<<

PoS(ICRC2021)512 International th 12–23 July 2021 July 12–23 37 SICS CONFERENCE SICS CONFERENCE Berlin | Germany Berlin Berlin | Germany Cosmic Ray Conference Ray Cosmic on behalf d ICRC 2021 THE ASTROPARTICLE PHY ICRC 2021 THEASTROPARTICLE PHY https://pos.sissa.it/ ONLINE and Vincenzo Vitale c Daniele Ninci b Daniel Kerzsberg, ∗ , a [email protected], , [email protected] [email protected], International Cosmic Ray Conference (ICRC 2021) Presenter ∗ th [email protected] Dwarf spheroidal (dSphs) arefor DM, among having the the best highest known candidates mass-to-lightemitting to ratio sources. and perform being indirect free The searches oflocated astrophysical Major gamma-ray on Atmospheric the Gamma Canary Imaging Islandrecent of Cherenkov years. La (MAGIC) This Palma, is telescopes, the have outcome observed of a diversifyingbiases the fair in observation amount strategy target in of selection order optimal to and avoid dSphs possible tonew in MAGIC improve results previous the obtained results. from 52.1 In hourshours this of of observation contribution of the we the will Coma Draco report Berenices dSphof in on dSph 2018 Draco in and and 2019. 49.5 We dSphs willdataset with accounts also other for 354.4 present dSphs hours observed the of by good results quality MAGICever of data, so collected resulting a by far. in an joint one The array of analysis selected of the Cherenkov largest telescopes. dSphslimits samples This from allows us dSphs, to derive among the mostdifferent Cherenkov constraining annihilation telescopes, channels in on the the WIMP mass WIMP range annihilation 70 GeV cross to 100 section TeV. for Departament de Física & -IEEC, UniversitatBellaterra, Autónoma Spain de Barcelona, Institut de Fisica d’Altes Energies &Bellaterra, The Spain Barcelona Institute of Science and Technology, Institut de Fisica d’Altes Energies &Bellaterra, The Spain Barcelona Institute of Science and Technology, INFN Roma Tor Vergata, Roma, Italy E-mail: Copyright owned by the author(s) under the terms of the Creative Commons c a b d © Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). Camilla Maggio, Upper limits on the WIMP annihilationa cross joint section analysis from of dwarf spheroidalobservations satellite with the MAGIC telescopes 37 July 12th – 23rd, 2021 Online – Berlin, Germany of the MAGIC Collaboration (a complete list of authors can be found at the end of the proceedings) PoS(ICRC2021)512 stereo Camilla Maggio . Following the hierarchical bottom-up structure 2 DM halos , placed in the Observatorio del Roque de los Muchachos, on the Canary Island of La Palma The new MAGIC multi-year dSphs observation diversification program aims to detect hints of Dark Matter (DM) is assumed to be present in all the Universe and to be gravitationally bound DM signals from promising dSphs targetsto in improve the the Northern Hemisphere, current or, limitsdifferentiating in on the case targets of the and no velocity-averaged accumulating detection, cross-section data,to of in reduce order WIMPs. the to systematic have uncertainties This a and is largerFor improve data this done the sample purpose, results. by that the permits two dSphstotal Draco effective and time Coma of Berenices 52.1 werethe observed h dSphs in and 2018 presented 49.5 and in h 2019 [5], respectively. forfrom taking a us, The into excluding account dSphs the the were dSphs DM previously selectedThe observed content, after DM by its a MAGIC. analysis uncertainty, has ranking and been of performed theirSection3. independently distance for each In data addition, sample acquired, previously asbeen observed described combined Segue in to 1 the and new Ursaresults data, Major of resulting II the in dSphs analysis a on dataSection4. this total samples overall amount have data In of1, sample, Table 354.4 