Food Ingredients

Total Page:16

File Type:pdf, Size:1020Kb

Food Ingredients ACCEPTABLE ING Ingredients generally considered safe CH O (excluding allergies/sensitivities that individuals may have) T U A R acetic acid: acidulant, flavoring agent disodium phosphate: protien stabilizer, buffer, emulsifier pectin: gelling agent, stabilizer, thickener W PEA’S & Q’S agave: sweetener egg albumin: nutrient, whipping agent phosphoric acid: acidulant algin: thickener, stabilizer erythorbic acid: antioxidant polysorbate 60, 65, or 80: emulsifier alpha tocopherol: antioxidant, nutrient ferrous gluconate: nutrient, colorant potassium acid tartrate: leavener, acidulant alpha tocopherol acetate: antioxidant, nutrient fractionated palm kernel oil: emulsifier and fat (also known as cream of tartar) ammonium bicarbonate: leavening agent fructose: sweetener potassium bicarbonate: leavener, alkali ammonium phosphate: leavening agent, dough fruit juice concentrates: sweetener potassium chloride: nutrient, salt substitute strengthener gelatin: gelling agent potassium gluconate: nutrient, sequestrant annato: colorant (natural) glucono delta-lactone: acidulant, leavener potassium iodide: nutrient ascorbates: antioxidant, nutrient glycerin: humectant, flavor & color solvent ribbon cane syrup: sweetener ascorbic acid: leavening agent, dough strengthener gum acacia: stabilizer rice syrup: sweetener ascorbyl palmitate: antioxidant gum arabic: emulsifier, stabilizer silicon dioxide: anti caking agent barley malt: sweetener gum karaya: emulsifier, texturizer smoke flavoring (natural): flavor beta-carotene: antioxidant, nutrient, colorant gum tragacanth: stabilizer, thickener sodium acid pyrophosphate: leavening agent, buffer biotin: nutrient honey: sweetener sodium ascorbate: antioxidant calcium carbonate: anti-caking agent, nutrient hydrolyzed plant protein: flavor enhancer sodium bicarbonate: leavening agent, buffer (also known as baking soda) calcium caseinate: binder, whipping agent, nutrient hydrolyzed vegetable protein: flavor enhancer calcium chloride: firming agent sodium caseinate (milk protein): nutrient, emulsifier, invert sugar: sweetener whipping agent calcium citrate: firming agent, sequestrant, buffer, nutrient lactic acid: acidulant, antioxidant sodium citrate: buffer, sequestrant, emulsifier calcium lactate: nutrient, stabilizer/texturizer lactose (milk sugar): humectant, crystalline control agent, sodium erythorbate: antioxidant calcium pantothenate: nutrient sweetener sodium phosphate: protein stabilizer, buffer, emulsifier calcium phosphate: leavening agent, acidulant, nutrient, levulose: sweetener (also known as fructose) sodium pyrophosphate: leavening agent, sequestrant dough conditioner locust bean gum: thickener, stabilizer sorbitol: sweetener calcium sulfate: firming agent, dough conditioner, nutrient magnesium carbonate: anticaking agent, alkali sorghum: sweetener caramel color: colorant (natural) magnesium chloride: firming agent, color retention agent Food Sucanat: sweetener carmine (cochineal): colorant (from insects) magnesium stearate: lubricant, binder sucrose: sweetener carob bean gum: thickener, stabilizer, texturizer malic acid: acidulant, antioxidant sugar, white & brown: sweetener carotene: colorant (natural), nutrient malt extract: flavorant Ingredients casein (milk protein): nutrient, emulsifier tartaric acid: acidulant malto-dextrin: texturizer, flavor, dispersant titanium dioxide: colorant cellulose: stabilzer, thickener, fiber source maltose: sweetener tocopherols: antioxidant, nutrient (vitamin E), preservative chlorine in household products: disinfectant, bleaching mannitol: sweetener, humectant, bulking agent agent Truvia: sweetener maple syrup: sweetener ACCEPTABLE & citric acid: acidulant, antioxidant tumeric: spice and colorant microcrystalline