Abstracts of Talks and Posters, 10Th International Auchenorrhyncha Congress, Cardiff

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts of Talks and Posters, 10Th International Auchenorrhyncha Congress, Cardiff ABSTRACTS OF TALKS AND POSTERS University of California, Berkeley August 7-12, 2005 Contents Welcome and Acknowledgements List of participants Opening keynote talks Fossils Versus Molecules and Cladistics: Controversies over the Hemiptera Phylogeny I-1 to 3 Acoustic Signals, Species and Speciation in Auchenorrhyncha: I-4 to 5 A Historical Review An Ancient Symbiont of Auchenorrhyncha from the Bacterial Phylum Bacteriodetes I-5 Why Do We Study Auchenorrhynchan Feeding Processes? I-6 to 7 Symposium: Electrical Penetration Graph (EPG) Monitoring to Study Auchenorrhynchan S-1 to S-9 Feeding Processes (Monday afternoon) Symposium: Phylogeny and Evolution of Auchenorrhyncha – I (Tuesday morning) S-10 to S-20 Symposium: Phylogeny and Evolution of Auchenorrhyncha – II (Thursday morning) S-21 to S-32 Symposium: Invasive Auchenorrhyncha S-33 to S-40 Posters (alphabetical order by last name of presenting author) Behavior (3 abstracts) P-1 to P-5 Ecology (6) P-6 to P-13 Physiology (3) P-14 to P-16 Systematics (13) P-17 to P-35 Vectors (6) P-36 to 43 Submitted Papers (alphabetical order by last name of presenting author) T-1 to 21 Welcome to Berkeley! We hope you will have a rewarding meeting. Many of us have worked towards making this meeting both enjoyable and productive. We hope you will enjoy it. Acknowledgements The 12th Intl. Auchenorrhyncha Congress and concurrent 6th Intl. Workshop on Leafhoppers and Planthoppers of Economic Significance is supported by a grant (2004-01095) from United States Department of Agriculture, Cooperative State Research, Education, and Extension Service. The College of Natural Resources at UC Berkeley provided support and encouragement. We also thank the universities Conference Services, particularly Mary Saito for their help. We appreciate the contributions of Beringer Winery, Kendall-Jackson Winery, Monterey-Pacific Winery, and Stag’s Leap Cellars. Thanks to those in the Purcell and Roderick labs who helped out. Clytia Montllor Curley, Tina Wistrom, Clelia Bacarri, and Joe Spagna were especially helpful. Rita Purcell headed the planning for activities for accompanying persons and she and Alison Purcell O’Dowd helped out in many other ways. LIST OF PRE-REGISTERED PARTICIPANTS Name Affiliation Email Almeida, Rodrigo University of Hawaii [email protected] Ammar, El-Desouky Dept. Entomology, The Ohio State [email protected] University Backus, Elaine USDA-ARS [email protected] Bartlett, Charles University of Delaware [email protected] Bellis, Glenn University of Queensland [email protected] Bernard, Reynaud CIRAD [email protected] Bosco, Domenico Università di Torino - Di.Va.P.R.A. [email protected] - Entomologia Bosque-Perez, Nilsa University of Idaho [email protected] Bressan, Alberto University of Padova [email protected] Carpane, Pablo Daniel Oklahoma State University [email protected] Claridge, Michael University of Wales, Cardiff, UK [email protected] Cocroft, Rex University of Missouri [email protected] Cryan, Jason New York State Museum [email protected] De Luca, Paul University of Missouri [email protected] Dietrich, Chris Illinois Natural History Survey [email protected] Dollet, Michel CIRAD [email protected] Donovall, Leo University of Delaware [email protected] Emeljanov, Alexander Russian Academy of Sciences [email protected] Fletcher, Murray New South Wales Dept of Primary [email protected] Industries Freytag, Paul University of Kentucky [email protected] Gill, Raymond California Dept. Food & Agriculture [email protected] Godoy, Carolina National Biodiversity Institute [email protected],[email protected] INBio Gonzon, Anthony University of Delaware [email protected] Grandgirard, Julie