together the h withsample effective of the is observation good presented. other time quality results, of The data. are order thethe presented in dSphs The oldest in which included observation the to in dSphs the the are newest listed combined one. follows data the year of observation, from in overdensity structures, the so-called 2. Dwarf spheroidal galaxies data samples WIMP annihilation cross section upper limits from MAGIC dSphs data 1. Introduction formation scenario [1], these halosof usually galaxies. host astrophysical The objects, dwarf such spheroidaltargets as to galaxies perform galaxies (dSphs) indirect or DM satellite searches. clusters of Thesebackground the objects are and Milky almost are free Way relatively of are close conventional one astrophysical to ofIndirect us, DM the orbiting searches with our best Imaging Atmospheric Galaxy. Cherenkov Telescopes (IACTs), such asGöebel the Major Florian Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopesto [2], study select the on objects the basis ofof their the DM targets content most and investigated, in vicinity particularThe to in the Weakly the Earth. Interacting case Massive These of criteria Particle searchesIACTs searches, for make (WIMP) having DM dSphs a [3] annihilation. one mass is in the thethe range DM 10 products GeV particle to of candidate 1004] annihilation/decay. TeV[ and preferred emittingdistribution for Thus, are gamma rays the models among main ingredients of taken WIMP intoThe account DM MAGIC when telescopes annihilation/decay performing are DM and a searches system with the of IACTs. mode two DM IACTs operating simultaneously, in the so-called (Spain). Since their first light, theyannihilation, observed but dSphs no in hint search of for DM a has gamma-rayof signal been the of found yet. WIMP new DM In targets this observed proceeding,results of we by present the MAGIC the analysis of in data the samples the singlesample, dSphs, multi-year in followed by dSphs which the dSphs diversification results previously of program observed the by and analysis MAGIC of are the a also combined included. data PoS(ICRC2021)512 , (2) (1) OFF N -factor, # and the t i j PP b ) ∆Ω t i τ bins , as a function − i N e , one for , the Camilla Maggio ) and a Gaussian π 2 t i j τ 1 ON ,..., , 4 1 and the gamma-ray ! σ N = . j OFF ) ) tij N , 0 DM ) tij Ω m , ). All these functions are , OFF tij l is the expected number of J b ( are the number of observed N . OFF 2 10 b ti ρ τ N ( the expected number of signal 2 bins log , OFF dl N σ g N tij × . and variance , s . ) o . ON l t i j obs and and pointing direction b N τ Z [h] ( + t 0 | ) t , the DM mass ON ti Ω J i obs , N i d v , -factor value, , τ T v ) J t , ann ∆Ω bins ann and variance J σ N Z σ h 10 h ( 3 × obs ,..., log J t i j 1 is the -) factor, containing information of the DM spatial g = ( j J 10 , σ J dE dN − } t , e i of the target. tij v log obs b Draco 52.1 t i j ρ Target 2 DM , J { Segue 1 157.9 ann , m ON t 10 σ 2 II 94.8 J N h ) ; Coma Berenices 49.5 possible annihilation channels weighted by the corresponding i π log 1 v tij | 4 n -factor, written as the integral over the solid angle t b J J ! parameter (with mean value ann = ( + of σ τ ) tij ) h , i t ( J × J ON , L ∆Ω dE dSphs effective observation times (after data quality selection). dN i ( ) N dE i v , that runs over the number of energy bins -) factor, containing the particle physics properties of the considered DM = ti j Φ is the OFF/ON acceptance ratio, ) Br τ, d , and the ann τ i 1 PP σ n parameter (with mean D = P , σ | i h Br ( ti J ν , is expressed as: , Table 1: ; = i tij D obs v g τ ( | " dE ann ti dN τ is the set of nuisance parameters, 1 σ ( bins h = j ( ν Y N ti When searching for a DM annihilation signal with IACTs, the measured quantity is the flux of = × T L In order to