Regional Structure and Kinematic History of a Large Subduction Back Thrust: Taranaki Fault, New Zealand V

Total Page:16

File Type:pdf, Size:1020Kb

Regional Structure and Kinematic History of a Large Subduction Back Thrust: Taranaki Fault, New Zealand V JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, B01403, doi:10.1029/2007JB005170, 2008 Click Here for Full Article Regional structure and kinematic history of a large subduction back thrust: Taranaki Fault, New Zealand V. Stagpoole1 and A. Nicol1 Received 14 May 2007; revised 8 August 2007; accepted 8 September 2007; published 17 January 2008. [1] The Taranaki Fault is a back thrust antithetic to the Hikurangi margin subduction thrust. Subduction back thrusts, like the Taranaki Fault, accrue displacement transferred from the subducting plate, and growth analyses of these structures contribute to an improved understanding of subduction processes. The Taranaki Fault forms the eastern margin of the Taranaki Basin and is part of a system that extends for at least 600 km in continental crust of western New Zealand. The fault is preserved beneath young sedimentary cover and provides a rare opportunity to investigate the geometry and kinematic history of a large subduction back thrust. Two-dimensional seismic reflection lines (2–5 km spacing), tied to recently drilled wells and outcrop, together with magnetotelluric and gravity models are used to examine the fault. These data indicate that the fault is thick skinned with dips of 25–45° to depths of at least 12 km. The fault accommodated at least 12–15 km of dip-slip displacement since the middle Eocene (circa 40–43 Ma). The northern tip of the active section of the fault stepped southward at least three times between the middle Eocene and early Pliocene, producing a total tip retreat of 400–450 km. The history of displacements on the Taranaki Fault is consistent with initiation of Hikurangi margin subduction during the middle Eocene, up to 20 Ma earlier than some previous estimates. Fault tip retreat may have been generated by clockwise rotation of the subduction margin and associated progressive isolation of the fault from the driving downgoing Pacific Plate. Citation: Stagpoole, V., and A. Nicol (2008), Regional structure and kinematic history of a large subduction back thrust: Taranaki Fault, New Zealand, J. Geophys. Res., 113, B01403, doi:10.1029/2007JB005170. 1. Introduction growth strata provide important constraints on the timing and kinematics of deformation related to subduction [e.g., [2] Fold and thrust belts can form within the overriding Barnes et al., 2002; Nicol et al., 2002, 2007]. plate at subduction margins [e.g., Karig and Sharman, [3] In this paper we examine the regional geometry and 1975; Davis et al., 1983; Moore, 1989; Barnes and de kinematic history of the Taranaki Fault, a large subduction- Le´pinay, 1997; von Huene and Klaeschen, 1999]. These related back thrust in New Zealand’s Taranaki Basin. structures develop in association with plate convergence Analysis of displacements of Late Cretaceous and younger [e.g., Forsyth and Uyeda, 1975; Backus et al., 1981] and strata, up to 8 km thick in the Taranaki Basin, afford a rare may provide information about the kinematics and history opportunity to better understand the circa 43–40 Ma of subduction. Outside of accretionary wedges, back thrusts, kinematic history of the fault and highlight important that form antithetic to the subduction thrust, also accrue relations between fault growth (and death, when the fault displacement transferred from the subducting plate. Analy- becomes permanently inactive) and associated subduction at sis of displacements on these back thrusts and associated the Hikurangi subduction margin. This study provides growth strata provide an opportunity to resolve the timing constraints for the development of the New Zealand plate and magnitude of subduction-related deformation and may boundary, while also demonstrating useful analysis techni- help improve understanding of subduction processes. How- ques applicable to subduction zones in other parts of the ever, many of these contractional structures are poorly world. resolved, because crustal shortening typically results in their [4] The Taranaki Fault is one of the