Chapter 3 Lecture 8 Drag Polar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels
A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels by Kylen D. Clark B.S., University of Toledo, 2013 A thesis submitted to the Faculty of Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science Department of Aerospace Engineering and Engineering Mechanics of the College of Engineering and Applied Science Committee Chair: Paul D. Orkwis Date: October 21, 2015 Abstract Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. -
Experimental Study on Turbulent Boundary-Layer Flows with Wall
Experimental study on turbulent boundary-layer flows with wall transpiration by Marco Ferro October 2017 Technical Reports Royal Institute of Technology Department of Mechanics SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillst˚andav Kungliga Tekniska H¨ogskolan i Stockholm framl¨agges till offentlig granskning f¨or avl¨aggande av teknologie doktorsexamen fredag den 24 November 2017 kl 10:15 i Kollegiesalen, Kungliga Tekniska H¨ogskolan, Brinellv¨agen 8, Stockholm. TRITA-MEK 2017:13 ISSN 0348-467X ISRN KTH/MEK/TR-17/13-SE ISBN 978-91-7729-556-3 c Marco Ferro 2017 Universitetsservice US{AB, Stockholm 2017 Experimental study on turbulent boundary-layer flows with wall transpiration Marco Ferro Linn´eFLOW Centre, KTH Mechanics, Royal Institute of Technology SE-100 44 Stockholm, Sweden Abstract Wall transpiration, in the form of wall-normal suction or blowing through a permeable wall, is a relatively simple and effective technique to control the be- haviour of a boundary layer. For its potential applications for laminar-turbulent transition and separation delay (suction) or for turbulent drag reduction and thermal protection (blowing), wall transpiration has over the past decades been the topic of a significant amount of studies. However, as far as the turbulent regime is concerned, fundamental understanding of the phenomena occurring in the boundary layer in presence of wall transpiration is limited and consid- erable disagreements persist even on the description of basic quantities, such as the mean streamwise velocity, for the rather simplified case of flat-plate boundary-layer flows without pressure gradients. In order to provide new experimental data on suction and blowing boundary layers, an experimental apparatus was designed and brought into operation. -
Effects of Wall Roughness on Adverse Pressure Gradient Boundary Layers
Effects of Wall Roughness on Adverse Pressure Gradient Boundary Layers by Pouya Mottaghian A thesis submitted to the Department of Mechanical and Materials Engineering in conformity with the requirements for the degree of Master of Applied Science Queen's University Kingston, Ontario, Canada December, 2015 Copyright © Pouya Mottaghian, 2015 Abstract Large-eddy Simulations were carried out on a at-plate boundary layer over smooth and rough surfaces in the presence of an adverse pressure gradient, strong enough to induce separation. The inlet Reynolds number (based on freestream velocity and momentum thick- ness at the reference plane) is 2300. A sand-grain roughness model was implemented and spatial-resolution requirements were determined. Two roughness heights were used and a fully-rough ow condition is achieved at the refer- ence plane with roughness Reynolds numbers 60 and 120. As the friction velocity decreases due to the adverse pressure gradient the roughness Reynolds number varies from fully-rough to transitionally rough and smooth regime before the separation. The double-averaging approach illustrates how the roughness contribution decreases before the separation as the dispersive stresses decrease markedly compared to the upstream region. Before the ow detachment, roughness intensies the Reynolds stresses. After the sep- aration, the normal stresses, production and dissipation substantially increase through the adverse pressure gradient region. In the recovery region, the ow is highly three dimensional, as turbulent structures impinge on the wall at the reattachment region. Roughness initially increases the skin friction, then causes it to decrease faster than on a smooth wall, generating a considerably larger recirculation bubble for rough cases with earlier separation and later reattachment; increasing the wall roughness also leads to larger separation bubble. -
Prediction of Laminar/Turbulent Transition in Airfoil Flows
