Identification and Varietal Response of Soybeans to Soybean Mosaic Virus and Tobacco Ringspot Virus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Characterization of Tobacco Streak Virus Causing Soybean Necrosis in India
Indian Journal of Biotechnology Vol 7, April 2008, pp 214-217 Molecular characterization of Tobacco streak virus causing soybean necrosis in India N Arun Kumar1,2, M Lakshmi Narasu2, Usha B Zehr1 and K S Ravi1* 1Mahyco Research Center, Jalna-Aurangabad Road, Dawalwadi, Post Box No. 76, Jalna 413 203, India 2Center for Biotechnology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 072, India Received 13 March 2007; revised 3 May 2007; accepted 13 September 2007 A virus isolate infecting soybean (Glycine max L.) with characteristic symptoms of necrosis was collected from various locations of Maharashtra, India. The virus was detected as Tobacco streak virus (TSV) by direct antigen-coating-enzyme- linked immunosorbent assay (DAC-ELISA) using TSV specific antiserum. ELISA positive TSV soybean isolates upon mechanical transmission onto indicator hosts, viz. Vigna unguiculata cv. C-152, Glycine max and Nicotiana tabacum cv. Xanthi, produced characteristic local necrotic lesions on primary inoculated leaves, followed by systemic infection. Coat protein (CP) gene from a representative soybean isolate (TSV-SB) was amplified using TSV CP specific primers. The amplicon of ~750 bp was cloned and sequenced. The CP gene consists of 717 nucleotides, potential of coding a polypeptide of 238 amino acid residues. The CP gene of TSV-SB isolate shared 98.3 to 99.3% nucleotide and 96.6 to 98.3% amino acid sequence homology with the TSV isolates characterized from India. With TSV-WC (White clover isolate from America, type strain) and TSV-BR (Soybean isolate from Brazil), TSV-SB isolate shared 88.7% and 79.2% amino acid sequence homology, respectively. -
Soybean Mosaic Virus
-- CALIFORNIA D EP AUM ENT OF cdfa FOOD & AGRICULTURE ~ California Pest Rating Proposal for Soybean mosaic virus Current Pest Rating: none Proposed Pest Rating: C Kingdom: Orthornavirae; Phylum: Pisuviricota Class: Stelpaviricetes; Order: Patatavirales Family: Potyviridae; Genus: Potyvirus Comment Period: 6/15/2020 through 7/30/2020 Initiating Event: On August 9, 2019, USDA-APHIS published a list of “Native and Naturalized Plant Pests Permitted by Regulation”. Interstate movement of these plant pests is no longer federally regulated within the 48 contiguous United States. There are 49 plant pathogens (bacteria, fungi, viruses, and nematodes) on this list. California may choose to continue to regulate movement of some or all these pathogens into and within the state. In order to assess the needs and potential requirements to issue a state permit, a formal risk analysis for Soybean mosaic virus is given herein and a permanent pest rating is proposed. History & Status: Background: The family Potyviridae contains six genera and members are notable for forming cylindrical inclusion bodies in infected cells that can be seen with light microscopy. Of the six genera, the genus Potyvirus contains by far the highest number of important plant pathogens Named after Potato virus Y, “pot-y-virus” particles are flexuous and filamentous and composed of ssRNA and a protein coat. Most diseases caused by potyviruses appear primarily as mosaics, mottling, chlorotic rings, or color break on foliage, flowers, fruits, and stems. Many cause severe stunting of young plants and drastically reduced yields with leaf, fruit, and stem malformations, fruit drop, and necrosis (Agrios, 2005). Soybean is one of the most important sources of edible oil and proteins for people and animals, and a source of biofuel. -
Role of Soybean Mosaic Virus–Encoded Proteins in Seed and Aphid Transmission in Soybean
