The Role of Lipids, Lipid Metabolism and Ectopic Lipid Accumulation in Axon Growth, Regeneration and Repair After CNS Injury and Disease

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Lipids, Lipid Metabolism and Ectopic Lipid Accumulation in Axon Growth, Regeneration and Repair After CNS Injury and Disease cells Review The Role of Lipids, Lipid Metabolism and Ectopic Lipid Accumulation in Axon Growth, Regeneration and Repair after CNS Injury and Disease Debasish Roy 1 and Andrea Tedeschi 1,2,* 1 Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; [email protected] 2 Discovery Theme on Chronic Brain Injury, The Ohio State University, Columbus, OH 43210, USA * Correspondence: [email protected] Abstract: Axons in the adult mammalian nervous system can extend over formidable distances, up to one meter or more in humans. During development, axonal and dendritic growth requires continuous addition of new membrane. Of the three major kinds of membrane lipids, phospholipids are the most abundant in all cell membranes, including neurons. Not only immature axons, but also severed axons in the adult require large amounts of lipids for axon regeneration to occur. Lipids also serve as energy storage, signaling molecules and they contribute to tissue physiology, as demonstrated by a variety of metabolic disorders in which harmful amounts of lipids accumulate in various tissues through the body. Detrimental changes in lipid metabolism and excess accumulation of lipids contribute to a lack of axon regeneration, poor neurological outcome and complications after a variety of central nervous system (CNS) trauma including brain and spinal cord injury. Recent evidence indicates that rewiring lipid metabolism can be manipulated for therapeutic gain, as it favors conditions for axon Citation: Roy, D.; Tedeschi, A. The regeneration and CNS repair. Here, we review the role of lipids, lipid metabolism and ectopic lipid Role of Lipids, Lipid Metabolism and accumulation in axon growth, regeneration and CNS repair. In addition, we outline molecular and Ectopic Lipid Accumulation in Axon Growth, Regeneration and Repair pharmacological strategies to fine-tune lipid composition and energy metabolism in neurons and after CNS Injury and Disease. Cells non-neuronal cells that can be exploited to improve neurological recovery after CNS trauma and 2021, 10, 1078. https://doi.org/ disease. 10.3390/cells10051078 Keywords: lipids; axon growth and regeneration; mitochondria transport; myelin formation; adipose Academic Editor: tissue; CNS trauma and disease Antón Barreiro-Iglesias Received: 23 March 2021 Accepted: 27 April 2021 1. Introduction Published: 1 May 2021 Developing axons in the mammalian nervous system can extend very long dis- tances [1]. After reaching their targets, axons integrated into functional circuits continue to Publisher’s Note: MDPI stays neutral extend via mechanisms of stretch growth as the body continues to grow [2,3]. Continuous with regard to jurisdictional claims in addition of new axonal membrane is necessary to fuel axon growth during development as published maps and institutional affil- well as long distance axon regeneration in adulthood [4–6]. Similarly, complex dendritic iations. growth and myelin formation also require large amounts of membrane. Phospholipids, glycolipids and cholesterol constitute the major kinds of membrane lipids [7] (Figure1) . Phospholipids are the most abundant and are generally composed of two fatty acids that can differ in length and a phosphate group attached to a glycerol backbone [8]. Due to Copyright: © 2021 by the authors. their shape and amphipathic nature, phospholipids spontaneously aggregate to form bi- Licensee MDPI, Basel, Switzerland. layers in aqueous environments. Made of a hydrophobic lipid tail and one or more sugar This article is an open access article groups linked by a glycosidic bond, glycolipids are found on the outer leaflet of eukaryotic distributed under the terms and cell membranes where they confer membrane stability and facilitate cell–cell communica- conditions of the Creative Commons tion and signal transduction. By making the lipid bilayer less deformable and less fluid, Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ cholesterol integration alters the permeability-barrier properties of the cellular membranes. 