Gump Station [email protected] Gustavo, Moya-Raygoza University of Guadalajara [email protected] Hamilton, Andy Agriculture Canada [email protected] Hayashi, Masami Saitama University [email protected] Hill, Kathy University of Connecticut [email protected] Hoddle, Mark Department of Entomology [email protected] Jones, Walker USDA-ARS-EBCL [email protected] Kamitani, Satoshi Kyushu University [email protected] Krishnankutty, Sindhu University of Illinois,Urbana- Champaign [email protected] Kwon, Yong Jung School of Applied Biology and [email protected] Chemistry, Coll. of Agr. Life Sci., Kyungpook National University Loecker, Birgit University of Sydney [email protected] Loecker, Holger University of Sydney [email protected] Lopes, Joao ESALQ/USP [email protected] Marshall, David University of Connecticut [email protected] Mizell, Russell University of Florida [email protected] Moran, Nancy Univ of Arizona [email protected] Muhlethaler, Roland Naturhistorisches Museum [email protected] 2313 W. Calle Balaustre, Green O'Brien, Lois and Charles [email protected] Valley, AZ 85614-4087 National Agricultural Research Otuka, Akira Center [email protected] Petit, Jérôme Gump station [email protected] Purcell, Sandy Univ. of California [email protected] Rakitov, Roman Illinois Natural History Survey [email protected] Ramos, Mariangie CATIE/University of Idaho [email protected] Ranger, Chris Rutgers University [email protected] Roderick, George UC Berkeley [email protected] Rubinoff, Dan The University of Hawai'i [email protected] Sangha, Jatinder IRRI (Ph.D. Student) [email protected] Semeraro, Linda Department of Primary Industries [email protected] Semetey, Olivier INRA [email protected] Shcherbakov, Dmitry Russian Academy of Sciences [email protected] Shugart, Holly USDA-ARS [email protected] Snyder, Robert University of Missouri [email protected] Sorensen, John Calif. Dept. of Food & Agriculture [email protected] Sacramento Stafford, Candice UC Riverside [email protected] Stiller, Michael Plant Protection Research Institute [email protected] Szwedo, Jacek Museum and Institute of Zoology [email protected] Polish Academy of Sciences Takiya, Daniela M. Illinois Natural History Survey [email protected] Department Biological Sciences, Thompson, Vinton Kean University [email protected] Triapitsyn, Serguei University of California at Riverside [email protected] Urban, Julie New York State Museum [email protected] Walker, Gregory Univ of California, Riverside [email protected] Wallner, Adam University of Illinois at Urbana- [email protected] Champaign Wayadande, Astri Oklahoma State University [email protected] Whitcomb, Robert [email protected] Wilson, Michael National Museum of Wales [email protected] Winterton, Shaun CA Dept. of Food & Agriculture [email protected] Zahniser, James Department of Entomology [email protected] Opening Keynote Talks I-1 Fossils versus Molecules and Cladistics: Controversies over the Hemiptera Phylogeny Dmitry E. Shcherbakov, Paleontological Institute, Russian Academy of Sciences, Moscow 117647, Russia. [email protected] Ten years ago grouping Heteroptera (+Coleorrhyncha) together with Auchenorrhyncha as Euhemiptera, their sister relationships with Sternorrhyncha, and therefore paraphyly of Homoptera have been inferred from the 18S rDNA (Campbell et al. 1994, 1995; Sorensen et al. 1995; von Dohlen and Moran 1995). There is nothing new under the moon: morphological synapomorphies of Heteropterodea and Auchenorrhyncha have been listed by Emeljanov (1987), their common ancestry has been traced by Popov (1980), and they have been united as Hemelytrata (=Euhemiptera) and opposed to Hymenelytrata (sternorrhynchans and thrips) within Hemiptera by Fallen (1829). So the only novelty was a cladistic claim to abandon paraphyletic Homoptera. However, paraphyletic taxa are inherent in the Linnean classification (Brummitt 2003), so taxonomists and paleontologists will continue to use such concepts as Reptilia, Blattodea or Homoptera. When tracing phylogeny through the fossil record we arrange taxonomic clusters in branched chains of ancestry, rank these clusters according to the hierarchy of hiatuses between them, and accept all non-polyphyletic taxa as natural (Rasnitsyn 1996); holophyly and paraphyly are merely two stages in evolution of a taxon: all paraphyletic taxa had once been holophyletic, and all holophyletic taxa are potentially paraphyletic. Even taxa that do not have any diagnostic characters in common may fall into the same cluster if we find all the intermediate steps between them: ‘The characters do not make the genus; but the genus gives the characters’ (Linnaeus 1751). For the basal branching of Hemiptera, molecular cladograms differ from morphology- and fossil-based phylogeny (Shcherbakov and Popov 2002). The lineage Psocida (Permopsocina)→Lophioneurina→Thysanoptera is traceable back along with the Hemiptera lineage into the earliest Permian (285 Myr ago), both descending from Paleozoic Hypoperlina. Fossils indicate that Thysanoptera and Hemiptera developed sucking mouthparts in parallel, contrary to their grouping as Condylognatha based on putative synapomorphies (Börner 1904) and 18S rDNA (Johnson et al. 2004). The Psyllina lineage (Psyllomorpha and their offshoot Aleyrodomorpha, known since the Jurassic – Shcherbakov 2000) and Aphidina lineage (extinct Pincombeomorpha and their descendants Aphidomorpha and Coccomorpha, both since the Triassic) separated before the mid-Permian (270 Myr) from Permian Paleorrhyncha (=Archescytinina), the stem hemipterans ancestral also to Hemelytrata and showing apomorphies
Recommended publications
  • On the Evolution of the Tymbalian Tymbal Organ: Comment On
    Cicadina 18 (2019): 17-26 17 Response to “On the evolution of the tymbalian tymbal organ: Comment on “Planthopper bugs use a fast, cyclic elastic recoil mechanism for effective vibrational communication at small body size” by Davranoglou et al. 2019” Leonidas-Romanos Davranoglou1, Alice Cicirello, Beth Mortimer, Graham K. Taylor Zusammenfassung: Kommunikation über Vibrationssignale in der Gruppe der Spitzkopf- zikaden (Hemiptera: Fulgoromorpha) ist allgegenwärtig, doch war der zugrundeliegende Mechanismus bis zu einem kürzlich erschienenen Artikel von Davranoglou et al. (2019) un- bekannt. In diesem Beitrag werden die funktionelle Morphologie, die Biomechanik des Ver- haltens und die systematische Verbreitung eines weitverbreiteten Vibrationsmechanismus´ beschrieben, den die Autoren als Schnapporgan („snapping organ“) bezeichneten. Der Me- chanismus dieses Schnapporgans unterscheidet sich prinzipiell von den einzigen vergleich- baren Vibrationsorganen innerhalb der Hemipteren, nämlich den Trommelorganen (Tymbal) der Singzikaden (Cicadidae, Cicadomorpha). Kurz nach der Veröffentlichung argumentier- ten Hoch et al. (2019), dass es „unnötig, wenn nicht sogar irreführend“ wäre, diesen Mecha- nismus als „snapping organ“ zu bezeichnen und führten aus, dass dieses vielmehr als tym- balähnliches Trommelorgan mit Schnappmechanismus („tymbalian tymbal organ with snap- ping mechanism“) bezeichnet werden sollte. Diese Bezeichnung bezieht sich auf die „Tym- balia“-Hypothese von Wessel et al. (2014), der zufolge alle bekannten abdominalen Vibrati- onsorgane der Hemiptera Modifikationen eines abdominalen Vibrationsorgans darstellen, das im letzten gemeinsamen Vorfahren der Fulgoromorpha, Cicadomorpha und Heterop- terodea vor 300 Mio. Jahren vorhanden war. In unserem Beitrag zeigen wir, dass die Krite- rien, die Wessel et al (2014) verwendeten, um das tymbalähnliche Trommelorgan zu definie- ren, auf fehlerhaften segmentalen Zuordnungen der Schlüsselmuskulaturen beruhen. Die „Tymbalia“-Hypothese muss daher neu evaluiert werden.