PREDICTION OF LAMINAR/TURBULENT TRANSITION IN AIRFOIL FLOWS by Jeppe Johansen and Jens Norkaer Sorensen DTU FLUID MECHANICS H ENERGY ENGINEERING TECHNICAL UNIVERSITY OF DENMARK / DANISH CENTER FOR APPLIED MATHEMATICS AND MECHANICS Scientific Council Poul Andersen Dept, of Naval Architecture and Offshore Engineering Martin P. Bends0e Dept, of Mathematics Ove Ditlevsen Dept, of Structural Engineering and Materials Ivar G. Jonsson Dept, of Hydrodynamics and Water Resources Wolfhard Kliem Dept, of Mathematics Steen Krenk Dept, of Structural Engineering and Materials P. Scheel Larsen Dept, of Energy Engineering Frithiof I. Niordson Dept, of Solid Mechanics Pauli Pedersen Dept, of Solid Mechanics P. Temdrup Pedersen Dept, of NavalArchitecture and Offshore Engineering- Dan Rosbjerg Dept. of Hydrodynamics and Water Resources Jens Nprkser Sprensen Dept, of Energy Engineering P. Grove Thomsen Dept, of Mathematical Modelling Hans True Dept, of Mathematical Modelling Viggo Tvergaard Dept, of Solid Mechanics Secretary Pauli Pedersen, Docent, Dr.techn. Department of Solid Mechanics, Building 404 Technical University of Denmark DK-2800 Lyngby, Denmark DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Prediction of Laminar/Turbulent Transition in Airfoil Flows Jeppe Johansen* and Jens N. Sprensen* * Ris0 National Laboratory, Denmark and * Department of Energy Engineering, Technical University of Denmark Presented as Paper 98-0702 at the AIAA 36th Aerospace Sciences Meeting Sc Exhibit, Reno, NV, January 12*15, 1998 tphD student, Wind Energy and Atmospheric Physics Department, Rise National Laboratory, DK-4000 RoskUde, Denmark * Associate Professor, Department of Energy Engineering, Technical University of Denmark, DK- 2800 Lyngby, Denmark 1 Abstract The prediction of the location of transition is important for low Reynolds number airfoil flows. -
1 FLUID MECHANICS TUTORIAL No. 3 BOUNDARY LAYER THEORY In
FLUID MECHANICS TUTORIAL No. 3 BOUNDARY LAYER THEORY In order to complete this tutorial you should already have completed tutorial 1 and 2 in this series. This tutorial examines boundary layer theory in some depth. When you have completed this tutorial, you should be able to do the following. Discuss the drag on bluff objects including long cylinders and spheres. Explain skin drag and form drag. Discuss the formation of wakes. Explain the concept of momentum thickness and displacement thickness. Solve problems involving laminar and turbulent boundary layers. Throughout there are worked examples, assignments and typical exam questions. You should complete each assignment in order so that you progress from one level of knowledge to another. Let us start by examining how drag is created on objects. 1 1. DRAG When a fluid flows around the outside of a body, it produces a force that tends to drag the body in the direction of the flow. The drag acting on a moving object such as a ship or an aeroplane must be overcome by the propulsion system. Drag takes two forms, skin friction drag and form drag. 1.1 SKIN FRICTION DRAG Skin friction drag is due to the viscous shearing that takes place between the surface and the layer of fluid immediately above it. This occurs on surfaces of objects that are long in the direction of flow compared to their height. Such bodies are called STREAMLINED. When a fluid flows over a solid surface, the layer next to the surface may become attached to it (it wets the surface). -
Wingtip Vortices and Free Shear Layer Interaction in The
WINGTIP VORTICES AND FREE SHEAR LAYER INTERACTION IN THE VICINITY OF MAXIMUM LIFT TO DRAG RATIO LIFT CONDITION Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Engineering By Muhammad Omar Memon, M.S. UNIVERSITY OF DAYTON Dayton, Ohio May, 2017 WINGTIP VORTICES AND FREE SHEAR LAYER INTERACTION IN THE VICINITY OF MAXIMUM LIFT TO DRAG RATIO LIFT CONDITION Name: Memon, Muhammad Omar APPROVED BY: _______________________ _______________________ Aaron Altman Markus Rumpfkeil Advisory Committee Chairman Committee Member Professor; Director, Graduate Aerospace Program Associate Professor Mechanical and Aerospace Engineering Mechanical and Aerospace Engineering _______________________ _______________________ Jose Camberos Wiebke S. Diestelkamp Committee Member Committee Member Adjunct Professor Professor & Chair Mechanical and Aerospace Engineering Department of Mathematics _______________________ _______________________ Robert J. Wilkens, PhD., P.E. Eddy M. Rojas, PhD., M.A., P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering ii © Copyright by Muhammad Omar Memon All rights reserved 2017 iii ABSTRACT WINGTIP VORTICES AND FREE SHEAR LAYER INTERACTION IN THE VICINITY OF MAXIMUM LIFT TO DRAG RATIO LIFT CONDITION Name: Memon, Muhammad Omar University of Dayton Advisor: Dr. Aaron Altman Cost-effective air-travel is something everyone wishes for when it comes to booking flights. The continued and projected increase in commercial air travel advocates for energy efficient airplanes, reduced carbon footprint, and a strong need to accommodate more airplanes into airports. All of these needs are directly affected by the magnitudes of drag these aircraft experience and the nature of their wingtip vortex. -