Virology e-Xtra* Role of Soybean mosaic virus–Encoded Proteins in Seed and Aphid Transmission in Soybean Sushma Jossey, Houston A. Hobbs, and Leslie L. Domier First and second authors: Department of Crop Sciences, and third author: United States Department of Agriculture–Agricultural Research Service, Department of Crop Sciences, University of Illinois, Urbana 61801. Accepted for publication 2 March 2013. ABSTRACT Jossey, S., Hobbs, H. A., and Domier, L. L. 2013. Role of Soybean transmissibility of the two SMV isolates, and helper component pro- mosaic virus–encoded proteins in seed and aphid transmission in teinase (HC-Pro) played a secondary role. Seed transmission of SMV was soybean. Phytopathology 103:941-948. influenced by P1, HC-Pro, and CP. Replacement of the P1 coding region of SMV 413 with that of SMV G2 significantly enhanced seed transmis- Soybean mosaic virus (SMV) is seed and aphid transmitted and can sibility of SMV 413. Substitution in SMV 413 of the two amino acids cause significant reductions in yield and seed quality in soybean (Glycine that varied in the CPs of the two isolates with those from SMV G2, G to max). The roles in seed and aphid transmission of selected SMV-encoded D in the DAG motif and Q to P near the carboxyl terminus, significantly proteins were investigated by constructing mutants in and chimeric reduced seed transmission. The Q-to-P substitution in SMV 413 also recombinants between SMV 413 (efficiently aphid and seed transmitted) abolished virus-induced seed-coat mottling in plant introduction 68671. and an isolate of SMV G2 (not aphid or seed transmitted). -
P.PSH.1055 Final Report.Pdf
Final report Desmanthus legume in livestock grazing pastures and its role in methane emissions Project code: P.PSH.1055 Prepared by: Ed Charmley CSIRO Date published: 13 November 2020 PUBLISHED BY Meat and Livestock Australia Limited PO Box 1961 NORTH SYDNEY NSW 2059 This is an MLA Donor Company funded project. Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government and contributions from the Australian Meat Processor Corporation to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. Page 1 of 51 P.PSH.1055 – Desmanthus and methane emissions Abstract Methane is a greenhouse gas produced as a by-product of fermentation of feedstuffs in ruminants. Desmanthus is a tropical legume adapted to parts of northern Australia. Laboratory studies have demonstrated that Desmanthus can reduce the production of methane when incubated with rumen fluid. The objective of this project was to determine if methane production could be reduced by feeding Desmanthus to cattle and to provide data to support a methodology allowing the avoided emissions to be traded in the carbon market. Several cultivars developed by JCU and Agrimix Pastures Pty Ltd were tested in three cattle feeding trials. -
Water Mimosa (Neptunia Oleracea)
Invasive plant risk assessment Biosecurity Queensland Agriculture Fisheries and Department of Water mimosa NeNeptunia oleracea Dead and awake Neptunia plena Steve Csurhes First published 2008 Updated 2016 PR08–3686 © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/ by/3.0/au/deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en Contents Identity and taxonomy 2 Neptunia oleracea Lour. 2 Neptunia plena (L.) Benth. 2 Taxonomy and genetics 2 Descriptions (from Windler 1966) 3 Neptunia oleracea 3 Neptunia plena 4 Reproduction and dispersal 5 Seed longevity 5 Origin 5 History of introduction 5 Worldwide distribution 6 Neptunia oleracea 6 Neptunia plena 7 Distribution in Australia 8 Preferred habitat and climate 9 History as a weed overseas and interstate 9 Impact 10 N2 fixation 10 Effect on water resources 10 Economic benefits 10 Ponded pasture 10 Horticultural crop 11 Herbal medicine 11 Pest potential in Queensland 12 Biological control 12 References 13 Invasive plant risk assessment: Water mimosa Neptunia oleracea Dead and awake Neptunia plena 1 Identity and taxonomy Neptunia oleracea Lour. Synonyms: Acacia lacustris Desf., Desmanthus lacustris Willd., D. natans Willd., D. stolonifer DC, Mimosa aquatica Pers., M. -
Viral Diseases of Soybeans
SoybeaniGrow BEST MANAGEMENT PRACTICES Chapter 60: Viral Diseases of Soybeans Marie A.C. Langham ([email protected]) Connie L. Strunk ([email protected]) Four soybean viruses infect South Dakota soybeans. Bean Pod Mottle Virus (BPMV) is the most prominent and causes significant yield losses. Soybean Mosaic Virus (SMV) is the second most commonly identified soybean virus in South Dakota. It causes significant losses either in single infection or in dual infection with BPMV. Tobacco Ringspot Virus (TRSV) and Alfalfa Mosaic Virus (AMV) are found less commonly than BPMV or SMV. Managing soybean viruses requires that the living bridge of hosts be broken. Key components for managing viral diseases are provided in Table 60.1. The purpose of this chapter is to discuss the symptoms, vectors, and management of BPMV, SMV, TRSV, and AMV. Table 60.1. Key components to consider in viral management. 