Red Giants: Adiabatic Frequencies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
August 13 2016 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, August 13th 2016 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Public Star Party Follows at the Colleagues, Centennial Observatory Club Officers It's that time of year: The City of Rocks Star Party. Set for Friday, Aug. 5th, and Saturday, Aug. 6th, the event is the gem of the MVAS year. As we've done every Robert Mayer, President year, we will hold solar viewing at the Smoky Mountain Campground, followed by a [email protected] potluck there at the campground. Again, MVAS will provide the main course and 208-312-1203 beverages. Paul McClain, Vice President After the potluck, the party moves over to the corral by the bunkhouse over at [email protected] Castle Rocks, with deep sky viewing beginning sometime after 9 p.m. This is a chance to dig into some of the darkest skies in the west. Gary Leavitt, Secretary [email protected] Some members have already reserved campsites, but for those who are thinking of 208-731-7476 dropping by at the last minute, we have room for you at the bunkhouse, and would love to have to come by. Jim Tubbs, Treasurer / ALCOR [email protected] The following Saturday will be the regular MVAS meeting. Please check E-mail or 208-404-2999 Facebook for updates on our guest speaker that day. David Olsen, Newsletter Editor Until then, clear views, [email protected] Robert Mayer Rick Widmer, Webmaster [email protected] Magic Valley Astronomical Society is a member of the Astronomical League M-51 imaged by Rick Widmer & Ken Thomason Herrett Telescope Shotwell Camera https://herrett.csi.edu/astronomy/observatory/City_of_Rocks_Star_Party_2016.asp Calendars for August Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 New Moon City Rocks City Rocks Lunation 1158 Castle Rocks Castle Rocks Star Party Star Party Almo, ID Almo, ID 7 8 9 10 11 12 13 MVAS General Mtg. -
Opacity Effects on Pulsations of Main-Sequence A-Type Stars
atoms Article Opacity Effects on Pulsations of Main-Sequence A-Type Stars Joyce A. Guzik * ID , Christopher J. Fontes and Chris Fryer ID Los Alamos National Laboratory, Los Alamos, NM 87545, USA; [email protected] (C.J.F.); [email protected] (C.F.) * Correspondence: [email protected] Received: 10 April 2018; Accepted: 11 May 2018 ; Published: 4 June 2018 Abstract: Opacity enhancements for stellar interior conditions have been explored to explain observed pulsation frequencies and to extend the pulsation instability region for B-type main-sequence variable stars. For these stars, the pulsations are driven in the region of the opacity bump of Fe-group elements at ∼200,000 K in the stellar envelope. Here we explore effects of opacity enhancements for the somewhat cooler main-sequence A-type stars, in which p-mode pulsations are driven instead in the second helium ionization region at ∼50,000 K. We compare models using the new LANL OPLIB vs. LLNL OPAL opacities for the AGSS09 solar mixture. For models of two solar masses and effective temperature 7600 K, opacity enhancements have only a mild effect on pulsations, shifting mode frequencies and/or slightly changing kinetic-energy growth rates. Increased opacity near the bump at 200,000 K can induce convection that may alter composition gradients created by diffusive settling and radiative levitation. Opacity increases around the hydrogen and 1st He ionization region (∼13,000 K) can cause additional higher-frequency p modes to be excited, raising the possibility that improved treatment of these layers may result in prediction of new modes that could be tested by observations. -
An Asteroseismic Study of the Beta Cephei Star 12 Lacertae: Multisite
