<<

A Dissertation entitled

Kepler Planet Occurrence Rates for Mid-Type M Dwarfs as a Function of Spectral Type

by Kevin K. Hardegree-Ullman

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Degree in Physics

Dr. Michael C. Cushing, Committee Chair

Dr. Jon E. Bjorkman, Committee Member

Dr. Rupali Chandar, Committee Member

Dr. Philip S. Muirhead, Committee Member

Dr. Nikolas J. Podraza, Committee Member

Dr. Amanda C. Bryant-Friedrich, Dean College of Graduate Studies

The University of Toledo August 2018 Copyright 2018, Kevin K. Hardegree-Ullman

This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Kepler Planet Occurrence Rates for Mid-Type M Dwarfs as a Function of Spectral Type by Kevin K. Hardegree-Ullman

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Physics The University of Toledo August 2018

Previous studies of planet occurrence rates largely relied on photometric stellar characterizations. We present spectroscopic observations of 337 out of 561 probable mid-type M dwarfs in the primary Kepler field. Our observations have allowed us to constrain spectral type, temperatures, and in some cases for these . We use a random forest classifier to spectral type the remaining 224 targets.

Combining our data with , we have computed precise (∼3%) stellar radii, which we use to update planet parameters and planet occurrence rates for

Kepler mid-type M dwarfs. Within the Kepler field, there are seven M3 V to M5 V stars which host a total of 13 confirmed planets between 0.5 and 2.5 radii and at orbital periods between 0.5 and 10 days. For this population, we compute a

+0.14 planet occurrence rate of 1.27−0.28 planets per . With our spectral classifications,

+0.53 we compute planet occurrence rates for each spectral sub-type which yields 0.78−0.40,

+1.14 +2.87 1.23−0.75, and 2.51−1.51 planets per star for M3 V, M4 V, and M5 V, respectively. Our updated planet parameters show Kepler-1649 b to be an Earth sized planet receiving insolation flux similar to Earth. We also use our data to compute , identify active stars with Hα emission, and identify binary candidates. Our observations with the multi-object spectrograph Hydra on the WIYN allowed us to observe

1,083 other Kepler stars, which will be useful in future studies.

iii For Emily, Kelly, Michael, Melody, and Angelina. Acknowledgments

I would like to thank my advisor Mike Cushing, who has allowed me to pursue my scientific interests while keeping me from meandering too far off track. My disser- tation would not have been possible without the guidance and help developing this project from Phil Muirhead. I am lucky to have been able to take a majority of my graduate courses with Jon Bjorkman, who has the unique talent of making Jackson electrodynamics understandable. I am also grateful to my committee members Rupali

Chandar and Nik Podraza for bringing in additional perspectives to my work. My graduate experience was immeasurably enriched during my IPAC Visiting Graduate

Fellowship, and I am thankful to Jessie Christiansen for guiding me down the rabbit hole of research.

I would also like to thank my fellow graduate students at the University of Toledo, and members of the Ritter observing team for making our department scientifically fruitful. Finally, a special thank you to Rick Irving and Mike Brown for keeping everything working behind the scenes.

v Contents

Abstract iii

Acknowledgments v

Contents vi

List of Tables ix

List of Figures xii

List of Abbreviations xviii

List of Symbols xix

1 Introduction 1

1.1 A Brief History of Exoplanet Discovery ...... 2

1.1.1 Early Exoplanet Claims ...... 2

1.1.2 The Method ...... 2

1.1.3 The First ...... 6

1.1.4 The Transit Method ...... 7

1.1.5 Direct Imaging ...... 8

1.2 Kepler ...... 10

1.3 Planet Occurrence Rates ...... 12

1.4 M Dwarf Pros and Cons ...... 12

1.5 Accurate Stellar Properties for Occurrence Rate Calculations . . . . . 16

vi 2 Mid-Type M Dwarf Planet Occurrence Rates 19

2.1 Target Selection, Observations, and Data Reduction ...... 19

2.1.1 WIYN ...... 20

2.1.2 Discovery Channel Telescope ...... 24

2.1.3 IRTF ...... 24

2.1.4 LAMOST ...... 25

2.1.5 Gaia ...... 25

2.2 Stellar Properties ...... 26

2.2.1 Absolute Magnitudes ...... 27

2.2.2 Spectral Type ...... 27

2.2.3 Effective Temperature ...... 30

2.2.4 ...... 31

2.2.5 Radius ...... 32

2.3 Refining the Sample ...... 35

2.3.1 Giants ...... 35

2.3.2 Eclipsing and Spectroscopic Binaries ...... 36

2.3.3 Gaia Color Cuts and Binaries ...... 38

2.4 Mid-Type M Dwarf Planets ...... 40

2.5 Planet Occurrence Rate ...... 45

2.5.1 Monte Carlo Analysis ...... 47

2.6 Discussion ...... 49

3 Additional Information from Spectra 52

3.1 Stellar Properties from Spectra ...... 52

3.1.1 Mass ...... 52

3.1.2 Stellar Activity ...... 53

3.1.3 BY Draconis Binaries ...... 57

vii 3.2 Kepler Spectroscopic Library ...... 58

3.2.1 Optimizing Hydra Observations ...... 58

4 Conclusions 63

4.1 Planet Occurrence Rates ...... 63

4.2 Future Directions ...... 65

A Additional Acknowledgements 68

B Data Reduction for DCT/DeVeny Spectra 71

B.1 Rotate images and add a dispersion axis ...... 72

B.2 Bias subtract and flat field ...... 72

B.3 Extract spectra ...... 77

B.4 Calibrate wavelengths ...... 83

B.5 Combine spectra ...... 89

B.6 Flux calibrate spectra ...... 92

C Stellar Property Tables 96

viii List of Tables

2.1 Kepler Mid-Type M Dwarf Planets ...... 44

2.2 Planet occurrence rates per spectral type...... 49

4.1 Planet occurrence rates per planet radius bin...... 64

B.1 DeVeny Spectrograph Atomic Line List ...... 85

B.1 DeVeny Spectrograph Atomic Line List ...... 86

C.1 Stellar parameters for spectroscopically classified targets...... 97

C.1 Stellar parameters for spectroscopically classified targets...... 98

C.1 Stellar parameters for spectroscopically classified targets...... 99

C.1 Stellar parameters for spectroscopically classified targets...... 100

C.1 Stellar parameters for spectroscopically classified targets...... 101

C.1 Stellar parameters for spectroscopically classified targets...... 102

C.1 Stellar parameters for spectroscopically classified targets...... 103

C.1 Stellar parameters for spectroscopically classified targets...... 104

C.1 Stellar parameters for spectroscopically classified targets...... 105

C.1 Stellar parameters for spectroscopically classified targets...... 106

C.1 Stellar parameters for spectroscopically classified targets...... 107

C.1 Stellar parameters for spectroscopically classified targets...... 108

C.1 Stellar parameters for spectroscopically classified targets...... 109

C.1 Stellar parameters for spectroscopically classified targets...... 110

C.1 Stellar parameters for spectroscopically classified targets...... 111

ix C.1 Stellar parameters for spectroscopically classified targets...... 112

C.1 Stellar parameters for spectroscopically classified targets...... 113

C.1 Stellar parameters for spectroscopically classified targets...... 114

C.1 Stellar parameters for spectroscopically classified targets...... 115

C.1 Stellar parameters for spectroscopically classified targets...... 116

C.1 Stellar parameters for spectroscopically classified targets...... 117

C.1 Stellar parameters for spectroscopically classified targets...... 118

C.1 Stellar parameters for spectroscopically classified targets...... 119

C.1 Stellar parameters for spectroscopically classified targets...... 120

C.1 Stellar parameters for spectroscopically classified targets...... 121

C.1 Stellar parameters for spectroscopically classified targets...... 122

C.1 Stellar parameters for spectroscopically classified targets...... 123

C.1 Stellar parameters for spectroscopically classified targets...... 124

C.2 Stellar parameters for photometrically classified targets...... 125

C.2 Stellar parameters for photometrically classified targets...... 126

C.2 Stellar parameters for photometrically classified targets...... 127

C.2 Stellar parameters for photometrically classified targets...... 128

C.2 Stellar parameters for photometrically classified targets...... 129

C.2 Stellar parameters for photometrically classified targets...... 130

C.2 Stellar parameters for photometrically classified targets...... 131

C.2 Stellar parameters for photometrically classified targets...... 132

C.2 Stellar parameters for photometrically classified targets...... 133

C.2 Stellar parameters for photometrically classified targets...... 134

C.2 Stellar parameters for photometrically classified targets...... 135

C.2 Stellar parameters for photometrically classified targets...... 136

C.2 Stellar parameters for photometrically classified targets...... 137

C.2 Stellar parameters for photometrically classified targets...... 138

x C.2 Stellar parameters for photometrically classified targets...... 139

C.2 Stellar parameters for photometrically classified targets...... 140

C.2 Stellar parameters for photometrically classified targets...... 141

C.2 Stellar parameters for photometrically classified targets...... 142

C.2 Stellar parameters for photometrically classified targets...... 143

C.3 Other Kepler stars...... 144

C.3 Other Kepler stars...... 145

C.3 Other Kepler stars...... 146

C.3 Other Kepler stars...... 147

C.3 Other Kepler stars...... 148

C.3 Other Kepler stars...... 149

C.3 Other Kepler stars...... 150

C.3 Other Kepler stars...... 151

C.3 Other Kepler stars...... 152

C.3 Other Kepler stars...... 153

C.3 Other Kepler stars...... 154

C.3 Other Kepler stars...... 155

C.3 Other Kepler stars...... 156

C.3 Other Kepler stars...... 157

C.3 Other Kepler stars...... 158

C.3 Other Kepler stars...... 159

C.3 Other Kepler stars...... 160

C.3 Other Kepler stars...... 161

xi List of Figures

1-1 The reference frame where the is at rest for a single planet

...... 3

1-2 The reference frame where the star is at rest...... 4

1-3 A plot of the cumulative number of unique planet detections per ,

color coded by discovery method (NASA Exoplanet Archive)...... 9

1-4 A plot of planet detections per year, color coded by discovery method

(NASA Exoplanet Archive). Kepler was launched in March 2009, causing

transit discoveries to surge from 2010 and beyond. The spikes of transit

detections in 2014 and 2016 correspond to the release of 715 planets by

Rowe et al. (2014) and 1284 planets by Morton et al. (2016)...... 11

1-5 Figure 6 from Mulders (2018) showing planet occurrence as a function of

effective temperature for planets with orbital periods less than 50 days

compiled from the literature. This trend of increasing planet occurrence

rates toward cooler stars is consistent with the result from Howard et al.

