Paragon® Hard Disk Manager™ for Mac OS X User Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Non-Binary Analysis
The Art of Mac Malware: Analysis p. wardle (The Art of Mac Malware) Volume 1: Analysis Chapter 0x5: Non-Binary Analysis Note: This book is a work in progress. You are encouraged to directly comment on these pages ...suggesting edits, corrections, and/or additional content! To comment, simply highlight any content, then click the icon which appears (to the right on the document’s border). 1 The Art of Mac Malware: Analysis p. wardle Content made possible by our Friends of Objective-See: Airo SmugMug Guardian Firewall SecureMac iVerify Halo Privacy In the previous chapter, we showed how the file utility [1] can be used to effectively identify a sample’s file type. File type identification is important as the majority of static analysis tools are file type specific. Now, let’s look at various file types one commonly encounters while analyzing Mac malware. As noted, some file types (such as disk images and packages) are simply the malware’s “distribution packaging”. For these file types, the goal is to extract the malicious contents (often the malware’s installer). Of course, Mac malware itself comes in various file formats, such as scripts and binaries. For each file type, we’ll briefly discuss its purpose, as well as highlight static analysis tools that can be used to analyze the file format. Note: This chapter focuses on the analysis of non-binary file formats (such as scripts). Subsequent chapters will dive into macOS’s binary file format (Mach-O), as well as discuss both analysis tools and techniques. 2 The Art of Mac Malware: Analysis p. -
Deploying UEFI‐Aware Operating Systems on Dell™ Poweredge™
Deploying UEFI‐Aware Operating Systems on Dell™ PowerEdge™ Servers By Anand Joshi, Bill Munger, Mark Shutt, Thomas Cantwell, and John Sieber THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR IMPLIED WARRANTIES OF ANY KIND. © 2009 Dell Inc. All rights reserved. Reproduction of this material in any manner whatsoever without the express written permission of Dell Inc. is strictly forbidden. For more information, contact Dell. Dell, the DELL logo, and the DELL badge, and PowerEdge are trademarks of Dell Inc. Microsoft, Windows, Windows Server, and Active Directory are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries.; SUSE is a registered trademark of Novell, Inc., in the United States and other countries. Page ii Table of Contents History ........................................................................................................................................................................... 2 What is UEFI? ................................................................................................................................................................. 2 What UEFI has to Offer .................................................................................................................................................. 3 How is Dell’s UEFI implemented? ................................................................................................................................. -
Multiboot Guide Booting Fedora and Other Operating Systems
Fedora 23 Multiboot Guide Booting Fedora and other operating systems. Fedora Documentation Project Copyright © 2013 Fedora Project Contributors. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. For guidelines on the permitted uses of the Fedora trademarks, refer to https:// fedoraproject.org/wiki/Legal:Trademark_guidelines. Linux® is the registered trademark of Linus Torvalds in the United States and other countries. Java® is a registered trademark of Oracle and/or its affiliates. XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries. All other trademarks are the property of their respective owners. -
Booting and Installing the Operating System Grado En Inform´Atica2017/2018 Departamento De Computaci´On Facultad De Inform´Atica Universidad De Coru˜Na
Booting and Installing the Operating System Grado en Inform´atica2017/2018 Departamento de Computaci´on Facultad de Inform´atica Universidad de Coru~na Antonio Y´a~nezIzquierdo Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 1 / 85 ContentsI 1 Selecting and preparing installation media installing an O.S. installation media preparing the media 2 The boot process booting booting steps 3 Preparing the disks. Basic disk partitioning disks partitions 4 Sharing disks among O.S.s sharing disks among O.S.s 5 Boot loaders lilo grub Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 2 / 85 ContentsII elilo syslinux using removable media Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 3 / 85 Selecting and preparing installation media Selecting and preparing installation media Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 4 / 85 Selecting and preparing installation media installing an O.S. Selecting and preparing installation media !installing an O.S. Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 5 / 85 Selecting and preparing installation media installing an O.S. Installing an O.S. the most common use of O.S.s is having them \installed" onto computers, and being run from the computer's storage devices there are also some \live" O.S.s that don't require installation but usually have limitations concerning what users can do and what software can be added installing is the process by which we put the O.S. files in one (or more) of the storage units of the system, thus allowing the system to execute the OS directly Antonio Y´a~nezIzquierdo Booting and Installing the Operating System 6 / 85 Selecting and preparing installation media installing an O.S. -
Veritas System Recovery Disk Help
Veritas System Recovery Disk Help About recovering a computer If Windows fails to start or does not run normally, you can still recover your computer. You can use the Veritas System Recovery Disk and an available recovery point or a virtual disk that you created from a recovery point. Note: If you can start Windows and the drive that you want to restore is a non-operating system drive, you can restore the drive within Windows. The Veritas System Recovery Disk lets you run a recovery environment that provides temporary access to Veritas System Recovery 21 recovery features. For example, you can access the recovery features of Veritas System Recovery 21 to restart the computer into its previous, usable state. About recovering a Unified Extensible Firmware Interface (UEFI)-based computer Veritas System Recovery Disk lets you recover the computers that use the Unified Extensible Firmware Interface (UEFI) standard. However, consider the following points when you recover UEFI-based computers: • You must start UEFI-based computers using the 64-bit version of Veritas System Recovery Disk. • When you boot a UEFI-based computer, ensure that the system drive and the boot drive are located on a GPT disk. Similarly, when you boot a BIOS-based computer, your system drive and boot drive must be located on an MBR disk. • You cannot restore backups of the boot partition and the system partition of UEFI-based computers to BIOS-based computers. Backups of UEFI-based computers must be restored to GPT disks. Similarly, you cannot restore backups of the boot partition and the system partition of BIOS-based computers to UEFI-based computers. -
UEFI, Booting & Partition Management
UEFI, Booting & Partition Management Kelvin Cording July 2018 Unified Extendible Interface (UEFI) • Modern computer and Windows are moving away from the traditional MBR based boot- up processes to hardware and software using UEFI • Win 8 introduced UEFI • If Windows 8 is already installed using Legacy BIOS, it can't be converted to UEFI. A new OS installation is required. Understanding a computer boot up process When you hit the power button of your PC, an execution begins that will eventually load the Operating System into memory. This first execution depends on the partition structure of your hard disk. We have two types of partition structures (or formats): MBR and GPT. The partition structure on a drive defines three things: • The structure of data on the drive. • The code used during startup if a partition is bootable. • Where a partition begins and ends. MBR -Master Boot Record GPT Globally Unique Identifier Partition Table = GUID Partition A comparison of GPT and MBR partition structures A comparison of GPT and MBR partition structures (2) Max partition size in MBR is ~2TB whereas in UEFI it is ~9 ZetaBytes One zettabyte (1021) is approximately equal to a thousand exabytes or a billion terabytes. MBR can have at max 4 primary partition whereas GPT can have 128. MBR can store only one bootloader whereas GPT has a separate dedicated EFI System Partition(ESP) for storing multiple bootloaders. The MBR Boot Process Before the BIOS can detect the boot device, it goes through a sequence of system configuration functions starting with: • Power-on-self-test. • Detecting and initializing the video card. -
Abkürzungs-Liste ABKLEX
