.
    [Show full text]
  • BULLETIN of the FLORIDA STATE MUSEUM Biological Sciences
    BULLETIN of the FLORIDA STATE MUSEUM Biological Sciences VOLUME 29 1983 NUMBER 1 A SYSTEMATIC STUDY OF TWO SPECIES COMPLEXES OF THE GENUS FUNDULUS (PISCES: CYPRINODONTIDAE) KENNETH RELYEA e UNIVERSITY OF FLORIDA GAINESVILLE Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM, BIOLOGICAL SCIENCES, are published at irregular intervals. Volumes contain about 300 pages and are not necessarily completed in any one calendar year. OLIVER L. AUSTIN, JR., Editor RHODA J. BRYANT, Managing Editor Consultants for this issue: GEORGE H. BURGESS ~TEVEN P. (HRISTMAN CARTER R. GILBERT ROBERT R. MILLER DONN E. ROSEN Communications concerning purchase or exchange of the publications and all manuscripts should be addressed to: Managing Editor, Bulletin; Florida State Museum; University of Florida; Gainesville, FL 32611, U.S.A. Copyright © by the Florida State Museum of the University of Florida This public document was promulgated at an annual cost of $3,300.53, or $3.30 per copy. It makes available to libraries, scholars, and all interested persons the results of researches in the natural sciences, emphasizing the circum-Caribbean region. Publication dates: 22 April 1983 Price: $330 A SYSTEMATIC STUDY OF TWO SPECIES COMPLEXES OF THE GENUS FUNDULUS (PISCES: CYPRINODONTIDAE) KENNETH RELYEAl ABSTRACT: Two Fundulus species complexes, the Fundulus heteroctitus-F. grandis and F. maialis species complexes, have nearly identical Overall geographic ranges (Canada to north- eastern Mexico and New England to northeastern Mexico, respectively; both disjunctly in Yucatan). Fundulus heteroclitus (Canada to northeastern Florida) and F. grandis (northeast- ern Florida to Mexico) are valid species distinguished most readily from one another by the total number of mandibular pores (8'and 10, respectively) and the long anal sheath of female F.
    [Show full text]
  • Bluefin Killifish ( Lucania Goodie )
    Bluefin Killifish ( Lucania goodie ) Order: Cyprinodontiformes - Family: Fundulidae (Topminnows) Also known as: Type: benthopelagic; non-migratory; freshwater - Egg layer Taxonomy: Lucania is a genus of small ray-finned fishes in the family Fundulidae. Formerly placed in monotypic genus CHRIOPEOPS (Lee et al. 1980). See Duggins et al. (1983) for relationship to L. PARVA. Removed from family Cyprinodontidae and placed in family Fundulidae by B81PAR01NA; this change was not adopted in the 1991 AFS checklist (Robins et al. 1991). Synonyms: Chriopeops goodie. Description: Bluefin Killifish ( Lucania goodie ) This little beauty comes from Florida where it is common m many waters. European visitors often wonder about the pretty, active, little fish with the flashing blue dorsal fin that they see in the waters around and in the tourist areas. The common name of Lucania goodei is the Blue fin or the Blue Fin topminnow the latter being rather a mouthful for such a small creature. Physical Characteristics: Lucania goodei or the Bluefin Killy, as it is called, is one of the smaller and more colorful of the native killifish. Bluefin males seldom exceed 2 to 2-¼" with the females a little smaller. The body of L. Goodei is elongated, minnow-shaped making it more akin to a minnow or a Rivulus species as opposed to the stockier, bulky characteristics of Cynolebias species. The major sex differential is in the unpaired fins (as one could almost assume from the name); a blue cast on the anal and dorsal fins distinguish the males of the species. The overall body color of the fish is brown.
    [Show full text]
  • Field and Laboratory Evaluation of Habitat Use by Rainwater Killifish
    Estuaries Vol. 25, No. 2, p. 288±295 April 2002 Field and Laboratory Evaluation of Habitat Use by Rainwater Killi®sh (Lucania parva) in the St. Johns River Estuary, Florida Frank Jordan* Department of Biological Sciences, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, Louisiana 70118 ABSTRACT: I examined the relative importance of beds of tapegrass (Vallisneria americana) and adjacent unvegetated habitats to juvenile and adult (6±35 mm standard length) rainwater killi®sh (Lucania parva) over a large spatial scale within the St. Johns River estuary, Florida. Abundance of rainwater killi®sh did not differ between oligohaline and tidal freshwater portions of the estuary and this species was relatively rare at opposite ends of the St. Johns River estuary. The presence of rainwater killi®sh at a given site was determined in part by large-scale variation in environmental factors such as habitat complexity and salinity. When present at a site, rainwater killi®sh were found almost exclusively in structurally complex beds of tapegrass. Behavioral observations in the laboratory indicated that rainwater killi®sh pre- ferred vegetated over unvegetated habitats in the absence of both potential prey and predators and that use of vegetated habitats increased further upon addition of predatory largemouth bass (Micropterus salmoides). A laboratory predation experiment indicated that survival of rainwater killi®sh exposed to largemouth bass was signi®cantly higher in vegetation than over open sand. Strong preferences for structurally complex vegetation likely re¯ect an evolved or learned behav- ioral response to risk of predation and help explain habitat use of rainwater killi®sh in the St.