longest (400 km) uplift and erosion (e.g., in the Andes and the Rocky and highest displacement (>10 km) contractional structures Mountains). In contrast to these two regions, synsubduction in New Zealand’s continental crust [King and Thrasher, Tertiary strata are widely preserved on the overriding plate 1996]. The fault forms the boundary of pre-Miocene rocks of New Zealand’s Hikurangi subduction margin. These in the Taranaki Basin and is part of a larger fault system that extends 600 km northward from the South Island’s Alpine 1 Fault in western New Zealand (Figure 1). This fault system GNS Science, Lower Hutt, New Zealand. is contained entirely within continental crust of the over- Copyright 2008 by the American Geophysical Union. riding Australian Plate and includes the Waimea-Flaxmore 0148-0227/08/2007JB005170$09.00 Fault in the northern South Island and the Manaia Fault and B01403 1of19 B01403 STAGPOOLE AND NICOL: TARANAKI FAULT, NEW ZEALAND B01403 Figure 1. Regional map of Taranaki Fault. Map shows the location and geometry of the Taranaki Fault, Manaia Fault, Waimea-Flaxmore Fault, and Tarata Thrust. Contours (2, 4, 6 km) indicate depth below sea level to top basement (data modified from King and Thrasher [1996]). Locations of wells (circles) are shown. Inset shows plate boundary setting. the Tarata Thrust in Taranaki (Figure 1). Displacement convergence [King, 2000; Cande and Stock, 2004; Nicol et within the fault system was driven by subduction of Pacific al., 2007]. Most of this convergence (i.e., >80%) accrued on Plate along the Hikurangi margin and collision of continental the subduction thrust, with the remainder accommodated on crust along the Alpine Fault [Stern et al., 1993]. Currently, upper plate faults, including the Taranaki Fault [Nicol et al., the relative motion between Australian and Pacific plates is 2007]. oblique along the Hikurangi margin [DeMets et al., 1994; [5] Displacement on the Taranaki Fault strongly influ- Beavan and Haines, 2001] (Figure 1); however, during the enced the location and geometry of the Taranaki Basin, New Eocene to Miocene relative plate motion was dominated by Zealand’s only producing oil and gas region. Petroleum 2of19 B01403 STAGPOOLE AND NICOL: TARANAKI FAULT, NEW ZEALAND B01403 Figure 2. Detailed map of Taranaki Fault and cross sections. Cross sections constructed at a high angle to the fault (modified from Thrasher et al. [1995]) show variations in fault geometry and Taranaki Basin architecture from north (A-A0) to south (D-D0). Map indicates locations of cross sections (bold lines), seismic lines (thin lines), wells (circles), and the line of magnetotelluric measurements (bold dashed line). All sections are at true scale. exploration in the basin has supplied a significant body of of the subducting plate, and with subduction commencing subsurface information on the Taranaki Fault, including during the middle Eocene. seismic reflection and well data. The Taranaki Fault is not exposed at the surface, being overlain by up to 3 km of early 2. Data Sources and Analyses Miocene and younger sedimentary rocks (Figure 2). It is, 2.1. Seismic Reflection Data however, visible on many seismic reflection lines, in the regional gravity signature and in petroleum exploration [6] Seismic reflection lines provide information on the wells [e.g., Mills, 1990; King and Thrasher, 1992, 1996; fault to depths of 4–7 km. Forty-three seismic reflection Palmer and Andrews, 1993]. We use two-dimensional (2-D) lines (including Figures 3, 4, and 5), which cross the fault seismic reflection lines tied to petroleum exploration wells and are distributed along 300 km of its length, have been and outcrop to examine the Taranaki Fault where it dis- interpreted (see Figure 2 for locations) with the aid of tie lines places Late Cretaceous and younger strata. These data have (not shown in Figure 2). The total interpreted line length is in been augmented with magnetotelluric and gravity profiles excess of 1000 km, and the data are primarily from open file which provide constraints on the fault geometry at depth petroleum industry sources (available from New Zealand (e.g., 5–12 km). Collectively these data sets indicate that Ministry of Economic Development, http://www.crownminerals. the fault