compute the velocity-averaged cross-sectionreduction of achieved a WIMP by particle, the after MAGIC theperformed standard analysis on data the software data. MARS The [6],of likelihood the a function, dataset binned per target likelihood analysis is line-of-sight of the squared DM density distribution of the target: branching ratios gamma rays emitted by the targeta of interest. particle This physics flux ( canparticle be candidate, written as and the an product astrophysical of (or two terms, 3. DM likelihood analysis WIMP annihilation cross section upper limits from MAGIC dSphs data described by the velocity-averaged cross-section where On the right-hand-side of the equation, one can find the geometrical factor background events, spectrum events in the ON region and the OFF region, respectively, and events. The likelihood function is written as the product of a Poisson function for a Gaussian function for the function for the expressed in terms of The flux of gamma rays, that is described as a function of the parameter of interest for the study PRELIMINARY PRELIMINARY

PoS(ICRC2021)512 5 (3) 10 to the [GeV] - DM τ E (left) and + m τ ¯ b b ) E 4 | PRELIMINARY Camilla Maggio 0 10 E Draco Coma Berenices Thermal-relic cross-section ( G ) the collection area and E ( eff eff A 3 A 10 ) J , i v ann dE Ursa Major II Combined limit Segue 1 σ h ( 2 φ 10 d 21 27 28 29 30 20 22 23 24 25 26 − − − − − − − − − − −

10 dE 10 10 10 10 10 10 10 10 10 10

] s [cm v> < 95%

σ

-1 UL 3 ∞ 4 0 5 Z 10 0 [GeV] as follows: dE DM b j g m , b j , 0 max 0 E min E 4 PRELIMINARY Z 10 Draco Coma Berenices Thermal-relic cross-section obs T = ) J , i 3 v . 10 0 ann E σ h ( j g Combined limit Segue 1 Ursa Major II is the effective observation time (as reported in1), Table 95 % CL ULs on the WIMP velocity-averaged annihilation cross-sections for the the probability density function for an event to migrate from the true energy 2 obs ) , is included in the expression of 10 T i E | v (right) channels, for the single dSphs (Segue 1-orange, Ursa Major II-violet, Draco dSph- light green, 0 The DM analyses performed on Draco and Coma Berenices dSphs did not show any evidence 21 29 30 26 27 28 22 23 24 25 20 − − − − − − − − − − −

E

10 ann 10 10 10 10 10 10 10 10 10 10

v> < 95% s [cm ] τ

( σ -1 UL 3 + σ τ Coma Berenices dSph-blue) and for the data combination (solid black line). Figure 1: WIMP annihilation cross section upper limits from MAGIC dSphs data h The likelihood analysis is implemented in the gLike toolsoftware [7] and package cross-checked using the LklCom independent [8].distribution It of has DM of to each berespect target to noticed and, the that thus, center the of the entire thetool respective target. [9]. analysis gamma-ray emission considers This distribution has the been with spatial done thanks to the use of4. the Donut Monte Results Carlo and discussion for gamma rays emitted from the targets.CL Consequently, on we computed the upper velocity-averaged limits annihilation (UL) cross-section.similar, at as the The presented 95% case in of [9, Segue10]. A 1 DM and analysis Ursa was Major then IIhave performed is been on set the also in combined this data case.obtained sample for1 Figure of theshows combined 354.4 the data individual h. limits set. Even for UL if the at four the dSphs the limits and 95% derived the CL we limit with stress the that combined the data weight sample of are the driven systematic by uncertainties the related Segue to 1 contribution, the latter is reduced due to the where estimated energy G PoS(ICRC2021)512 , , Annual Camilla Maggio Dwarf Galaxy Annihilation , The Astrophysical Journal 801 The large-scale structure of the Universe 5 Unitarity limits on the mass and radius of dark-matter , Astroparticle Physics 72 (2016) 76-94, arXiv:1409.5594 The major upgrade of the