Mon. Not. R. Astron. Soc. 000, 1–15 (2002) Printed 31 October 2018 (MN LATEX style file v2.2) An asteroseismic study of the β Cephei star 12 Lacertae: multisite spectroscopic observations, mode identification and seismic modelling M. Desmet1⋆, M. Briquet1†, A. Thoul2‡, W. Zima1, P. De Cat3, G. Handler4, I. Ilyin5, E. Kambe6, J. Krzesinski7, H. Lehmann8, S. Masuda9, P. Mathias10, D. E. Mkrtichian11, J. Telting12, K. Uytterhoeven13, S. L. S. Yang14 and C. Aerts1,15 1 Institute of Astronomy - KULeuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 2 Institut d’Astrophysique et de G´eophysique de l’Universit´ede Li`ege, 17, All´ee du 6 Aoˆut, 4000 Li`ege, Belgium 3 Koninklijke Sterrenwacht van Belgi¨e, Ringlaan 3, 1180 Brussel, Belgium 4 Institut f¨ur Astronomie, Universist¨at Wien, T¨urkenschanzstrasse 17, 1180 Wien, Austria 5 Astrophysical Institute Potsdam, An der Sternwarte 16 D-14482 Potsdam, Germany 6 Okayama Astrophysical Observatory, National Astronomical Observatory, Kamogata, Okayama 719-0232, Japan 7 Mt. Suhora Observatory, Cracow Pedagogical University, Ul. Podchorazych 2, 30-084 Cracow, Poland 8 Karl-Schwarzschild-Observatorium, Th¨uringer Landessternwarte, 7778 Tautenburg, Germany 9 Tokushima Science Museum, Asutamu Land Tokushima, 45 - 22 Kibigadani, Nato, Itano-cho, Itano-gun, Tokushima 779-0111, Japan 10 UNS, CNRS, OCA, Campus Valrose, UMR 6525 H. Fizeau, F-06108 Nice Cedex 2, France 11 Astronomical Observatory of Odessa National University, Marazlievskaya, 1v, 65014 Odessa, Ukraine 12 Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Spain 13 Instituto de Astrof´ısica de Canarias, Calle Via L´actea s/n, 38205 La Laguna (TF, Spain) 14 Department of Physics and Astronomy, Universtity of Victoria, Victoria, BC V8W 3P6, Canada 15 Department of Astrophysics, University of Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands Accepted 2008. -
Asteroseismology of the Β Cep Star HD 129929
A&A 415, 241–249 (2004) Astronomy DOI: 10.1051/0004-6361:20034142 & c ESO 2004 Astrophysics Asteroseismology of the β Cep star HD 129929 I. Observations, oscillation frequencies and stellar parameters C. Aerts1, C. Waelkens1, J. Daszy´nska-Daszkiewicz1,3,, M.-A. Dupret2,4,, A. Thoul2,†, R. Scuflaire2, K. Uytterhoeven1, E. Niemczura3, and A. Noels2 1 Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Leuven, Belgium 2 Institut d’Astrophysique et de G´eophysique, Universit´edeLi`ege, all´ee du Six Aoˆut 17, 4000 Li`ege, Belgium 3 Astronomical Institute of the Wrocław University, ul. Kopernika 11, 51-622 Wrocław, Poland 4 Instituto de Astrof´ısica de Andaluc´ıa-CSIC, Apartado 3004, 18080 Granada, Spain Received 1 August 2003 / Accepted 25 September 2003 Abstract. We have gathered and analysed a timeseries of 1493 high-quality multicolour Geneva photometric data of the B3V β Cep star HD 129929. The dataset has a time base of 21.2 years. The occurrence of a beating phenomenon is evident from the data. We find evidence for the presence of at least six frequencies, among which we see components of two frequency multiplets with an average spacing of ∼0.0121 c d−1 which points towards very slow rotation. This result is in agreement with new spectroscopic data of the star and also with previously taken UV spectra. We provide the amplitudes of the six frequencies in all seven photometric filters. The metal content of the star is Z = 0.018 ± 0.004. All these observational results will be used to perform detailed seismic modelling of this massive star in a subsequent paper. -
Index to JRASC Volumes 61-90 (PDF)
THE ROYAL ASTRONOMICAL SOCIETY OF CANADA GENERAL INDEX to the JOURNAL 1967–1996 Volumes 61 to 90 inclusive (including the NATIONAL NEWSLETTER, NATIONAL NEWSLETTER/BULLETIN, and BULLETIN) Compiled by Beverly Miskolczi and David Turner* * Editor of the Journal 1994–2000 Layout and Production by David Lane Published by and Copyright 2002 by The Royal Astronomical Society of Canada 136 Dupont Street Toronto, Ontario, M5R 1V2 Canada www.rasc.ca — [email protected] Table of Contents Preface ....................................................................................2 Volume Number Reference ...................................................3 Subject Index Reference ........................................................4 Subject Index ..........................................................................7 Author Index ..................................................................... 