CONSTRUCTIVE RECOGNITION of PSL(2,Q)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1702.00823V1 [Stat.OT] 2 Feb 2017
Nonparametric Spherical Regression Using Diffeomorphic Mappings M. Rosenthala, W. Wub, E. Klassen,c, Anuj Srivastavab aNaval Surface Warfare Center, Panama City Division - X23, 110 Vernon Avenue, Panama City, FL 32407-7001 bDepartment of Statistics, Florida State University, Tallahassee, FL 32306 cDepartment of Mathematics, Florida State University, Tallahassee, FL 32306 Abstract Spherical regression explores relationships between variables on spherical domains. We develop a nonparametric model that uses a diffeomorphic map from a sphere to itself. The restriction of this mapping to diffeomorphisms is natural in several settings. The model is estimated in a penalized maximum-likelihood framework using gradient-based optimization. Towards that goal, we specify a first-order roughness penalty using the Jacobian of diffeomorphisms. We compare the prediction performance of the proposed model with state-of-the-art methods using simulated and real data involving cloud deformations, wind directions, and vector-cardiograms. This model is found to outperform others in capturing relationships between spherical variables. Keywords: Nonlinear; Nonparametric; Riemannian Geometry; Spherical Regression. 1. Introduction Spherical data arises naturally in a variety of settings. For instance, a random vector with unit norm constraint is naturally studied as a point on a unit sphere. The statistical analysis of such random variables was pioneered by Mardia and colleagues (1972; 2000), in the context of directional data. Common application areas where such data originates include geology, gaming, meteorology, computer vision, and bioinformatics. Examples from geographical domains include plate tectonics (McKenzie, 1957; Chang, 1986), animal migrations, and tracking of weather for- mations. As mobile devices become increasingly advanced and prevalent, an abundance of new spherical data is being collected in the form of geographical coordinates. -
Constructive Recognition of a Black Box Group Isomorphic to GL(N,2)
DIMACS Series in Discrete Mathematics and Theoretical Computer Science Volume 00, 19xx Constructive Recognition of a Black Box Group Isomorphic to GL(n, 2) Gene Cooperman, Larry Finkelstein, and Steve Linton Abstract. A Monte Carlo algorithm is presented for constructing the natu- ral representation of a group G that is known to be isomorphic to GL(n, 2). The complexity parameters are the natural dimension n and the storage space required to represent an element of G. What is surprising about this result is that both the data structure used to compute the isomorphism and each invo- cation of the isomorphism require polynomial time complexity. The ultimate goal is to eventually extend this result to the larger question of construct- ing the natural representation of classical groups. Extensions of the methods developed in this paper are discussed as well as open questions. 1. Introduction The principal objective of this paper is a demonstration of the feasibility of obtaining the natural (projective) matrix representation for a classical group ini- tially presented as a black box group. In this model, group elements are encoded by binary strings of uniform length N, and group operations are performed by an oracle (the black box). The oracle can compute the product of elements, the inverse and recognize the identity element in time polynomial in N. The most important examples of black box groups are matrix groups and permutation groups. This effort was initially motivated by recent efforts to identify the structure of matrix groups defined over finite fields (see [3] [7] and [9] in this volume). -
Limits of Geometries
Limits of Geometries Daryl Cooper, Jeffrey Danciger, and Anna Wienhard August 31, 2018 Abstract A geometric transition is a continuous path of geometric structures that changes type, mean- ing that the model geometry, i.e. the homogeneous space on which the structures are modeled, abruptly changes. In order to rigorously study transitions, one must define a notion of geometric limit at the level of homogeneous spaces, describing the basic process by which one homogeneous geometry may transform into another. We develop a general framework to describe transitions in the context that both geometries involved are represented as sub-geometries of a larger ambi- ent geometry. Specializing to the setting of real projective geometry, we classify the geometric limits of any sub-geometry whose structure group is a symmetric subgroup of the projective general linear group. As an application, we classify all limits of three-dimensional hyperbolic geometry inside of projective geometry, finding Euclidean, Nil, and Sol geometry among the 2 limits. We prove, however, that the other Thurston geometries, in particular H × R and SL^2 R, do not embed in any limit of hyperbolic geometry in this sense. 1 Introduction Following Felix Klein's Erlangen Program, a geometry is given by a pair (Y; H) of a Lie group H acting transitively by diffeomorphisms on a manifold Y . Given a manifold of the same dimension as Y , a geometric structure modeled on (Y; H) is a system of local coordinates in Y with transition maps in H. The study of deformation spaces of geometric structures on manifolds is a very rich mathematical subject, with a long history going back to Klein and Ehresmann, and more recently Thurston. -