cellulose: filler, binder, stabilizer, cochineal (carmine): colorant (from insects) anticaking agent vegetable gums: thickener, stabilizer, emulsifier coconut oil: emulsifier, fat modified food starch: thickener, binder, stabilizer vital wheat gluten: enhances dough strength and UNACCEPTABLE structure of breads cream of tartar: leavener, acidulant mono and diglycerides: emulsifier whey: nutrient, flavor, filler dextrose: sweetener, colorant oleoresin paprika: seasoning, colorant xanthan gum: thickener, stabilizer, emulsifier dicalcium phosphate: nutrient, texturizer, dough conditioner palm fruit oil: emulsifier, fat xylitol: sweetener www.foodcoop.coop diglycerides: emulsifier palm kernel oil: emulsifier, fat dipotassium phosphate: emulsifier, buffer papain: tenderizer NOT ACCEPTABLE Our community is well-served by a strong cooperative Ingredients that may be harmful to health and/or is a relatively unneccessary additive grocery store, integral to the lives of our customers, creating a lower quality food our farmers, and our producers. acesulfame-K: artificial sweetener disodium guanylate: flavor enhancer propyl gallate: antioxidant At its core, The Food Co-op exists to provide access to acesulfame-potassium: artificial sweetener disodium inosinate: flavor enhancer propylene glycol: humectant, flavor solvent healthy food for member-owners in our community. To aceytylated esters of mono- and diglycerides: emulsifier EDTA: antioxidant, sequestrant propylparaben: preservative deliver on that promise, we need to establish and secure aerosol sprays: propellant Equal: artificial sweetener quinine: flavoring agent (except in tonic water) our position in a competitive marketplace and ensure our continuing relevance to our membership and the ammonium chloride: dough conditioner ethoxyquin: pesticide saccharin: artificial sweetener community as a whole. All of the choices we make in colorant (artificial) flavoring agent (artificial) fat substitute artificial colors: ethyl vanillin: Simplesse: running our store support this goal. artificial flavors: flavor (artificial) FD&C colors: colorant (artificial) sodium (di)metabisulfite: preservative, antioxidant, aspartame: artificial sweetener fois gras: duck liver color retention agent HOW DOES THE FOOD CO-OP CHOOSE azodicarbonamide: dough conditioner GMP (disodium guanylate): flavor enhancer sodium aluminum phosphate: leavening agent WHICH PRODUCTS TO CARRY? sodium aluminum sulfate: leavening agent benzoates in food: preservative hepta-esters of sucrose: emulsifier Our product selection guidelines are an extension of our benzoyl peroxide: bleaching agent for flour hexa-esters of sucrose: emulsifier sodium benzoate: preservative, antimycotic agent mission and values. These product guidelines are offered BHA (butylated hydroxyanisole): antioxidant high fructose corn syrup: sweetener sodium bisulfite: preservative, antioxidant, color retention to provide a framework in which the Co-op ideals will be agent BHT (butylated hydroxytoluene): antioxidant hydrogenated oil (fat): treated oil to prolong shelf-life, translated into the selection of goods for the store. The sodium diacetate: preservative, mold inhibitor bleached flour: artificially aged flour provide texture & body Co-op’s purpose of providing a broad range of pure, whole, sodium glutamate: flavor enhancer bromated flour: artificially aged and treated flour IMP (disodium inosinate): flavor enhancer staple foods and other essential items at a reasonable sodium hydroxide: alkali (except in pretzel processing) price is the base upon which these guidelines rest. brominated vegetable oil (BVO): flavor carrier irradiated foods: sterilized by high energy radiation lactylated esters of mono and diglycerides: emulsifier sodium nitrate/nitrite: antioxidant, flavor, color retention