4.0/). Membrane proteins tend to accumulate within specialized microdomains of the plasma Cells 2021, 10, 1078. https://doi.org/10.3390/cells10051078 https://www.mdpi.com/journal/cells Cells 2021, 10, x 2 of 23 Cells 2021, 10, 1078 membranes. Membrane proteins tend to accumulate within specialized microdomains2 of 23 of the plasma membrane called lipid rafts that are rich in cholesterol and sphingolipids. Whereas axons in the mammalian peripheral nervous system spontaneously regenerate overmembrane long distances called lipid [9,10], rafts axons that are in rich the in cent cholesterolral nervous and sphingolipids.system (CNS) Whereas fail to mount ax- a suc- cessfulons in regenerative the mammalian response peripheral [11–13]. nervous Axon system regeneration spontaneously failure regenerate causes over long long term struc- turaldistances and functional [9,10], axons impairment in the central after nervous a variety system of CNS (CNS) trauma fail to mount including a successful brain and spinal cordregenerative injury (SCI) response [14,15]. [11–13 Previous]. Axon regeneration work has failuredemonstrated causes long that term accumulation structural and of certain functional impairment after a variety of CNS trauma including brain and spinal cord injury lipids(SCI) and [14,15 dysregulation]. Previous work of haslipid demonstrated metabolism that not accumulation only contribute of certain to developmental lipids and disor- dersdysregulation [16,17], axon of lipid growth metabolism and regeneration not only contribute failure to developmentalafter CNS trauma disorders [6,18], [16 ,but17], also neu- rodegenerativeaxon growth and diseases regeneration [19,20]. failure Lipids after CNSare also trauma implicated [6,18], but in also myelin neurodegenerative formation and serve asdiseases bioactive [19 ,molecules20]. Lipids and are also energy implicated substrates in myelin [21,22]. formation Here, we and discuss serve as classical bioactive and novel rolesmolecules of lipids, and energylipid metabolism substrates [21 ,and22]. Here,ectopic we discusslipid accumulation classical and novel in axon roles of growth/regener- lipids, ationlipid and metabolism CNS repair. and ectopic In addition, lipid accumulation we outline in molecular axon growth/regeneration and pharmacological and CNS strategies repair. In addition, we outline molecular and pharmacological strategies that fine tune thatlipid fine composition tune lipid and composition metabolism in and neurons metabo and non-neuronallism in neurons cells to and favor non-neuronal neurological cells to favorrecovery neurological after CNS traumarecovery and after disease. CNS trauma and disease. Figure 1. Lipids and plasma membrane. (A) Schematic representation of the three major kinds of Figuremembrane 1. Lipids lipids. and (B) Illustrationplasma membrane. of the typical (A lipid) Schematic bilayer of representation the plasma membrane. of the three major kinds of membrane lipids. (B) Illustration of the typical lipid bilayer of the plasma membrane. 2. Membrane Expansion 2. MembraneContinuous Expansion addition of new membrane is required during axon and dendrite growth [23,24], stretch growth of integrated axons [3] and axon regeneration [6,25–27] (Figure2). Newly synthesizedContinuous lipids addition for membrane of new expansion membrane are anterogradelyis required during transported axon and to the dendrite distal growth [23,24],axonal stretch compartment growth via of lipid integrated containing axons vesicles, [3] enablingand axon rapid regeneration elongation of[6,25–27] growing (Figure 2). Newlyaxons synthesized [5,23,27–29]. Inlipids addition, for membrane axons can locally expansion synthesize are anterogradely lipids, such as thetransported major to the distalmembrane axonal phospholipid compartment phosphatidylcholine via lipid containing [27]. Cholesterol vesicles, can enabling also be suppliedrapid elongation via of growing axons [5,23,27–29]. In addition, axons can locally synthesize lipids, such as the major membrane phospholipid phosphatidylcholine [27]. Cholesterol can also be sup- plied via uptake of lipoprotein particles during rapid membrane biogenesis. Along this line, low-density lipoprotein receptors have been found to densely cluster at the tip of Cells 2021, 10, 1078 3 of 23 Cells 2021, 10, x 3 of 23 uptake of lipoprotein particles during rapid membrane biogenesis. Along this line, low- peripheraldensity lipoproteinaxons during receptors regeneration have been[30]. Large found amounts to densely of clusterlipid supply at the are tip also of peripheral neces- saryaxons during during myelin regeneration growth and [30 repair]. Large [31 amounts–34] (Figure