is a thick-skinned thrust which, south of Mount govt.nz/cms/petroleum/technical-data). The seismic lines are Taranaki, probably extends down to the base of the crust. all migrated, while some are prestacked depth-migrated The fault accrued displacement prior to the Oligocene, with sections (e.g., Figure 3). The age and quality of these seismic the northern tip of the fault stepping southward over the last lines are variable, with Figures 3, 4, and 5 providing 30 Ma. This episodic migration is consistent with increas- representative examples of the data. Most seismic lines are ing isolation of the Taranaki Fault from the driving sub- interpretable down to two-way traveltimes of 3–5 s. Up to ducting Pacific Plate, perhaps induced by clockwise rotation eight reflectors were interpreted in each seismic line, includ- ing the top of seismic basement and up to six intra-Tertiary 3of19 B01403 STAGPOOLE AND NICOL: TARANAKI FAULT, NEW ZEALAND B01403 Figure 3. Prestacked depth migration (shown in two-way time) of (a) uninterpreted and (b) interpreted seismic line TRV-434 from the northern end of the fault (see Figure 2 for location). Locations and ages of interpreted horizons are indicated. Interpretations are based on data from Stagpoole [1997]. events. The interpreted reflectors range in age from about 2 nearby exploration wells. Analysis of the MT phase tensor to 80 Ma and have been tied to 20 nearby wells along the [Caldwell et al., 2004] indicates the data show 2-D charac- fault length. Our interpretations are broadly consistent with ter for periods up to 60 s, corresponding to depths of at least previously published data [Thrasher et al., 1995; King and 12 km [Stagpoole et al., 2006].
Recommended publications
  • New Zealand: E&P Review
    New Zealand: E&P Review Mac Beggs, Exploration Manager 2 March 2011 Excellence in Oil & Gas, Sydney From the conference flyer - • Major opportunities and • Favourable terms and clean motivations to operate government • Prospectivity – but skewed to high risk offshore frontiers • Access to services and • Adjunct to Australian service sector skills • Major markets • Unencumbered oil export arrangements • Gas market 150-250 BCF/year • Sovereign risk New Zealand Oil & Gas Limited 2 ⎮ Outline • Regulatory framework for E&P in New Zealand • History of discovery and development • Geography of remaining prospectivity • Recent and forecast E&P activities – Onshore Taranaki fairway – Offshore Taranaki fairway – Frontier basins – Unconventional resources • Gas market overview • Concluding comments New Zealand Oil & Gas Limited 3 ⎮ Regulatory Framework for Oil & Gas E&P in New Zealand • Mineral rights to petroleum vested in the Crown, 1937 • Crown Minerals Act 1991 • Royalty and tax take provides for excellent returns to developer/producer (except for marginal and mature assets) – Royalty of 5% net revenue, or 20% accounting profit – Company tax reducing to 28% from 1 April 2011 • Administered by an agency within Ministry of Economic Development (Crown Minerals) www.crownminerals.govt.nz • High profile since change of government in late 2008 – Resources identified as a driver for economic growth – Senior Minister: Hon Gerry Brownlee (until last week) • Continuing reforms should streamline and strengthen administration New Zealand Oil & Gas Limited
    [Show full text]
  • Seismic Interpretation of Structural Features in the Kokako 3D Seismic Area, Taranaki Basin (New Zealand) Edimar Perico*, Petróleo Brasileiro S.A
    Seismic interpretation of structural features in the Kokako 3D seismic area, Taranaki Basin (New Zealand) Edimar Perico*, Petróleo Brasileiro S.A. and Dr. Heather Bedle, University of Oklahoma. Summary The Western Platform represents an important tectonic unit The basin experienced different tectonic regimes over time in the Taranaki Basin and can considered a stable region. and the hydrocarbons traps are strongly related to Although, seismic characterization of Late Cretaceous to compressive structures (Coleman, 2018). King and Thrasher Early Miocene intervals reveals changes in the deformation (1996) highlight three main stages for the Taranaki Basin styles of normal faults. In some cases, the features vary development: (1) mid-Late Cretaceous to Paleocene intra- vertically from