(2012)...... 13

1-6 Example transit light curves, showing relative transit depths for Earth,

Neptune, and at 1 AU orbiting the , and Earth orbiting around

an M0 V, M4 V, and M7 V dwarf at a distance in which the planet would

receive the same insolation flux as Earth. An Earth-sized planet orbiting

an M4 V star would be the same transit depth as Neptune orbiting the

Sun (0.1%)...... 15

xii 2-1 A color-color plot showing the targets selected for this survey using the

Muirhead et al. (2015) color selection criteria (magenta) and targets iden-

tified with Teff . 3300 K (orange)...... 20 2-2 An M dwarf spectral sequence from our observations of Kepler targets with

WIYN. We have included labels of prominent atomic (top) and molecular

features (bottom). This sequence shows a clear progression of weakening

absorption in Na D and Ca II, increasing absorption in K I and Na I,

more defined molecular band heads, and an increasing slope toward red

wavelengths...... 23

2-3 (a) Comparison of true versus predicted spectral type distributions from

a random forest classification using photometry from a subset of the West

et al. (2011) M dwarf sample. (b) The corresponding confusion matrix

shows the fraction of predicted classifications in each spectral type bin

versus true spectral type. Over 90% of the predicted classifications are

within one spectral type of the true spectral type...... 29

2-4 (a) Comparison of true versus predicted spectral type distributions using

the random forest classifier on the Kepler targets we have spectroscopically

classified. (b) Spectral type distribution for our entire Kepler sample using

results from the classifier on our non-observed targets and spectra for our

observed targets. For these histograms, stars with half spectral types are

rounded up to the nearest integer type...... 30

2-5 A plot of all targets from this survey showing their on-sky location. Points

are colored based on spectral type and sized relative to each other based

on radius...... 33

xiii 2-6 (a) Comparison of our radius measurements of Kepler M dwarfs to radii

from the Kepler Stellar Catalog (Mathur et al., 2017). We do not include

17 targets from the Kepler Stellar Catalog with R? > 1 R . The 1:1 reference line is plotted in red, and the histograms show the radius mea-

surement distributions. (b) Comparison of our radius measurements to

those from Dressing and Charbonneau (2013) for the 214 targets found in

both samples. Our radius measurements are generally larger than those

in the Kepler Stellar Catalog and from Dressing and Charbonneau (2013). 34

2-7 Four giant stars identified in our data (in color), corresponding to two

early and two late-type M giants. We plot an M dwarf of similar spectral

class (black) to show differences in spectral features identified at the top

of the plot...... 36

2-8 Four targets which are potential -M dwarf binaries. KIC09772829

and KIC100064337 are compared to the M2V spectrum from Figure 2-2,

and KIC07983929 and KIC09713959 are compared to the M3 V spectrum

(black). Spectra are normalized to 8,350 A,˚ the same wavelength we use

to normalize spectra for spectral typing...... 37

2-9 Likely binary stars sharing common proper motions and similar distances

in the Gaia data. These 1000 cutouts are stacked g, i, and y-band im-

ages from Pan-STARRS and are centered on the target coordinates from

the NASA Exoplanet Archive. KIC10731839 is only g-band since it is

saturated in the other filters...... 39

2-10 Planet host spectra, including the first optical spectra for Kepler-1582 and

Kepler-1646. Kepler-1646 exhibits Hα emission, indicating that this star

is active...... 40

2-11 Planets around mid-type M dwarfs in the Kepler field. The radii of Earth

and Mercury are shown for reference...... 43

xiv 2-12 Planet occurrence rate distributions from our Monte Carlo spectral type

analysis. The top two panels and bottom left panel are the occurrence rates

for each spectral type, and the bottom right panel is the occurrence rate for

all mid-type M dwarfs. Above each distribution we give the corresponding

box and whisker plot, which show the quartiles of each distribution, and

identify any Likely outliers. Note that the histogram bin width for each

plot is 0.15 but the axes are all different scales...... 48

2-13 Planet occurrence rate as a function of stellar effective temperature for

planets with orbital periods shorter than 10 days and radii between 0.5

and 2.5 R⊕. The measurements from our Monte Carlo analysis are shown as the box and whisker plots from Figure 2-12 to illustrate the skewed

nature of the planet occurrence rate distributions, and the widths of each

box correspond to the temperature uncertainties. The total mid-type M

dwarf planet occurrence rate is shown in magenta. There is a clear increase

in planet occurrence rate toward later spectral types, and evidence for an

increasing trend toward later sub-types within the mid-type M dwarfs. . 51

3-1 An active M4 V star (top), exhibiting Hα emission, compared to an inac-

tive M4 V star (bottom)...... 54

3-2 (a) A light curve of one quarter of Kepler data for KIC05354341, exhibiting

periodic behavior due to star spots and several flare events. (b) Three days

of Kepler data for KIC05354341, showing several rapid increases in flux

due to stellar flares...... 55

3-3 Histogram of spectroscopically observed Kepler targets, showing an over-

lay of the active targets for each spectral type...... 55

3-4 Comparison of activity fraction of stars from this study compared to values

from the literature (West et al., 2004, 2008, 2011; Schmidt et al., 2015). . 56

xv 3-5 A spectrum of KIC05175854 (blue) compared to an M4 V template (black;

top) and a combination of an M1.5 V and an M7 V template (bottom).

The star spectrum more closely resembles the combined spectra...... 57

3-6 A phase folded light curve of BY Draconis variable NSV 03144 (top,

Greaves, 2010), and KIC05175854 (bottom), showing similar profiles. . . 59

3-7 Spectral type distribution of the 979 Kepler M dwarfs, 38 M dwarf–white

dwarf candidates, 38 K, 1 G, and 6 F type stars we observed with extra

Hydra fibers on WIYN...... 60

3-8 Spectral sequence of M dwarfs in the Kepler field. The M1, M5, and M6

stars all exhibit Hα emission, indicative of stellar activity...... 61

3-9 Spectral sequence of earlier type stars in the Kepler field...... 62

B-1 Parameters for the imcombine routine...... 73

B-2 Parameters for the response routine...... 75 B-3 The flat field response function...... 76

B-4 Parameters for the apall routine...... 78

B-5 Parameters for the apextract routine...... 79 B-6 The aperture extraction window, showing a peak near the center where

the star was located on the slit. An aperture and background regions were

automatically identified based on input parameters from the apall routine,

as shown by the horizontal lines...... 81

B-7 The aperture trace window, showing the locations of the aperture peaks

and a low order polynomial fit...... 82

B-8 An extracted spectrum of an M dwarf. The extracted spectrum is noisy,

so several exposures need to be taken to build up the signal...... 83

B-9 Parameters for the identify routine...... 87

B-10 Parameters for the identify routine...... 88

xvi B-11 Parameters for the dispcor routine...... 89

B-12 Parameters for the scombine routine...... 90 B-13 A wavelength calibrated combined spectrum...... 91