Generating Sequences of PSL(2,P) Which Will Eventually Lead Us to Study How This Group Behaves with Respect to the Replacement Property
Generating Sequences of PSL(2,p) Benjamin Nachmana aCornell University, 310 Malott Hall, Ithaca, NY 14853 USA Abstract Julius Whiston and Jan Saxl [14] showed that the size of an irredundant generating set of the group G = PSL(2,p) is at most four and computed the size m(G) of a maximal set for many primes. We will extend this result to a larger class of primes, with a surprising result that when p 1 mod 10, m(G) = 3 except for the special case p = 7. In addition, we6≡ will ± determine which orders of elements in irredundant generating sets of PSL(2,p) with lengths less than or equal to four are possible in most cases. We also give some remarks about the behavior of PSL(2,p) with respect to the replacement property for groups. Keywords: generating sequences, general position, projective linear group 1. Introduction The two dimensional projective linear group over a finite field with p ele- ments, PSL(2,p) has been extensively studied since Galois, who constructed them and showed their simplicity for p > 3 [15]. One of their nice prop- erties is due to a theorem by E. Dickson, which shows that there are only a small number of possibilities for the isomorphism types of maximal sub- arXiv:1210.2073v2 [math.GR] 4 Aug 2014 groups. There are two possibilities: ones that exist for all p and ones that exist for exceptional primes. A more recent proof of Dickson’s Theorem can be found in [10] and a complete proof due to Dickson is in [3]. -
2-Arcs of Maximal Size in the Affine and the Projective Hjelmslev Plane Over Z25
Advances in Mathematics of Communications doi:10.3934/amc.2011.5.287 Volume 5, No. 2, 2011, 287{301 2-ARCS OF MAXIMAL SIZE IN THE AFFINE AND THE PROJECTIVE HJELMSLEV PLANE OVER Z25 Michael Kiermaier, Matthias Koch and Sascha Kurz Institut f¨urMathematik Universit¨atBayreuth D-95440 Bayreuth, Germany (Communicated by Veerle Fack) Abstract. It is shown that the maximal size of a 2-arc in the projective Hjelmslev plane over Z25 is 21, and the (21; 2)-arc is unique up to isomorphism. Furthermore, all maximal (20; 2)-arcs in the affine Hjelmslev plane over Z25 are classified up to isomorphism. 1. Introduction It is well known that a Desarguesian projective plane of order q admits a 2-arc of size q + 2 if and only if q is even. These 2-arcs are called hyperovals. The biggest 2-arcs in the Desarguesian projective planes of odd order q have size q + 1 and are called ovals. For a projective Hjelmslev plane over a chain ring R of composition length 2 and size q2, the situation is somewhat similar: In PHG(2;R) there exists a hyperoval { that is a 2-arc of size q2 + q + 1 { if and only if R is a Galois ring of size q2 with q even, see [7,6]. For the case q odd and R not a Galois ring it was recently shown 2 that the maximum size m2(R) of a 2-arc is q , see [4]. In the remaining cases, the situation is less clear. For even q and R not a Galois ring, it is known that the maximum possible size of a 2-arc is lower bounded by q2 + 2 [4] and upper bounded by q2 + q [6]. -
Quantum Algorithm for Decomposing Black-Box Finite Abelian Groups
Quantum Algorithm for Decomposing Black-Box Finite Abelian Groups Yong Zhang Department of Computer Science, Kutztown University of Pennsylvania, Kutztown, PA 19530 Abstract— Cheung and Mosca [1] gave an efficient quan- to a quantum algorithm for the HIDDEN SUBGROUP problem tum algorithm for decomposing finite abelian groups in a where the given group G is abelian. In the case when G is unique-encoding group model. We present another efficient non-abelian, the HIDDEN SUBGROUP problem generalizes quantum algorithm for this problem in a more general model, other well-known problems such as GRAPH ISOMORPHISM. the black-box group model, where each group element is not However, the non-abelian case is much harder to solve and necessarily uniquely encoded. remains a major challenge in quantum computation. Before one can efficiently implement QFT to solve the Keywords: quantum computation, black-box group model abelian HIDDEN SUBGROUP problem, the decomposition of the given abelian group G must be known. Cheung and Mosca [1] first studied the problem of decomposing finite 1. Introduction abelian groups. They gave an efficient quantum algorithm for this problem. However, one of their assumptions is that Any finite abelian group G can be decomposed into each element of the input group G is uniquely represented the direct sum of cyclic subgroups of prime power order. by a binary string. In another word, their quantum algorithm However, given a set of generators for G, no efficient only works for a unique-encoding group model. classical algorithm is known to find the decomposition of G, i.e., find generators for the cyclic subgroups of G. -
