Geodesic Paths on 3D Surfaces: Survey and Open Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Advances in Theoretical & Computational Physics
ISSN: 2639-0108 Review Article Advances in Theoretical & Computational Physics Cosmology: Preprogrammed Evolution (The problem of Providence) Besud Chu Erdeni Unified Theory Lab, Bayangol disrict, Ulan-Bator, Mongolia *Corresponding author Besud Chu Erdeni, Unified Theory Lab, Bayangol disrict, Ulan-Bator, Mongolia. Submitted: 25 March 2021; Accepted: 08 Apr 2021; Published: 18 Apr 2021 Citation: Besud Chu Erdeni (2021) Cosmology: Preprogrammed Evolution (The problem of Providence). Adv Theo Comp Phy 4(2): 113-120. Abstract This is continued from the article Superunification: Pure Mathematics and Theoretical Physics published in this journal and intended to discuss the general logical and philosophical consequences of the universal mathematical machine described by the superunified field theory. At first was mathematical continuum, that is, uncountably infinite set of real numbers. The continuum is self-exited and self- organized into the universal system of mathematical harmony observed by the intelligent beings in the Cosmos as the physical Universe. Consequently, cosmology as a science of evolution in the Uni- verse can be thought as a preprogrammed natural phenomenon beginning with the Big Bang event, or else, the Creation act pro- (6) cess. The reader is supposed to be acquinted with the Pythagoras’ (Arithmetization) and Plato’s (Geometrization) concepts. Then, With this we can derive even the human gene-chromosome topol- the numeric, Pythagorean, form of 4-dim space-time shall be ogy. (1) The operator that images the organic growth process from nothing is where time is an agorithmic (both geometric and algebraic) bifur- cation of Newton’s absolute space denoted by the golden section exp exp e. -
Journal of Computational Physics
JOURNAL OF COMPUTATIONAL PHYSICS AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.2 • Impact Factor p.2 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.6 ISSN: 0021-9991 DESCRIPTION . Journal of Computational Physics has an open access mirror journal Journal of Computational Physics: X which has the same aims and scope, editorial board and peer-review process. To submit to Journal of Computational Physics: X visit https://www.editorialmanager.com/JCPX/default.aspx. The Journal of Computational Physics focuses on the computational aspects of physical problems. JCP encourages original scientific contributions in advanced mathematical and numerical modeling reflecting a combination of concepts, methods and principles which are often interdisciplinary in nature and span several areas of physics, mechanics, applied mathematics, statistics, applied geometry, computer science, chemistry and other scientific disciplines as well: the Journal's editors seek to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract. Review articles providing a survey of particular fields are particularly encouraged. Full text articles have a recommended length of 35 pages. In order to estimate the page limit, please use our template. Published conference papers are welcome provided the submitted manuscript is a significant enhancement of the conference paper with substantial additions. Reproducibility, that is the ability to reproduce results obtained by others, is a core principle of the scientific method. -
Object Oriented Programming
No. 52 March-A pril'1990 $3.95 T H E M TEe H CAL J 0 URN A L COPIA Object Oriented Programming First it was BASIC, then it was structures, now it's objects. C++ afi<;ionados feel, of course, that objects are so powerful, so encompassing that anything could be so defined. I hope they're not placing bets, because if they are, money's no object. C++ 2.0 page 8 An objective view of the newest C++. Training A Neural Network Now that you have a neural network what do you do with it? Part two of a fascinating series. Debugging C page 21 Pointers Using MEM Keep C fro111 (C)rashing your system. An AT Keyboard Interface Use an AT keyboard with your latest project. And More ... Understanding Logic Families EPROM Programming Speeding Up Your AT Keyboard ((CHAOS MADE TO ORDER~ Explore the Magnificent and Infinite World of Fractals with FRAC LS™ AN ELECTRONIC KALEIDOSCOPE OF NATURES GEOMETRYTM With FracTools, you can modify and play with any of the included images, or easily create new ones by marking a region in an existing image or entering the coordinates directly. Filter out areas of the display, change colors in any area, and animate the fractal to create gorgeous and mesmerizing images. Special effects include Strobe, Kaleidoscope, Stained Glass, Horizontal, Vertical and Diagonal Panning, and Mouse Movies. The most spectacular application is the creation of self-running Slide Shows. Include any PCX file from any of the popular "paint" programs. FracTools also includes a Slide Show Programming Language, to bring a higher degree of control to your shows. -