    [Show full text]
  • Topminnow (Family Fundulidae) Diversity in North Carolina The
    Topminnow (Family Fundulidae) Diversity in North Carolina The Topminnow Family in North Carolina is a small family of 11 scientifically described and 1 undescribed species (Table 1) occurring primarily within the eastern Coastal Plain and within the estuarine marshes along the Atlantic Coast (Menhinick 1991; Tracy et al. 2020). Often referred to as killifishes, top minnows, or mud-minnows, each species has an American Fisheries Society-accepted common name (Page et al. 2013) and a scientific (Latin) name (Table 1; Appendix 1). Table 1. Species of topminnows found in North Carolina. Common name enclosed within tick marks (“) is a scientifically undescribed species. Scientific Name/ Scientific Name/ American Fisheries Society Accepted Common Name American Fisheries Society Accepted Common Name Golden Topminnow, Fundulus chrysotus Striped Killifish, Fundulus majalis Marsh Killifish, Fundulus confluentus Speckled Killifish, Fundulus rathbuni Banded Killifish, Fundulus diaphanus Waccamaw Killifish, Fundulus waccamensis Mummichog, Fundulus heteroclitus Fundulus sp. “Lake Phelps” Killifish Lined Topminnow, Fundulus lineolatus Bluefin Killifish, Lucania goodei Spotfin Killifish, Fundulus luciae Rainwater Killifish, Lucania parva Topminnows range in size from the diminutive Lucania at 50 mm (about 2 inches) to the 200 mm (7.8 inches) Striped Killifish. Because of their abundance and the ease by which they can be collected, they are often sold and used as bait fish along the Coast. As previously stated, most species are found in the eastern part of the state, although one species, Speckled Killifish, is found in the central Piedmont. There are no species in our river basins west of the Appalachian Mountains. Most of our species inhabit a variety of coastal aquatic environments (Table 2) and have a wide-ranging tolerance to salinities.
    [Show full text]
  • Characterization of the Hydrology, Water Chemistry, and Aquatic Communities of Selected Springs in the St
    Characterization of the Hydrology, Water Chemistry, and Aquatic Communities of Selected Springs in the St. Johns River Water Management District, Florida, 2004 By G.G. Phelps, Stephen J. Walsh, Robert M. Gerwig, and William B. Tate Prepared in cooperation with the St. Johns River Water Management District Open-File Report 2006-1107 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk Kempthorne, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Phelps, G.G., and others, 2006, Characterization of the hydrology, water chemistry, and aquatic communities of selected springs in the St. Johns River Water Management District, Florida, 2004: U.S. Geological Survey Open-File Report 2006-1107, 51 p. iii Contents Abstract ..........................................................................................................................................................1
    [Show full text]
  • Fishes of Savannas Preserve State Park
    FISHES OF SAVANNAS PRESERVE STATE PARK by Kristy McKee A Thesis Submitted to the Faculty of The Wilkes Honors College in Partial Fulfillment of the Requirements for the Degree of Bachelor of Arts in Liberal Arts and Sciences with a Concentration in Marine Biology Wilkes Honors College of Florida Atlantic University Jupiter, Florida August 2007 FISHES OF SAVANNAS PRESERVE STATE PARK by Kristy McKee This thesis was prepared under the direction of the candidate’s thesis advisor, Dr. Jon Moore, and has been approved by the members of her/his supervisory committee. It was submitted to the faculty of The Honors College and was accepted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Liberal Arts and Sciences. SUPERVISORY COMMITTEE: ____________________________ Dr. Jon Moore ____________________________ Dr. William O’Brien ______________________________ Dean, Wilkes Honors College ____________ Date ii Acknowledgements I would like to thank Dr. Jon Moore, Andrea Gagaoudakis, Janny Peña, Kelley McKee, Scott Moore, Carrie Goethel, Diego Arenas, Tony Uhl, Leslie Jacobson, and the Port St. Lucie High School Science Club members for their assistance in the field and in the laboratory; Kasey McKee for helping making the map; Dr. Jon Moore and Dr. William O’Brien for their helpful comments and suggestions during the writing process; Hank Smith for allowing me to embark on this project, assistance with acquiring permits, past collecting information, and general information about Savannas Preserve State Park; Greg Kaufman and Savannas Preserve State Park for passing on information about exotics collected in the park; and the Florida Museum of Natural History and Harbor Branch Oceanographic Institution for preserved specimens and catalog information from past collections.