Incompressible Skewed Turbulent Boundary Layer on an End Wall of a Curved Two-Dimensional Diffuser Marvin Dale Smith Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1970 Incompressible skewed turbulent boundary layer on an end wall of a curved two-dimensional diffuser Marvin Dale Smith Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mechanical Engineering Commons Recommended Citation Smith, Marvin Dale, "Incompressible skewed turbulent boundary layer on an end wall of a curved two-dimensional diffuser " (1970). Retrospective Theses and Dissertations. 4199. https://lib.dr.iastate.edu/rtd/4199 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 70-18,908 SMITH, Marvin Dale, 1935- INCOMPRESSIBLE SKEWED TURBULENT BOUNDARY LAYER ON AN END WALL OF A C'JRVSD TWO-DIMENSIONAL DIFFUSER. Iowa State University, Ph.D., 1970 Engineering, mechanical I University Microfilms, A XEROXCompany, Ann Arbor, Michigan j. : Art T»T^oT^xtrr»T\ INCOMPRESSIBLE SKEWED TURBULENT BOUNDARY LAYER ON AN END WALL OF A CURVED TWO-DIMENSIONAL DIFFUSER by Marvin Dale Smith A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of Tlie Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subjects; Mechanical Engineering Aerospace Engineering -
Numerical Investigation of the Turbulent Wake-Boundary Interaction in a Translational Cascade of Airfoils and Flat Plate
energies Article Numerical Investigation of the Turbulent Wake-Boundary Interaction in a Translational Cascade of Airfoils and Flat Plate Xiaodong Ruan 1,*, Xu Zhang 1, Pengfei Wang 2 , Jiaming Wang 1 and Zhongbin Xu 3 1 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; [email protected] (X.Z.); [email protected] (J.W.) 2 School of Engineering, Zhejiang University City College, Hangzhou 310015, China; [email protected] 3 Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China; [email protected] * Correspondence: [email protected]; Tel.: +86-1385-805-3612 Received: 24 July 2020; Accepted: 27 August 2020; Published: 31 August 2020 Abstract: Rotor stator interaction (RSI) is an important phenomenon influencing performances in the pump, turbine, and compressor. In this paper, the correlation-based transition model is used to study the RSI phenomenon between a translational cascade of airfoils and a flat plat. A comparison was made between computational results and experimental results. The computational boundary layer velocity is in reasonable agreement with the experimental velocity. The thickness of boundary layer decreases as the RSI frequency increases and it increases as the fluid flows downstream. The spectral plots of velocity fluctuations at leading edge x/c = 2 under RSI partial flow condition f = 20 Hz and f = 30 Hz are dominated by a narrowband component. RSI frequency mainly affects the turbulence intensity in the freestream region. However, it has little influence on the turbulence intensity of boundary layer near the wall. A secondary vortex is induced by the wake–boundary layer interaction and it leads to the formation of a thickened laminar boundary layer. -
0 Exam: 01 Aerodynamics: Boundary Layer Theory
Aerodynamics EETAC Final Exams Compilation Perm: 0 Exam: 01 Aerodynamics: Boundary Layer Theory { Multiple Choice Test 2018/19 Q2 7. The boundary layer (BL) integral equations... 1. Under which circumstances may the volume rate-of-change (a) result from integrating the BL local equations in the entail viscous shear stresses? wall-normal coordinate over the BL thickness. (b) result from integrating the BL local equations along (a) Never for incompressible flow. the streamwise coordinate. (b) Always under the Stokes hypothesis. (c) result in as many unknowns as there are equations. (c) Always. (d) differ for laminar and turbulent BLs. (d) Never. (e) None of the other options. (e) None of the other options. 8. How is the D'Alembert's paradox removed and the form 2. What is true about the viscous blockage? drag obtained in an inviscid flow { boundary layer coupling (a) All options are correct. calculation? (b) It corresponds to a massflow reduction in the near-wall (a) By solving the inviscid problem for a second time over region due to the effects of viscosity. a body enlarged by the displacement thickness and (c) It corresponds to a momentum flux reduction in the extended with the wake. near-wall region due to the effects of viscosity. (b) By directly solving the boundary layer equations. (d) It follows from the no-slip condition at the wall due to (c) The paradox remains no matter what. viscous effects. (d) By solving the inviscid problem over the original body. (e) It may be quantified by the displacement and momen- (e) The paradox was never there in the first place. -