of lipid 2). supply are also necessary during myelin growth and repair [31–34] (Figure2). Figure 2. Membrane expansion during nervous system development and repair. Figure 2. Membrane expansion during nervous system development and repair. A schematic representation of membrane expansion during axonal and dendritic growth,A schematic stretch representation growth of integrated of membrane axons, myelin expansion formation during and axonal repair, and sealing dendritic of mem- growth,brane stretch ruptures growth and axon of integrated regeneration. axons, PPV: myelin plasmalemmal formation and precursor repair, vesicles.sealing of mem- brane ruptures and axon regeneration. PPV: plasmalemmal precursor vesicles. 2.1. Axon Growth & Regeneration 2.1. AxonMembrane
Recommended publications
  • Corticosteroid Treatment, Serum Lipids and Coronary Artery Disease D. B. JEFFERYS M
    Postgrad Med J: first published as 10.1136/pgmj.56.657.491 on 1 July 1980. Downloaded from Postgraduate Medical Journal (July 1980) 56, 491-493 Corticosteroid treatment, serum lipids and coronary artery disease D. B. JEFFERYS M. H. LESSOF B.Sc., M.R.C.P. M.D., F.R.C.P. M. B. MATTOCK Ph.D. Department of Medicine, Guy's Hospital, London Bridge SE] 9RT Summary cholesterol out of the tissue and back into the general Serum lipids and the cholesterol concentrations in the metabolic pool, where it may be catabolized. high density lipoprotein (HDL) fractions were meas- In this study the authors have looked at the long- ured in patients receiving long-term corticosteroid term effects of corticosteroids on HDL cholesterol. treatment for connective tissue disorders and asthma. They have studied 3 groups: patients who are receiv- Patients who were not receiving corticosteroid ing corticosteroids; age-, sex- and disease-matched treatment had blood lipid levels which did not differ patients who are not receiving such treatment; and from those of healthy people. However, female (but healthy age- and sex-matched controls. not male) patients who had received prednisolone for a mean period of 3-1 years had a significant elevation Patients and methods in total cholesterol and a large decrease in HDL Subjects cholesterol. It seems possible that high levels of The serum total cholesterol, triglycerides and copyright. corticosteroids may increase the incidence of pre- HDL cholesterol were measured for 16 pre-meno- menopausal ischaemic heart disease in females. pausal female patients (age range 18-34 years) and 15 males (ages 24-38 years) who were all receiving Introduction long-term corticosteroid treatment.
    [Show full text]
  • Lipid Bilayer, with the Nonpolar Regions of the Lipids Facing Inward
    Chapter 7 Membranes: Their Structure, Function, and Chemistry Lectures by Kathleen Fitzpatrick Simon Fraser University © 2012 Pearson Education, Inc. Membranes: Their Structure, Function, and Chemistry • Membranes define the boundaries of a cell, and its internal compartments • Membranes play multiple roles in the life of a cell © 2012 Pearson Education, Inc. Figure 7-1A © 2012 Pearson Education, Inc. Figure 7-1B © 2012 Pearson Education, Inc. The Functions of Membranes • 1. Define boundaries of a cell and organelles and act as permeability barriers • 2. Serve as sites for biological functions such as electron transport • 3. Possess transport proteins that regulate the movement of substances into and out of cells and organelles © 2012 Pearson Education, Inc. The Functions of Membranes (continued) • 4. Contain protein molecules that act as receptors to detect external signals • 5. Provide mechanisms for cell-to-cell contact, adhesion, and communication © 2012 Pearson Education, Inc. Figure 7-2 © 2012 Pearson Education, Inc. Models of Membrane Structure: An Experimental Approach • The development of electron microscopy in the 1950s was important for understanding membrane structure • The fluid mosaic model is thought to be descriptive of all biological membranes • The model envisions a membrane as two fluid layers of lipids with proteins within and on the layers © 2012 Pearson Education, Inc. Overton and Langmuir: Lipids Are Important Components of Membranes • In the 1890s Overton observed the easy penetration of lipid-soluble substances into cells and concluded that the cell surface had some kind of lipid “coat” on it • Langmuir studied phospholipids and found that they were amphipathic and reasoned that they must orient on water with the hydrophobic tails away from the water © 2012 Pearson Education, Inc.