B-14 A fit of the spectrophotometric standard sensitivity function from the

sensfunc routine (top panel), and the residual from the fit (bottom panel). Points used in the fit are shown as +, and points removed from the fit are

shown as ×. Depending on your spectrophotometric standard, there may

be few or no points beyond 9,000 A˚ due to strong telluric contamination. 93

B-15 Parameters for the calibrate routine...... 94 B-16 A flux calibrated spectrum of a Kepler M dwarf...... 95

xvii List of Abbreviations

AU...... CCD ...... Charge-Coupled Device CDPP ...... Combined Differential Photometric Precision CM ...... Center-of-Mass CoRoT ...... Convection, Rotation, and planetary Transits DCT ...... Discovery Channel Telescope EXPRES ...... EXtreme PREcision Spectrograph HARPS ...... High Accuracy Radial velocity Planet Searcher HATNet ...... Hungarian Automated Telescope Network IDL ...... Interactive Data Language IRAF ...... Image Reduction and Analysis Facility IRTF ...... Telescope Facility KELT ...... Kilodegree Extremely Little Telescope KIC ...... Kepler Input Catalog KOI ...... Kepler Object of Interest LAMOST ...... Large Sky Area Multi-Object Fiber Spectroscopic Tele- scope MC ...... Monte Carlo NaCo ...... Nasmyth Adaptive Optics System Near-Infrared Imager and Spectrograph NN-EXPLORE ...... NASA/NSF Exoplanet Observational Research NOAO ...... National Optical NEID ...... NN-EXPLORE Investigations with Doppler spectroscopy Pan-STARRS ...... Panoramic Survey Telescope and Rapid Response Sys- tem TESS ...... Transiting Exoplanet Survey Satellite TRAPPIST ...... Transiting Planets and Planetesimals Small Telescope TrES ...... Trans-Atlantic Exoplanet Survey SDSS ...... S/N ...... Signal-to-Noise 2MASS ...... Two Micron All-Sky Survey VLT ...... Very Large Telescope WASP ...... Wide Angle Search for Planets WIYN ...... Wisconsin, Indiana, Yale, NOAO

xviii List of Symbols

A...... ˚ Angstrom 0 ...... Arcminute 00 ...... Arcsecond ⊕ ...... Earth ? ...... Star ...... Sun λ ...... Wavelength

xix Chapter 1

Introduction

“. . . there is an infinite number of worlds, some like this world, others

unlike it. For the atoms being infinite in number, as has just been proved,

are borne ever further in their course. For the atoms out of which a

world might arise, or by which a world might be formed, have not all been

expended on one world or a finite number of worlds, whether like or unlike

this one. Hence there will be nothing to hinder an infinity of worlds.” –

Epicurus (∼300 BCE)1

“It is then unnecessary to investigate whether there be beyond the heaven

Space, Void or Time. For there is a single general space, a single vast

immensity which we may freely call Void; in it are innumerable globes like

this one on which we live and grow. This space we declare to be infinite,

since neither reason, convenience, possibility, sense-perception nor nature

assign to it a limit. In it are an infinity of worlds of the same kind as our

own.” – Giordano Bruno (1584)2

1Letter to Herodotus 2De l’infinito universo et Mondi - translated by Singer (1950)

1 1.1 A Brief History of Exoplanet Discovery

1.1.1 Early Exoplanet Claims

For millennia, philosophers and scientists have posited that other planets outside

our exist. The earliest evidence for these exoplanets came from Jacob

(1855), who measured irregularities in the of the system 70 Ophi-

uchi (two K-type dwarf stars), which he attributed to an unseen planetary body.

More careful calculations by Moulton (1899) disproved this claim, showing that an

additional unseen body was not necessary to explain the binary orbit.

Half a century later, van de Kamp (1963) noticed deviations in the

of Barnard’s star (an M-type dwarf; the second closest known star system to the

Sun), which could be attributed to a 1.6 (MJ ) planet. Using the same observing techniques on a different telescope, Gatewood and Eichhorn (1973) failed

to detect evidence of a planetary companion. Hershey (1973) found that maintenance

and upgrades to the telescope on which the companion to Barnard’s star was detected

likely caused the measured proper motion deviations.

1.1.2 The Radial Velocity Method

“With the completion of the great radial-velocity programmes of the major

, the impression seems to have gained ground that the mea-

surement of Doppler displacements in stellar spectra is less important at

the present time . . . I believe that this impression is incorrect, and I should

like to support my contention by presenting a proposal for the solution of

a characteristic astrophysical problem.” – Otto Struve (1952)

In 1952, Otto Struve proposed that it might be possible to detect Jupiter mass planets around other stars using a high-dispersion spectrograph (Struve, 1952). In

2 this technique, known as the radial velocity method, several spectra of a star are gathered over time. If there is a massive body orbiting this star, the center of mass of the system will not be at the center of the star, causing the star to “wobble,” and the spectral lines to shift back and forth. In Figure 1-1 we show a diagram of a star with a single planet, orbiting their common center-of-mass (CM).

Figure 1-1 The reference frame where the center of mass is at rest for a

single planet star system.

For the following calculation, we assume an edge-on orbit. In the reference frame where the center of mass of this two-body system is at rest:

mprCM,p = m?rCM,? (1.1)

m?rCM,? mp = , (1.2) rCM,p

where m? is the mass of the star, rCM,? is the radius of the star’s orbit to the system

CM, mp is the mass of the planet, and rCM,p is the radius of the planet’s orbit to the system CM. We may find rCM,? from the star’s tangential velocity (v?) about it’s

3 orbit:

2πr v = CM,? (1.3) ? P P v r = ? , (1.4) CM,? 2π

where P is the . From a calibrated high-resolution spectrum, we can

measure the wavelength (λshift) of one or more spectral lines and compare those wavelengths to the rest wavelength (λrest) of that line and then calculate the radial velocity (vrad) using the Doppler equation:

  λshift − λrest vrad = c , (1.5) λrest

where c is the speed of light in a vacuum. For this model system, assuming a circular

orbit, a sinusoidal pattern will begin to emerge in the plot of radial velocity versus

time. From this plot, we can measure the orbital period, and the semi-amplitude,

which is v?. Now, in the reference frame where the star is at rest (Figure 1-2), the force keeping the planet in orbit is gravity.

Figure 1-2 The reference frame where the star is at rest.

4 We combine Newton’s law of gravity with Newton’s second law of motion to yield:

Fg = F (1.6) Gm m ? p = m a, (1.7) r2 p

2 where G is the gravitational constant, r = rCM,? + rCM,p, and a = vp/r is the cen-

tripetal acceleration, where vp = 2πr/P is the tangential velocity of the planet. Putting everything together:

2 2 4π 3 P = (rCM,? + rCM,p) (1.8) Gm? 1 P 2Gm  3 r = ? − r . (1.9) CM,p 4π2 CM,?

30 Now, for example, imagine a star with m? = 2 × 10 kg (1 , M ), v? =

−1 8 8 12.4 m s , and P = 3.74 × 10 s. From Equation 1.3, we get rCM,? = 7.38 × 10 m,

11 which we put into Equation 1.8 to get rCM,p = 7.78 × 10 m. Inputting these values

27 into Equation 1.1 gives mp = 1.9 × 10 kg, which is 1 MJ . This calculation only provides a lower limit on mass, since radial velocity measurements do not give us information about angle.

Unfortunately, at the time of Struve, spectrographs did not have the resolving power necessary to measure a 12.4 m s−1 radial velocity amplitude. The precision of radial velocity measurements depends on the resolving power of the spectrograph

(R = λ/∆λ), and requires very stable instrumentation and careful data analysis.

With a higher resolution spectrograph, smaller wavelength shifts can be measured.

It was not until the 1970s that 15 m s−1 precision was achieved with R ≈ 70, 000

(Campbell and Walker, 1979), and much more recently that 1 m s−1 was achieved

with R ≈ 100, 000 spectrographs (e.g., Pepe et al., 2011).

5 1.1.3 The First Exoplanets

Campbell et al. (1988) measured radial velocities of 16 stars over the period of

6 with the coud´espectrograph on the 3.6-meter Canada-France-Hawaii tele- scope. The K-type Gamma Cephei A exhibited radial velocity amplitude

−1 of 25 m s with a period of 2.7 years, which corresponds to a 1.7 MJ planet (Figure 5 in Campbell et al., 1988). However, Walker et al. (1992) later retracted the claim of a planet around Gamma Cephei A due to low quality data, and attributed the radial velocity variation to instead.3

The first confirmed exoplanets were unexpectedly discovered around a pulsar, PSR

B1257+12, by Wolszczan and Frail (1992). PSR B1257+12 is a 1.4 M millisecond pulsar with a rotational period of 6.2 milliseconds. After removing the signal from the pulsar rotational period, Wolszczan and Frail (1992) noticed structure in the residual on the order of 15 picoseconds. A model consisting of one 3.4 Earth mass (M⊕) and one 2.8 M⊕ planet, with orbital periods of 66.6 and 98.2 days, respectively, can explain these small pulsar timing perturbations (Figure 3 in Wolszczan and Frail,

1992). The masses of these planets suggest that they are too small to be gas giants, but larger than any rocky body in our solar system.

Following the discovery of the planets around a pulsar, Mayor and Queloz (1995) used the radial velocity technique to find the first planet around the 1.11 M G5 V star 51 Pegasi. The radial velocity amplitude of 56 m s−1 yields a minimum planet mass of 0.5 MJ (Figure 4 in Mayor and Queloz, 1995). Curiously, the orbital period of this planet is only 4.23 days, placing it six times closer to its host star than Mercury is to the Sun, which necessitated new models of planet formation. Until 2010, the radial velocity technique was the primary method of discovering exoplanets, finding

3With an additional decade of radial velocity data, Hatzes et al. (2003) confirmed that the signal measured by Campbell et al. (1988) was in fact due to a planet.

6 planets mostly around the mass of Jupiter and larger.

1.1.4 The Transit Method

“There would, of course, also be eclipses.” – Otto Struve (1952)

In his column about radial velocities as a method for finding planets, Struve also

briefly mentioned the possibility of detecting eclipses of a star by a planet, now more

commonly called the transit method. If an exoplanet’s orbital plane is in the line-of-

sight of an observer, it will block some of the light emitted from its host star as it

passes in front of the star. The total drop in flux (∆F/F ) is equal to the ratio of the

2 2 cross-sectional area of the planet (πRp ) to the cross-sectional area of the star (πR? ):

2 2 ∆F/F = Rp /R? . For Jupiter orbiting the Sun, the depth of a transit signal would be 1%, or 10,000 parts per million (ppm), which is an achievable precision for ground-based with a camera. For Earth orbiting the Sun, the depth of a transit signal would be 0.0084% or 84 ppm.