Analysis of Boundary Layers Through Computational Fluid Dynamics and Experimental Analysis
Analysis of Boundary Layers through Computational Fluid Dynamics and Experimental analysis By Eugene O’Reilly, B.Eng This thesis is submitted as the fulfilment of the requirement for the award of degree of Master of Engineering Supervisors Dr Joseph Stokes and Dr Brian Corcoran School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland. October 2006 DECLARATION I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Degree of Master of Engineering is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my own work Signed ID Number 99604434 Date 2&j \Oj 2QOG I ACKNOWLEDGEMENTS I would like to thank Dr Joseph Stokes and Dr Brian Corcoran of the School of Mechanical and Manufacturing Engineering, Dublin City University, for their advice and guidance through this work Their helpful discussions and availability to discuss any problems I was having has been the cornerstone of this research Thanks also, to Mr Michael May of the School of Mechanical and Manufacturing Engineering for his invaluable help and guidance in the design and construction of the experimental equipment To Mr Cian Meme and Mr Eoin Tuohy of the workshop for their technical advice and excellent work in the production of the required parts and to Mr Keith Hickey for his help with all my software queries and computer issues Thanks also to Mr Ben Austin and Mr David Cunningham of the School -
ANGLE of ATTACK (A of A)
ANGLE OF ATTACK (A of A) The angle at which the airfoil meets the relative airflow is called the Angle of Attack. CENTER OF PRESSURE (C of P) If we consider all the distributed pressures to be equivalent to a single force, this force will act through a straight line. The point where this line cuts the chord of an airfoil is called the Center of Pressure. As the angle of attack is increased lift and drag increase and the Center of Pressure moves forward. This situation continues until the stall is reached. Beyond this point, it will move back. The movement of the Center of Pressure causes an airplane to be unstable. THE BOUNDARY LAYER The boundary layer is a very thin sheet of air lying over the surface of the wing and all other surfaces of the airplane. Because air has viscosity, this layer tends to stick to the wing. As the wing moves forward through the air the boundary layer at first flows smoothly over streamlined shape of the airfoil. Here the flow is called the Laminar Layer. As the boundary layer approaches the center of the wing it begins to lose speed due to skin friction and it becomes thicker and turbulent (turbulent layer). The point at which the boundary layer changes from laminar to turbulent is called the Transition Point. Where the boundary layer becomes turbulent, drag due to skin friction is relatively high. AIRFOIL DESIGNS There are many different airfoil designs. The type of operation for which an airplane is intended has a direct influence on the design and shape of the wing for that airplane. -
Modeling Boundary-Layer Transition in DNS and LES Using Parabolized Stability Equations
Center for Turbulence Research 29 Annual Research Briefs 2016 Modeling boundary-layer transition in DNS and LES using parabolized stability equations By A. Lozano-Dur´an, M. J. P. Hack, G. I. Park AND P. Moin 1. Motivation and objectives The modeling of the laminar-turbulent transition remains one of the key challenges in the numerical simulation of boundary layers, especially at coarse grid resolutions. The issue is particularly relevant in wall-modeled large-eddy simulations (LES), which require 10 to 100 times more grid points in the thin laminar region than in the turbulent regime to properly capture the instabilities preceding the transition (Slotnick et al. 2014). Our study examines the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the disturbances in the pre-transitional zone. Direct numerical simulation (DNS) of the Navier-Stokes equations has been frequently used as a tool to investigate transitional flows. However, its computational cost is un- affordable in most practical settings. In order to explore more computationally efficient approaches, Sayadi & Moin (2012) conducted LES of K- and H-type transitional bound- ary layers. They found that constant coefficient models for the subgrid-scale stress tensor could not predict the rapid rise in skin friction at the onset of transition. The reasons were traced back to the non-negligible turbulent viscosity in the laminar region, which dampens the amplification of instabilities. Dynamic models sufficiently reduced the tur- bulent viscosity in the laminar flow and allowed the growth of disturbances. When the grid was fine enough, LES reproduced the skin-friction overshoot observed in DNS.