concentrated brittle zones (main planar continental rift transform; (2) Eocene to Early Oligocene discontinuity) to wide damage areas with deformation passive margin and (3) Oligocene to Recent active margin structures composed by smaller fault segments. In addition, basin. Muir et al. (2000) relates the origin of the basin with possible correlations were presented between structural NE and NNE basement faults formed during mid-Cretaceous features and siliciclastic deposits. Key takeaways from this due to the break-up of Gondwana. Considering the main research can be applied to areas with high hydrocarbon rifting processes, Strogen et al. (2017) recognize two phases: potential to guide the exploration of siliciclastic reservoirs NW to WNW half-grabens (c. 105 – 83 Ma) and an associated with faults. Lastly, the structural features extensional regime responsible for the formation of NE described were correlated with regional settings and help to depocenters (c. 80 – 55 Ma).
    [Show full text]
  • Mixed Deformation Styles Observed on a Shallow Subduction Thrust, Hikurangi Margin, New Zealand Å
    https://doi.org/10.1130/G46367.1 Manuscript received 10 April 2019 Revised manuscript received 21 June 2019 Manuscript accepted 26 June 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 16 July 2019 Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand Å. Fagereng1, H.M. Savage2, J.K. Morgan3, M. Wang4, F. Meneghini5, P.M. Barnes6, R. Bell7, H. Kitajima8, D.D. McNamara9, D.M. Saffer10, L.M. Wallace11, K. Petronotis12, L. LeVay12, and the IODP Expedition 372/375 Scientists* 1School of Earth & Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK 2Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA 3Department of Earth Science, Rice University, Houston, Texas 77005, USA 4College of Oceanography, Hohai University, Nanjing, Jiangsu 210093, China 5Dipartimento di Scienze della Terra, Universita degli Studi di Pisa, Pisa 56126, Italy 6National Institute of Water and Atmospheric Research, Wellington 6021, New Zealand 7Basins Research Group, Imperial College London, Kensington SW7 2AZ, UK 8Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77845, USA 9Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool L69 3GP, UK 10Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA 11GNS Science, Lower Hutt 5040, New Zealand 12International Ocean Discovery Program, Texas A&M University, College Station, Texas 77845, USA ABSTRACT and sampled the Pāpaku thrust at Site U1518 Geophysical observations show spatial and temporal variations in fault slip style on shal- offshore New Zealand’s North Island (Fig.
    [Show full text]
  • Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP CP-37 U.S. GEOLOGICAL SURVEY Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant 1:10,000,000 ICIRCUM-PACIFIC i • \ COUNCIL AND MINERAL RESOURCES 1991 CIRCUM-PACIFIC COUNCIL FOR ENERGY AND MINERAL RESOURCES Michel T. Halbouty, Chairman CIRCUM-PACIFIC MAP PROJECT John A. Reinemund, Director George Gryc, General Chairman Erwin Scheibner, Advisor, Tectonic Map Series EXPLANATORY NOTES FOR THE TECTONIC MAP OF THE CIRCUM-PACIFIC REGION SOUTHWEST QUADRANT 1:10,000,000 By Erwin Scheibner, Geological Survey of New South Wales, Sydney, 2001 N.S.W., Australia Tadashi Sato, Institute of Geoscience, University of Tsukuba, Ibaraki 305, Japan H. Frederick Doutch, Bureau of Mineral Resources, Canberra, A.C.T. 2601, Australia Warren O. Addicott, U.S. Geological Survey, Menlo Park, California 94025, U.S.A. M. J. Terman, U.S. Geological Survey, Reston, Virginia 22092, U.S.A. George W. Moore, Department of Geosciences, Oregon State University, Corvallis, Oregon 97331, U.S.A. 1991 Explanatory Notes to Supplement the TECTONIC MAP OF THE CIRCUM-PACIFTC REGION SOUTHWEST QUADRANT W. D. Palfreyman, Chairman Southwest Quadrant Panel CHIEF COMPILERS AND TECTONIC INTERPRETATIONS E. Scheibner, Geological Survey of New South Wales, Sydney, N.S.W. 2001 Australia T. Sato, Institute of Geosciences, University of Tsukuba, Ibaraki 305, Japan C. Craddock, Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A. TECTONIC ELEMENTS AND STRUCTURAL DATA AND INTERPRETATIONS J.-M. Auzende et al, Institut Francais de Recherche pour 1'Exploitacion de la Mer (IFREMER), Centre de Brest, B.