The first exoplanet discovered to transit in front of its host star was HD 209458 b, a 1.35 Jupiter radius (RJ ) planet orbiting a 1.2 Sun radius (R ) G0 V star every 3.5 days (Charbonneau et al., 2000, see their Figure 1). This planet was also detected via the radial velocity method around the same time, providing a mass of 0.62 MJ (Henry et al., 2000). This was the first time a planet was detected with more than one method, allowing measurement of a precise planet mass and density. The search for transiting planets has sparked numerous ground based surveys (e.g., Hungarian Auto- mated Telescope Network (HATNet), Trans-Atlantic Exoplanet Survey (TrES), Wide

Angle Search for Planets (WASP), Kilodegree Extremely Little Telescope (KELT)) and space based surveys (Convection, Rotation, and planetary Transits (CoRoT),

Kepler/K2, and the Transiting Exoplanet Survey Satellite (TESS)).

7 1.1.5 Direct Imaging

The transit, radial velocity, and pulsar timing techniques are all indirect methods

of finding planets. Direct detection of an exoplanet is extremely difficult, since stars

are on the order of a billion times brighter than the light reflected from their planets,

and planets tend to be relatively close to their host star. With the advent of adaptive

optics systems for ground-based telescopes (first proposed by Babcock, 1953, but not

used for astronomical purposes until the 1990s), it became possible to remove the

scintillating effect of Earth’s atmosphere, and resolve objects at smaller separations.

Using the Nasmyth Adaptive Optics System Near-Infrared Imager and Spectrograph

(NaCo) instrument on the Very Large Telescope (VLT), Chauvin et al. (2004) dis-

covered a 5 MJ planet orbiting an estimated 55 AU from the 25 MJ 2MASS1207 (Figure 1 in Chauvin et al., 2004). Combining an adaptive optics system with a coronagraph to block out light from an exoplanet host star allows imaging of fainter planets, as was done for the HR8799 system (Figure 1 in Marois et al., 2008).

To date, the transit and radial velocity methods have been the most fruitful tech- niques in the search for exoplanets, providing 2919 and 673 confirmed planets, re- spectively. While pulsar timing variations produced the first confirmed exoplanets, there have only been six exoplanet discoveries with this method. Most of the 44 di- rectly imaged planets are in young (. 1 Gyr) star systems, where the planets are still relatively warm from the formation process and emit more light than they reflect at infrared wavelengths. Other techniques used to find exoplanets, including , transit timing variations, eclipse timing variations, gravitational microlensing, stel- lar pulsation timing variations, and orbital brightness modulations, have provided 93 additional planet discoveries to date.4 A plot of cumulative detections of exoplanets

per year based on discovery method is given in Figure 1-3.

4https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html 8 Figure 1-3 A plot of the cumulative number of unique planet detections

per year, color coded by discovery method (NASA Exoplanet

Archive).

9 1.2 Kepler

The NASA Kepler mission (Borucki et al., 2010) revolutionized astrophysics and planetary science, and is responsible for the transit method overtaking the radial ve- locity method in exoplanet discovery. The 0.95-meter Kepler telescope was launched

into an Earth-trailing orbit in March 2009. Kepler’s sole instrument is an array of 42

charge-coupled devices, which gathers light at optical wavelengths (4, 300 − 8, 900 A)˚

(Koch et al., 2010). The field-of-view of Kepler is 105 square degrees, and the data

capacity of the spacecraft allows it to monitor the brightness of ∼170,000 stars si-

multaneously at 30 minute cadence (Caldwell et al., 2010). For four years, Kepler

stared at the patch of sky centered at = 19h 22m 40s and

= +44◦ 330 0000, with the primary goal of detecting transiting Earth-sized planets in

the habitable zones5 of Sun-like stars (F, G, and K dwarfs).

Prior to Kepler, most planets discovered via the transit method were Jupiter

sized planets in short orbital periods (. 10 days). The Kepler mission was designed to achieve 20 ppm precision, which is necessary to detect a 3σ signal of another Earth

(Caldwell et al., 2010). With Kepler we have found 2,327 new exoplanets and an additional 2,244 planet candidates with radii between 0.34 Earth radii (R⊕) and 22

R⊕ (Figure 1-4). Though, only one super-Earth (1.63 R⊕) has been discovered around

a 1.11 Sun radius (R ) G2 V star orbiting at 1.05 astronomical units (AU) in the entire Kepler data set (Kepler-452 b; Jenkins et al., 2010).

5The habitable zone is approximately the region around a star at which liquid water can exist. 10 Figure 1-4 A plot of planet detections per year, color coded by discovery

method (NASA Exoplanet Archive). Kepler was launched in

March 2009, causing transit discoveries to surge from 2010 and

beyond. The spikes of transit detections in 2014 and 2016 cor-

respond to the release of 715 planets by Rowe et al. (2014) and

1284 planets by Morton et al. (2016).

11 1.3 Planet Occurrence Rates

Data from Kepler have provided a large sample from which we can begin to

statistically estimate properties of planets, such as radius, mass, multiplicity, and

occurrence rates within our . Within the Kepler field, planet occurrence rates

have been shown to increase toward later spectral types. Using the first three quarters

of Kepler data, Howard et al. (2012) measured the planet occurrence rate for M0 to

F2 dwarfs for planets with radii between 2 and 4 R⊕ and found that these small planets are seven times more abundant around cool stars (effective temperatures,

Teff = 3600–4100 K) than hot stars (Teff = 6600–7100 K). (Figure 8 in Howard et al., 2012) shows this increasing trend in planet occurrence toward cool stars.

Dressing and Charbonneau (2013) focused specifically on stars with temperatures below 4000 K in Q1–Q6 of Kepler data and found the occurrence rate of 0.5–4 R⊕

+0.04 planets with orbital periods shorter than 50 days to be 0.90−0.03 planets per star. Using the full Kepler data set, Dressing and Charbonneau (2015) updated their M dwarf planet occurrence rate for 0.5–4 R⊕ planets with orbital periods shorter than 50 days to be 2.18 ± 0.24 planets per star. Similarly, Mulders et al. (2015a) found

the occurrence rate of planets with radii between 1 and 4 R⊕ around M dwarfs to be two/three times higher than for G/F stars. Figure 1-5 shows planet occurrence

rates versus effective temperature for planets with orbital periods shorter than 50

days compiled from the literature by Mulders (2018).

1.4 M Dwarf Pros and Cons

M dwarfs (2,300 K . Teff . 3,900 K, 0.1 R . R? . 0.6 R , 0.07 M .

M? . 0.6 M ) comprise about 70% of the nearby stellar population (Henry et al., 2006; Bochanski et al., 2010), though they only constitute about 2.5% of the targets

Kepler observed (Dressing and Charbonneau, 2015). The smaller size of these stars 12 Figure 1-5 Figure 6 from Mulders (2018) showing planet occurrence as a

function of effective temperature for planets with orbital periods

less than 50 days compiled from the literature. This trend of in-

creasing planet occurrence rates toward cooler stars is consistent

with the result from Howard et al. (2012).

13 makes it easier to detect the presence of smaller transiting planets. For example, the transit depth for an Earth-radius planet transiting an M0 V star would be three times deeper than the same planet transiting a Sun-like star, and nearly 70 times deeper for an M7 V star (Figure 1-6). Fortuitously, the low of M dwarfs brings the habitable zone closer to the star, thus increasing the chance of detecting a transiting planet in the habitable zone over a finite observing period (Nutzman and

Charbonneau, 2008). For example, an Earth-sized planet in the habitable zone of an

M4 V star once every two weeks as opposed to once a year for a Sun-like G star.

The radial velocity amplitude for a 1 M⊕ planet in the habitable zone of an M4 V star is also 10 times greater (1 m s−1) than for a G2 V star (9 cm s−1) (Dress- ing and Charbonneau, 2013). Current (e.g., High Accuracy Radial velocity Planet

Searcher (HARPS)) and upcoming radial velocity spectrographs (e.g., NASA/NSF

EXPLORE Exoplanet Investigations with Doppler spectroscopy (NEID), EXtreme

PREcision Spectrometer (EXPRES)) can achieve the precision necessary to detect

Earth mass planets around M dwarfs (Pepe et al., 2011; Anglada-Escud´eet al., 2016;

Halverson et al., 2016; Jurgenson et al., 2016). Additionally, atmospheric character- ization of Earth-size planets via transmission spectroscopy with upcoming facilities such as the James Webb Space Telescope and 30-meter class telescopes (Giant Mag- ellan Telescope, Thirty Meter Telescope) will be possible around M dwarfs, but not for more massive stars (Dressing and Charbonneau, 2013).

14 Figure 1-6 Example transit light curves, showing relative transit depths for

Earth, Neptune, and Jupiter at 1 AU orbiting the Sun, and Earth

orbiting around an M0 V, M4 V, and M7 V dwarf at a distance in

which the planet would receive the same insolation flux as Earth.

An Earth-sized planet orbiting an M4 V star would be the same

transit depth as Neptune orbiting the Sun (0.1%).