    [Show full text]
  • Lucania Goodei Jordan 1880 a Summary Review Charlie Nunziata 6530 Burning Tree Drive Seminole, FL 33777 [email protected]
    25 American Currents Vol. 36, No. 1 North American Killifish - Part 1 Lucania goodei Jordan 1880 A Summary Review Charlie Nunziata 6530 Burning Tree Drive Seminole, FL 33777 [email protected] his article is the first in a planned series featuring nomenclature appears well settled. Chriopeops is still consid- killifishes of North America. Fresh, brackish and ered a valid subgenus. L. goodei is the type for the genus and the few full-marine species that occur from the its type locality is the Arlington River, a tributary of the St. T U.S. south to Mexico and the Caribbean islands Johns River which flows through a vast region of northeast- will be included. Although the definition of North America ern Florida. encompasses Central America and the transition zone to South America at the Panama-Columbia border, the many Distribution killifishes from these regions will not be included in this series. L. goodei is found over a vast range, stretching from Some reviews, especially of little-known or studied killies, throughout the Florida peninsula and to the panhandle where will be cursory. Others reviews, especially those that relate to it occupies the east coast and the regions west to the Choc- more common and better studied species, will be more exten- tawhatchee River drainage (Page and Burr, 1991). It contin- sive. And because it has not yet been determined how groups ues north from the Florida panhandle into the extreme south- of closely related species may be combined in a given review, eastern corner of Alabama, and the Chipola River drainage.
    [Show full text]
  • Euryhalinity in an Evolutionary Context Eric T
    University of Connecticut OpenCommons@UConn EEB Articles Department of Ecology and Evolutionary Biology 2013 Euryhalinity in an Evolutionary Context Eric T. Schultz University of Connecticut - Storrs, [email protected] Stephen D. McCormick USGS Conte Anadromous Fish Research Center, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/eeb_articles Part of the Comparative and Evolutionary Physiology Commons, Evolution Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Schultz, Eric T. and McCormick, Stephen D., "Euryhalinity in an Evolutionary Context" (2013). EEB Articles. 29. https://opencommons.uconn.edu/eeb_articles/29 RUNNING TITLE: Evolution and Euryhalinity Euryhalinity in an Evolutionary Context Eric T. Schultz Department of Ecology and Evolutionary Biology, University of Connecticut Stephen D. McCormick USGS, Conte Anadromous Fish Research Center, Turners Falls, MA Department of Biology, University of Massachusetts, Amherst Corresponding author (ETS) contact information: Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT 06269-3043 USA [email protected] phone: 860 486-4692 Keywords: Cladogenesis, diversification, key innovation, landlocking, phylogeny, salinity tolerance Schultz and McCormick Evolution and Euryhalinity 1. Introduction 2. Diversity of halotolerance 2.1. Empirical issues in halotolerance analysis 2.2. Interspecific variability in halotolerance 3. Evolutionary transitions in euryhalinity 3.1. Euryhalinity and halohabitat transitions in early fishes 3.2. Euryhalinity among extant fishes 3.3. Evolutionary diversification upon transitions in halohabitat 3.4. Adaptation upon transitions in halohabitat 4. Convergence and euryhalinity 5. Conclusion and perspectives 2 Schultz and McCormick Evolution and Euryhalinity This chapter focuses on the evolutionary importance and taxonomic distribution of euryhalinity. Euryhalinity refers to broad halotolerance and broad halohabitat distribution.