    [Show full text]
  • Review of Tsunamigenic Sources of the Bay of Plenty Region, GNS Science Consultancy Report 2011/224
    DISCLAIMER This report has been prepared by the Institute of Geological and Nuclear Sciences Limited (GNS Science) exclusively for and under contract to Bay of Plenty regional Council. Unless otherwise agreed in writing by GNS Science, GNS Science accepts no responsibility for any use of, or reliance on any contents of this Report by any person other than Bay of Plenty regional Council and shall not be liable to any person other than Bay of Plenty regional Council, on any ground, for any loss, damage or expense arising from such use or reliance. The data presented in this Report are available to GNS Science for other use from June 2012. BIBLIOGRAPHIC REFERENCE Prasetya, G. and Wang, X. 2011. Review of tsunamigenic sources of the Bay of Plenty region, GNS Science Consultancy Report 2011/224. 74 p. Project Number: 410W1369 Confidential 2011 CONTENTS EXECUTIVE SUMMARY ....................................................................................................... VII 1.0 INTRODUCTION .......................................................................................................... 1 2.0 OVERVIEW OF PREVIOUS STUDIES ........................................................................ 1 2.1 Joint Tsunami Research Project of EBOP and EW (Bell et al. 2004) ............................ 1 2.2 Tsunami Source Study (Goff et al. 2006) ....................................................................... 4 2.2.1 Mw 8.5 Scenarios.............................................................................................. 5 2.2.1.1
    [Show full text]
  • Methane Seepage Along the Hikurangi Margin, New Zealand
    ARTICLE IN PRESS MARGO-04469; No of Pages 20 Marine Geology xxx (2010) xxx–xxx Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Methane seepage along the Hikurangi Margin, New Zealand: Overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations J. Greinert a,b,⁎, K.B. Lewis c, J. Bialas b, I.A. Pecher d, A. Rowden c, D.A. Bowden c, M. De Batist a, P. Linke b a Renard Centre of Marine Geology (RCMG), Ghent University, Krijgslaan 281 s.8, B-9000 Gent, Belgium b IFM-GEOMAR, Leibniz Institute of Marine Sciences at the University of Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany c National Institute of Water and Atmospheric Research, Private Bag 14 901, Kilbirnie, Wellington, New Zealand d GNS Science, 1 Fairway Drive, Avalon, Lower Hutt 5010, New Zealand article info abstract Article history: This paper is an introduction to and an overview of papers presented in the Special Issue of Marine Geology Received 5 May 2009 “Methane seeps at the Hikurangi Margin, New Zealand”. In 2006 and 2007, three research cruises to the Received in revised form 20 December 2009 Hikurangi Margin at the east coast of New Zealand's North Island were dedicated to studying methane Accepted 23 January 2010 seepage and gas hydrates in an area where early reports suggested they were widespread. Two cruises were Available online xxxx carried out on RV TANGAROA and one on RV SONNE using the complete spectrum of state-of-the-art equipment for geophysics (seismic, sidescan, controlled source electromagnetics, ocean bottom seism- Keywords: fl methane seepage ometers and hydrophones, singlebeam and multibeam), sea oor observations (towed camera systems, gas hydrate ROV), sediment and biological sampling (TV-guided multi-corer, gravity-corer, grab, epibenthic sled), multibeam mapping deployment of in-situ observatories (landers) as well as water column sampling and oceanographic studies hydroacoustic flares (CTD, moorings).