15 Arguably, the study of exoplanets is driven by the desire to find life elsewhere in the universe. Since Earth is the only known celestial body to host life, our definitions of habitability are very Earth-centric. Early models suggest that planets in the habitable zones of late K and M dwarfs may not be habitable since they would be tidally locked, causing the atmosphere to freeze out on the side of the planet in permanent darkness

(Kasting et al., 1993). However, Joshi et al. (1997) suggest that if a planet has sufficient quantities of carbon dioxide, it could prevent atmospheric freeze-out, and a planet could indeed be habitable. Another obstacle to habitability of M dwarf planets is stellar activity. M dwarfs exhibit increasing activity levels toward later spectral types, with over 60% active beyond M5 (West et al., 2008). Activity levels appear to subside and then dissipate in 1–2 Gyr for early-type M dwarfs and up to

7–8 Gyr for late-type M dwarfs (West et al., 2011). Since M dwarfs have lifetimes greater than the age of the universe, stellar activity might not be the limiting factor to planetary habitability. Though, stellar activity still poses problems in the search for exoplanets, as activity (such as star spots) can alter the transit profile of a transiting planet (e.g., Czesla et al., 2009), and activity can induce a radial velocity signal, which can obscure or even mimic a planet signal (e.g., Robertson et al., 2015). Knowing which stars are active can help aid future exoplanet surveys.

1.5 Accurate Stellar Properties for Occurrence Rate

Calculations

Computing planet occurrence rates requires measurements of stellar radii for all stars in the sample population. In the absence of direct measurements, radii of M dwarfs in the Kepler Input Catalog (KIC) were derived from optical and infrared photometry (Batalha et al., 2010; Brown et al., 2011). Brown et al. (2011) note that stellar parameters in the KIC are unreliable at effective temperatures less than

16 3,750 K because the models they use are calibrated to work best for Sun-like stars.

Dressing and Charbonneau (2013), Gaidos (2013), and Huber et al. (2014) addressed this issue by using models more suited to later type stars (e.g., Dartmouth Stellar

Evolution Database; Dotter et al., 2008) to reclassify the set of cooler stars in the KIC.

These updated measurements of R?, based on photometry, still have a wide range of uncertainties with an average around 30% (Mathur et al., 2017). An uncertainty this large can mean the difference between several spectral sub-types, and for a transiting planet this propagates to a 30 − 40% planet radius uncertainty.

Combining long-baseline optical interferometry with trigonometric mea- surements yields direct measurements of stellar radii with uncertainties between 1% and 5%, however, this method is currently limited to bright (V . 11), nearby stars (e.g., Boyajian et al., 2012; von Braun et al., 2014). These precise radius measure- ments can, however, be used to calibrate empirical relationships between radius and other measurable parameters (e.g., magnitudes, Teff ; Boyajian et al., 2012; Mann

et al., 2015). For example, Mann et al. (2015, hereafter M15) derive MKs vs. R? and Teff vs. R? relationships for K7 through M7 dwarfs, which can constrain stellar radii to ∼3% and ∼15%, respectively. Thanks to the European Space Agency Gaia mission (Gaia Collaboration et al., 2016), nearly all the stars in the Kepler field now have Gaia parallax measurements (Berger et al., 2018), providing stellar distances necessary to compute absolute magnitudes. These absolute magnitudes can be used for precise radius measurements for M dwarfs.

In large stellar catalogs, such as the KIC, it is difficult to obtain a spectrum of each star, so we rely on photometry to identify specific stellar populations (e.g., Brown et al., 2011; Dressing and Charbonneau, 2013; Gaidos, 2013; Huber et al., 2014).

Efforts to spectroscopically classify nearly 5,000 photometrically-identified late-type

K and M dwarfs in the Kepler field by Mann et al. (2012), Muirhead et al. (2012),

Mann et al. (2013b), and Mart´ınet al. (2013) have yielded spectra for only 2% of the

17 sample (Dressing and Charbonneau, 2015). With moderate resolution spectra, we can

precisely determine spectral type and measure stellar properties such as temperature

and metallicity. Having accurate spectral types for a specific population (e.g. mid-

type M dwarfs) will allow us to assess trends in planet occurrence rates for that

population as a function of spectral type, like the coarse assessment of F, G, K,

and early M dwarf planet occurrence rates by Howard et al. (2012). Additionally,

while selection criteria aim to minimize stellar outliers, they are not impervious to

contamination, possibly due to poor photometry. Spectra allow us to identify any

interlopers (such as giant stars) that selection criteria might not cull.

The focus of this dissertation is spectroscopic observations of mid-type M dwarfs

in the Kepler field (Chapter 2). We have observed 333 M dwarfs and 4 M giants in the Kepler field, from which we derive spectral types, effective temperatures, and metallicities. Over 90% of our targets have Gaia parallax measurements, which we use

to compute MKs . We then apply the empirical MKs vs. R? and Teff vs. R? relationships of M15 to measure stellar radii for our sample. With these precise (median 3.1%) R? measurements, we update the planet radii for the 13 confirmed planets around Kepler mid-type M dwarfs and compute the planet occurrence rate for this population. With spectral types in hand, we compute planet occurrence rates for the spectral sub-types

M3 V, M4 V, and M5 V.

In Chapter 3 we compute additional stellar properties which are not used in planet occurrence rate calculations (mass and stellar activity). We also present observations of 1,083 additional Kepler targets, which we observed in addition to our primary targets to optimize science output from our multi-object spectrograph observations.

We conclude in Chapter 4 with future directions for this work.

18 Chapter 2

Mid-Type M Dwarf Planet

Occurrence Rates

2.1 Target Selection, Observations, and Data Re-

duction

Using revised KIC temperature estimates Dressing and Charbonneau (2013) iden- tified 202 stars with Teff . 3300 K. Muirhead et al. (2015) identified 509 probable mid-type M dwarfs from KIC photometry using the following color selection criteria: r − J > 3.2 to identify red objects, and J − K < 0.0555 × (r − J) + 0.7622 to remove giant stars. The overlap between these samples produces 561 probable mid-type M dwarfs which we targeted in this study (Figure 2-1). In total, we observed 337 of the

561 targets (60%), obtaining optical spectra of 327 stars and near-infrared spectra of

82 stars. We have both optical and infrared spectra for 72 targets.

19 Figure 2-1 A color-color plot showing the targets selected for this survey

using the Muirhead et al. (2015) color selection criteria (magenta)

and targets identified with Teff . 3300 K (orange).

2.1.1 WIYN

In observing semester 2015B, NASA and NSF implemented Stage 1 of the Exo- planet Observational Research (NN-EXPLORE) program, enabling community access to about 100 nights per year on the 3.5-meter WIYN1 telescope on Kitt Peak until

2019 when the extreme precision Doppler spectrometer NEID (Schwab et al., 2016)

1The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, the National Optical Astronomy Observatory and the .

20 is commissioned. We have made use of the fiber-fed multi-object spectrograph Hydra

(Barden et al., 1994) on WIYN for this project. The Kepler field spans a 12 degree di-

ameter, making the one degree diameter field-of-view of Hydra advantageous for this

project. We collected spectra over five observing semesters beginning in September

2015 (NOAO Prop. IDs 2015B-0280, 2016A-0328, 2016B-0111, 2017A-0185, 2017B-

0095; PI: K. Hardegree-Ullman). In total, we observed 287 targets with WIYN.

Each Hydra field configuration contained an average of five mid-type M dwarf

targets with V < 18.52. We used the bench spectrograph camera and the red op-

timized fiber cable containing 90 fibers. The 316 lines mm−1 grating and the G5

filter were used to obtain spectra spanning 5,000–10,000 A˚ with an average resolving

power R = λ/∆λ ≈ 1, 420. Most fields were observed in three 1,200 second exposures

to mitigate the effect of cosmic rays and to yield a signal-to-noise (S/N) of at least

30 per resolution element for targets with V < 18.5. At the beginning and end of

each night we obtained bias, dome flat field, and copper-argon wavelength calibration

frames. After each field observation, we obtained a spectrum of a nearby bright G0

star at a similar airmass to be used for telluric correction. At least once each night

we observed a spectrophotometric standard star for relative flux calibration.

The data were reduced using IRAF3 and custom IDL routines. Each image was

first corrected for readout bias using the overscan strip, then trimmed to remove

this region. An average bias was then created and subtracted from the rest of the

images. The dohydra IRAF routine was used for aperture extraction, flat fielding, dispersion correction, and sky subtraction. Sky spectra were created from 5–10 sky

fibers placed in random positions distributed throughout each field. Sky subtraction

2KIC photometry was converted to V -band magnitudes using the transformation V = g−0.5784×

(g −r)−0.0038, http://www.sdss3.org/dr8/algorithms/sdssUBVRITransform.php#Lupton2005 3IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. 21 removed OH atmospheric emission, which is problematic at red wavelengths beyond

6,000 A.˚ Individual exposures were then combined, and a relative flux calibration was performed on all targets using a spectrophotometric standard star. We developed a custom IDL script to interpolate across a G0 star spectrum where there is known atmospheric absorption, and divide these regions out of our M dwarf spectra to re- move atmospheric absorption features. We shift each spectrum to a radial velocity of

0 km s−1 by cross-correlating each spectrum with the closest matching M dwarf tem- plate from Bochanski et al. (2007). We find the closest matching M dwarf template from a by-eye comparison of each spectrum to each template, normalized to 8,350 A.˚

An example M dwarf spectral sequence from these observations with WIYN is shown in Figure 2-2.

22 Figure 2-2 An M dwarf spectral sequence from our observations of Kepler

targets with WIYN. We have included labels of prominent atomic

(top) and molecular features (bottom). This sequence shows a

clear progression of weakening absorption in Na D and Ca II,

increasing absorption in K I and Na I, more defined molecular

band heads, and an increasing slope toward red wavelengths.

