Enabling an Enterprise Data Management Ecosystem Using Change Data Capture with Amazon Neptune
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amazon Documentdb Deep Dive
DAT326 Amazon DocumentDB deep dive Joseph Idziorek Antra Grover Principal Product Manager Software Development Engineer Amazon Web Services Fulfillment By Amazon © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Agenda What is the purpose of a document database? What customer problems does Amazon DocumentDB (with MongoDB compatibility) solve and how? Customer use case and learnings: Fulfillment by Amazon What did we deliver for customers this year? What’s next? © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Purpose-built databases Relational Key value Document In-memory Graph Search Time series Ledger Why document databases? Denormalized data Normalized data model model { 'name': 'Bat City Gelato', 'price': '$', 'rating': 5.0, 'review_count': 46, 'categories': ['gelato', 'ice cream'], 'location': { 'address': '6301 W Parmer Ln', 'city': 'Austin', 'country': 'US', 'state': 'TX', 'zip_code': '78729'} } Why document databases? GET https://api.yelp.com/v3/businesses/{id} { 'name': 'Bat City Gelato', 'price': '$', 'rating': 5.0, 'review_count': 46, 'categories': ['gelato', 'ice cream'], 'location': { 'address': '6301 W Parmer Ln', 'city': 'Austin', 'country': 'US', 'state': 'TX', 'zip_code': '78729'} } Why document databases? response = yelp_api.search_query(term='ice cream', location='austin, tx', sort_by='rating', limit=5) Why document databases? for i in response['businesses']: col.insert_one(i) db.businesses.aggregate([ { $group: { _id: "$price", ratingAvg: { $avg: "$rating"}} } ]) db.businesses.find({ -
AWS Certified Developer – Associate (DVA-C01) Sample Exam Questions
AWS Certified Developer – Associate (DVA-C01) Sample Exam Questions 1) A company is migrating a legacy application to Amazon EC2. The application uses a user name and password stored in the source code to connect to a MySQL database. The database will be migrated to an Amazon RDS for MySQL DB instance. As part of the migration, the company wants to implement a secure way to store and automatically rotate the database credentials. Which approach meets these requirements? A) Store the database credentials in environment variables in an Amazon Machine Image (AMI). Rotate the credentials by replacing the AMI. B) Store the database credentials in AWS Systems Manager Parameter Store. Configure Parameter Store to automatically rotate the credentials. C) Store the database credentials in environment variables on the EC2 instances. Rotate the credentials by relaunching the EC2 instances. D) Store the database credentials in AWS Secrets Manager. Configure Secrets Manager to automatically rotate the credentials. 2) A Developer is designing a web application that allows the users to post comments and receive near- real-time feedback. Which architectures meet these requirements? (Select TWO.) A) Create an AWS AppSync schema and corresponding APIs. Use an Amazon DynamoDB table as the data store. B) Create a WebSocket API in Amazon API Gateway. Use an AWS Lambda function as the backend and an Amazon DynamoDB table as the data store. C) Create an AWS Elastic Beanstalk application backed by an Amazon RDS database. Configure the application to allow long-lived TCP/IP sockets. D) Create a GraphQL endpoint in Amazon API Gateway. Use an Amazon DynamoDB table as the data store. -
A Serverless Journey: Under the Hood of AWS Lambda
S V S 4 0 5 - R A Serverless Journey: Under the Hood of AWS Lambda Holly Mesrobian Marc Brooker Director of Engineering Senior Principal Engineer Amazon AWS Lambda Amazon AWS Serverless Amazon Web Services Amazon Web Services © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. SERVERLESS AT SCALE IS THE NEW NORM processes 4,000 requests executes 16 million per second requests a month processes half a trillion validations of stock trades daily ingests, analyzes and processes tens of stores 17+ petabytes of billions of data data per season points monthly API traffic to register and license more than 47 million driver records in Great Britain, © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Load Balancing Scaling Up and Down Handling Failures Predictable Low Latency AWS Lambda Handles Event Processing Stream Processing Predictable Performance Innovations in Isolation © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Cloud Region Availability Zone 1 Worker Mgr Worker Claim Worker Invoke Placement Front End Invoke Reserve Sandbox Worker Mgr Init Lambda customer Worker (New Function or Scaling Up) Invoke Front End Worker Availability Zone 2 AWS Cloud Region Availability Zone 1 Worker Mgr Worker Invoke Front End Invoke Reserve Sandbox Lambda customer Worker Mgr Worker (Existing Worker, Existing Sandbox) Invoke Front End Worker Availability Zone 2 Poller Consumes events and ensures they are processed State Manager or Stream Tracker Handles scaling by managing Pollers and event or stream source resources Leasing Service Assigns Pollers to work on a specific event or streaming source © 2019, Amazon Web Services, Inc. -