Abkürzungs-Liste ABKLEX (Informatik, Telekommunikation) W. Alex 1. Juli 2021 Karlsruhe Copyright W. Alex, Karlsruhe, 1994 – 2018. Die Liste darf unentgeltlich benutzt und weitergegeben werden. The list may be used or copied free of any charge. Original Point of Distribution: http://www.abklex.de/abklex/ An authorized Czechian version is published on: http://www.sochorek.cz/archiv/slovniky/abklex.htm Author’s Email address: [email protected] 2 Kapitel 1 Abkürzungen Gehen wir von 30 Zeichen aus, aus denen Abkürzungen gebildet werden, und nehmen wir eine größte Länge von 5 Zeichen an, so lassen sich 25.137.930 verschiedene Abkür- zungen bilden (Kombinationen mit Wiederholung und Berücksichtigung der Reihenfol- ge). Es folgt eine Auswahl von rund 16000 Abkürzungen aus den Bereichen Informatik und Telekommunikation. Die Abkürzungen werden hier durchgehend groß geschrieben, Akzente, Bindestriche und dergleichen wurden weggelassen. Einige Abkürzungen sind geschützte Namen; diese sind nicht gekennzeichnet. Die Liste beschreibt nur den Ge- brauch, sie legt nicht eine Definition fest. 100GE 100 GBit/s Ethernet 16CIF 16 times Common Intermediate Format (Picture Format) 16QAM 16-state Quadrature Amplitude Modulation 1GFC 1 Gigabaud Fiber Channel (2, 4, 8, 10, 20GFC) 1GL 1st Generation Language (Maschinencode) 1TBS One True Brace Style (C) 1TR6 (ISDN-Protokoll D-Kanal, national) 247 24/7: 24 hours per day, 7 days per week 2D 2-dimensional 2FA Zwei-Faktor-Authentifizierung 2GL 2nd Generation Language (Assembler) 2L8 Too Late (Slang) 2MS Strukturierte -
Disk Imaging Technologies
Disk Imaging Technologies Backup and Restoration Challenges Topics • Manufacture Firmware Changes • File System Landscape – UEFI – Introduction to GUID Partition Table (GPT) – Partitions & Limitations • Imaging Utilities Windows & Linux • Full Disk Encryption • Source Web-Links Manufacture Firmware Changes • Industry push to a new standard: – BIOS vs. UEFI • UEFI is to replace and extend the old BIOS firmware. • UEFI is not a new thing. Intel has been working in EFI/UEFI since mid 1990s, and there are vendors like HP or Apple that provided EFI machines since a long time ago. But it is when Microsoft announced Windows 8 that UEFI became the required way to boot the new certified machines. • Secure boot is an extension of UEFI. One of the key points of UEFI is that it can be extended. UEFI has an internal virtual machine that is independent of the architecture that it is using. The standard accepts special binary files compiled for this virtual machine (EFI binaries) that can be executed inside the environment. These binaries can be device drivers, applications or extensions to the UEFI standard. UEFI, in some sense, is like a small operative system that runs when the machine is powered on and whose main task is to find and load another operating system. Unified Extensible Firmware Interface Unified Extensible Firmware Interface (UEFI) is meant as a replacement for the Basic Input/Output System (BIOS) firmware interface ● Initially (1998) designed by Intel for Itanium processor ● Since 2005 managed by the Unified EFI Forum (uefi.org) Source: http://loadays.org/archives/2013/static/slides/Integrating-UEFI-into-rear.pdf Why UEFI? • BIOS has its (aging) limitations – 16-bit processes – max. -
Veritas System Recovery Disk Help
Veritas System Recovery Disk Help About recovering a computer If Windows fails to start or does not run normally, you can still recover your computer. You can use the Veritas System Recovery Disk and an available recovery point or a virtual disk that you created from a recovery point. Note: If you can start Windows and the drive that you want to restore is a non-operating system drive, you can restore the drive within Windows. The Veritas System Recovery Disk lets you run a recovery environment that provides temporary access to Veritas System Recovery 18 recovery features. For example, you can access the recovery features of Veritas System Recovery 18 to restart the computer into its previous, usable state. About recovering a Unified Extensible Firmware Interface (UEFI)-based computer Veritas System Recovery Disk lets you recover the computers that use the Unified Extensible Firmware Interface (UEFI) standard. However, consider the following points when you recover UEFI-based computers: You must start UEFI-based computers using the 64-bit version of Veritas System Recovery Disk. When you boot a UEFI-based computer, ensure that the system drive and the boot drive are located on a GPT disk. Similarly, when you boot a BIOS-based computer, your system drive and boot drive must be located on an MBR disk. You cannot restore backups of the boot partition and the system partition of UEFI-based computers to BIOS-based computers. Backups of UEFI-based computers must be restored to GPT disks. Similarly, you cannot restore backups of the boot partition and the system partition of BIOS-based computers to UEFI-based computers. -
Copy of RECON LAB Full Manual