    [Show full text]
  • Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses
    life Review Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses Inseok Choi , Hyewon Son and Jea-Hyun Baek * School of Life Science, Handong Global University, Pohang, Gyeongbuk 37554, Korea; [email protected] (I.C.); [email protected] (H.S.) * Correspondence: [email protected]; Tel.: +82-54-260-1347 Abstract: The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria, while the intermediates of the TCA cycle are retained inside mitochondria due to their polarity and hydrophilicity. Under cell stress conditions, mitochondria can become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss its implication for immune activation and suppression. Keywords: Krebs cycle; tricarboxylic acid cycle; cellular immunity; immunometabolism 1. Introduction The tricarboxylic acid cycle (TCA, also known as the Krebs cycle or the citric acid Citation: Choi, I.; Son, H.; Baek, J.-H. Tricarboxylic Acid (TCA) Cycle cycle) is a series of chemical reactions used in aerobic organisms (pro- and eukaryotes) to Intermediates: Regulators of Immune generate energy via the oxidation of acetyl-coenzyme A (CoA) derived from carbohydrates, Responses.
    [Show full text]
  • An Overview of Lipid Membrane Models for Biophysical Studies
    biomimetics Review Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies Alessandra Luchini 1 and Giuseppe Vitiello 2,3,* 1 Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; [email protected] 2 Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy 3 CSGI-Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy * Correspondence: [email protected] Abstract: Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their Citation: Luchini, A.; Vitiello, G.
    [Show full text]
  • Membrane Proteins Are Associated with the Membrane of a Cell Or Particular Organelle and Are Generally More Problematic to Purify Than Water-Soluble Proteins
    Strategies for the Purification of Membrane Proteins Sinéad Marian Smith Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland. Email: [email protected] Abstract Although membrane proteins account for approximately 30 % of the coding regions of all sequenced genomes and play crucial roles in many fundamental cell processes, there are relatively few membranes with known 3D structure. This is likely due to technical challenges associated with membrane protein extraction, solubilization and purification. Membrane proteins are classified based on the level of interaction with membrane lipid bilayers, with peripheral membrane proteins associating non- covalently with the membrane, and integral membrane proteins associating more strongly by means of hydrophobic interactions. Generally speaking, peripheral membrane proteins can be purified by milder techniques than integral membrane proteins, whose extraction require phospholipid bilayer disruption by detergents. Here, important criteria for strategies of membrane protein purification are addressed, with a focus on the initial stages of membrane protein solublilization, where problems are most frequently are encountered. Protocols are outlined for the successful extraction of peripheral membrane proteins, solubilization of integral membrane proteins, and detergent removal which is important not only for retaining native protein stability and biological functions, but also for the efficiency of downstream purification techniques. Key Words: peripheral membrane protein, integral membrane protein, detergent, protein purification, protein solubilization. 1. Introduction Membrane proteins are associated with the membrane of a cell or particular organelle and are generally more problematic to purify than water-soluble proteins. Membrane proteins represent approximately 30 % of the open-reading frames of an organism’s genome (1-4), and play crucial roles in basic cell functions including signal transduction, energy production, nutrient uptake and cell-cell communication.