AWS Autotech Forum 2020 Online #1
AWS Autotech Forum 2020 Online #1 2020/08/07 © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. ) ( ( AWS Glue Amazon Kinesis Amazon S3 © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. • • • • AWS • Next Action © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. • • • ü ü • Next Step • © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark LIDAR Camera Telematics Control Unit GPS/HD Maps Accelerometer/Gyroscope Odometry Cellular/DSRC Radar Infrared Ultrasonic © 2020,© 2018, Amazon Amazon Web Web Services, Services, Inc. Inc.or its or Affiliates. its Affiliates. All rightsAll rights reserved. reserved. , ), (, :, { “trip_id”: “00000001”, “timestamp”: “202008071000”, “x_value”: “0.342264”, “y_value”: “0.011724”, ”z_value”: “0.924651”, } / : , etc. © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. / { “trip_id”: “00000001”, “timestamp”: “202008071000”, “x_value”: “0.342264”, “y_value”: “0.011724”, ”z_value”: “0.924651”, ( ( )/.,( ( ( } : c c e © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. ) • • • ( • © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Confidential and Trademark What is Data Lake? • • • © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. 1 A B © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. 2. C D © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. .. 3Hadoop 3 Amazon Simples Storage Service(S3) © 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. • RDBMS • • • )API( API © 2020, Amazon Web Services, Inc. -
Optimizing Lambda Performance for Your Serverless Applications
Optimizing Lambda performance for your serverless applications James Beswick Senior Developer Advocate, AWS Serverless @jbesw © 2020, Amazon Web Services, Inc. or its Affiliates. About me • James Beswick • Email: [email protected] • Twitter: @jbesw • Senior Developer Advocate – AWS Serverless • Self-confessed serverless geek • Software Developer • Product Manager • Previously: • Multiple start-up tech guy • Rackspace, USAA, Morgan Stanley, J P Morgan © 2020, Amazon Web Services, Inc. or its Affiliates. Agenda Memory and profiling © 2020, Amazon Web Services, Inc. or its Affiliates. How does Lambda work? © 2020, Amazon Web Services, Inc. or its Affiliates. Anatomy of an AWS Lambda function Your function Language runtime Execution environment Lambda service Compute substrate © 2020, Amazon Web Services, Inc. or its Affiliates. Where you can impact performance… Your function Language runtime Execution environment Lambda service Compute substrate © 2020, Amazon Web Services, Inc. or its Affiliates. Anatomy of an AWS Lambda function Handler () function Event object Context object Function to be executed Data sent during Lambda Methods available to upon invocation function Invocation interact with runtime information (request ID, log group, more) // Python // Node.js import json const MyLib = require(‘my-package’) import mylib const myLib = new MyLib() def lambda_handler(event, context): exports.handler = async (event, context) => { # TODO implement # TODO implement return { return { 'statusCode': 200, statusCode: 200, 'body': json.dumps('Hello World!') body: JSON.stringify('Hello from Lambda!') } } } © 2020, Amazon Web Services, Inc. or its Affiliates. Function lifecycle – worker host Start new Download Execution Execute Execute your code environment INIT code handler code Full Partial Warm cold start cold start start AWS optimization Your optimization © 2020, Amazon Web Services, Inc. -
Planning and Designing Databases on AWS (AWS-PD-DB)
Planning and Designing Databases on AWS (AWS-PD-DB) COURSE OVERVIEW: In this course, you will learn about the process of planning and designing both relational and nonrelational databases. You will learn the design considerations for hosting databases on Amazon Elastic Compute Cloud (Amazon EC2). You will learn about our relational database services including Amazon Relational Database Service (Amazon RDS), Amazon Aurora, and Amazon Redshift. You will also learn about our nonrelational database services including Amazon DocumentDB, Amazon DynamoDB, Amazon ElastiCache, Amazon Neptune, and Amazon QLDB. By the end of this course, you will be familiar with the planning and design requirements of all 8 of these AWS databases services, their pros and cons, and how to know which AWS databases service is right for your workloads. WHO WILL BENEFIT FROM THIS COURSE? • Data platform engineers • Database administrators • Solutions architects • IT professionals PREREQUISITES: We recommend that attendees of this course have previously completed the following AWS courses: • AWS Database Offerings digital training • Data Analytics Fundamentals digital training • Architecting on AWS classroom training COURSE OBJECTIVES: After completion of this course, students will be able to... • Apply database concepts, database management, and data modeling techniques • Evaluate hosting databases on Amazon EC2 instances • Evaluate relational database services (Amazon RDS, Amazon Aurora, and Amazon Redshift) and their features • Evaluate nonrelational database services -