    [Show full text]
  • Based on Comparative Morphological Data AF Emel'yanov Transactions of T
    The phylogeny of the Cicadina (Homoptera, Cicadina) based on comparative morphological data A.F. Emel’yanov Transactions of the All-Union Entomological Society Morphological principles of insect phylogeny The phylogenetic relationships of the principal groups of cicadine* insects have been considered on more than one occasion, commencing with Osborn (1895). Some phylogenetic schemes have been based only on data relating to contemporary cicadines, i.e. predominantly on comparative morphological data (Kirkaldy, 1910; Pruthi, 1925; Spooner, 1939; Kramer, 1950; Evans, 1963; Qadri, 1967; Hamilton, 1981; Savinov, 1984a), while others have been constructed with consideration given to paleontological material (Handlirsch, 1908; Tillyard, 1919; Shcherbakov, 1984). As the most primitive group of the cicadines have been considered either the Fulgoroidea (Kirkaldy, 1910; Evans, 1963), mainly because they possess a small clypeus, or the cicadas (Osborn, 1895; Savinov, 1984), mainly because they do not jump. In some schemes even the monophyletism of the cicadines has been denied (Handlirsch, 1908; Pruthi, 1925; Spooner, 1939; Hamilton, 1981), or more precisely in these schemes the Sternorrhyncha were entirely or partially depicted between the Fulgoroidea and the other cicadines. In such schemes in which the Fulgoroidea were accepted as an independent group, among the remaining cicadines the cicadas were depicted as branching out first (Kirkaldy, 1910; Hamilton, 1981; Savinov, 1984a), while the Cercopoidea and Cicadelloidea separated out last, and in the most widely acknowledged systematic scheme of Evans (1946b**) the last two superfamilies, as the Cicadellomorpha, were contrasted to the Cicadomorpha and the Fulgoromorpha. At the present time, however, the view affirming the equivalence of the four contemporary superfamilies and the absence of a closer relationship between the Cercopoidea and Cicadelloidea (Evans, 1963; Emel’yanov, 1977) is gaining ground.
    [Show full text]
  • Matsumura's Collection of Froghoppers and Sharpshooters (Hemiptera: Cicadomorpha) of Taiwan in the Hokkaido University Insect
    Proceedings of the 2013 International Symposium on Insect Vectors and Insect-Borne Diseases Matsumura’s Collection of Froghoppers and Sharpshooters (Hemiptera: Cicadomorpha) of Taiwan in the Hokkaido University Insect Collection Kazunori Yoshizawa 1, 6, Jeng-Tze Yang 2, 3, Yu-Der Wen 4, Hsien-Tzung Shih 5,7 1 Systematic Entomology, Hokkaido University, Sapporo 060-8589, Japan 2 Department of Entomology, National Chung Hsing University, Taiwan, ROC 3 Department of Plant Medicine, National Pingtung University of Science and Technology, Taiwan, ROC 4 Department of Biology, National Changhua University of Education, Changhua, Taiwan, ROC 5 Applied Zoology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taichung, Taiwan, ROC 6 corresponding author, E-mail: [email protected] 7 corresponding author, E-mail: [email protected] ABSTRACT The Laboratory of Systematic Entomology, Faculty of Agriculture, Hokkaido University, Sapporo, Japan (SEHU), former Entomological Institute of Sapporo Agricultural College, was founded by Professor Shonen Matsumura. SEHU has preserved the insect specimens named by Professor Matsumura for a long time that includes insect specimens collected from Taiwan. Some of them are xylem-feeders, such as froghoppers and sharpshooters which can transmit xylem-limited bacteria (XLB). This article provides the checklist of Taiwan froghoppers and sharpshooters named by Professor Matsumura preserved in SEHU. The checklist contains 44 froghopper species and 4 sharpshooter species. This checklist could be a reference for studying the taxonomy of xylem-feeders in Taiwan. Keywords: Taiwan, froghopper, sharpshooter, Hokkaido University, Shonen Matsumura INTRODUCTION Xylem feeders belonging to Hemiptera are capable to transmit xylem-limited bacteria (XLB). Therefore, these xylem feeders were considered as potential vectors of XLB (34).