    [Show full text]
  • Fatty Acid Synthesis ANSC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid Synthesis I
    Handout 5 Fatty Acid Synthesis ANSC/NUTR 618 Lipids & Lipid Metabolism Fatty Acid Synthesis I. Overall concepts A. Definitions 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose and lactate) 1) De novo fatty acid synthesis uses glucose absorbed from the diet rather than glucose synthesized by the liver. 2) De novo fatty acid synthesis uses lactate derived primarily from glucose metabolism in muscle and red blood cells. b. Amino acid precursors (e.g., alanine, branched-chain amino acids) 1) De novo fatty acid synthesis from amino acids is especially important during times of excess protein intake. 2) Use of amino acids for fatty acid synthesis may result in nitrogen overload (e.g., the Atkins diet). c. Short-chain organic acids (e.g., acetate, butyrate, and propionate) 1) The rumen of ruminants is a major site of short-chain fatty acid synthesis. 2) Only small amounts of acetate circulate in non-ruminants. 2. Lipogenesis = fatty acid or triacylglycerol synthesis a. From preformed fatty acids (from diet or de novo fatty acid synthesis) b. Requires source of carbon (from glucose or lactate) for glycerol backbone 3T3-L1 Preadipocytes at confluence. No lipid 3T3-L1 Adipocytes after 6 days of filling has yet occurred. differentiation. Dark spots are lipid droplets. 1 Handout 5 Fatty Acid Synthesis B. Tissue sites of de novo fatty acid biosynthesis 1. Liver. In birds, fish, humans, and rodents (approx. 50% of fatty acid biosynthesis). 2. Adipose tissue. All livestock species synthesize fatty acids in adipose tissue; rodents synthesize about 50% of their fatty acids in adipose tissue.
    [Show full text]
  • Biological Membranes
    14 Biological Membranes To understand the structure The fundamental unit of life is the cell. All living things are composed of Goal and composition of biological cells, be it a single cell in the case of many microorganisms or a highly membranes. organized ensemble of myriad cell types in the case of multicellular organisms. A defining feature of the cell is a membrane, the cytoplasmic Objectives membrane, that surrounds the cell and separates the inside of the cell, the After this chapter, you should be able to cytoplasm, from other cells and the extracellular milieu. Membranes also • distinguish between cis and trans surround specialized compartments inside of cells known as organelles. unsaturated fatty acids. Whereas cells are typically several microns (μm) in diameter (although • explain why phospholipids some cells can be much larger), the membrane is only about 10 nanometers spontaneously form lipid bilayers and (nm) thick. Yet, and as we will see in subsequent chapters, the membrane is sealed compartments. not simply an ultra-thin, pliable sheet that encases the cytoplasm. Rather, • describe membrane fluidity and how it membranes are dynamic structures that mediate many functions in the is affected by membrane composition life of the cell. In this chapter we examine the composition of membranes, and temperature. their assembly, the forces that stabilize them, and the chemical and physical • explain the role of cholesterol in properties that influence their function. buffering membrane fluidity. The preceding chapters have focused on two kinds of biological molecules, • explain how the polar backbone namely proteins and nucleic acids, that are important in the workings of a membrane protein can be accommodated in a bilayer.