Interactive Attendee Guide for Oil & Gas Professionals
oil & gas Interactive attendee guide for Oil & Gas Professionals Hello, On behalf of the entire AWS Worldwide Oil & Gas team, welcome to re:Invent 2018! This year’s conference is going to be our Welcome. biggest yet, with 50,000+ attendees and more than 2,000 technical sessions. To get the most out of re:Invent, we encourage you to take advantage of the resources outlined in this document, including our “How to re:Invent” video series. Keep in mind that reserved seating goes live on October 11. You can start planning your schedule at any time by logging into your account, visiting the session catalog, and marking sessions of interest. Although re:Invent is a big conference, the strength of the Oil & Gas community makes it feel much smaller. We look forward to seeing you in Vegas! Arno van den Haak Business Development, AWS Worldwide Oil & Gas © 2018 | Amazon Web Services. All rights reserved. Table of contents What to expect in 2018 » Let’s get started. re:Invent agenda » Oil & Gas sessions » This guide is designed to help attendees of AWS re:Invent 2018 plan their experience and identify breakout sessions and events of interest. It is intended to complement the re:Invent app, Other recommended sessions » which will help attendees navigate the conference on-site. Networking opportunities » Click on the links to navigate this guide. Executive Summit overview » Event venues and logistics » AWS Oil & Gas contacts » © 2018 | Amazon Web Services. All rights reserved. What to expect Networking re:Invent Agenda Oil & Gas Other Recommended Executive Summit Event Venue AWS Oil & Gas in 2018 Sessions Sessions Opportunities Overview and Logistics Expert Contacts What Where AWS re:Invent is a learning conference hosted by Amazon Web We are taking over Las Vegas--with events at the ARIA, Vdara, Services (AWS) for the global cloud computing community. -
Analytics Lens AWS Well-Architected Framework Analytics Lens AWS Well-Architected Framework
Analytics Lens AWS Well-Architected Framework Analytics Lens AWS Well-Architected Framework Analytics Lens: AWS Well-Architected Framework Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Analytics Lens AWS Well-Architected Framework Table of Contents Abstract ............................................................................................................................................ 1 Abstract .................................................................................................................................... 1 Introduction ...................................................................................................................................... 2 Definitions ................................................................................................................................. 2 Data Ingestion Layer ........................................................................................................... 2 Data Access and Security Layer ............................................................................................ 3 Catalog and Search Layer ................................................................................................... -
Serverless Bot Framework Implementation Guide Serverless Bot Framework Implementation Guide
Serverless Bot Framework Implementation Guide Serverless Bot Framework Implementation Guide Serverless Bot Framework: Implementation Guide Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Serverless Bot Framework Implementation Guide Table of Contents Welcome ........................................................................................................................................... 1 Overview ........................................................................................................................................... 2 Cost .......................................................................................................................................... 2 Example cost table ............................................................................................................. 2 Architecture ............................................................................................................................... 3 Solution Features ............................................................................................................................... 5 Supported Languages -
The BG News April 13, 1990