    [Show full text]
  • Author Index to USDA Technical Bulletins
    USD Index to USDA United States Department of Agriculture Technical Bulletins Compiled in March 2003 by: ARS Ellen Kay Miller Agricultural D.C. Reference Center Research Service National Agricultural Library Agricultural Research Service U.S. Department of Agriculture NAL Updated November 2003 National Agricultural Library National Agricultural Library Cataloging Record: Miller, Ellen K. Index to USDA Technical Bulletins 1. United States. Dept. of Agriculture--Periodicals, Indexes. I. Title. aZ5073.I52-1993 Contents USDA Technical Bulletins by Title USDA Technical Bulletins by Number - 1-1906 Subject Index (with links to Bulletin Title) Author Index (with links to Bulletin Title) The National Agricultural Library call number of each Agriculture Information Bulletin is (1--Ag84Te-no.xxx), where xxx is the series document number of the publication. Titles held by the National Agricultural Library can be verified in the Library's AGRICOLA database. To obtain copies of these documents, contact your local or state libraries, including public libraries, land-grant university libraries, or other large research libraries. Note: An older edition of this document was published in 1993: Index to USDA Technical Bulletins, Numbers 1-1802. The current edition is an Internet-based document, and includes links to full-text USDA Technical Bulletins on the Internet. Technical Bulletins by Title Skip Navigation Bar | By Title | By Number | Subject Index | Author Index Go to: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | A Accounting for the environment in agriculture. Hrubovcak, James; LeBlanc, Michael, and Eakin, B.
    [Show full text]
  • Identification and Ecology of Alternative Insect Vectors Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE www.nature.com/scientificreportsprovided by AIR Universita degli studi di Milano OPEN Identifcation and ecology of alternative insect vectors of ‘Candidatus Phytoplasma solani’ to grapevine Fabio Quaglino1, Francesco Sanna2, Abdelhameed Moussa 1, Monica Faccincani3, Alessandro Passera1, Paola Casati1, Piero Attilio Bianco1 & Nicola Mori 2* Bois noir, a disease of the grapevine yellows complex, is associated with ‘Candidatus Phytoplasma solani’ and transmitted to grapevines in open felds by the cixiids Hyalesthes obsoletus and Reptalus panzeri. In vine-growing areas where the population density of these vectors is low within the vineyard, the occurrence of bois noir implies the existence of alternative vectors. The aim of this study was to identify alternative vectors through screening of the Auchenorrhyncha community, phytoplasma typing by stamp gene sequence analyses, and transmission trials. During feld activities, conducted in Northern Italy in a vineyard where the bois noir incidence was extremely high, nine potential alternative insect vectors were identifed according to high abundance in the vineyard agro-ecosystem, high infection rate, and harbouring phytoplasma strains characterized by stamp gene sequence variants found also in symptomatic grapevines. Transmission trials coupled with molecular analyses showed that at least eight species (Aphrodes makarovi, Dicranotropis hamata, Dictyophara europaea, Euscelis incisus, Euscelidius variegatus, Laodelphax striatella, Philaenus spumarius, and Psammotettix alienus/confnis) are alternative vectors of ‘Candidatus Phytoplasma solani’ to grapevines. These novel fndings highlight that bois noir epidemiology in vineyard agro-ecosystems is more complex than previously known, opening up new perspectives in the disease management. Bois noir (BN), a disease of the grapevine yellows (GY) complex, causes serious crop losses in wine-making grape varieties in the Euro-Mediterranean area and in other vine-growing countries.