    [Show full text]
  • The Lipid Bilayer: Composition and Structural Organization
    THE LIPID BILAYER: COMPOSITION AND STRUCTURAL ORGANIZATION • MR. SOURAV BARAI • ASSISTANT PROFESSOR • DEPARTMENT OF ZOOLOGY • JHARGRAM RAJ COLLEGE THELIPID BILAYER: COMPOSITION AND STRUCTURAL ORGANIZATION The Fluid Mosaic Model of Biomembrane Plasma membrane • 1. Affect shape and function • 2. Anchor protein to the membrane • 3. Modify membrane protein activities • 4. Transducing signals to the cytoplasm “A living cell is a self-reproducing system of molecules held inside a container - the plasma membrane” Membrane comprised of lipid sheet (5 nm thick) • Primary purpose - barrier to prevent cell contents spilling out BUT, must be selective barrier Lipid Composition and struCturaL organization • Phospholipids of the composition present in cells spontaneously form sheet like phospholipid bilayers, which are two molecules thick. • The hydrocarbon chains of the phospholipids in each layer, or leaflet, form a hydrophobic core that is 3–4 nm thick in most biomembranes. • Approx 10^6 lipid molecule in 1µm×1µm area of lipid bilayer. • Electron microscopy of thin membrane sections stained with osmium tetroxide, which binds strongly to the polar head groups of phospholipids, reveals the bilayer structure. • A cross section of all single membranes stained with osmium tetroxide looks like a railroad track: two thin dark lines (the stain–head group complexes) with a uniform light space of about 2nm (the hydrophobic tails) between them. PROPERTIES • PERMIABILITY: The hydrophobic core is an impermeable barrier that prevents the diffusion of water-soluble (hydrophilic) solutes across the membrane. • STABILITY: The bilayer structure is maintained by hydrophobic and van der Waals interactions between the lipid chains. Even though the exterior aqueous environment can vary widely in ionic strength and pH, the bilayer has the strength to retain its characteristic architecture.
    [Show full text]
  • Structure and Activity of Lipid Bilayer Within a Membrane-Protein Transporter
    Structure and activity of lipid bilayer within a membrane-protein transporter Weihua Qiua,b,1, Ziao Fuc,1, Guoyan G. Xua, Robert A. Grassuccid, Yan Zhanga, Joachim Frankd,e,2, Wayne A. Hendricksond,f,g,2, and Youzhong Guoa,b,2 aDepartment of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298; bInstitute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219; cIntegrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032; dDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032; eDepartment of Biological Sciences, Columbia University, New York, NY 10027; fDepartment of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032; and gNew York Structural Biology Center, New York, NY 10027 Contributed by Wayne A. Hendrickson, October 15, 2018 (sent for review July 20, 2018; reviewed by Yifan Cheng and Michael C. Wiener) Membrane proteins function in native cell membranes, but extrac- 1.9 Å (30). Nevertheless, the mechanism of active transport is still tion into isolated particles is needed for many biochemical and far from clear, in part because crucial structural information re- structural analyses. Commonly used detergent-extraction meth- garding protein–lipid interaction is missing (31). The AcrB trimer ods destroy naturally associated lipid bilayers. Here, we devised a has a central cavity between transmembrane (TM) domains of the detergent-free method for preparing cell-membrane nanopar- three protomers, where a portion of lipid bilayer may exist (26). ticles to study the multidrug exporter AcrB, by cryo-EM at 3.2-Å Although detergent molecules and some alkane chains have been resolution.
    [Show full text]
  • Lipid Players of Cellular Senescence
    H OH metabolites OH Review Lipid Players of Cellular Senescence Alec Millner and G. Ekin Atilla-Gokcumen * Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; alecmill@buffalo.edu * Correspondence: ekinatil@buffalo.edu; Tel.: +1-716-6454130 Received: 3 August 2020; Accepted: 19 August 2020; Published: 21 August 2020 Abstract: Lipids are emerging as key players of senescence. Here, we review the exciting new findings on the diverse roles of lipids in cellular senescence, most of which are enabled by the advancements in omics approaches. Senescence is a cellular process in which the cell undergoes growth arrest while retaining metabolic activity. At the organismal level, senescence contributes to organismal aging and has been linked to numerous diseases. Current research has documented that senescent cells exhibit global alterations in lipid composition, leading to extensive morphological changes through membrane remodeling. Moreover, senescent cells adopt a secretory phenotype, releasing various components to their environment that can affect the surrounding tissue and induce an inflammatory response. All of these changes are membrane and, thus, lipid related. Our work, and that of others, has revealed that fatty acids, sphingolipids, and glycerolipids are involved in the initiation and maintenance of senescence and its associated inflammatory components. These studies opened up an exciting frontier to investigate the deeper mechanistic understanding of the regulation and function of these lipids in senescence. In this review, we will provide a comprehensive snapshot of the current state of the field and share our enthusiasm for the prospect of potential lipid-related protein targets for small-molecule therapy in pathologies involving senescence and its related inflammatory phenotypes.