1. Viruses are obligate pathogens that cannot be grown in artificial culture and must always pass from living host to living host in what is referred to as a “living or green” bridge. 2. Breaking this “living bridge” is key in soybean virus management. a. Use planting dates to avoid peak populations of insect vectors (bean leaf beetle for BPMV and aphids for SMV). b. Use appropriate rotations. 3. Use disease-free seed, and select tolerant varieties when available. 4. Accurate diagnosis is critical. Contact Connie L. Strunk for information. (605-782-3290 or [email protected]) 5. Fungicides and bactericides cannot be used to manage viral problems. 60-541 extension.sdstate.edu | © 2019, South Dakota Board of Regents What are viruses? Viruses that infect soybeans present unique challenges to soybean producers, crop consultants, breeders, and other professionals. -
MLA Final Report Template
final report Project code: B.NBP.0748 Prepared by: Brian Johnson, Nikki Seymour and Joseph O’Reagain Department of Agriculture and Fisheries Date published: 02 November 2015 PUBLISHED BY Meat and Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059 Rhizobia survival and new methods to improve nodulation in tropical legumes Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. B.NBP.0748 Final Report – Rhizobia survival and new methods to improve nodulation in tropical legumes Abstract This project aimed to test the effectiveness of introduced and native rhizobia in two tropical pasture legumes (Stylosanthes seabrana or Caatinga stylo and Desmanthus virgatus) and evaluate new approaches with the potential to improve rhizobia establishment and legume nodulation for improved nitrogen fixation and greater legume growth. Glasshouse trials were conducted on a range of collected pasture soils to assess the legume species compatibility and nodulation potential of native rhizobia. Field trials to measure the impact of introduced rhizobia using new inoculation approaches in the hot, dry environments in which perennial tropical legumes are typically sown were also conducted. -
Characterization of Seed Transmission of Soybean Mosaic Virus in Soybean
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-24-2015 12:00 AM Characterization of Seed Transmission of Soybean Mosaic Virus in Soybean Tanvir Bashar The University of Western Ontario Supervisor Dr. Aiming Wang The University of Western Ontario Joint Supervisor Dr. Mark Bernards The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Tanvir Bashar 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Virology Commons Recommended Citation Bashar, Tanvir, "Characterization of Seed Transmission of Soybean Mosaic Virus in Soybean" (2015). Electronic Thesis and Dissertation Repository. 2791. https://ir.lib.uwo.ca/etd/2791 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. CHARACTERIZATION OF SEED TRANSMISSION OF SOYBEAN MOSAIC VIRUS IN SOYBEAN (Thesis format: Monograph) by TANVIR BASHAR Graduate Program in Biology A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Tanvir Bashar 2015 ABSTRACT Infection by Soybean mosaic virus (SMV) is recognized as a serious, long-standing threat in most soybean (Glyince max (L.)Merr.) producing areas of the world. The aim of this work was to understand how SMV transmits from infected soybean maternal tissues to the next generation by investigating the possible routes and amounts of seed transmission of SMV. -
First Report on the Occurrence of Tobacco Streak Virus in Sunflower in Iran
010_JPP1080RP(Hosseini)_585 20-11-2012 11:46 Pagina 585 Journal of Plant Pathology (2012), 94 (3), 585-589 Edizioni ETS Pisa, 2012 585 FIRST REPORT ON THE OCCURRENCE OF TOBACCO STREAK VIRUS IN SUNFLOWER IN IRAN S. Hosseini1, M. Koohi Habibi2, G. Mosahebi2, M. Motamedi2 and S. Winter3 1 Department of Plant Protection, College of Agriculture, Vali-e-Asr University of Rafsanjan, Iran 2 Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran 3 DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany SUMMARY in the Netherlands (Dijkstra, 1983). Generally, TSV does not become epidemic but in sunflowers there are Sunflower (Helianthus annuus), an important oilseed exceptions reported from India and Australia (Prasada crop grown in Iran and many other