Copy of RECON LAB Full Manual Copy of RECON LAB Full Manual by SUMURI 1 / 62 Copy of RECON LAB Full Manual 1. INTRODUCTION ............................................................................................ 6 1.1. WHY USE A MAC FOR FORENSIC ANALYSIS? ......................................... 6 1.1.1. APPLE EXTENDED ATTRIBUTES ............................................................ 6 1.1.2. VIEWING PROPER TIMESTAMPS ........................................................... 7 1.1.3. VIEWING FILES NATIVELY ..................................................................... 7 1.1.4. APPLE FILE SYSTEM (APFS) .................................................................. 7 1.1.5. LOCAL TIME MACHINE SNAPSHOTS (APFS) ........................................... 7 1.1.6. FILEVAULT ........................................................................................... 8 1.1.7. SUPPORT FOR OTHER FILE SYSTEMS .................................................. 8 1.2. HYBRID PROCESSING ENGINE ................................................................ 8 1.3. THREE STAGE ANALYSIS ......................................................................... 8 1.4. SUPPORT FOR OVER 270 TIMESTAMPS .................................................. 8 1.5. ADVANCED TIMELINES ............................................................................ 9 1.6. ADVANCED DATA CORRELATION ............................................................ 9 1.7. ADVANCED REPORTING WITH FULL CONTROL ...................................... 9 2. -
Pc-Based Partitions
Carrier_05.qxd 2/22/05 3:07 PM Page 81 PC-based5 Partitions The last chapter provided an overview of volume analysis and why it’s important. Now we’re going to leave the abstract discussion of volumes and dive into the details of the partition systems used in personal computers. In this chapter, we will look at DOS parti- tions, Apple partitions, and removable media. For each system, we review how it works and look at its data structure. If you are not interested in the data structure details, you can skip those sections. This chapter also covers special considerations that should be made when analyzing these systems. The next chapter will examine server-based partitioning systems. DOS PARTITIONS The most commonly encountered partition system is the DOS-style partition. DOS partitions have been used with Intel IA32 hardware (i.e., i386 / x86) for many years, yet there is no official specification. There are many Microsoft and non-Microsoft documents that discuss the partitions, but there is no standard reference. In addition to there being no standard reference, there is also no standard name. Microsoft now calls disks using this type of partition system Master Boot Record (MBR) disks. This is in comparison to a GUID Partition Table (GPT) disk that is used with the Extensible Firmware Interface (EFI) and the 64-bit Intel Itanium-based systems (IA64), which are discussed in the next chapter[Microsoft 2004a]. Starting with Windows 2000, Microsoft also differentiates between basic and dynamic disks. A basic disk refers to 81 Carrier_05.qxd 2/22/05 3:07 PM Page 82 CHAPTER 5 PC-BASED PARTITIONS either an MBR or a GPT disk, and the partitions in the disk are independent and stand- alone. -
Testing Software Tools of Potential Interest for Digital Preservation Activities at the National Library of Australia
PROJECT REPORT Testing Software Tools of Potential Interest for Digital Preservation Activities at the National Library of Australia Matthew Hutchins Digital Preservation Tools Researcher 30 July 2012 Project Report Testing Software Tools of Potential Interest for Digital Preservation Activities at the National Library of Australia Published by Information Technology Division National Library of Australia Parkes Place, Canberra ACT 2600 Australia This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.1 Australia License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.1/au/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco California 94105 USA. 2│57 www.nla.gov.au 30 July 2012 Creative Commons Attribution-NonCommercial-ShareAlike 2.1 Australia Project Report Testing Software Tools of Potential Interest for Digital Preservation Activities at the National Library of Australia Summary 5 List of Recommendations 5 1 Introduction 8 2 Methods 9 2.1 Test Data Sets 9 2.1.1 Govdocs1 9 2.1.2 Selections from Prometheus Ingest 9 2.1.3 Special Selections 10 2.1.4 Selections from Pandora Web Archive 11 2.2 Focus of the Testing 11 2.3 Software Framework for Testing 12 2.4 Test Platform 13 3 File Format Identification Tools 13 3.1 File Format Identification 13 3.2 Overview of Tools Included in the Test 14 3.2.1 Selection Criteria 14 3.2.2 File Investigator Engine 14 3.2.3 Outside-In File ID 15 3.2.4 FIDO 16 3.2.5 Unix file Command/libmagic 17 3.2.6 Other