butane glycol: humectant, flavor solvent agent CONSIDERATIONS: lead soldered cans: packaging (imported foods most likely) butylene glycol: humectant, flavor solvent sodium propionate: preservative, antimycotic agent • Product Qualities – Organic, NON-GMO methyl silicon: antifoaming/antisplattering agent calcium bromate: dough conditioner, sodium stearoyl-2-lactylate: dough conditioner, emulsifier, • Commitment to Local and Regional Foods maturing/bleaching agent methylparaben: preservative whipping agent • Environmental Conscious calcium disodium EDTA: antioxidant, sequestrant microparticularized whey protein: fat substitiute sodium sulfite: preservative, antioxidant, color retention • Consumer Education dough conditioner, bleaching agent flavor enhancer agent calcium peroxide: monosoduium glutamate (MSG): • Fair treatment of workers solvent extracted oils: stand alone ingredient oil calcium propionate: antimycotic agent (not acceptable natamyacin: mold inhibitor • Support the co-op movement except for La Mexicana, Don Pancho, La Burrita, & Cabo corn nitrates/nitrites: antioxidant, flavor, color retention agent sorbic acid: preservative, antimycotic agent tortillas)* • Political Concerns Nutrasweet: artificial sweetener sucralose: artificial sweetener calcium saccharin: artifical sweetener • Provide a full-service grocery store Olestra: fat substititute sucroglycerides: emulsifier calcium sorbate: perservative parabens (methyl, propyl, butyl, etc.): preservative sucrose polyester: fat substitute calcium stearoyl-2-lactylate: dough conditioner, emulsifier The Food Co-op will not stock any new non-organic partially hydrogenated oil: treated oil to prolong shelf-life, sulfites (sulphur dioxide): preservative, antioxidant, products that include GMO high - risk ingredients: alfalfa, caprenin: fat substitute color retention agent (except in wine) provide texture & body canola, corn, cotton, soy, or sugar beets, unless they caprocaprylobehenin: fat substitute polydextrose: bulking agent
Recommended publications
  • Calcium Stearate Processing
    National Organic Standards Board Technical Advisory Panel (TAP) Review Compiled by University of California Sustainable Agriculture Research and Education Program (UC SAREP) for the USDA National Organic Program Calcium Stearate Processing Executive Summary1 A petition is under consideration with respect to NOP regulations subpart G §205.605, governing the use of substances in processed products: Petitioned: Inclusion of calcium stearate on National List of nonagricultural substances allowed in or on processed products labeled as “organic” or “made with organic (specified ingredients or food group(s)).” Calcium stearate is a compound of calcium with a mixture of solid organic acids obtained from edible sources. It is generally used as a solid-phase lubricant that reduces friction between particles of the substance to which it is added. The Petitioner’s intended use is “as a flow agent (anti-dusting agent)” to be used in dry flour based ingredients sold to bakeries (NOSB Petition). The NOP has no prior listing or ruling on the substance. All three reviewers agreed that the substance should be considered synthetic. The reviewers were divided over the use of calcium stearate in food labeled as “organic.” Two of the reviewers felt it should not be allowed in these foods, while one reviewer felt it should be accepted. One reviewer who voted to restrict its use indicated that more information was needed on the nature of the substance and its potential applications, and the other reviewer felt that inclusion of a “synthetic” substance in organics runs contrary to consumer’s expectations regarding organic products. All three reviewers agreed that the substance should be allowed in products labeled as “made with organic…” ingredients.