23 2.1.2 Discovery Channel Telescope

About 90 of our targets have V -band magnitudes fainter than 18.5, which would require integration times longer than one hour using WIYN to achieve a S/N of

30. We therefore used the DeVeny spectrograph on the 4.3-meter Discovery Channel

Telescope (DCT) to observe some of these fainter targets over four observing runs, collecting spectra of 49 stars. We observed 17 of these stars with WIYN because they were within one of the observed WIYN fields. These targets are used to check for consistency between the two telescopes, though the DCT data are higher resolution.

The DeVeny spectrograph is a single-slit instrument with a deep depletion e2v

CCD. The 400 grooves mm−1 grating and OG570 filter were used to obtain spectra spanning 6,300–9,700 A˚ with R ≈ 2, 850. Total integration times varied in order to

achieve a S/N similar to WIYN targets, and at least three exposures were taken of

each target to mitigate cosmic rays in the data reduction. Calibrations were the same

as for WIYN, except for the neon-argon lamps used for wavelength calibration. Basic

data reduction was performed in IRAF using the procedures outlined in Appendix B.

Telluric correction and shifting spectra to a radial velocity of 0 km s−1 were done in

the same manner as for the WIYN spectra.

2.1.3 IRTF

We used the SpeX spectrograph (Rayner et al., 2003) on the NASA Infrared

Telescope Facility (IRTF) on Maunakea to observe 82 targets over 12 partial nights

(Program IDs 2016A-981, 2017A-106, 2017B-021; PI: K. Hardegree-Ullman). We

used SpeX in SXD mode with a 000.3 × 1500 slit to obtain 0.8–2.4 µm spectra at R ≈

2, 000. We observed using the ABBA nod pattern with at least three exposures for

each target. Exposure times were shorter than 120 seconds to minimize effects from

atmospheric OH line variability. For most targets we achieved a S/N of at least 50 per

24 resolution element. An A0 V star was observed within 0.1 airmasses of each target

to be used for telluric correction and flux calibration. Flat field and thorium-argon

lamp calibrations were taken after each A0 V star observation.

Spectra were reduced using Spextool (v. 4.2; Cushing et al., 2004), which per- forms flat fielding, wavelength calibration, sky subtraction, and spectrum extraction.

We used the xtellcor IDL package (Vacca et al., 2003) for telluric correction. As with each optical spectrum, we shift each infrared spectrum to a radial velocity of

0 km s−1 by cross-correlating with a spectrum of corresponding spectral type from the IRTF spectral library (Cushing et al., 2005; Rayner et al., 2009).

2.1.4 LAMOST

The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST; Cui et al., 2012) is a 4-meter class telescope designed to survey stars and in the northern hemisphere. Its 4,000 fiber multi-object spectrograph has a wavelength range of 3,690–9,100 A˚ at R ≈ 1, 800. As of data release 3, over 5.7 million4 spectra have been gathered in total. There are LAMOST spectra for 17 of our Kepler targets, including 8 targets we did not observe with WIYN or the DCT. This brings our total optical spectra count to 327 targets.

2.1.5 Gaia

The Gaia mission has provided parallax measurements for over 1.3 billion sources in second data release (Gaia Collaboration et al., 2018). Bailer-Jones (2015) and

Bailer-Jones et al. (2018) note that simply inverting the parallax does not produce reli- able distances. Instead, distances must be inferred via probabilistic analysis. Bailer-

Jones et al. (2018) performed this analysis on all targets in the second Gaia data

4http://dr3.lamost.org/

25 release, providing distance measurements and uncertainties. We use the Gaia/Kepler

cross-match database5 to obtain the Bailer-Jones et al. (2018) Gaia distances to our

Kepler stars. In total, 532 of our targets cross-match with a Gaia target within 400, the Kepler pixel size. We also check the difference between the Gaia G-band (& 20% transmission between 4,000 and 9,000 A;˚ Evans et al., 2018) and Kepler Kp-band

6 (& 20% transmission between 4,300 and 8,900 A˚ ) magnitudes. Any target with an absolute G − Kp magnitude difference greater than 2, we discard the parallax measurement in our analysis, which applies to KIC07729309 and KIC10473048.

2.2 Stellar Properties

We seek to determine planet occurrence rates for mid-type M dwarfs using revised stellar radius measurements derived from spectra, photometry, and parallaxes. Over

90% of our targets have parallax measurements, which allows us to compute absolute magnitudes in the r, J, and Ks-bands for use in computing stellar properties (Sec- tion 2.2.1). For the 337 targets with spectra, we do a by-eye comparison to spectral

templates to determine spectral types. There are 224 targets for which we do not have

spectra, so we use a machine learning technique to identify spectral type from pho-

tometry (Section 2.2.2). Using a spectral type vs. temperature relationship, we derive

stellar temperatures (Section 2.2.3). For targets with infrared spectra, we determine

metallicity (Section 2.2.4). We apply the MKs vs. radius or MKs vs. metallicity vs. radius relationships of M15 to derive stellar radii for targets with parallax mea-

surements. On the remaining targets, we derive radii using temperature vs. radius

relationships (Section 2.2.5). With our updated spectral types, we isolate mid-type M

dwarfs, and compute planet occurrence rates for spectral types M3 V to M5 V using

5http://gaia-kepler.fun/ 6https://keplergo.arc.nasa.gov/CalibrationResponse.shtml

26 our new radius measurements (Section 2.5). We present all derived stellar parameters

in Appendix C.

2.2.1 Absolute Magnitudes

For targets with Gaia parallax measurements, we compute absolute magnitudes for Sloan Digital Sky Survey (SDSS; York et al., 2000) r-band and Two Micron All-

Sky Survey (2MASS; Skrutskie et al., 2006) J and KS-bands using

M = m − 5[log10(d) − 1] − A, (2.1)

where m is the for a photometric band, d is the distance in

, and A is the for that photometric band. With the Python package

dustmaps we compute reddening using the 3D dust maps of Green et al. (2018). We compute A for each band by multiplying reddening by the extinction coefficient R,

which is 2.483, 0.650, and 0.161 for r, J, and Ks bands, respectively. We calculate magnitudes and their associated uncertainties for each band using a Monte Carlo

(MC) analysis. Since each measured parameter has an uncertainty, we generate 104

random samples from a Gaussian distribution and combine these distributions. The

uncertainties for each measured quantity are either symmetric or nearly symmetric

within a few percent, so we use the mean of any asymmetric uncertainty to draw

our Gaussian distribution. The is then the median value of the

posterior distribution, and the uncertainties are the 16th and 84th percentiles.

2.2.2 Spectral Type

We determine optical spectral types by comparing our spectra to the SDSS M

dwarf spectral templates of Bochanski et al. (2007), following the methods of Kirk-

patrick et al. (1991). The template spectra span a wavelength range of 3, 800−9, 200 A˚

27 with R ≈ 1, 800. Target spectra are normalized to the same wavelength as the tem- plate spectra (8,350 A)˚ and we do a by-eye comparison to find the closest matching spectrum to the nearest half spectral type. Ten of our targets were only observed with IRTF. For these targets, we determine spectral type in the same manner as our optical spectra, except we compare our spectra to M dwarf spectra in the IRTF

Spectral Library (Cushing et al., 2005; Rayner et al., 2009).

For the 224 stars in our sample that lack a spectrum, we use the Python routine

RandomForestClassifier from the scikit-learn (Pedregosa et al., 2011) package to classify these targets with r, J, and K-band photometry. For our training sample, we use the extinction corrected photometry and spectral types from West et al. (2011), who visually inspected over 70,000 M dwarf spectra from SDSS. We truncate this data set to include spectral types M0 to M8, and use the color cut J − Ks < 0.0555 × (r − J) + 0.7622 to reflect the targets in our sample. From this sample of 48,978 targets, we randomly select 1,500 targets from each spectral type to minimize sample bias, reducing our input sample to 13,500 targets. Using the r − J and J − Ks colors along with spectral type, we train the random forest classifier on a random subset of 75% of the total input sample. The remaining 25% of the input sample is used to determine how well the classifier performs. Figure 2-3 shows a histogram comparing the true versus predicted spectral types for the training sample, and the associated confusion matrix showing how well the classifier performs in predicting each spectral type. For each spectral type, over 90% of the predicted classifications are within one spectral type of the true spectral type, so we adopt an uncertainty of ±1 spectral type for our photometric classifications.

We run the trained classifier on the photometry for both our spectroscopically observed and unobserved targets. In the case of the 530 targets for which we have

Gaia parallax measurements, we use extinction corrected absolute magnitudes to compute r − J and J − K colors. The average difference between the colors com-

28 (a) (b)

Figure 2-3 (a) Comparison of true versus predicted spectral type distribu-

tions from a random forest classification using photometry from

a subset of the West et al. (2011) M dwarf sample. (b) The

corresponding confusion matrix shows the fraction of predicted

classifications in each spectral type bin versus true spectral type.

Over 90% of the predicted classifications are within one spectral

type of the true spectral type. puted from absolute magnitudes versus apparent magnitudes is about 0.03 for each color. For the remaining 31 targets without parallax measurements, we use apparent magnitudes to compute colors. The classifier predicts 86% of the spectral types of our spectroscopically observed sample to within one spectral type, however, it over- predicts M3 V and under-predicts M2 V, M4 V, and M7 V, as shown in Figure 2-4 a.