121 Abstracts of Papers Presented at Annual Meetings of the National Committee for Canada of the I.A.U. (1967–1970) and Canadian Astronomical Society (1971–1996) .......................................................................168 Abstracts of Papers Presented at the Annual General Assembly of the Royal Astronomical Society of Canada (1969–1996) ...........................................................207 JRASC Index (1967-1996) Page 1 PREFACE The last cumulative Index to the Journal, published in 1971, was compiled by Ruth J. Northcott and assembled for publication by Helen Sawyer Hogg. It included all articles published in the Journal during the interval 1932–1966, Volumes 26–60. In the intervening years the Journal has undergone a variety of changes. In 1970 the National Newsletter was published along with the Journal, being bound with the regular pages of the Journal. In 1978 the National Newsletter was physically separated but still included with the Journal, and in 1989 it became simply the Newsletter/Bulletin and in 1991 the Bulletin. That continued until the eventual merger of the two publications into the new Journal in 1997. -
Inference for Stellar Opacities from Seismic Studies of the Hybrid Β Cep/SPB Pulsators
EPJ Web of Conferences 152, 06005 (2017) DOI: 10.1051/ epjconf/201715206005 Wide-Field Variability Surveys: A 21st Century Perspective Inference for stellar opacities from seismic studies of the hybrid β Cep/SPB pulsators Przemysław Walczak1,, Jadwiga Daszynska-Daszkiewicz´ 1, and Alexey Pamyatnykh2 1Astronomical Institute Wrocław University, ul. Kopernika 11, 51-622 Wrocław, Poland 2Nicolaus Copernicus Astronomical Center Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland Abstract. We present a comprehensive seismic study of the three pulsating stars of β Cep/SPB type: ν Eridani, 12 Lacertae and γ Pegasi. Models with the modified mean opacity profile are constructed in order to account for both the observed frequency range and the values of some individual frequencies. To decrease the number of possible so- lutions, we make use of the non-adiabatic parameter f , whose value is very sensitive to subphotospheric layers where pulsations are driven. This complex seismic modelling shows the need for a significant modification of the opacity profile. 1 Introduction The hybrid pulsators, exhibiting oscillations both in low order p/g modes and high order g modes, pose a challenge for pulsation theory because the range of their observed frequencies cannot be explained by standard models. To overcome this problem an increase of the opacity at the certain depths was postulated by many authors (i.e., [1–3]). This approach is justified by recent experiments ([4]), where higher than predicted opacities of iron and nickel were measured. Here we analyse the three well known hybrid β Cep/SPB pulsators: ν Eri (HD 29248), γ Peg (HD 886) and 12 Lac (HD 214993). -
Arxiv:1709.07265V1 [Astro-Ph.SR] 21 Sep 2017 an Der Sternwarte 16, 14482 Potsdam, Germany E-Mail: [email protected] 2 Smitha Subramanian Et Al
Noname manuscript No. (will be inserted by the editor) Young and Intermediate-age Distance Indicators Smitha Subramanian · Massimo Marengo · Anupam Bhardwaj · Yang Huang · Laura Inno · Akiharu Nakagawa · Jesper Storm Received: date / Accepted: date Abstract Distance measurements beyond geometrical and semi-geometrical meth- ods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly de- S. Subramanian Kavli Institute for Astronomy and Astrophysics Peking University, Beijing, China E-mail: [email protected] M. Marengo Iowa State University Department of Physics and Astronomy, Ames, IA, USA E-mail: [email protected] A. Bhardwaj European Southern Observatory 85748, Garching, Germany E-mail: [email protected] Yang Huang Department of Astronomy, Kavli Institute for Astronomy & Astrophysics, Peking University, Beijing, China E-mail: [email protected] L. Inno Max-Planck-Institut f¨urAstronomy 69117, Heidelberg, Germany E-mail: [email protected] A. Nakagawa Kagoshima University, Faculty of Science Korimoto 1-1-35, Kagoshima 890-0065, Japan E-mail: [email protected] J. Storm Leibniz-Institut f¨urAstrophysik Potsdam (AIP) arXiv:1709.07265v1 [astro-ph.SR] 21 Sep 2017 An der Sternwarte 16, 14482 Potsdam, Germany E-mail: [email protected] 2 Smitha Subramanian et al. pends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on differ- ent sample of standard candles. -