    [Show full text]
  • 4.0 Product: Croustilis® Brand: SAF Pro® Date: 09/27/17
    Document: 620-TDS-119 TECHNICAL DATA SHEET Revision: 4.0 Product: Croustilis® Brand: SAF Pro® Date: 09/27/17 Product Description As a dough conditioner, SAF Pro® Croustilis® reduces the formation of blisters and enables the successful production of bakery products. Regulatory Product is produced from materials that are wholesome and free from extraneous matter. Product is prepared following Good Manufacturing Practices, and complies with the Federal Food, Drug and Cosmetic Act of 1938, as amended and published in the CFR. Lesaffre Yeast Corporation is the US importer of record for SAF Pro Dough Conditioners manufactured by LIS- France, Cerences, France. LIS-France is included in Lesaffre Yeast Corporation’s Foreign Supplier Verification Program. Ingredient Statement Enriched Wheat Flour, Monoglycerides of Fatty Acids, Ascorbic Acid, Enzymes Manufacturing Process Blending, packaging Applications Baguettes, bagels, pizza crusts, mixes, frozen dough, par baked, retarded doughs, no-time doughs Usage Add directly to the flour at 0.3 – 0.5% of the total flour weight Item Numbers / Packaging Format / Grind / UPC Item Net Wt. Package Form UPC - Case Number 27201 10 kg. Poly-lined corrugated box Powder 0 17929 27201 2 Import / Export Tariff code 2106.90.99.98 Product Specifications Parameter Specification Test Method Ascorbic Acid 2.16-2.64% Internal Method Phc022 Salmonella Negative / 25 gm SMS (BIOMERIEUX), validated AFNOR # AES 10/04 - 05/04 7475 West Main St. Milwaukee, WI 53214 Document: 620-TDS-119 TECHNICAL DATA SHEET Revision: 4.0 Product: Croustilis® Brand: SAF Pro® Date: 09/27/17 Package / Pallet Dimensions Item Case Pallets L W H Cu. Tiers Units/ Cases/ L W H Cu.
    [Show full text]
  • Nutrition Facts
    1 BURGER KING® USA Nutritionals: Core, Regional and Limited Time Offerings APRIL 2015 Nutrition Facts serving (g) serving size Calories Calories from fat Total fat (g) Saturated Fat (g) Trans Fat (g) Chol (mg) Sodium (mg) Total Carb (g) Dietary Fiber (g) Protein (g) Total Sugar (g) WHOPPER® Sandwiches WHOPPER® Sandwich 290 650 340 37 11 1.5 60 910 50 2 12 22 w/o Mayo 268 510 200 22 8 1.5 55 790 50 2 12 22 WHOPPER® Sandwich with Cheese 312 730 400 44 15 2 85 1260 51 2 13 26 w/o Mayo 291 600 260 29 13 1.5 75 1140 51 2 13 26 DOUBLE WHOPPER® Sandwich 375 900 510 56 19 3 115 980 50 2 12 35 w/o Mayo 353 770 370 41 17 2.5 105 860 50 2 12 35 DOUBLE WHOPPER® Sandwich with Cheese 397 990 570 63 23 3 135 1330 51 2 13 40 w/o Mayo 376 850 420 48 21 3 130 1220 51 2 13 39 TRIPLE WHOPPER® Sandwich 455 1160 670 75 27 4 170 1050 50 2 12 49 w/o Mayo 434 1020 540 60 25 4 160 930 49 2 12 48 Spicy BLT WHOPPER® 304 750 420 46 17 2 100 1480 48 3 8 29 WHOPPER JR.® Sandwich 138 300 150 16 4.5 0.5 25 460 27 1 7 9 w/o Mayo 131 240 90 10 3.5 0.5 25 410 27 1 6 10 WHOPPER JR.® Sandwich with Cheese 153 350 190 21 7 1 40 640 28 1 7 12 w/o Mayo 132 280 120 13 6 0.5 40 580 27 1 7 12 FLAME BROILED BURGERS Big King™ 198 530 280 31 11 1.5 75 790 38 2 8 19 A.1.® Ultimate Bacon Cheeseburger 294 820 460 51 22 3 140 1370 37 1 8 39 Hamburger 100 230 80 9 3 0 25 460 26 1 6 9 Cheeseburger 111 270 110 12 5 0.5 35 630 27 1 7 11 Double Hamburger 128 320 140 15 6 1 45 450 26 1 6 14 Double Cheeseburger 142 360 170 19 8 1 60 670 27 1 7 16 Extra Long Cheeseburger 214 590 300 33 12 1.5
    [Show full text]
  • Copyright Statement This Copy of the Thesis Has Been Supplied on The
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2017 Lactic acid bacteria as bio-preservatives in bakery Role of sourdough systems in the quality, safety and shelf life of bread Koy, Rebaz http://hdl.handle.net/10026.1/9828 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Copyright Statement This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author’s prior consent. Lactic acid bacteria as bio-preservatives in bakery – Role of sourdough systems in the quality, safety and shelf life of bread by Rebaz Aswad Mirza Koy A thesis submitted to Plymouth University in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Biological and Marine Sciences Faculty of Science and Engineering August 2017 Lactic acid bacteria as bio-preservatives in bakery – Role of sourdough systems in the quality, safety and shelf life of bread Rebaz Aswad Mirza Koy Abstract Microbial contamination and survival during storage of bread are a cause of both health concerns and economic losses.