For the photometric sample, the distribution of spectral types roughly follows the same distribution as the spectroscopic sample, and we show the total sample spectral type distribution in Figure 2-4 b. Since we effectively observed a random subset of mid-type M dwarfs in the Kepler field, we expect the remaining targets to follow a

29 similar spectral type distribution, and thus we are confident in the results from the

photometric classification.

(a) (b)

Figure 2-4 (a) Comparison of true versus predicted spectral type distribu-

tions using the random forest classifier on the Kepler targets we

have spectroscopically classified. (b) Spectral type distribution

for our entire Kepler sample using results from the classifier on

our non-observed targets and spectra for our observed targets.

For these histograms, stars with half spectral types are rounded

up to the nearest integer type.

2.2.3 Effective Temperature

Direct measurement of effective temperatures requires both bolometric flux and interferometric measurements. Due to the distance and faintness of these stars, interferometric observations are not possible. Using the spectral types and effective temperatures of the 183 stars in Table 5 of M15, we determine a linear

30 spectral type vs. effective temperature relationship:

Teff = −168.37 × SpT + 3914.65, (2.2) where SpT is the spectral type between -1 for K7 V and 7 for M7 V. We adopt this as a uniform temperature scale across our spectroscopic and photometric sample. The residual 1-σ scatter of our fit to the M15 spectral types and temperatures is 64 K, which we adopt as our temperature uncertainty.

Pecaut and Mamajek (2013) determine effective temperatures for each sub-type of stars by taking the median values of published effective temperatures in the literature. As a consistency check to our M15 fit, we take the most recent list of all reported values used to compute the median effective temperature for each sub- type7 between K7 V and M9 V (280 stars) and fit a linear relationship. This results in Teff = −166.96 × SpT + 3868.39, with a 107 K 1-σ scatter. The average difference in effective temperature across the M dwarf sequence between the two relationships is 40 K, which is well within the uncertainties of each model.

2.2.4 Metallicity

Metallicities (specifically, iron abundance [Fe/H]) were computed for 82 targets we observed with SpeX on IRTF using the empirical relationships from (Mann et al.,

2013a) and (Mann et al., 2014). Mann et al. (2013a, 2014) determined metallicity of M dwarfs in wide binary systems with an F, G, or K primary star, and com- puted relationships between metallicity and equivalent widths of Na I and Ca I using infrared spectra from SpeX. We list our metallicity measurements in Table C. We did not obtain infrared spectra of any of the mid-type M dwarf planet hosts (Ta- ble 2.1), however, we adopt the metallicity measurements of Kepler-42, Kepler-445,

7http://www.pas.rochester.edu/∼emamajek/spt/

31 and Kepler-1650 from Mann et al. (2017), Kepler-446 and Kepler-1582 from Muir-

head et al. (2014), and Kepler-1649 from Angelo et al. (2017). All of these metallicity

measurements were made using the same relationships from Mann et al. (2013a). We

do not have a metallicity measurement for Kepler-1646.

2.2.5 Radius

For the 92% of targets with distance measurements, we apply the MKs vs. R?

and MKs vs. [Fe/H] vs. R? relationships of M15 to compute stellar radii, which have model fit uncertainties of 2.89% and 2.70%, respectively. We employ the same MC analysis from Section 2.2.1 to assess uncertainties, and add the model uncertainties in quadrature, which yields a median 3.13% and 2.89% radius uncertainty, respectively.

Since all of our targets do not have distance measurements, we rely on the M15

Teff vs. R? and Teff vs. [Fe/H] vs. R? relationships to get the remaining stellar radii.

Adding in quadrature the 9.3% (Teff vs. [Fe/H] vs. R?) and 13.4% (Teff vs. R?) uncer- tainties to values from the MC analysis, we yield median uncertainties of 14.5% and

16.8%, respectively. A plot of the locations of each Kepler mid-type M dwarf is given

in Figure 2-5, showing additional information about spectral type and stellar radius.

We show the distribution of new stellar radius measurements in Figure 2-6, and

compare these measurements to the radii reported in the Kepler Stellar Catalog

(Mathur et al., 2017) on the NASA Exoplanet Archive and radii of 225 of our targets

found in Dressing and Charbonneau (2013). Both the Kepler Stellar Catalog and

Dressing and Charbonneau (2013) show a similar radius distribution, with a peak

near 0.2 R , whereas our targets are generally larger than this radius.

32 Figure 2-5 A plot of all targets from this survey showing their on-sky loca-

tion. Points are colored based on spectral type and sized relative

to each other based on radius.

33 (a) (b)

Figure 2-6 (a) Comparison of our radius measurements of Kepler M dwarfs

to radii from the Kepler Stellar Catalog (Mathur et al., 2017).

We do not include 17 targets from the Kepler Stellar Catalog

with R? > 1 R . The 1:1 reference line is plotted in red, and the histograms show the radius measurement distributions. (b)

Comparison of our radius measurements to those from Dressing

and Charbonneau (2013) for the 214 targets found in both sam-

ples. Our radius measurements are generally larger than those in

the Kepler Stellar Catalog and from Dressing and Charbonneau

(2013).

34 2.3 Refining the Sample

Our target selection criteria were chosen to isolate M dwarfs, but that does not preclude a few giant star interlopers. From our spectra, we identify four targets in our sample to be giants (Section 2.3.1). We identify two stars as eclipsing binaries, four targets as likely white dwarf-M dwarf binaries (Section 2.3.2), and 15 targets as likely binaries from the Gaia data (Section 2.3.3).

2.3.1 Giants

Spectroscopic indicators of M giants include weak Na D, K I, and Na I absorption, significant Ca II absorption, and differing shapes in the CaH2 index compared to M dwarfs (Reid et al., 1995; Mann et al., 2012). The four giants we identify from spectra are KIC08628971, KIC10548114, KIC11495654, and KIC11913210 (Figure 2-

7). KIC11913210 is CH Cygni, an S-type system consisting of at least two giant stars (Skopal, 2005). We discard these sources in our planet occurrence rate analysis, reducing the number of targets to 557.

35 Figure 2-7 Four giant stars identified in our data (in color), corresponding

to two early and two late-type M giants. We plot an M dwarf

of similar spectral class (black) to show differences in spectral

features identified at the top of the plot.

2.3.2 Eclipsing and Spectroscopic Binaries

Within the Kepler data, 2,910 eclipsing binaries have been identified8, which

is ∼1.5% of the nearly 200,000 Kepler stars observed (Kirk et al., 2016; Abdul-

Masih et al., 2016). Two of our targets have been identified as eclipsing binaries,

KIC07174349 and KIC10002261, which we spectral type as M4 V and M3.5 V, re-

spectively.

8http://keplerebs.villanova.edu/

36 Figure 2-8 Four targets which are potential white dwarf-M dwarf binaries.

KIC09772829 and KIC100064337 are compared to the M2V spec-

trum from Figure 2-2, and KIC07983929 and KIC09713959 are

compared to the M3 V spectrum (black). Spectra are normalized

to 8,350 A,˚ the same wavelength we use to normalize spectra for

spectral typing.

Our spectra are not high enough resolution to be able to detect single- and double- lined spectroscopic binaries, however, we identify four targets which are likely white dwarf-M dwarf binaries. The spectra of KIC07983929, KIC09713959, KIC09772829, and KIC10064337 have excess flux toward blue wavelengths (Figure 2-8), which we attribute to a companion. Additionally, these spectra have similar spectral shapes to red-optical spectra of white dwarf-M dwarf binaries in the literature (e.g. Ren et al.,

2014; Skinner et al., 2017). We recommend further observations of these targets

37 at blue and ultraviolet wavelengths to confirm our assessment. Wang et al. (2014)

and Kraus et al. (2016) find that close binary companions appear to suppress planet

formation, and hence decrease planet occurrence rates for these systems. As such, we

remove the eclipsing and candidate white dwarf-M dwarf binaries from our analysis

of planet occurrence rates, reducing the number of targets to 551.

2.3.3 Gaia Color Cuts and Binaries

We identify 61 targets with more than one source within 400 of the KIC coordinates, in which case we choose the target with the smallest difference in G−Kp magnitudes.

We also check if the MKs magnitudes (Section 2.2.1) are in the range we expect for an M dwarf (4.6 . MKs . 9.8; M15). Four targets for which we do not have spectra (KIC10711066, KIC10473048, KIC06757650, and KIC06029053) have Gaia

00 coordinates < 0.4 from the KIC coordinates, but have MKs magnitudes of 2.0, -1.6, -3.7, and 3.2, respectively. We discard these four sources from our analysis as they

are likely non-M dwarfs, reducing our sample to 547. Two spectroscopically observed

targets, KIC04545041 (M3.5 V) and KIC03631048 (M4 V) have MKs of 4.06 and 4.45, respectively. Additionally, two photometrically classified targets, KIC11196417

(M5 V) and KIC10991155 (M4 V), have MKs of 4.53 and 4.56, respectively. For these

four targets, we use their effective temperatures to determine radius since the MKs

vs. R? relationships do not extend beyond MKs < 4.6. Within the Gaia data, 15 targets have a nearby star with a similar distance and common proper motion, which we identify as likely binaries. In Figure 2-9 we show 1000 cutout images of these 15 targets from the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey (Chambers et al., 2016). We do not discard these stars in our analysis, since we use the G − Kp color selection to identify our primary target. In total, we have identified 21 binaries and binary candidates, which is 3.65% of our total sample. Duchˆeneand Kraus (2013) report a

38 decreasing stellar multiplicity frequency with decreasing stellar mass, and estimate

that 26 ± 3% of M dwarfs are in multiple systems. We recognize that there are likely more unresolved binaries in our sample since we detect much lower than a 26% binary fraction, however, the assessment of the affect of binaries on planet occurrence rates is beyond the scope of this paper.