PHY 466 INTRODUCTORY ASTROPHYSICS Homework Problems
PHY 466 INTRODUCTORY ASTROPHYSICS Homework Problems See Appendix at end for values of constants. 4 RJP-0.5 Given that I = 2ckT/ (the Rayleigh-Jeans Law) is isotropic, compute the radiant energy that emanates from a square cm per second from a surface at 1000K into the solid angle defined by = 40o to 50o, = 40o to 50o, for the wavelength interval from 400 nm to 700nm (the visible bandpass). Here c is the speed of light, k is Boltzmann’s constant, and T is the temperature of the surface. Show setting up the double integral by hand, though you can look up the results in tables or use Mathematica. Work in cgs units. RJP-0.6 A certain star has a radius of 3.15 x 108 cm. The measured flux for this star in the visible bandpass is 4.55 x 10-9 erg/cm2/sec. Assume the surface intensity is given by the Rayleigh- Jeans Law, and the surface temperature is 8700K. Calculate the distance of the star in light years. RJP-0.8 Write a FORTRAN program that numerically integrates the bandpass flux from 1620 to 1750 Angstroms for the data from the IUE spectral image SWP54407. The latter is an EXCELX data file to be found on this web site. Submit the source code for your program with the answer written somewhere at the end of the latter. There is no table of data to be submitted. RJP-1.0 Compute how many times the apparent brightness of the Sun is greater than the apparent brightness of the star Sirius. -
Meeting Abstracts
228th AAS San Diego, CA – June, 2016 Meeting Abstracts Session Table of Contents 100 – Welcome Address by AAS President Photoionized Plasmas, Tim Kallman (NASA 301 – The Polarization of the Cosmic Meg Urry GSFC) Microwave Background: Current Status and 101 – Kavli Foundation Lecture: Observation 201 – Extrasolar Planets: Atmospheres Future Prospects of Gravitational Waves, Gabriela Gonzalez 202 – Evolution of Galaxies 302 – Bridging Laboratory & Astrophysics: (LIGO) 203 – Bridging Laboratory & Astrophysics: Atomic Physics in X-rays 102 – The NASA K2 Mission Molecules in the mm II 303 – The Limits of Scientific Cosmology: 103 – Galaxies Big and Small 204 – The Limits of Scientific Cosmology: Town Hall 104 – Bridging Laboratory & Astrophysics: Setting the Stage 304 – Star Formation in a Range of Dust & Ices in the mm and X-rays 205 – Small Telescope Research Environments 105 – College Astronomy Education: Communities of Practice: Research Areas 305 – Plenary Talk: From the First Stars and Research, Resources, and Getting Involved Suitable for Small Telescopes Galaxies to the Epoch of Reionization: 20 106 – Small Telescope Research 206 – Plenary Talk: APOGEE: The New View Years of Computational Progress, Michael Communities of Practice: Pro-Am of the Milky Way -- Large Scale Galactic Norman (UC San Diego) Communities of Practice Structure, Jo Bovy (University of Toronto) 308 – Star Formation, Associations, and 107 – Plenary Talk: From Space Archeology 208 – Classification and Properties of Young Stellar Objects in the Milky Way to Serving -
Probing the Galactic Halo with RR Lyrae Stars I: the Catalog
DRAFT VERSION FEBRUARY 5, 2020 Preprint typeset using LATEX style emulateapj v. 12/16/11 PROBING THE GALACTIC HALO WITH RR LYRAE STARS I: THE CATALOG G.-C. LIU1 , Y. HUANG2,9 , H.-W. ZHANG3,4 , M.-S. XIANG5 , J.-J., REN6, B.-Q. CHEN2, H.-B. YUAN 7 ,C.WANG3, Y. YANG 2 , Z.-J. TIAN 8 , F. WANG 3,4 , X.