    [Show full text]
  • Influence of Marination with Aromatic Herbs and Cold Pressed Oils On
    foods Article Influence of Marination with Aromatic Herbs and Cold Pressed Oils on Black Angus Beef Meat 1 2, 2 2 2 Vasile-Gheorghe Vi¸san , Maria Simona Chi¸s * , Adriana Păucean , Vlad Mures, an , Andreea Pus, cas, , 2 3 4 2 1 Laura Stan , Dan Cristian Vodnar , Francisc Vasile Dulf , Dorin T, ibulcă , Bogdan Alin Vlaic , Iulian Eugen Rusu 2, Csaba Balasz Kadar 2 and Augustin Vlaic 1 1 Department of Fundamental Sciences, Faculty of Animal Science and Biotechnologies Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănă¸sturStreet, 400372 Cluj-Napoca, Romania; [email protected] (V.-G.V.); [email protected] (B.A.V.); [email protected] (A.V.) 2 Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănă¸sturStreet, 400372 Cluj-Napoca, Romania; [email protected] (A.P.); [email protected] (V.M.); [email protected] (A.P.); [email protected] (L.S.); [email protected] (D.T, .); [email protected] (I.E.R.); [email protected] (C.B.K.) 3 Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăs, tur Street, 400372 Cluj-Napoca, Romania; [email protected] 4 Department of Environmental and Plant Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănă¸sturStreet, 400372 Cluj-Napoca, Romania; [email protected] Citation: Vi¸san,V.-G.; Chi¸s,M.S.; * Correspondence: [email protected]; Tel.: +40-264-596384 P˘aucean,A.; Mures, an, V.; Pus, cas, , A.; Stan, L.; Vodnar, D.C.; Dulf, F.V.; Abstract: Beef aging is one of the most common methods used for improving its qualities.