    [Show full text]
  • Effects of Introducted Peacock Cichlids Cichla Ocellaris on Native Largemouth Bass Micropierus Salmoides in Southeast Florida
    EFFECTS OF INTRODUCED PEACOCK CICHLIDS CICHLA OCELLARIS ON NATIVE LARGEMOUTH BASS MICROPTERUS SALMOIDES IN SOUTHEAST FLORIDA By JEFFREY E. HILL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2003 ACKNOWLEDGMENTS Many people provided tremendous assistance in the completion of this project. All deserve my acknowledgment. I apologize beforehand to anyone inadvertently omitted. The primary acknowledgment goes to my wife, Susan, for her unfailing support throughout my entire graduate career. I thank her for sacrificing in order for me to fulfill our shared goal. 1 especially thank her for putting up with my obsession for fish. I am gratefial for the constant support of my family—^my father, mother, and sister (Baker, Jacqueline, and Kim). They shared the dream of my doctorate—I am thankfial to have fulfilled our collective aspiration. I greatly appreciate the guidance and support of my doctoral committee—Drs. Charles E. Cichra (Chair), Carter R. Gilbert, William J. Lindberg, Leo G. Nico, and Craig W. Osenberg. It was a great pleasure to work for Dr. Cichra—the experience I received in extension, research, and teaching, along with strong mentorship and his fiiendship, were instrumental in my professional development. Carter Gilbert has been a tremendous influence and is one of my real "fish heroes". I especially thank Carter for staying involved in my graduate education after his retirement—that meant a lot to me. Leo Nico's remarkable field experience with nonindigenous fishes and south Florida systems was invaluable.
    [Show full text]
  • Fishes of the Charlotte Harbor Estuarine System, Florida Gregg R
    Gulf of Mexico Science Volume 22 Article 1 Number 2 Number 2 2004 Fishes of the Charlotte Harbor Estuarine System, Florida Gregg R. Poulakis Florida Fish and Wildlife Conservation Commission Richard E. Matheson Jr. Florida Fish and Wildlife Conservation Commission Michael E. Mitchell Florida Fish and Wildlife Conservation Commission David A. Blewett Florida Fish and Wildlife Conservation Commission Charles F. Idelberger Florida Fish and Wildlife Conservation Commission DOI: 10.18785/goms.2202.01 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Poulakis, G. R., R. E. Matheson Jr., M. E. Mitchell, D. A. Blewett nda C. F. Idelberger. 2004. Fishes of the Charlotte Harbor Estuarine System, Florida. Gulf of Mexico Science 22 (2). Retrieved from https://aquila.usm.edu/goms/vol22/iss2/1 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Poulakis et al.: Fishes of the Charlotte Harbor Estuarine System, Florida Gulf of Mexico Science, 2004(2), pp. 117-150 Fishes of the Charlotte Harbor Estuarine System, Florida GREGG R. POULAIUS, RICHARD E. MATHESON JR., MICHAEL E. MITCHELL, DAVID A. BLEWETT, AND CHARLES F. lDELBERGER To date, 255 fish species in 95 families have been reliably reported from the Charlotte Harbor estuarine system in southwest Florida. The species list was com­ piled from recent fishery-independent collections, a review of reports and peer­ reviewed literature, and examination of cataloged specimens at the Florida Mu­ seum of Natural History.
    [Show full text]
  • Behavioral Isolation Due to Cascade Reinforcement in Lucania Killifish
    7KH8QLYHUVLW\RI&KLFDJR %HKDYLRUDO,VRODWLRQGXHWR&DVFDGH5HLQIRUFHPHQWLQLucania .LOOLILVK $XWKRU V *HQHYLHYH0.R]DN*HQHYLHYH5RODQG&ODUH5DQNKRUQ$P\)DODWHU(PPD/ %HUGDQDQG5HEHFFD&)XOOHU 6RXUFH7KH$PHULFDQ1DWXUDOLVW 1RWDYDLODEOH S 3XEOLVKHGE\7KH8QLYHUVLW\RI&KLFDJR3UHVVIRU7KH$PHULFDQ6RFLHW\RI1DWXUDOLVWV 6WDEOH85/http://www.jstor.org/stable/10.1086/680023 . $FFHVVHG Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press, The American Society of Naturalists, The University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org This content downloaded from 130.64.3.105 on Tue, 10 Feb 2015 12:33:13 PM All use subject to JSTOR Terms and Conditions vol. 185, no. 4 the american naturalist april 2015 Behavioral Isolation due to Cascade Reinforcement in Lucania Killifish Genevieve M. Kozak,1,* Genevieve Roland,1 Clare Rankhorn,1 Amy Falater,1 Emma L. Berdan,2 and Rebecca C. Fuller1 1. Department of Animal Biology, University of Illinois, Champaign, Illinois 61820; 2. Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany Submitted June 9, 2014; Accepted November 13, 2014; Electronically published February 9, 2015 Online enhancement: appendix. Dryad data: http://dx.doi.org/10.5061/dryad.ch86c.
    [Show full text]