Chapter 3 Central Extensions of Groups
Chapter 3 Central Extensions of Groups The notion of a central extension of a group or of a Lie algebra is of particular importance in the quantization of symmetries. We give a detailed introduction to the subject with many examples, first for groups in this chapter and then for Lie algebras in the next chapter. 3.1 Central Extensions In this section let A be an abelian group and let G be an arbitrary group. The trivial group consisting only of the neutral element is denoted by 1. Definition 3.1. An extension of G by the group A is given by an exact sequence of group homomorphisms ι π 1 −→ A −→ E −→ G −→ 1. Exactness of the sequence means that the kernel of every map in the sequence equals the image of the previous map. Hence the sequence is exact if and only if ι is injec- tive, π is surjective, the image im ι is a normal subgroup, and ∼ kerπ = im ι(= A). The extension is called central if A is abelian and its image im ι is in the center of E, that is a ∈ A,b ∈ E ⇒ ι(a)b = bι(a). Note that A is written multiplicatively and 1 is the neutral element although A is supposed to be abelian. Examples: • A trivial extension has the form i pr 1 −→ A −→ A × G −→2 G −→ 1, Schottenloher, M.: Central Extensions of Groups. Lect. Notes Phys. 759, 39–62 (2008) DOI 10.1007/978-3-540-68628-6 4 c Springer-Verlag Berlin Heidelberg 2008 40 3 Central Extensions of Groups where A × G denotes the product group and where i : A → G is given by a → (a,1). -
Algorithms for Black-Box Fields and Their Application to Cryptography (Extended Abstract)
Algorithms for Black-Box Fields and their Application to Cryptography (extended abstract) Dan Hone11 Richard ,J. Lipton“ [email protected] [email protected] Princeton University, Princeton NJ 08544 Abstract. We irrtroduce the notion of a black box field and present several algorithms for manipulating such fields. Black box fields arise naturally in cryptography arid our algorit,hnnshave several cryptographic implications. First, our results show that any algebraically homomorphic cryptosystem can be broken in sub-exponential time. The existence of such cryptosystems was posed as an open problem in [la]. Second we show that, over elliptic (or hyperelliptic) curves the hardness of com- puting discrete-log implies the security of the Diffie- Hellman protocol. This provable security of the Diffie-Hellman prot,ocol over elliptic curves demonstrates an additional advantage of elliptic curve cryptosystems over conventional ones. Finally, we prove that manipulating black box fields over the rationals is as hard as factoring integers. 1 Introduction An algebraic structure is often defined as a set of operators acting on some universe. Usually there is no reference as to how the elements in the universe are represented. One can design algorithms for such an abstract algebraic structure by providing the algorithm with oracles for the various operators. We refer to such a representation of an algebraic structure as a black box represenlation. The most widely studied structure given in this fashion is the black box group [3]. In this paper we study fields given in a black box representation. We refer to such fields as black box fields, or BBF for short. -
Arxiv:1304.1626V2 [Math.RT]
GEOMETRICAL CHARACTERIZATION OF SEMILINEAR ISOMORPHISMS OF VECTOR SPACES AND SEMILINEAR HOMEOMORPHISMS OF NORMED SPACES MARK PANKOV Abstract. Let V and V ′ be vector spaces over division rings (possible infinite- dimensional) and let P(V ) and P(V ′) be the associated projective spaces. We say that f : P(V ) → P(V ′) is a PGL-mapping if for every h ∈ PGL(V ) there exists h′ ∈ PGL(V ′) such that fh = h′f. We show that for every PGL-bijection the inverse mapping is a semicollineation. Also, we obtain an analogue of this result for the projective spaces associated to normed spaces. 1. Introduction Let V and V ′ be vector spaces over division rings. Denote by P(V ) and P(V ′) the associated projective spaces (the dimensions of our vector spaces are assumed to be not less than 3, possible the vector spaces are infinite-dimensional). We say that f : P(V ) → P(V ′) is a PGL-mapping if for every h ∈ PGL(V ) there exists h′ ∈ PGL(V ′) such that ′ fh = h f (we identify PGL(V ) with the group of all transformation of P(V ) induced by linear automorphisms of V ). Every strong semilinear embedding (a semilinear injection transferring any collection of linearly independent vectors to linearly independent vectors) induces a PGL-mapping. By [8, Theorem 2], every non-constant PGL- mapping of P(V ) to P(V ′) is induced by a strong semilinear embedding of V in V ′ if V ′ is a vector space over a field and the image is contained in a subspace of V ′ whose dimension is not greater than dim V . -