    [Show full text]
  • Kfc-Ingredients.Pdf
    INGREDIENT GUIDE Below is a list of menu offerings by category. The full ingredient statements for each item are listed alphabetically on the following pages. Variations may occur due to differences in suppliers, ingredient substitutions, recipe revisions, and/or product production at the restaurant. Some menu items may not be available at all restaurants. Limited time offers, test products, or regional items have not been included. WINGS HBBQ Hot Wings® Hot Wings®, HBBQ Wing Sauce Fiery Buffalo Hot Wings® Hot Wings®, Fiery Buffalo Wing Sauce SANDWICHES & WRAPS KFC Snacker® with Crispy Strip Colonel’s Crispy Strips, Snacker® Bun, Lettuce, Colonel’s Sauce KFC Snacker®, Buffalo with Crispy Strip Colonel’s Crispy Strips, Snacker® Bun, Lettuce, Buffalo Sauce KFC Snacker®, Ultimate Cheese with Crispy Strip Colonel’s Crispy Strips, Snacker® Bun, Lettuce, Ultimate Cheese Sauce KFC Snacker®, Honey BBQ Colonel’s Crispy Strip, Hawaiian Bun, Lettuce, Tomatoes, Colonel’s Sauce Crispy ® Twister with Crispy Strip ® ® Tender Roast Filet, Twister Tortilla Wrap, Lettuce, Tomatoes, Colonel’s Sauce Honey BBQ Sandwich Shredded Chicken, Hawaiian Bun, HBBQ Sandwich Sauce Double Down with OR Filet KFC® Original Recipe® Filet, Bacon, Pepper Jack Cheese, Monterey Jack Cheese, Colonel’s Sauce Doublicious with OR Filet ® Tender Roast Filet, Hawaiian Bun, Lettuce, Monterey Jack Cheese, Colonel’s Sauce BOWLS & VALUE BOXES KFC Famous Bowls®-Mashed Potato with Gravy Popcorn Chicken or Colonel’s Crispy Strips or Original Recipe® Bites, Gravy, Mashed Potatoes, Corn,
    [Show full text]
  • Niaproof ® Calcium Stearoyl Lactylate
    Technical Data Sheet Ref.: 2019_02v3 Niaproof ® Calcium Stearoyl Lactylate Niaproof® Calcium Stearoyl Lactylate is to exceed 0.5 parts for each 100 parts by offered as a white to cream colored powder weight of flour used. CSL is especially grade. preferred in lean hearth bread type formulations as a dough strengthener. PRODUCT PROPERTIES It is also used as a whipping agent in liquid and frozen egg white at a level not to Chemical Calcium Stearoyl-2- exceed 0.05 percent. In dried egg white at a name Lactylate level not to exceed 0.5 percent. In whipped Formula C48H86CaO12 vegetable oil topping at a level not to exceed 0.3 percent of the weight of the finished White to cream colored whipped vegetable oil topping. Product form powder with a slightly Niaproof CSL is used as a conditioning sweet (caramel) odor agent in dehydrated potatoes in an amount Molecular not to exceed 0.5 percent by weight thereof. 895.27 g/mol weight Legislation CAS No. 5793-94-2 Niaproof Calcium Stearoyl Lactylate EINECS No. 227-335-7 complies with the Food Chemical Codex (FCC). It is a non-toxic additive permitted for HS-code EU 2915.70 direct addition to food for human HS-code US 2915.70 consumption as listed in 21 CFR 172.844. Niaproof CSL is also an approved food Flash point 222 °C additive according to EU with E-number Solubility in Sparingly soluble E482. Water Please check local legislation for the exact dosage levels and allowed applications. Stability Applications Niaproof Calcium Stearoyl Lactylate is stable for 2 years from date of manufacture.
    [Show full text]
  • Introduction to Baking and Pastries Chef Tammy Rink with William R
    Introduction to Baking and Pastries Chef Tammy Rink With William R. Thibodeaux PH.D. ii | Introduction to Baking and Pastries Introduction to Baking and Pastries | iii Introduction to Baking and Pastries Chef Tammy Rink With William R. Thibodeaux PH.D. iv | Introduction to Baking and Pastries Introduction to Baking and Pastries | v Contents Preface: ix Introduction to Baking and Pastries Topic 1: Baking and Pastry Equipment Topic 2: Dry Ingredients 13 Topic 3: Quick Breads 23 Topic 4: Yeast Doughs 27 Topic 5: Pastry Doughs 33 Topic 6: Custards 37 Topic 7: Cake & Buttercreams 41 Topic 8: Pie Doughs & Ice Cream 49 Topic 9: Mousses, Bavarians and Soufflés 53 Topic 10: Cookies 56 Notes: 57 Glossary: 59 Appendix: 79 Kitchen Weights & Measures 81 Measurement and conversion charts 83 Cake Terms – Icing, decorating, accessories 85 Professional Associations 89 vi | Introduction to Baking and Pastries Introduction to Baking and Pastries | vii Limit of Liability/disclaimer of warranty and Safety: The user is expressly advised to consider and use all safety precautions described in this book or that might be indicated by undertaking the activities described in this book. Common sense must also be used to avoid all potential hazards and, in particular, to take relevant safety precautions concerning likely or known hazards involving food preparation, or in the use of the procedures described in this book. In addition, while many rules and safety precautions have been noted throughout the book, users should always have adult supervision and assistance when working in a kitchen or lab. Any use of or reliance upon this book is at the user's own risk.