A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons
A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons Eric Berberich, Arno Eigenwillig, Michael Hemmer Susan Hert, Kurt Mehlhorn, and Elmar Schomer¨ [eric|arno|hemmer|hert|mehlhorn|schoemer]@mpi-sb.mpg.de Max-Planck-Institut fur¨ Informatik, Stuhlsatzenhausweg 85 66123 Saarbruck¨ en, Germany Abstract. We give an exact geometry kernel for conic arcs, algorithms for ex- act computation with low-degree algebraic numbers, and an algorithm for com- puting the arrangement of conic arcs that immediately leads to a realization of regularized boolean operations on conic polygons. A conic polygon, or polygon for short, is anything that can be obtained from linear or conic halfspaces (= the set of points where a linear or quadratic function is non-negative) by regularized boolean operations. The algorithm and its implementation are complete (they can handle all cases), exact (they give the mathematically correct result), and efficient (they can handle inputs with several hundred primitives). 1 Introduction We give an exact geometry kernel for conic arcs, algorithms for exact computation with low-degree algebraic numbers, and a sweep-line algorithm for computing arrangements of curved arcs that immediately leads to a realization of regularized boolean operations on conic polygons. A conic polygon, or polygon for short, is anything that can be ob- tained from linear or conic halfspaces (= the set of points where a linear or quadratic function is non-negative) by regularized boolean operations (Figure 1). A regularized boolean operation is a standard boolean operation (union, intersection, complement) followed by regularization. Regularization replaces a set by the closure of its interior and eliminates dangling low-dimensional features. -
Computational Science and Engineering
Computational Science and Engineering, PhD College of Engineering Graduate Coordinator: TBA Email: Phone: Department Chair: Marwan Bikdash Email: [email protected] Phone: 336-334-7437 The PhD in Computational Science and Engineering (CSE) is an interdisciplinary graduate program designed for students who seek to use advanced computational methods to solve large problems in diverse fields ranging from the basic sciences (physics, chemistry, mathematics, etc.) to sociology, biology, engineering, and economics. The mission of Computational Science and Engineering is to graduate professionals who (a) have expertise in developing novel computational methodologies and products, and/or (b) have extended their expertise in specific disciplines (in science, technology, engineering, and socioeconomics) with computational tools. The Ph.D. program is designed for students with graduate and undergraduate degrees in a variety of fields including engineering, chemistry, physics, mathematics, computer science, and economics who will be trained to develop problem-solving methodologies and computational tools for solving challenging problems. Research in Computational Science and Engineering includes: computational system theory, big data and computational statistics, high-performance computing and scientific visualization, multi-scale and multi-physics modeling, computational solid, fluid and nonlinear dynamics, computational geometry, fast and scalable algorithms, computational civil engineering, bioinformatics and computational biology, and computational physics. Additional Admission Requirements Master of Science or Engineering degree in Computational Science and Engineering (CSE) or in science, engineering, business, economics, technology or in a field allied to computational science or computational engineering field. GRE scores Program Outcomes: Students will demonstrate critical thinking and ability in conducting research in engineering, science and mathematics through computational modeling and simulations. -
On Combinatorial Approximation Algorithms in Geometry Bruno Jartoux
On combinatorial approximation algorithms in geometry Bruno Jartoux To cite this version: Bruno Jartoux. On combinatorial approximation algorithms in geometry. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Paris-Est, 2018. English. NNT : 2018PESC1078. tel- 02066140 HAL Id: tel-02066140 https://pastel.archives-ouvertes.fr/tel-02066140 Submitted on 13 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris-Est École doctorale MSTIC On Combinatorial Sur les algorithmes d’approximation Approximation combinatoires Algorithms en géométrie in Geometry Bruno Jartoux Thèse de doctorat en informatique soutenue le 12 septembre 2018. Composition du jury : Lilian Buzer ESIEE Paris Jean Cardinal Université libre de Bruxelles président du jury Guilherme Dias da Fonseca Université Clermont Auvergne rapporteur Jesús A. de Loera University of California, Davis rapporteur Frédéric Meunier École nationale des ponts et chaussées Nabil H. Mustafa ESIEE Paris directeur Vera Sacristán Universitat Politècnica de Catalunya Kasturi R. Varadarajan The University of Iowa rapporteur Last revised 16th December 2018. Thèse préparée au laboratoire d’informatique Gaspard-Monge (LIGM), équipe A3SI, dans les locaux d’ESIEE Paris. LIGM UMR 8049 ESIEE Paris Cité Descartes, bâtiment Copernic Département IT 5, boulevard Descartes Cité Descartes Champs-sur-Marne 2, boulevard Blaise-Pascal 77454 Marne-la-Vallée Cedex 2 93162 Noisy-le-Grand Cedex Bruno Jartoux 2018. -