    [Show full text]
  • First Record of Nearctic Issid Planthopper Thionia Simplex (Hemiptera: Fulgoroidea: Issidae) from Europe
    238 V.M. GNEZDILOV & F. POGGI. FIRST RECORD OF THIONIA SIMPLEX FROM EUROPE Figs 1–3. Thionia simplex (Germar, 1830), male, Italy. 1, dorsal view; 2, lateral view; 3, frontal view. Total length of specimen is 5.2 mm. ZOOSYSTEMATICA ROSSICA, 23(2): 238–241 25 DECEMBER 2014 First record of Nearctic issid planthopper Thionia simplex (Hemiptera: Fulgoroidea: Issidae) from Europe Первое указание неарктической иссиды Thionia simplex (Hemiptera: Fulgoroidea: Issidae) из Европы V.M. GNEZDILOV* & F. POGGI В.М. ГНЕЗДИЛОВ & Ф. ПОДЖИ V.M. Gnezdilov, Zoological Institute of the Russian Academy of Sciences, 1 Universitetskaya Emb., St Petersburg 199034, Russia. E-mails: [email protected], [email protected] F. Poggi, Via Madonnina 6, I-23873 Missaglia (LC), Italia. E-mail: [email protected] The Nearctic issid species Thionia simplex (Germar, 1830) is recorded for the first time from Europe. Other alien Auchenorrhyncha species in Europe are listed and discussed. Неарктическая иссида Thionia simplex (Germar, 1830) впервые указана из Европы. Пере- числены и обсуждены другие случаи завозов в Европу цикадовых. Key words: alien species, U.S.A., Europe, Italy, Auchenorrhyncha, Fulgoroidea, Issidae, Issini, planthopper, new record Ключевые слова: инвазивный вид, США, Европа, Италия, Auchenorrhyncha, Fulgoroi- dea, Issidae, Issini, фулгороидные цикадовые, новое указание INTRODUCTION description (including of the male genita- lia) given by Doering (1938). Italy has become the “gateway for New Thionia simplex (Germar, 1830) was de- World planthoppers in Europe” since the scribed from Kentucky in U.S.A. (Germar, last century as several species which are 1830). Currently this species is recorded adventive for Europe were first recorded from 19 states in eastern U.S.A.
    [Show full text]
  • The Leafhoppers of Minnesota
    Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917).
    [Show full text]
  • Nomenclatural Changes and Two New Species in the Leafhopper Genus Usanus Delong (Hemiptera: Cicadellidae) with Notes on Conservation Status
    Zootaxa 4822 (4): 567–576 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4822.4.6 http://zoobank.org/urn:lsid:zoobank.org:pub:0A9B6A82-EB48-4DB8-951B-53B8319F23B4 Nomenclatural changes and two new species in the leafhopper genus Usanus DeLong (Hemiptera: Cicadellidae) with notes on conservation status J. ADILSON PINEDO-ESCATEL1,2* & CHRISTOPHER H. DIETRICH1,3 1Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 S. Oak St., Champaign, IL 61820, US. 2Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, km 15.5 carretera Guadalajara–Nogales, Las Agujas, Zapopan, C.P. 45110, Apdo. Postal 139, Jalisco, México 3 [email protected]; https://orcid.org/0000-0003-4005-4305 *Corresponding author. [email protected]; https://orcid.org/0000-0002-7664-860X Abstract The Mexican leafhopper genus and species Devolana hemicycla DeLong, 1967 syn. nov., is recognized as a junior synonym of Usanus stonei DeLong, 1947. Three previously described species, U. tuxcacuensis (Pinedo-Escatel & Aguilar-Pérez, 2019) comb. nov., U. youajla (Pinedo-Escatel, 2019) comb. nov., and U. xajxayakamej (Pinedo-Escatel, 2019) comb. nov. are transferred to Usanus. Two new species, U. xochipalensis sp. nov. and U. igualaensis sp. nov. from Guerrero, are described and illustrated. An updated key to all known species of Usanus is provided. Key words: Mexico, Auchenorrhyncha, Deltocephalinae, taxonomy, native species, Athysanini, Devolana Resumen La chicharrita mexicana del género y especie Devolana hemicycla DeLong, 1967 syn. nov. es reconocida como una júnior sinonimia de Usanus stonei DeLong, 1947.