    [Show full text]
  • Bibliography of Geology and Geophysics of the Southwestern Pacific
    UNITED NATIONS ECONOMIC AND SOCIAL COMMISSION FOR ASIA AND THE PACIFIC COMMITTEE FOR CO-ORDINATION OF JOINT PROSPECTING FOR MINERAL RESOURCES IN SOUTH PACIFIC OFFSHORE AREAS (CCOP/SOPAC) TECIThlJCAL BULLETIN No. 5 BIBLIOGRAPHY OF GEOLOGY AND GEOPHYSICS OF THE SOUTHWESTERN PACIFIC Edited by CHRISTIAN JOUANNIC UNDP Marine Geologist, Technical Secretariat ofCCOPjSOPAC, Suva, Fiji and ROSE-MARIE THOMPSON NiZ. Oceanographic Institute. Wellington Ali communications relating to this and other publications of CCOP/SOPAC should he addressed to: Technical Secretariat of CCOP/SOPAC, cio Mineral Resources Department, Private Bag, Suva, Fiji. This publication should he referred to as u.N. ESCAP, CCOP/SOPAC Tech. Bull. 5 The designations employed and presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status ofany country or territory or of its authorities, or concerning the delimitation of the frontiers of any country or territory. Cataloguing in Publication BIBLIOGRAPHY of geology and geophysics of the southwestern Pacifie / edited by Christian Jouannic and Rose-Marie Thompson. - [2nd ed/]. - Suva: CCOP/SOPAC. 1983. (Technical bulletin / United Nations Economie and Social Commission for Asia and the Pacifie, Committee for Co-ordination of Joint Prospecting for Mineral Resources in South Pacifie Offshore Areas, ISSN 0378-6447 : 5) ISBN 0-477-06729-8 1. Jouannic, Christian II. Thompson, Rose­ Marie III. Series UDC 016:55 (93/96) The publication of this 2nd Edition of the Bibliography of the Geology and Geophysics of the Southwestern Pacifie has been funded by the Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM, 24 Rue Bayard, 75008 Paris, France) as a contri- bution by ORSTOM to the activities of CCOP/SOPAC.
    [Show full text]
  • The Late Castlecliffian and Early Haweran Stratigraphy of the Manawatu and Rangitikei Districts
    GSNZ Conference 2006 Manawatu-Rangitikei FieldTrip Guide THE LATE CASTLECLIFFIAN AND EARLY HAWERAN STRATIGRAPHY OF THE MANAWATU AND RANGITIKEI DISTRICTS Griffins Road Quarry. The Upper Griffins Road Tephra is above Brad Pillan’s head. The Middle Griffins Road Tephra is at his waist level, and Brent Alloway is sampling the Lower Griffins Road Tephra just above the Aldworth river gravels (OI 10). 1 2 2 ALAN PALMER , JOHN BEGG , DOUGAL TOWNSEND & KATE 2 WILSON 1 Soil and Earth Sciences, INR, Massey University, PB 11-222, Palmerston North. ([email protected]) 2 Institute of Geological and Nuclear Sciences, PO Box 30-368, Lower Hutt. GSNZ Miscellaneous Publication 122B Supplement 1 ISBN 0-908678-06-1 Page 1 GSNZ Conference 2006 Manawatu-Rangitikei FieldTrip Guide THE LATE CASTLECLIFFIAN AND EARLY HAWERAN STRATIGRAPHY OF THE MANAWATU AND RANGITIKEI DISTRICTS 1 2 2 2 ALAN PALMER , JOHN BEGG , DOUGAL TOWNSEND & KATE WILSON 1 Soil and Earth Sciences, INR, Massey University, PB 11-222, Palmerston North. ([email protected]) 2 Institute of Geological and Nuclear Sciences, PO Box 30-368, Lower Hutt. INTRODUCTION The age of many mid-late Quaternary surfaces in the area between Wanganui and Palmerston North has been poorly known because: 1. The marine terraces are not as well defined as they are west of Wanganui (Pillans, 1990). 2. The wave cut surfaces are difficult to locate, and the underlying sediments are sand dominated and softer. 3. The loess cover on marine and river terraces is of the Pallic Soil facies, i.e. pale grey and mottled, making paleosols difficult to see in the poorly drained loess.