2020 SIGACT REPORT SIGACT EC – Eric Allender, Shuchi Chawla, Nicole Immorlica, Samir Khuller (Chair), Bobby Kleinberg September 14Th, 2020
2020 SIGACT REPORT SIGACT EC – Eric Allender, Shuchi Chawla, Nicole Immorlica, Samir Khuller (chair), Bobby Kleinberg September 14th, 2020 SIGACT Mission Statement: The primary mission of ACM SIGACT (Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory) is to foster and promote the discovery and dissemination of high quality research in the domain of theoretical computer science. The field of theoretical computer science is the rigorous study of all computational phenomena - natural, artificial or man-made. This includes the diverse areas of algorithms, data structures, complexity theory, distributed computation, parallel computation, VLSI, machine learning, computational biology, computational geometry, information theory, cryptography, quantum computation, computational number theory and algebra, program semantics and verification, automata theory, and the study of randomness. Work in this field is often distinguished by its emphasis on mathematical technique and rigor. 1. Awards ▪ 2020 Gödel Prize: This was awarded to Robin A. Moser and Gábor Tardos for their paper “A constructive proof of the general Lovász Local Lemma”, Journal of the ACM, Vol 57 (2), 2010. The Lovász Local Lemma (LLL) is a fundamental tool of the probabilistic method. It enables one to show the existence of certain objects even though they occur with exponentially small probability. The original proof was not algorithmic, and subsequent algorithmic versions had significant losses in parameters. This paper provides a simple, powerful algorithmic paradigm that converts almost all known applications of the LLL into randomized algorithms matching the bounds of the existence proof. The paper further gives a derandomized algorithm, a parallel algorithm, and an extension to the “lopsided” LLL. -
COMPUTER PHYSICS COMMUNICATIONS an International Journal and Program Library for Computational Physics
COMPUTER PHYSICS COMMUNICATIONS An International Journal and Program Library for Computational Physics AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.2 • Impact Factor p.2 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.4 ISSN: 0010-4655 DESCRIPTION . Visit the CPC International Computer Program Library on Mendeley Data. Computer Physics Communications publishes research papers and application software in the broad field of computational physics; current areas of particular interest are reflected by the research interests and expertise of the CPC Editorial Board. The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered. -
Computational Complexity for Physicists
L IMITS OF C OMPUTATION Copyright (c) 2002 Institute of Electrical and Electronics Engineers. Reprinted, with permission, from Computing in Science & Engineering. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the discussed products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by sending a blank email message to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. COMPUTATIONALCOMPLEXITY FOR PHYSICISTS The theory of computational complexity has some interesting links to physics, in particular to quantum computing and statistical mechanics. This article contains an informal introduction to this theory and its links to physics. ompared to the traditionally close rela- mentation as well as the computer on which the tionship between physics and mathe- program is running. matics, an exchange of ideas and meth- The theory of computational complexity pro- ods between physics and computer vides us with a notion of complexity that is Cscience barely exists. However, the few interac- largely independent of implementation details tions that have gone beyond Fortran program- and the computer at hand. Its precise definition ming and the quest for faster computers have been requires a considerable formalism, however. successful and have provided surprising insights in This is not surprising because it is related to a both fields. -
Mathematics of Bioinformatics ---Theory, Practice, and Applications (Part I)