    [Show full text]
  • Module 17 Anti-Browning/Bleaching Agents and Anti-Caking Or Free-Flow Agents for the Food Industry
    Paper No.: 13 Paper Title: Food Additives Module 17 Anti-browning/Bleaching agents and Anti-caking or Free-flow agents for the food industry A] ANTI BROWNING AGENTS FOR FOOD INDUSTRY 1. Introduction Many plant foods are subject to degradative reactions during handling, processing, or storage, collectively described as browning reactions, that result in the formation of brown, black, gray, or red colored pigments. Such reactions are generally grouped into two categories: enzymatic browning and nonenzymatic browning. Examples of the former include browning of cut apples or potatoes, while examples of the latter include browning of shelf-stable, pasteurized juices and dehydrated vegetables. Enzymatic browning results from the oxidation of polyphenols to quinones, catalyzed by the enzyme polyphenol oxidase (also known as PPO, tyrosinase, o-diphenol oxidase, and catechol oxidase), and subsequent further reaction and polymerization of the quinones. This discoloration is generally a problem with raw fruit and vegetable products rather than blanched or thermally processed products since enzymes would be inactivated in the latter. Enzymatic browning of raw commodities may result from physiological injury; senescence; pre- or postharvest bruising; disruption of the fruit or vegetable flesh by peeling, coring, slicing, or juicing; tissue disruption from freeze–thaw cycling; and tissue disruption by bacterial growth. The occurrence of enzymatic browning can limit the shelf- life of fresh-cut fruits and salad vegetables, fresh mushrooms, prepeeled potatoes, and other fresh products of commercial importance. Enzymatic browning also may be a problem with some dehydrated and frozen fruits and vegetables. In addition to causing discoloration, enzymatic browning reactions in fruit and vegetable products also can result in loss of ascorbic acid (vitamin C) through reaction with quinones.
    [Show full text]
  • Steak N Shake Ingredient and Allergen List
    Steak ’n Shake Ingredient and Allergen List FOOD ALLERGEN WARNING: Our restaurants prepare and serve products that contain Peanuts, Tree Nuts, Wheat, Soy, Milk, Egg, and Fish. To ensure our guest’s safety we cannot guarantee any of our products are free of these allergens. Eating raw or undercooked meats, poultry or eggs may increase your risk of foodborne illness. To ensure our guest do not incur such a risk, we cannot cook STEAKBURGER™ patties rare or medium rare. Thank you for your understanding. While a particular ingredient statement for an individual product may not list one of these allergens, our products may be prepared in an environment that is shared with products containing one or more of these allergens. Accordingly, Steak ’n Shake cannot assure that any menu item will be “allergen free.” Neither Steak ’n Shake, its franchisees, its suppliers nor its employees assume any responsibility for sensitivity or allergy to any food product or ingredient provided by or in our restaurants. Anyone with any food sensitivity, allergies, special dietary needs, or specific dietary inquiries and/or concerns should consult a medical professional of their own selection regarding the suitability of our food products and/or ingredients, and should regularly review the information contained at www.steaknshake.com for content updates. This information is correct as of April 1, 2020. STEAKBURGERS Original Steakburgers (Single, Double, Triple) Steakburgers and Regular Bun. Contains: wheat, milk, soy Original Steakburgers with Cheese (Single, Double, Triple) Steakburgers, American Cheese, and Regular Bun. Contains: wheat, milk, soy Bacon ‘n Cheese Steakburger™ (Single, Double) Steakburger, Regular Bun, American Cheese, and Bacon.