    [Show full text]
  • A Coherent Middle Pliocene Magnetostratigraphy, Wanganui Basin, New Zealand
    Journal of the Royal Society of New Zealand ISSN: 0303-6758 (Print) 1175-8899 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzr20 A coherent middle Pliocene magnetostratigraphy, Wanganui Basin, New Zealand Gillian M. Turner , Peter J. J. Kamp , Avon P. McIntyre , Shaun Hayton , Donald M. McGuire & Gary S. Wilson To cite this article: Gillian M. Turner , Peter J. J. Kamp , Avon P. McIntyre , Shaun Hayton , Donald M. McGuire & Gary S. Wilson (2005) A coherent middle Pliocene magnetostratigraphy, Wanganui Basin, New Zealand, Journal of the Royal Society of New Zealand, 35:1-2, 197-227, DOI: 10.1080/03014223.2005.9517781 To link to this article: http://dx.doi.org/10.1080/03014223.2005.9517781 Published online: 30 Mar 2010. Submit your article to this journal Article views: 89 View related articles Citing articles: 13 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzr20 Download by: [203.118.162.158] Date: 01 February 2017, At: 18:47 197 Journal of the Royal Society of New Zealand Volume 35, Numbers 1 & 2, March/June, 2005, pp 197-227 A coherent middle Pliocene magnetostratigraphy, Wanganui Basin, New Zealand Gillian M. Turner1, Peter J. J. Kamp2*, Avon P. McIntyre2,3, Shaun Hayton2,4, Donald M. McGuire5, and Gary S. Wilson6 Abstract We document magnetostratigraphies for three river sections (Turakina, Ran- gitikei, Wanganui) in Wanganui Basin and interpret them as corresponding to the Upper Gilbert, the Gauss and lower Matuyama Chrons of the Geomagnetic Polarity Timescale, in agreement with foraminiferal biostratigraphic datums.
    [Show full text]
  • Exploration of New Zealand's Deepwater Frontier * GNS Science
    exploration of New Zealand’s deepwater frontier The New Zealand Exclusive Economic Zone (EEZ) is the 4th largest in the world at about GNS Science Petroleum Research Newsletter 4 million square kilometres or about half the land area of Australia. The Legal Continental February 2008 Shelf claim presently before the United Nations, may add another 1.7 million square kilometres to New Zealand’s jurisdiction. About 30 percent of the EEZ is underlain by sedimentary basins that may be thick enough to generate and trap petroleum. Although introduction small to medium sized discoveries continue to be made in New Zealand, big oil has so far This informal newsletter is produced to tell the eluded the exploration companies. industry about highlights in petroleum-related research at GNS Science. We want to inform Exploration of the New Zealand EEZ has you about research that is going on, and barely started. Deepwater wells will be provide useful information for your operations. drilled in the next few years and encouraging We welcome your opinions and feedback. results would kick start the New Zealand deepwater exploration effort. Research Petroleum research at GNS Science efforts have identified a number of other potential petroleum basins around New Our research programme on New Zealand's Zealand, including the Pegasus Sub-basin, Petroleum Resources receives $2.4M p.a. of basins in the Outer Campbell Plateau, the government funding, through the Foundation of deepwater Solander Basin, the Bellona Basin Research Science and Technology (FRST), between the Challenger Plateau and Lord and is one of the largest research programmes in GNS Science.
    [Show full text]
  • Developing Community-Based Scientific Priorities and New Drilling
    Workshop Reports Sci. Dril., 24, 61–70, 2018 https://doi.org/10.5194/sd-24-61-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Developing community-based scientific priorities and new drilling proposals in the southern Indian and southwestern Pacific oceans Robert McKay1, Neville Exon2, Dietmar Müller3, Karsten Gohl4, Michael Gurnis5, Amelia Shevenell6, Stuart Henrys7, Fumio Inagaki8,9, Dhananjai Pandey10, Jessica Whiteside11, Tina van de Flierdt12, Tim Naish1, Verena Heuer13, Yuki Morono9, Millard Coffin14, Marguerite Godard15, Laura Wallace7, Shuichi Kodaira8, Peter Bijl16, Julien Collot17, Gerald Dickens18, Brandon Dugan19, Ann G. Dunlea20, Ron Hackney21, Minoru Ikehara22, Martin Jutzeler23, Lisa McNeill11, Sushant Naik24, Taryn Noble14, Bradley Opdyke2, Ingo Pecher25, Lowell Stott26, Gabriele Uenzelmann-Neben4, Yatheesh Vadakkeykath24, and Ulrich G. Wortmann27 1Antarctic Research Centre, Victoria University of Wellington, Wellington, 6140, New Zealand 2Research School of Earth Sciences, Australian National University, Canberra, 0200, Australia 3School of Geosciences, The University of Sydney, Sydney, NSW2006, Australia 4Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, 27568 Bremerhaven, Germany 5California Institute of Technology, Pasadena, CA 91125, USA 6College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA 7GNS Science, Lower Hutt, 5040, New Zealand 8Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama 236-0001,
    [Show full text]
  • GNS Staff Publications 2008 A
    GNS Staff Publications 2008 A Adams, C.J. 2008 Provenance of gold in Mesozoic mesothermal mineral deposits in New Zealand. p. 39 In: Australian Earth Sciences Convention, Perth, 20 July-24 July, 2008 : program & abstract booklet. Abstracts / Geological Society of Australia 89 Adams, C.J. 2008 Provenance of gold in Mesozoic mesothermal mineral deposits in New Zealand. p. 204 In: Wysoczanski, R. (comp.) Geological Society of New Zealand, New Zealand Geophysical Society, New Zealand Geochemical & Mineralogical Society joint annual conference : Geosciences '08 : programme and abstracts. Geological Society of New Zealand miscellaneous publication 125A Adams, C.J.; Campbell, H.J.; Griffin, W.J. 2008 Age and provenance of basement rocks of the Chatham Islands : an outpost of Zealandia. New Zealand journal of geology and geophysics, 51(3): 245-259 Adams, C.J.; Ireland, T.R. 2008 Provenance connections between Late Neoproterozoic and Early Paleozoic sedimentary basins of the Ross Sea region, Antarctica, southeast Australia and southern Zealandia. Extended abstract 064 In: Cooper, A.K.; Barrett, P.; Stagg, H.; Storey, B.; Stump, E.; Wise, W.; 10th ISAES editorial team; Davey, F.J.; Naish, T.R. (eds) Antarctica : a keystone in a changing world : proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, California, August 26 to September 1, 2007. Open-file report / US Geological Survey 2007-1047 Adams, C.J.; Miller, H.; Toselli, A.J.; Griffin, W.L. 2008 The Puncoviscana Formation of northwest Argentina : U-Pb geochronology of detrital zircons and Rb-Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting. Neues Jahrbuch fuer Geologie und Palaeontologie.
    [Show full text]