    [Show full text]
  • Lipid Metabolism
    Objectives By the end of lecture the student should: Discuss β oxidation of fatty acids. Illustrate α oxidation of fatty acids. Understand ω oxidation of fatty acids. List sources and fates of active acetate. Oxidation of Fatty Acids 1- β-Oxidation (knoop’s oxidation): . Removal of 2 carbon fragment at a time form Acyl CoA (active FA). .The 2 carbon removed as acetyl CoA. .It occurs in many tissues including liver, kidney & heart FAs to be oxidized must be entered the following 2 steps 2- Transport of acyl 1-Activation of FA COA to mitochondria 1-FA activation Acyl COA synthetase RCOOH RCO~SCOA COASH ATP AMP+P~P 2Pi + E Pyrophosphatase 2- Transport of acyl COA to mitochondria: . Role of carnitine in the transport of LCFA through the inner mithochochondrial membrane Functions of carnitine 1- Transport long chain acyl COA across mitochondrial membrane into the mitochondria so it increases the rate of oxidation of LCFA 2- Transport acetyl-CoA from mitochondria to cytoplasm So it stimulates fatty acid synthesis CoA CoA--SHSH H C α H3C3 α β Cβ Palmitoyl Palmitoyl-CoA -CoA β O ~ S – CoA α H3C α H3C β β CO CO ~ S~ –S CoA – CoA β + + CH3 – CO ~ S –CoA Successive removal of C2 units Acetyl-CoA 8CH3 – CO ~ S – CoA 8CH3 – CO ~ S –Acetyl CoA-CoA Acetyl-CoA Steps of β- Oxidation of FAs Energetics of FA oxidation Palmitic (16C): . β-oxidation of palmitic acid will be repeated 7 cycles producing 8 molecules of acetyl COA . In each cycle FADH2 and NADH+H+ is produced & transported to respiratory chain FADH2 ------------------ 2 ATP NADH+H+ ------------- 3 ATP So 7 cycles 5X7=35 ATP .
    [Show full text]
  • Regulation of Ketone Body and Coenzyme a Metabolism in Liver
    REGULATION OF KETONE BODY AND COENZYME A METABOLISM IN LIVER by SHUANG DENG Submitted in partial fulfillment of the requirements For the Degree of Doctor of Philosophy Dissertation Adviser: Henri Brunengraber, M.D., Ph.D. Department of Nutrition CASE WESTERN RESERVE UNIVERSITY August, 2011 SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of __________________ Shuang Deng ____________ _ _ candidate for the ________________________________degree Doctor of Philosophy *. (signed) ________________________________________________ Edith Lerner, PhD (chair of the committee) ________________________________________________ Henri Brunengraber, MD, PhD ________________________________________________ Colleen Croniger, PhD ________________________________________________ Paul Ernsberger, PhD ________________________________________________ Janos Kerner, PhD ________________________________________________ Michelle Puchowicz, PhD (date) _______________________June 23, 2011 *We also certify that written approval has been obtained for any proprietary material contained therein. I dedicate this work to my parents, my son and my husband TABLE OF CONTENTS Table of Contents…………………………………………………………………. iv List of Tables………………………………………………………………………. viii List of Figures……………………………………………………………………… ix Acknowledgements………………………………………………………………. xii List of Abbreviations………………………………………………………………. xiv Abstract…………………………………………………………………………….. xvii CHAPTER 1: KETONE BODY METABOLISM 1.1 Overview……………………………………………………………………….. 1 1.1.1 General introduction
    [Show full text]