Mathematics of Bioinformatics ---Theory, Practice, and Applications (Part I) Matthew He, Ph.D. Professor/Director Division of Math, Science, and Technology Nova Southeastern University, Florida, USA December 18-21, 2010, Hong Kong, China BIBM 2010 OUTLINE INTRODUCTION: FUNDAMENTAL QUESTIONS PART I : GENETIC CODES , BIOLOGICAL SEQUENCES , DNA AND PROTEIN STRUCTURES PART II: BIOLOGICAL FUNCTIONS, NETWORKS, SYSTEMS BIOLOGY AND COGNITIVE INFORMATICS TABLE OF TOPICS: PART I I. Bioinformatics and Mathematics 1.1 Introduction 12G1.2 Genet ic Co de an dMd Mat hemat ics 1.3 Mathematical Background 1.4 Converting Data to Knowledge 1.5 Big Picture: Informatics 16Chll1.6 Challenges and dP Perspect ives II. Genetic Codes, Matrices, and Symmetrical Techniques 2.1 Introduction 2.2 Matrix Theory and Symmetry Preliminaries 2.3 Genetic Codes and Matrices 2.4 Challenges and Perspectives III. Biological Sequences, Sequence Alignment, and Statistics 3.1 Introduction 3.2 Mathematical Sequences 3.3 Sequence Alignment 3.4 Sequence Analysis/Further Discussions 3.5 Challenges and Perspectives TABLE OF TOPICS: PART I IV. Structures of DNA and Knot Theory 4.1 Introduction 4.2 Knot Theory Preliminaries 4.3 DNA Knots and Links 4.4 Challenggpes and Perspectives V. Protein Structures, Geometry, and Topology 51I5.1 In tro duc tion 5.2 Computational Geometry and Topology 5.3 Protein Structures and Prediction 5.4 Statistical Approach and Discussions 5. 5 Cha llenges an d Perspec tives TABLE OF TOPICS: PART II VI. Biological Networks and Graph Theory 6. 1 Introduction 6.2 Graph Theory and Network Topology 6.3 Models of Biological Networks 6.4 Challenges and Perspectives VII. -
Computational Complexity: a Modern Approach
i Computational Complexity: A Modern Approach Sanjeev Arora and Boaz Barak Princeton University http://www.cs.princeton.edu/theory/complexity/ [email protected] Not to be reproduced or distributed without the authors’ permission ii Chapter 10 Quantum Computation “Turning to quantum mechanics.... secret, secret, close the doors! we always have had a great deal of difficulty in understanding the world view that quantum mechanics represents ... It has not yet become obvious to me that there’s no real problem. I cannot define the real problem, therefore I suspect there’s no real problem, but I’m not sure there’s no real problem. So that’s why I like to investigate things.” Richard Feynman, 1964 “The only difference between a probabilistic classical world and the equations of the quantum world is that somehow or other it appears as if the probabilities would have to go negative..” Richard Feynman, in “Simulating physics with computers,” 1982 Quantum computing is a new computational model that may be physically realizable and may provide an exponential advantage over “classical” computational models such as prob- abilistic and deterministic Turing machines. In this chapter we survey the basic principles of quantum computation and some of the important algorithms in this model. One important reason to study quantum computers is that they pose a serious challenge to the strong Church-Turing thesis (see Section 1.6.3), which stipulates that every physi- cally reasonable computation device can be simulated by a Turing machine with at most polynomial slowdown. As we will see in Section 10.6, there is a polynomial-time algorithm for quantum computers to factor integers, whereas despite much effort, no such algorithm is known for deterministic or probabilistic Turing machines. -
COMPUTATIONAL SCIENCE 2017-2018 College of Engineering and Computer Science BACHELOR of SCIENCE Computer Science
COMPUTATIONAL SCIENCE 2017-2018 College of Engineering and Computer Science BACHELOR OF SCIENCE Computer Science *The Computational Science program offers students the opportunity to acquire a knowledge in computing integrated with knowledge in one of the following areas of study: (a) bioinformatics, (b) computational physics, (c) computational chemistry, (d) computational mathematics, (e) environmental science informatics, (f) health informatics, (g) digital forensics and cyber security, (h) business informatics, (i) biomedical informatics, (j) computational engineering physics, and (k) computational engineering technology. Graduates of this program major in computational science with a concentration in one of the above areas of study. (Amended for clarification 12/5/2018). *Previous UTRGV language: Computational science graduates develop emphasis in two major fields, one in computer science and one in another field, in order to integrate an interdisciplinary computing degree applied to a number of emerging areas of study such as biomedical-informatics, digital forensics, computational chemistry, and computational physics, to mention a few examples. Graduates of this program are prepared to enter the workforce or to continue a graduate studies either in computer science or in the second major. A – GENERAL EDUCATION CORE – 42 HOURS Students must fulfill the General Education Core requirements. The courses listed below satisfy both degree requirements and General Education core requirements. Required 020 - Mathematics – 3 hours For all