MAGIC telescopes, Part II: A performance study us- Dark Matter Candidates from Particle Physics and Methods of Detection , Physical Review Letters, 64 (1990) 615-618 Review of Astronomy and Astrophysics 48 (2010) 495–545, arXiv:1003.0904 particles and Decay Emission Profiles for(2015) Dark 74, Matter arXiv:1408.0002 Experiments [astro-ph.CO] [astro-ph.IM] ing observations of the Crab Nature 440 (2006) pp. 1137–1144 arXiv:astro-ph/0604561 [astro-ph] The MAGIC collaboration performed a multi-year observational diversification program to [4] Griest, K. and Kamionkowski, M., [5] Geringer-Sameth, A. and Koushiappas, S. M. and Walker, M., [3] Feng, J. L., [2] Aleksić, J. et al., [1] Springel, V. and Frenk, C. S. and White, S. D. M., search for DM signalssearches. in The dSphs, program had which the scope arein to target among diversify selection, the the dSph and targets, accumulate most in dSphsthis order promising data, reason, to targets allowing avoid Draco possible the for dSph biases improvement and indirect of ComaAfter previous DM the Berenices results. data dSph analysis were For of observed both in targets,the no 2018 velocity-averaged hint and annihilation of 2019, cross-section DM respectively. signals of were WIMPsthese found two were and dSphs ULs set. were at combined to the In the 95% a data CLThis of second on previously has observed step, been Segue the 1 done and data in Ursa Major of orderimprove II to dSphs. the mitigate UL the effects values fromof obtained target 354.4 related per h systematic each uncertainties of and DM goodMAGIC mass. quality results data and are are The about the limitsmass a most computed range factor constraining from 2 by among 70 more the current GeV to stringent Cherenkov combination 100 than telescopes TeV. the in previously the published WIMP Acknowledgements We acknowledge the support from the agencieshttps://magic.mpp.mpg.de/acknowledgments_ICRC2021 and organizations listed here: References WIMP annihilation cross section upper limits from MAGIC dSphs data data combination. The ULs presented are the most stringent ones withinwith the MAGIC respect collaboration and to very competitive other experiments,VERITAS in and HAWC. particular in the TeV regime, such as Fermi-LAT, H.E.S.S., 5. Conclusions PoS(ICRC2021)512 , , Pro- Camilla Maggio gLike: numerical 6 , Journal of Cosmology and Astroparticle Physics 3 (2018) 009, LklCom: Combining likelihoods from different experiments. MARS, The MAGIC Analysis and Reconstruction Software , Zenodo (2021) v00.09.03, https://doi.org/10.5281/zenodo.4601451 Indirect dark matter searches in the dwarf satellite galaxy Ursa Major II Optimized dark matter searches in deep observations of Segue 1 with , Journal of Cosmology and Astroparticle Physics 2 (2014) 008, arXiv:1312.1535 [astro-ph.HE] with the MAGIC telescopes arXiv:1712.03095 [astro-ph.HE] MAGIC ceedings, 33rdhttps://ui.adsabs.harvard.edu/abs/2013ICRC...33.2937Z International Cosmic Ray Conference (ICRC2013) 33maximization of (2013) heterogeneous joint likelihood 2937, nuisance functions parameters of a common free parameter plus Zenodo (2021) v0.5.3, https://doi.org/10.5281/zenodo.4597500 [6] Zanin, R. et al., [7] Rico, J. and Nigro, C. and Kerszberg, D. and Miener, T. and Aleksić, J., [8] Miener, T. and Nieto D., [9] Ahnen, M. L. et al., WIMP annihilation cross section upper limits from MAGIC dSphs data [10] Aleksić, J. et al., PoS(ICRC2021)512 , , , , , , , , , , , , , , , , , , , , 2 1 3 6 3 3 9 5 9 1 8 1 5 2 22 11 40 12 17 24 25 ETH Saha 4 33 , U. Bar- 9 , T. Saito , L. Nava , S. Paiano , L. Jouvin , G. Vanzo 28 , T. Miener University of 35 1 , Ž. Bošnjak , J. Herrera 25 15 49 , B. De Lotto , F. Tavecchio , N. Giglietto 16 15 , E. Colombo , 12 , E. Lindfors 6 2 5 , B. Machado de , T. Yamamoto 3 11 now at University Croatian MAGIC 26 , M. Bernardos , M. V. Fonseca , K. Mannheim , D. Sobczynska IPARCOS Institute 7 22 13 8 14 43 23 9 37 , A. Baquero Camilla Maggio 8 , P. G. Prada Moroni Max-Planck-Institut für Japanese MAGIC Group: Centro de Investigaciones 15 15 , N. Sahakyan , E. Do Souto Espiñeira , T. Nakamori , M. Gaug 20 40 , G. Bonnoli , D. Miceli , F. Leone 5 , R. Takeishi 7 Università di Siena and INFN 17 22 28 6 23 29 , J. Otero-Santos , L. Heckmann , J. Jormanainen , S. M. Colak 13 , A. Fattorini 31 , I. Šnidarić 8 now at Ruhr-Universität Bochum, , A. Babić , A. De Angelis now at Department of Astronomy, Inst. for Nucl. Research and Nucl. 15 20 , S. Loporchio 45 7 3 12 , E. Bernardini , C. Wunderlich 1 , , M. Pihet 45 46 34 , M. Manganaro 13 15 25 , J. van Scherpenberg 50 , Centro Brasileiro de Pesquisas Físicas 34 2 26 Finnish MAGIC Group: Finnish Centre , E. Moretti , T. Oka INFN MAGIC Group: INFN Sezione di , D. Lelas 10 6 3 25 26 38 , S. Cikota , S. Gasparyan , A. Hahn , F. Dazzi , D. Baack , M. Takahashi , S. Mićanović , L. Di Venere , J. Sitarek , H. Bökenkamp 6 , M. Will 6 , A. Rugliancich 7 19 14 5 43 6 37 3 21 15 , , L. Bellizzi 17 , M. Persic Armenian MAGIC Group: ICRANet-Armenia at , S. Ubach 12 9 , G. Maneva 3 , Y. Ohtani 28 11 INFN MAGIC Group: INFN Sezione di Torino and , A. López-Oramas 31 , V. Moreno Departament de Física, and CERES-IEEC, Universitat , I. Vovk , I. Jiménez Martínez 9 also at International Center for Relativistic Astrophysics 9 , T. Surić , K. Asano , A. Lamastra 6 , C. Righi 21 39 5 , O. Blanch 26 5 , V. Fallah Ramazani , S. Mender 27 32 4 41 , D. Hadasch 7 Croatian MAGIC Group: University of Rijeka, Department , P. Peñil 13 Japanese MAGIC Group: Department of Physics, Yamagata , P. Da , T. Schweizer 15 , F. Di Pierro 23 3 7 23 , A. Tutone Croatian MAGIC Group: Josip Juraj Strossmayer University of , M. Garczarczyk 21 , A. Chilingarian 35 1 , W. Bednarek now at Laboratoire d’Annecy de Physique des Particules (LAPP), 13 15 Universitat de Barcelona, ICCUB, IEEC-UB, E-08028 Barcelona, , S. Nozaki 30 1 , J. Rico 6 , V. Vitale , Y. Suda 7 49 6 , M. Artero 18 18 21 , M. Mallamaci , A. Biland 4 , Y. Iwamura 3 , J. Kushida National Institute for Astrophysics (INAF), I-00136 Rome, Italy. 34 12 , D. Morcuende , D. Green Università di Padova and INFN, I-35131 Padova, Italy. 3 , V. D’Elia , D. Elsaesser 31 5 3 , M. López-Moya , L. Pavletić also at Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy. , K. Schmidt , S. Menchiari 42 11 INFN MAGIC Group: INFN Sezione di Bari and Dipartimento Interateneo , Y. Chai 11 11 Japanese MAGIC Group: Physics Program, Graduate School of Advanced , 18 , S. Truzzi Japanese MAGIC Group: Department of Physics, Kyoto University, 606-8502 24 48 , K. Noda , D. Depaoli 47 18 , 15 22 38 6 , M. Ribó 27 32 20 , M. Strzys 31 7 15 , K. Ishio 6 Japanese MAGIC Group: Institute for Cosmic Ray Research (ICRR), The University , H. Kubo , R. J. García López , C. F. Vigorito 6 , C. Bigongiari , M. Doro 6 , M. Makariev 27 34 Technische Universität Dortmund, D-44221 Dortmund, Germany. , A. Arbet Engels , A. Moralejo 14 , J. G. Green 24 , J. Becerra González 3 , L. Tosti 33 7 18 Finnish MAGIC Group: Astronomy Research Unit, University of Oulu, FI-90014 Oulu, , D. Mazin 29 11 51 , M. Cerruti 5 , , J. M. Paredes , W. Rhode , B. Schleicher , D. Strom , G. D’Amico Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008, Granada, , R. López-Coto 36 15 3 15 , T. Inada 3 13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology , K. Nishijima 29 30 Croatian MAGIC Group: University of Split, Faculty of Electrical Engineering, Mechanical 47 16 5 15 , 25 2 Universität Würzburg, D-97074 Würzburg, Germany. 29 INFN MAGIC Group: INFN Roma Tor Vergata, I-00133 Roma, Italy. 