    [Show full text]
  • Conceptual Issues in Phylogeny, Taxonomy, and Nomenclature
    Contributions to Zoology, 66 (1) 3-41 (1996) SPB Academic Publishing bv, Amsterdam Conceptual issues in phylogeny, taxonomy, and nomenclature Alexandr P. Rasnitsyn Paleontological Institute, Russian Academy ofSciences, Profsoyuznaya Street 123, J17647 Moscow, Russia Keywords: Phylogeny, taxonomy, phenetics, cladistics, phylistics, principles of nomenclature, type concept, paleoentomology, Xyelidae (Vespida) Abstract On compare les trois approches taxonomiques principales développées jusqu’à présent, à savoir la phénétique, la cladis- tique et la phylistique (= systématique évolutionnaire). Ce Phylogenetic hypotheses are designed and tested (usually in dernier terme s’applique à une approche qui essaie de manière implicit form) on the basis ofa set ofpresumptions, that is, of à les traits fondamentaux de la taxonomic statements explicite représenter describing a certain order of things in nature. These traditionnelle en de leur et particulier son usage preuves ayant statements are to be accepted as such, no matter whatever source en même temps dans la similitude et dans les relations de evidence for them exists, but only in the absence ofreasonably parenté des taxons en question. L’approche phylistique pré- sound evidence pleading against them. A set ofthe most current sente certains avantages dans la recherche de réponses aux phylogenetic presumptions is discussed, and a factual example problèmes fondamentaux de la taxonomie. ofa practical realization of the approach is presented. L’auteur considère la nomenclature A is made of the three
    [Show full text]
  • Hemiptera: Cercopoidea: Clastopteridae) Vinton Thompson1
    Cicadina 12: 81-87 (2011) 81 Notes on the Biology of Clastoptera distincta Doering, the Dwarf Mistletoe Spittlebug (Hemiptera: Cercopoidea: Clastopteridae) Vinton Thompson1 Abstract: Nymphs of the spittlebug Clastoptera distincta Doering (Hemiptera: Cercopoidea: Clastopteridae) are xylem sap hyperparasites of the mistletoe Arceuthobium vaginatum subsp. cryptopodum, a parasite of Pinus ponderosa in the southwestern United States. C. distincta adults, which live directly on P. ponderosa, are polymorphic for three distinct color forms. Mistletoe feeding in the nymphal stage may be an adaptation to the regional monsoon climate, permitting the spittlebugs to take advantage of high mistletoe transpiration and xylem flow rates during the early summer dry season, when transpiration in the host trees is curtailed. Zusammenfassung: Larven der Schaumzikade Clastoptera distincta Doering (Hemiptera: Cercopoidea: Clastopteridae) sind Xylemsaft-Hyperparasiten an der Mistelart Arceuthobium vaginatum subsp. cryptopodum, einem Parasiten an Pinus ponderosa im Südwesten der Vereinigten Staaten. Die Adulten von C. distincta, die direct an P. ponderosa leben, sind polymorph bzgl. drei verschiedener Farbformen. Das Saugen an Misteln im Larvalstadium könnte eine Anpassung an das regionale Monsunklima sein, das es den Schaum- zikaden ermöglicht, von der hohen Transpirationrate und Xylemsaftflüssen während der Trockenphase im Frühsommer zu profitieren, wenn die Transpiration in der eigentlichen Nahrungspflanze eingeschränkt ist. Key words: spittlebug, Clastoptera,
    [Show full text]
  • Biodiversity of Insect Pests of Major Cereal Crops in Mid Hills of Meghalaya