Arxiv:Quant-Ph/0011023V2 26 Jan 2001 Ru Oracle Group Ya ffiin Rcdr O Optn H Ru Operations
Quantum algorithms for solvable groups John Watrous∗ Department of Computer Science University of Calgary Calgary, Alberta, Canada [email protected] January 26, 2001 Abstract In this paper we give a polynomial-time quantum algorithm for computing orders of solvable groups. Several other problems, such as testing membership in solvable groups, testing equality of subgroups in a given solvable group, and testing normality of a subgroup in a given solvable group, reduce to computing orders of solvable groups and therefore admit polynomial-time quantum algorithms as well. Our algorithm works in the setting of black-box groups, wherein none of these problems can be computed classically in polynomial time. As an important byproduct, our algorithm is able to produce a pure quantum state that is uniform over the elements in any chosen subgroup of a solvable group, which yields a natural way to apply existing quantum algorithms to factor groups of solvable groups. 1 Introduction The focus of this paper is on quantum algorithms for group-theoretic problems. Specifically we consider finite solvable groups, and give a polynomial-time quantum algorithm for computing or- ders of solvable groups. Naturally this algorithm yields polynomial-time quantum algorithms for testing membership in solvable groups and several other related problems that reduce to comput- ing orders of solvable groups. Our algorithm is also able to produce a uniform pure state over arXiv:quant-ph/0011023v2 26 Jan 2001 the elements in any chosen subgroup of a solvable groups, which yields a natural way of apply- ing certain quantum algorithms to factor groups of solvable groups. -
Projective Line by Paris Pamfilos
Projective Line by Paris Pamfilos Exclusive of the abstract sciences, the largest and worthiest portion of our knowledge consists of aphorisms: and the greatest and best of men is but an aphorism. S. Coleridge, Aids to Reflection XXVII Contents 1 Projective line2 2 Homogeneous coordinates2 3 Projective base3 4 Relation between euclidean and projective base4 5 Change of projective bases5 6 Line projectivities or homographies6 7 The fundamental theorem for line projectivities6 8 Homographic relations7 9 Homographic relations, the group properties8 10 Line perspectivities8 11 Circle and tangents homography9 12 Cross ratio or anaharmonic ratio 10 13 Projectivities defined by cross ratios 11 14 Cross ratio in euclidean coordinates 11 1 Projective line 2 1 Projective line The standard model of the “projective line” consists of the classes »x1; x2¼ of non-zero vectors of R2 modulo non-zero multiplicative constants. For every non-zero vector 2 a = ¹a1; a2º of R , the symbol »a¼ = »a1; a2¼ denotes a “point” of the projective line and 0 a = ¹a1; a2º is called a “representative” of the point. Two representatives fa; a g define the same point if and only if a0 = ka , with a non-zero real number k. The most important examples of projective lines are the usual lines of the euclidean plane to which we add an additional point, called point at infinity. This additional point makes the line closed and is called “projectification” of the line (or “one-point-compactifica- tion”). The projectification is illustrated by figure 1. In this we consider the points of (0,1) α (t,1) t=x1/x2 O(0,0) Figure 1: Projective line represented by (a line + a point at infinity) line α : y = 1; parallel to the x−axis. -
On the Rank Two Geometries of the Groups PSL(2, Q): Part II∗
Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 6 (2013) 365–388 On the rank two geometries of the groups PSL(2; q): part II∗ Francis Buekenhout , Julie De Saedeleer , Dimitri Leemans y Universite´ Libre de Bruxelles, Departement´ de Mathematiques´ - C.P.216 Boulevard du Triomphe, B-1050 Bruxelles Received 30 November 2010, accepted 25 January 2013, published online 15 March 2013 Abstract We determine all firm and residually connected rank 2 geometries on which PSL(2; q) acts flag-transitively, residually weakly primitively and locally two-transitively, in which 0 one of the maximal parabolic subgroups is isomorphic to A4, S4, A5, PSL(2; q ) or PGL(2; q0), where q0 divides q, for some prime-power q. Keywords: Projective special linear groups, coset geometries, locally s-arc-transitive graphs. Math. Subj. Class.: 51E24, 05C25 1 Introduction In [5], we started the classification of the residually weakly primitive and locally two- transitive coset geometries of rank two for the groups PSL(2; q). The aim of this paper is to finish this classification. It remains to focus on the cases in which one of the max- 0 0 imal parabolic subgroups is isomorphic to A4, S4, A5, PSL(2; q ) or PGL(2; q ) where q0 divides q. For motivation, basic definitions, notations and context of the work we refer to [5]. In Section 3, we sketch the proof of our main result: ∼ Theorem 1.1. Let G = PSL(2; q) and Γ(G; fG0;G1;G0\G1g) be a locally two-transitive 0 RWPRI coset geometry of rank two.