-W. LIU2,9 Draft version February 5, 2020 ABSTRACT We present a catalog of 5,290 RR Lyrae stars (RRLs) with metallicities estimated from spectra of the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) and the Sloan Extension for Galactic Un- derstanding and Exploration (SEGUE) surveys. Nearly 70 per cent of them (3,642 objects) also have systemic radial velocities measured. Given the pulsating nature of RRLs, metallicity estimates are based on spectra of individual exposures, by matching them with the synthetic templates. The systemic radial velocities are mea- sured by fitting the observed velocity as a function of phase assuming an empirical pulsating velocity template curve. Various tests show that our analyses yield metallicities with a typical precision of 0.20dex and systemic radial velocities with uncertainties ranging from 5 to 21km s−1 (depending on the number of radial velocity measurements available for a given star). Based on the well calibrated near-infrared PMW 1Z or PMKs Z, and MV -[Fe/H] relations, precise distances are derived for these RRLs. Finally, we include Gaia DR2 proper mo- tions in our catalog. The catalog should be very useful for various Galactic studies, especially of the Galactic halo. -
第 28 届国际天文学联合会大会 Programme Book
IAU XXVIII GENERAL ASSEMBLY 20-31 AUGUST, 2012 第 28 届国际天文学联合会大会 PROGRAMME BOOK 1 Table of Contents Welcome to IAU Beijing General Assembly XXVIII ........................... 4 Welcome to Beijing, welcome to China! ................................................ 6 1.IAU EXECUTIVE COMMITTEE, HOST ORGANISATIONS, PARTNERS, SPONSORS AND EXHIBITORS ................................ 8 1.1. IAU EXECUTIVE COMMITTEE ..................................................................8 1.2. IAU SECRETARIAT .........................................................................................8 1.3. HOST ORGANISATIONS ................................................................................8 1.4. NATIONAL ADVISORY COMMITTEE ........................................................9 1.5. NATIONAL ORGANISING COMMITTEE ..................................................9 1.6. LOCAL ORGANISING COMMITTEE .......................................................10 1.7. ORGANISATION SUPPORT ........................................................................ 11 1.8. PARTNERS, SPONSORS AND EXHIBITORS ........................................... 11 2.IAU XXVIII GENERAL ASSEMBLY INFORMATION ............... 14 2.1. LOCAL ORGANISING COMMITTEE OFFICE .......................................14 2.2. IAU SECRETARIAT .......................................................................................14 2.3. REGISTRATION DESK – OPENING HOURS ...........................................14 2.4. ON SITE REGISTRATION FEES AND PAYMENTS ................................14 -
The Β Cep/SPB Star 12 Lacertae 3 of Metallicity: Z = 0.015 and Z = 0.010
Mon. Not. R. Astron. Soc. 000, 1–?? () Printed 21 June 2018 (MN LATEX style file v2.2) The β Cep/SPB star 12 Lacertae: extended mode identification and complex seismic modelling J. Daszy´nska-Daszkiewicz1⋆, W. Szewczuk1† and P. Walczak1‡ 1Instytut Astronomiczny Uniwersytet Wroc lawski, Wroc law, Poland ABSTRACT Results of mode identification and seismic modelling of the β Cep/SBP star 12 Lac- ertae are presented. Using data on the multi-colour photometry and radial velocity variations, we determine or constrain the mode degree, ℓ, for all pulsational frequen- cies. Including the effects of rotation, we show that the dominant frequency, ν1, is most likely a pure ℓ = 1 mode and the low frequency, νA, is a dipole retrograde mode. We construct a set of seismic models which fit two pulsational frequencies corresponding to the modes ℓ = 0, p1 and ℓ = 1, g1 and reproduce also the complex amplitude of the bolometric flux variations, f, for both frequencies simultaneously. Some of these seismic models reproduce also the frequency νA, as a mode ℓ =1, g13 or g14, and its empirical values of f. Moreover, it was possible to find a model fitting the six 12 Lac frequencies (the first five and νA), only if the rotational splitting was calculated for a velocity of Vrot ≈ 75 km/s. In the next step, we check the effects of model atmo- spheres, opacity data, chemical mixture and opacity enhancement. Our results show that the OP tables are preferred and an increase of opacities in the Z−bump spoils the concordance of the empirical and theoretical values of f.