    The Pharma Innovation Journal 2019; 8(8): 287-292 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Biodiversity of insect pests of major cereal crops in mid TPI 2019; 8(8): 287-292 © 2019 TPI hills of Meghalaya www.thepharmajournal.com Received: 10-06-2019 Accepted: 12-07-2019 K Kuotsu and R Lalrinfeli K Kuotsu Abstract School of Crop Protection, Cereals are the staple food for most of the world's population. Among the cereals, rice and maize are two College of Post Graduate Studies (CAU), Umroi Road, Umiam, major food crops of India in general and North East region in particular. Several insect pests are Meghalaya, India associated with the cereal crop ecosystem which is a major threat to agriculture causing substantial economic losses. However limited information is available on insect pests of cereals ecosystem in mid- R Larinfeli hills of Meghalaya. Therefore, this study was conducted to study the biodiversity of insect pest of major Division of Crop Protection, cereal crops viz., rice and maize in mid hills of Meghalaya. During 2015-16, a total of 23 insect pests ICAR Research Complex for were collected, identified and documented which were belonging to four insect orders viz., Hemiptera NEH, Region, Umroi Road, (12), Lepidoptera (6) Coleoptera (4), and Orthoptera (1). 6 species of insect viz., Chilopartellus, Umiam, Meghalaya, India Helicoverpa armigera, Leptocorisa vericornis, Nilaparvata lugens, Cnaphalocrocis medinalis and Parapoynx stagnalis were found to be major pest of rice and maize and 17 species of insects viz., Rhopalosiphum maidis, R. padi, Parnara ganga, Leucopholis lepidophora, Nezara viridula, Xylotrupes siamensis, Melanitis leda, Oxya hyla hyla, Monolepta quadriguttata, Nephotettix nigropictus, N.
    [Show full text]
  • Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
    _____________ Mun. Ent. Zool. Vol. 2, No. 1, January 2007___________ I MUNIS ENTOMOLOGY & ZOOLOGY Ankara / Turkey II _____________ Mun. Ent. Zool. Vol. 2, No. 1, January 2007___________ Scope: Munis Entomology & Zoology publishes a wide variety of papers on all aspects of Entomology and Zoology from all of the world, including mainly studies on systematics, taxonomy, nomenclature, fauna, biogeography, biodiversity, ecology, morphology, behavior, conservation, pa!eobiology and other aspects are appropriate topics for papers submitted to Munis Entomology & Zoology. Submission of Manuscripts: Works published or under consideration elsewhere (including on the internet) will not be accepted. At first submission, one double spaced hard copy (text and tables) with figures (may not be original) must be sent to the Editors, Dr. Hüseyin Özdikmen for publication in MEZ. All manuscripts should be submitted as Word file or PDF file in an e-mail attachment. If electronic submission is not possible due to limitations of electronic space at the sending or receiving ends, unavailability of e-mail, etc., we will accept ―hard‖ versions, in triplicate, accompanied by an electronic version stored in a floppy disk, a CD-ROM. Review Process: When submitting manuscripts, all authors provides the name, of at least three qualified experts (they also provide their address, subject fields and e-mails). Then, the editors send to experts to review the papers. The review process should normally be completed within 45-60 days. After reviewing papers by reviwers: Rejected papers are discarded. For accepted papers, authors are asked to modify their papers according to suggestions of the reviewers and editors. Final versions of manuscripts and figures are needed in a digital format.
    [Show full text]