Bowling Green State University ScholarWorks@BGSU BG News (Student Newspaper) University Publications 4-13-1990 The BG News April 13, 1990 Bowling Green State University Follow this and additional works at: https://scholarworks.bgsu.edu/bg-news Recommended Citation Bowling Green State University, "The BG News April 13, 1990" (1990). BG News (Student Newspaper). 5071. https://scholarworks.bgsu.edu/bg-news/5071 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article is brought to you for free and open access by the University Publications at ScholarWorks@BGSU. It has been accepted for inclusion in BG News (Student Newspaper) by an authorized administrator of ScholarWorks@BGSU. NETTERS SET TO DUEL REDSKINS Women face a Redskin team with nine straight MAC titles; # Men look to become a member of the conference's upper echelon .. .see Sports p.5 The Nation *s Best College Newspaper K Weather Friday Vol.72 Issue 112 April 13,1990 Bowling Green, Ohio High 55' The BG News Low 40° BRIEFLY BG, USSR to hold forum Student leader by Jill Novak ternational classrooms ... which will be cost effi- escapes China staff writer cient, "he said. Students participating in the exchange view large CITY television monitors, with the screen split down the by Dan Biers They may not speak the same language, but Uni- middle so they can actually see each other simulta- Associated Press writer versity students and Soviet students will be able to neously. Summer softball: Any communicate and share ideas with the help of an in- An interpreter talks at the same time the partici- HONG KONG — Another fugitive student leader of student staying in Bowling Green this terpreter when a global classroom exchange is im- pants speak, but the participant's voice intonations the crushed pro-democracy movement has escaped summer and interested in playing plemented in the fall of 1991. -
Amazon Neptune Fast, Fully Managed Graph Database Service
Amazon Neptune Fast, fully managed graph database service Karthik Bharathy Product Leader, Neptune © 2020, Amazon Web Services, Inc. or its Affiliates. Agenda • Graph and its use cases • Amazon Neptune overview • Architecture • Graph Data Model • Capabilities • Resources Graphs are all around us Why graph? Relationships enable new applications. connections paths patterns Network & IT Knowledge Fraud Detection Recommendations Social Life Sciences Graphs Networking Operations Connected Data Queries Navigate (variably) connected structure Filter or compute a result based on strength, weight or quality of relationships Knowledge Graph Brings context and semantic meaning by linked entities and events https://aws.amazon.com/blogs/apn/exploring-knowledge-graphs-on-amazon-neptune-using-metaphactory/ https://aws.amazon.com/blogs/database/building-and-querying-the-aws-covid-19-knowledge-graph/ Identity Graph A single unified view of customers and prospects based on their interactions with a product or website across a set of devices and identifiers https://aws.amazon.com/blogs/database/building-a-customer-identity-graph-with-amazon-neptune/ Customer 360 Gain a 360° view of your customers so you can better understand purchasing patterns and improve marketing attribution. https://aws.amazon.com/blogs/database/building-a-customer-360-knowledge-repository-with-amazon-neptune-and-amazon-redshift/ Fraud Detection Detect fraud patterns - a potential purchaser is using the same email address and credit card, multiple people associated with an email address, or multiple people sharing the same IP address but residing in different physical addresses. Social Recommendation Manage relationships between information such as customer interests, friends, or purchase history in a graph and quickly query it to make recommendations that are personalized. -
Architecting for HIPAA Security and Compliance Whitepaper
Architecting for HIPAA Security and Compliance on Amazon Web Services AWS Whitepaper Architecting for HIPAA Security and Compliance on Amazon Web Services AWS Whitepaper Architecting for HIPAA Security and Compliance on Amazon Web Services: AWS Whitepaper Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Architecting for HIPAA Security and Compliance on Amazon Web Services AWS Whitepaper Table of Contents Abstract ............................................................................................................................................ 1 Introduction ...................................................................................................................................... 2 Encryption and protection of PHI in AWS .............................................................................................. 3 Alexa for Business ...................................................................................................................... 6 Amazon API Gateway ................................................................................................................. 6 Amazon AppFlow