24 , D. Dorner , V. Verguilov , Y. Fukazawa , Y. Kobayashi 2 , E. Molina 6 39 5 13 , C. Delgado Mendez , I. Batković Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen, Germany. , P. Majumdar 15 9 , I. Puljak 44 , S. Covino , L. A. Antonelli 5 26 , , R. Paoletti , M. Martínez , N. Godinović 14 5 , W. Bhattacharyya 20 41 , M. Teshima , F. G. Saturni , M. Hütten , F. Longo , G. Ceribella 15 11 , , J. Strišković 12 , K. Nilsson 3 2 3 15 23 5 14 30 17 now at Department for Physics and Technology, University of Bergen, NO-5020, Norway. 42 , A. Donini , S. Fukami , S. Ventura 23 1 15 Japanese MAGIC Group: Department of Physics, Tokai University, Hiratsuka, 259-1292 Kanagawa, Japan. , J. A. Barrio , D. Kerszberg also at Port d’Informació Científica (PIC), E-08193 Bellaterra (Barcelona), Spain. , C. Maggio , R. Mirzoyan , J. Cortina 1 10 , J. Delgado , C. Nigro 9 32 , T. Terzić 10 13 , P. Gliwny , S. Ansoldi 44 , D. Paneque , C. Priyadarshi , M. Mariotti , R. Carosi 44 1 36 2 , D. Hrupec 29 34 Croatian MAGIC Group: Ruđer Bošković Institute, 10000 Zagreb, Croatia. , 22 , A. Stamerra 3 , S. Lombardi 5 , K. Satalecka 11 11 46 7 6 Università di Pisa and INFN Pisa, I-56126 Pisa, Italy. 11 , J. Besenrieder , Armenian MAGIC Group: A. Alikhanyan National Science Laboratory, 0036 Yerevan, Armenia. 37 , C. Fruck 9 15 17 26 19 Max-Planck-Institut für Physik, D-80805 München, Germany. Instituto de Astrofísica de Canarias and Dpto. de Astrofísica, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain. M. Vazquez Acosta P. Temnikov A. Spolon S. Sakurai E. Prandini M. Palatiello V. Neustroev J. M. Miranda L. Maraschi M. Karjalainen Oliveira Fraga F. Giordano J. Hoang L. Font L. Linhoff A. Berti G. Busetto J. L. Contreras D. Dominis Prester WIMP annihilation cross section upper limits from MAGIC dSphs data Full Authors List: MAGIC Collaboration V. A. Acciari M. Delfino res de Almeida and D. Zarić 1 Università di Udine and INFN Trieste,Zürich, I-33100 CH-8093 Udine, Zürich, Italy. Switzerland. (BIST), E-08193 Bellaterra (Barcelona), Spain. of Tokyo, Kashiwa, 277-8582 Chiba,Group: Japan. University of Zagreb, Faculty of Electrical Engineering and Computing (FER), 10000 Zagreb, Croatia. NAS RA, 0019 Yerevan, Armenia. Engineering and Naval Architecture (FESB),Osijek, 21000 Department Split, of Croatia. Physics, 31000 Osijek, Croatia. Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, SaltEnergy, Lake, Sector-1, Bulgarian Kolkata 700064, Academy India. of Sciences,University, BG-1784 Yamagata 990-8560, Sofia, Japan. Bulgaria. Finland. Perugia, I-06123 Perugia, Italy. of Innsbruck. Fakultät für Physik und Astronomie, Astronomisches InstitutUniversity (AIRUB), 44801 of Bochum, California Germany. Berkeley,48 Berkeley CA 94720. Science and Engineering, Hiroshima University, 739-8526 Hiroshima, Japan. Kyoto, Japan. (ICRA), Rome, Italy. and EMFTEL Department, Universidad Complutense(CBPF), de 22290-180 Madrid, URCA, Rio E-28040 de Madrid, Janeiro Spain. (RJ), Brazil. of Physics, 51000 Rijeka, Croatia. for Astronomy with ESO, UniversityAutònoma of de Turku, Barcelona, FI-20014 E-08193 Turku, Bellaterra, Finland. Spain. Department of Physics, Konan University, Kobe, Hyogo 658-8501, Japan. Lodz, Faculty of Physics and AppliedPisa, Informatics, Department I-53100 of Siena, Astrophysics, 90-236 Italy. Lodz, Poland. Energéticas, Medioambientales y Tecnológicas,Università degli E-28040 Studi Madrid, di Torino, Spain. I-10125di Torino, Fisica Italy. dell’Università e del Politecnico di Bari, I-70125 Bari, Italy. Spain. Spain. Physik, D-80805 München, Germany. PoS(ICRC2021)512 Camilla Maggio 8 also at INAF Trieste and Dept. of Physics and Astronomy, University of Bologna, 50 Japanese MAGIC Group: Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa, 277-8582 51 WIMP annihilation cross section upper limits from MAGIC dSphs data CNRS-IN2P3, 74941 Annecy Cedex, France. Bologna, Italy. Chiba, Japan.