    [Show full text]
  • Methodologies for Processing Plant Material Into Acceptable Food on a Small Scale- Phase II
    NASAContractorReport177647 Methodologies for Processing Plant Material into Acceptable Food on a Small Scale- Phase II Thomas R. Parks, John N. Bindon, Anthony J. G. Bowles, Peter Golbitz, Rauno A. Lampi, and Robert F. Marquardt Food and AgroSystems, Inc. 1289 Mandarin Dr. Sunnyvale, CA 94087 Prepared for Ames Research Center CONTRACT NAS2-13404 September 1994 National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 This report represents the efforts of many, not only principal authors. Food and AgrosSystems sincerely appreciates and wants to acknowledge the valuable contributions made by the following: Mr. Kenneth Carlson Mr. Dan Casper Mr. Fred Coury Dr. Robert Decareau Mr. E. Ray Pariser EXECUTIVE SUMMARY i. Food processing is a technically feasible, effective part of manned space systems. Equipment suitable for processing food on a small scale, under zero-/micro-gravity conditions, have been developed and evaluated on a laboratory prototype scale. 2. Preliminary estimates indicate that while most nutrients can be met by the four crops studied in Phase II, it may be neces- sary to include an additional crop, such as Canola, which has about 2.5 times as much oil content as soy, to aid in meeting dietary fat requirements. 3. Daily planting/harvesting regimens increase personnel invol- vement, but reduce quantities of material to be processed, storage requirements, equipment sizing, energy require- ment (present estimates indicate a possible maximum in- dividual motor peak load of about 2 HP), and opportunities for automation. 4. Use of stable intermediate food products and food processing are compatible with both plant growth and preprepared food systems.
    [Show full text]
  • Re‐Evaluation of Sodium Ferrocyanide (E 
    SCIENTIFIC OPINION ADOPTED: 29 June 2018 doi: 10.2903/j.efsa.2018.5374 Re-evaluation of sodium ferrocyanide (E 535), potassium ferrocyanide (E 536) and calcium ferrocyanide (E 538) as food additives EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Maged Younes, Peter Aggett, Fernando Aguilar, Riccardo Crebelli, Birgit Dusemund, Metka Filipic, Maria Jose Frutos, Pierre Galtier, David Gott, Ursula Gundert-Remy, Gunter Georg Kuhnle, Claude Lambre, Jean-Charles Leblanc, Inger Therese Lillegaard, Peter Moldeus, Alicja Mortensen, Agneta Oskarsson, Ivan Stankovic, Ine Waalkens-Berendsen, Matthew Wright, Alessandro Di Domenico, Henk Van Loveren, Alessandra Giarola, Zsuzsanna Horvath, Federica Lodi and Rudolf Antonius Woutersen Abstract The Panel on Food Additives and Nutrient Sources added to Food (ANS) provided a scientific opinion re-evaluating the safety of sodium ferrocyanide (E 535), potassium ferrocyanide (E 536), and evaluating the safety of calcium ferrocyanide (E 538) as food additives. The Panel considered that adequate exposure and toxicity data were available. Ferrocyanides (E 535–538) are solely authorised in two food categories as salt substitutes. To assess the dietary exposure to ferrocyanides (E 535–538) from their use as food additives, the exposure was calculated based on regulatory maximum level exposure assessment scenario (maximum permitted level (MPL)) and the refined exposure assessment scenario. Dietary exposure to ferrocyanides was calculated based on mean and high levels consumption of salts in both the regulatory maximum level and the refined scenario. In the MPL scenario, the exposure to ferrocyanides (E 535–538) from their use as a food additive was up to 0.009 mg/kg body weight (bw) per day in children and adolescents.
    [Show full text]