countries, is a fre- Rao et al., 2003). The major method of transmission is quent host of Tobacco streak virus (TSV, genus by infected pollen, which can be spread by wind or car- Ilarvirus), which infects a wide range of crops and ried by thrips (Greber et al., 1991). In the present study, weeds. To study the occurrence and distribution of TSV the status of TSV in sunflower plants was determined in in Iran, 1,272 samples were collected from sunflower Iran based on visual symptoms and ELISA testing, and fields in Kerman, Golestan, Isfahan, Mazandaran, Qom, further confirmed by RT-PCR. Two viral isolates from Azarbayejan-Gharbi, Markazi, Hamedan and Tehran two separate Iranian regions were characterized. provinces during 2006 to 2008. TSV was detected by DAS-ELISA in 20.9% of the samples. -
Genetic Analysis of Soybean Mosaic Virus (SMV) Resistance Genes in Soybean [Glycine Max (L.) Merr.] Mariola Klepadlo University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2016 Genetic Analysis of Soybean Mosaic Virus (SMV) Resistance Genes in Soybean [Glycine max (L.) Merr.] Mariola Klepadlo University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Plant Breeding and Genetics Commons, and the Plant Pathology Commons Recommended Citation Klepadlo, Mariola, "Genetic Analysis of Soybean Mosaic Virus (SMV) Resistance Genes in Soybean [Glycine max (L.) Merr.]" (2016). Theses and Dissertations. 1451. http://scholarworks.uark.edu/etd/1451 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Genetic Analysis of Soybean Mosaic Virus (SMV) Resistance Genes in Soybean [Glycine max (L.) Merr.] A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Crop, Soil, and Environmental Sciences by Mariola Klepadlo University of Szczecin, Poland Bachelor of Science in Biotechnology, 2007 University of Szczecin, Poland Master of Science in Biotechnology, 2009 The Mediterranean Agronomic Institute of Chania, Greece Master of Science in Horticultural Genetics and Biotechnology, 2011 May 2016 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ___________________________________ Dr. Pengyin Chen Dissertation Director ____________________________________ ___________________________________ Dr. Kenneth L. Korth Dr. Richard E. Mason Committee Member Committee Member ____________________________________ ___________________________________ Dr. Vibha Srivastava Dr. Ioannis E. Tzanetakis Committee Member Committee Member ABSTRACT Soybean mosaic virus (SMV) causes the most serious viral disease in soybean worldwide. -
The 2B Protein of Asparagus Virus 2 Functions As an RNA Silencing Suppressor Against Systemic Silencing to Prove Functional Synteny with Related Cucumoviruses
Virology 442 (2013) 180–188 Contents lists available at SciVerse ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro The 2b protein of Asparagus virus 2 functions as an RNA silencing suppressor against systemic silencing to prove functional synteny with related cucumoviruses Hanako Shimura n, Chikara Masuta, Naoto Yoshida, Kae Sueda, Masahiko Suzuki Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi9, Kita-ku, Sapporo 0608589, Japan article info abstract Article history: Asparagus virus 2 (AV-2) is a member of the genus Ilarvirus in the family Bromoviridae. We cloned the coat Received 31 October 2012 protein (CP) and the 2b protein (2b) genes of AV-2 isolates from asparagus plants from various regions Returned to author for revisions and found that the sequence for CP and for 2b was highly conserved among the isolates, suggesting that 5 April 2013 AV-2 from around the world is almost identical. We then made an AV-2 infectious clone by simultaneous Accepted 18 April 2013 inoculation with in vitro transcripts of RNAs 1–3 of AV-2 and in vitro-synthesized CP, which is necessary Available online 13 May 2013 for initial infection. Because 2b of cucumoviruses in Bromoviridae can suppress systemic silencing as well Keywords: as local silencing, we analyzed whether there is functional synteny of 2b between AV-2 and cucumovirus. Asparagus virus 2 Using the AV-2 infectious clone, we here provided first evidence that Ilarvirus 2b functions as an RNA Ilarvirus silencing suppressor; AV-2 2b has suppressor activity against systemic silencing but not local silencing. Genetic variability & 2013 Elsevier Inc. -
Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture.