Development of Odd-Z-Projectile Reactions for Transactinide Element Synthesis
Total Page:16
File Type:pdf, Size:1020Kb
Development of Odd-Z-Projectile Reactions for Transactinide Element Synthesis by Charles Marvin Folden III B.S. (Vanderbilt University) 1999 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the GRADUATE DIVISION of the UNIVERISTY OF CALIFORNIA, BERKELEY Committee in charge: Professor Darleane C. Hoffman, Chair Professor Luciano G. Moretto Professor P. Buford Price Fall 2004 The dissertation of Charles Marvin Folden III is approved: ______________________________________________________________________ Chair Date ______________________________________________________________________ Date ______________________________________________________________________ Date University of California, Berkeley Fall 2004 Development of Odd-Z-Projectile Reactions for Transactinide Element Synthesis Copyright 2004 by Charles Marvin Folden III Abstract Development of Odd-Z-Projectile Reactions for Transactinide Element Synthesis by Charles Marvin Folden III Doctor of Philosophy in Chemistry University of California, Berkeley Professor Darleane C. Hoffman, Chair The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile 208Pb(64Ni, n)271Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to 271Ds were observed. These data, combined with previous results, establish an excitation function for the production of 271Ds. The +15 maximum cross section was 20−11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame. The data from the 271Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile 208Pb(65Cu, n)272111 reaction using the “Fusion by Diffusion” theory proposed by Świątecki, Siwek-Wilczyńska, and Wilczyński. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy for compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1 +3.9 1.7−1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272111. The new odd-Z-projectile 208Pb(55Mn, n)262Bh reaction was studied at three different projectile energies, and 33 decay chains of 262Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum +180 cross section was 540−150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile 209Bi(54Cr, n)262Bh reaction, which may be because the 54Cr projectile energies in the latter reaction were too high for optimum production of the 1n product. At the highest projectile energy of 268.0 MeV in the target center, two decay chains from 261Bh were observed as a result of the 208Pb(55Mn, 2n) reaction. In summary, this work shows that odd-Z-projectile reactions can have cross sections comparable to analogous even-Z-projectile reactions, and that the energy of the maximum cross section for 1n reactions can be estimated simply. 2 Dedication This dissertation is dedicated to my mother, Betsy Raye Folden. Everything good about me I got from you. i Table of Contents Dedication .......................................................................................................................................i Table of Contents ..........................................................................................................................ii List of Figures ..............................................................................................................................vii List of Tables..................................................................................................................................x Acknowledgements......................................................................................................................xii 1. Introduction ...............................................................................................................................1 1.1. Production and Characterization of Transactinide Elements............................... 4 1.2. Excitation Functions...............................................................................................10 1.2.1. Magnitudes of Cross Sections................................................................10 1.2.1.1. Standard Theoretical Methods...............................................10 1.2.1.2. Fusion by Diffusion................................................................15 1.2.1.3. Energetics.................................................................................19 1.2.1.4. Cold Versus Hot Fusion.........................................................21 1.2.2. Location of the Maximum Cross Section for 1n Reactions................................................................................................23 1.3. Nuclear Shells and Heavy Element Stability.........................................................27 1.3.1. “Magic” Numbers ...................................................................................27 1.3.2. Liquid-Drop Model.................................................................................29 1.3.3. Strutinsky Shell Corrections...................................................................32 1.3.4. Illustrative Examples...............................................................................36 1.3.5. Stability of the Transactinide Elements and New Shells ......................................................................................................38 1.4. Scope.........................................................................................................................41 ii 2. Experimental Apparatus: The Berkeley Gas-filled Separator .............................................42 2.1. Targets ......................................................................................................................42 2.1.1. Rotating Wheel Targets ..........................................................................43 2.1.2. Target Characteristics..............................................................................44 2.1.3. Stationary Targets....................................................................................45 2.2. Rutherford Detectors and Cross Section Calculations........................................45 2.3. Magnets.....................................................................................................................47 2.3.1. Introduction.............................................................................................47 2.3.2. Evaporation Residue Charge States in Helium ....................................49 2.4. Focal Plane Detector...............................................................................................52 2.4.1. Introduction.............................................................................................52 2.4.2. External Calibration Sources..................................................................56 2.4.2.1. Strip External Energy Calibration .........................................56 2.4.2.2. Upstream Energy Calibration ................................................65 2.4.2.3. Strip Position Calibration .......................................................65 2.4.3. Internal Calibration Data: Test Reactions ............................................68 2.4.4. High-Energy Calibrations.......................................................................69 2.5. Data Acquisition......................................................................................................71 3. Production of 271Ds in the 208Pb(64Ni, n) Reaction...............................................................73 3.1. Previous Work .........................................................................................................73 3.1.1. GSI Experiments.....................................................................................73 3.1.2. First LBNL Experiments........................................................................78 3.1.3. RIKEN Experiments..............................................................................79 3.1.4. Rationale for the New Experiments......................................................80 iii 3.2. Experimental Conditions........................................................................................80 271 3.2.1. Ds Production Experiment: Ecot = 314.3 MeV.................................81 271 3.2.2. Ds Production Experiment: Ecot = 311.5 MeV.................................85 3.3. Observed Decay Chains..........................................................................................87 3.3.1. Summary...................................................................................................87 3.3.2. 271Ds...........................................................................................................90 3.3.3. 267Hs...........................................................................................................91 3.3.4. 263Sgm..........................................................................................................92