Figure 2-9 Likely binary stars sharing common proper motions and simi-

lar distances in the Gaia data. These 1000 cutouts are stacked

g, i, and y-band images from Pan-STARRS and are centered

on the target coordinates from the NASA Exoplanet Archive.

KIC10731839 is only g-band since it is saturated in the other

filters.

39 2.4 Mid-Type M Dwarf Planets

With our updated stellar properties in hand, we now turn to planets around mid-

type M dwarfs. In our Kepler star sample, there are six planet systems containing

12 confirmed planets. We also include Kepler-1650 b, for which the host star has an r − J color of 3.167, just missing our color cut. Muirhead et al. (2014) identify

Kepler-1650 as an M3 V star from H and K-band spectra. Our optical spectrum of this target gives us a classification of M3.5 V. Spectra for all planet host stars are shown in Figure 2-10.

Figure 2-10 Planet host spectra, including the first optical spectra for

Kepler-1582 and Kepler-1646. Kepler-1646 exhibits Hα emis-

sion, indicating that this star is active.

40 Additionally, there are four Kepler Objects of Interest (KOI) within our sample:

KOI-959, KOI-5237, KOI-6705, and KOI-8012. KOI-959 (KIC10002261) is an M3.5 V

star based on our WIYN and LAMOST spectra. KOI-5327 (KIC06776555) has a spec-

tral type of M4 V based on our WIYN and IRTF spectra. KOI-8012 (KIC10452252)

is an M5 V star based on our WIYN spectrum. We do not have spectrum of KOI-

6705 (KIC06423922), but Gaidos et al. (2016) find a spectral type of M3.4 V based

on the spectral typing system of L´epineet al. (2013) using spectral indices of a SNIFS

optical spectrum.

Slawson et al. (2011) identify KOI-959 as an eclipsing binary, and Furlan et al.

(2017) and Ziegler et al. (2018) find a nearby companion at a separation of ∼000.7 using

adaptive optics imaging, making this planet a likely astrophysical false positive. KOI-

5327 is associated with three nearby companions at separations of 100.88, 300.63, and 300.96

(Ziegler et al., 2017; Furlan et al., 2017). The Kepler pipeline data validation report

for this system show an out-of-transit centroid offset of 200.09 (6.3σ), which might be due to the closest companion star. It is unclear which star the planet orbits, so we do not include this system in our analysis. Gaidos et al. (2016) identify KOI-6705.01 as most likely a false positive due to charge transfer inefficiency in a detector column on which a nearby eclipsing binary falls. Thompson et al. (2018) identify KOI-8012.01 as a Mercury-sized planet candidate in the habitable zone of its host star. Our reassessment of the radius of KOI-8012 places it at 0.4 3R , which in turn increases the planet candidate radius to 0.83 R⊕. We do not include this planet candidate in our analysis since the system parameters (e.g., period, semi-major axis) do not have reported uncertainties, which makes accurate analysis of this system difficult.

Table 2.1 and Figure 2-11 show the confirmed planets around mid-type M dwarfs in the Kepler field. We note that all these planets are smaller in radius than Neptune

(3.865 R⊕) and have orbital periods shorter than 10 days. We update the planet pa- rameters for all these systems based on our stellar radius measurements, and compute

41 insolation flux Sp using:

! ! !2 S L AU p = ? , (2.3) S⊕ L a

2 4 where (L?/L ) = (R?/R ) (Teff /T ) is the stellar luminosity, and a is the semi- major axis in AU. Our revised stellar radii and temperatures make Kepler-1649 b an

+0.36 Earth-sized planet (Rp = 0.99 ± 0.05 R⊕) with an insolation flux of 1.01−0.25, similar to Earth. We note that Angelo et al. (2017) reported a temperature of Kepler-1649 as 3240±61 K, compared to our 3073±64 K, which would increase the insolation flux

+0.44 to 1.24−0.30 S⊕. The habitable zone definitions of Kopparapu et al. (2013) place both measurements of insolation flux near the edge of the maximum greenhouse insolation limit.

42 Figure 2-11 Planets around mid-type M dwarfs in the Kepler field. The

radii of Earth and Mercury are shown for reference.

43 Table 2.1. Kepler Mid-Type M Dwarf Planets

Planet Name Host R? Rp a/R? Period p Sp References

Type (R )(R⊕) (days) (S⊕)

+0.025 −7 +8.59 Kepler-42 b M3 V 0.174 ± 0.005 0.757−0.025 15.52 ± 2.12 1.2137706 ± 2.4×10 0.078 ± 0.009 23.23−5.64 2 +0.023 −8 +31.59 Kepler-42 c 0.728−0.023 8.07 ± 1.09 0.45328731 ± 5.0×10 0.15 ± 0.02 86.23−20.43 2 +0.031 −7 +4.89 Kepler-42 d 0.662−0.031 20.68 ± 2.82 1.86511236 ± 7.3×10 0.058 ± 0.007 13.13−3.16 2 +0.043 −6 +21.96 Kepler-1650 b M3.5 V 0.364 ± 0.010 1.043−0.041 13.11 ± 3.13 1.53818001 ± 1.5×10 0.10 ± 0.02 29.66−10.52 2 +0.130 −5 +2.16 44 Kepler-1646 b M4 Ve 0.374 ± 0.011 1.809−0.127 32.87 ± 5.98 4.48558383 ± 1.1×10 0.039 ± 0.006 4.26−1.26 3 +0.074 −6 +4.43 Kepler-446 b M4 V 0.217 ± 0.006 1.358−0.073 14.2 ± 0.94 1.565409 ± 3.3×10 0.080 ± 0.005 22.80−3.60 4 +0.053 −6 +1.64 Kepler-446 c 1.003−0.051 22.4 ± 1.4 3.036179 ± 5.5×10 0.050 ± 0.003 9.13−1.39 4 +0.065 −5 +0.86 Kepler-446 d 1.226−0.063 31.6 ± 2.1 5.148921 ± 2.2×10 0.036 ± 0.002 4.59−0.72 4 +0.081 −6 +1.06 Kepler-445 b M4.5 V 0.305 ± 0.009 1.520−0.078 21.9 ± 0.3 2.9841664 ± 9.1×10 0.048 ± 0.001 8.59−1.00 2, 4 +0.094 −6 +0.56 Kepler-445 c 2.390−0.090 30.21 ± 0.38 4.87122714 ± 6.3×10 0.0359 ± 0.0005 4.51−0.51 2, 4 +0.100 −5 +0.27 Kepler-445 d 1.166−0.095 42.95 ± 0.58 8.15272856 ± 6.7×10 0.0244 ± 0.0003 2.23−0.25 2, 4 +0.053 −5 +0.36 Kepler-1649 b M5 V 0.231 ± 0.007 0.985−0.052 60.6 ± 8.1 8.68909 ± 2.4×10 0.020 ± 0.002 1.01−0.25 1 +0.073 −5 +1.33 Kepler-1582 b M5 V 0.217 ± 0.007 1.061−0.072 34.0 ± 5.3 4.838177 ± 8.8×10 0.036 ± 0.005 3.21−0.86 3

Note. — References: (1) Angelo et al. (2017), (2) Mann et al. (2017), (3) Morton et al. (2016), (4) Muirhead et al. (2015) 2.5 Planet Occurrence Rate

With our updated stellar properties of 547 stars and a population of 13 planets

around mid-type M dwarfs, we now have the critical pieces necessary to compute

planet occurrence rates. We adopt the grid-based planet occurrence rate definition

(e.g, Howard et al., 2012; Dressing and Charbonneau, 2013; Petigura et al., 2013),

which is the fraction of stars in a population (e.g., mid-type M dwarfs) that have

planets in a specific range of orbital periods, P , and planet radii Rp. Using the pop- ulation of known Kepler planets around mid-type M dwarfs, we count the number of

stars around which these planets could have been detected with sufficient photometric

precision if they were at a transiting orbital inclination:

Np(Rp,P ) X 1/pi f(R ,P ) = , (2.4) p N i=1 ?,i

where the sum is over the number of known planets from the Kepler data in a radius

and orbital period range. The probability p that planet i is in a transiting geometry,

defined as: ! ! R?,i + Rp 1 + ei sin ωi pi = 2 , (2.5) ai 1 − ei

where ai is the semi-major axis of planet i, ei is the eccentricity, and ωi is the longitude of periastron (Winn, 2010; Stevens and Gaudi, 2013). Typically, Rp  R? and planet

orbits are circular or nearly circular, which makes pi = R?,i/ai. An Earth-sized planet around a mid-type M dwarf is between 2.5 and 7.5% of its host star diameter, which

can have a small effect on transit probability. Assuming circular orbits, we use:

! R?,i + Rp pi = . (2.6) ai

In Equation 2.4, N?,i is the number of stars in the stellar population around which

45 the ith known planet could have been detected. This is determined by the number of stars for which the S/N from the Kepler photometry is high enough that a known planet could be detected. The S/N is calculated by:

R2/R2 rt S/N = p ? obs , (2.7) CDPPeff P

where CDPPeff is the Combined Differential Photometric Precision over the duration of the transit, tobs is the total time spent observing the star with Kepler, and P is

the known planet orbital period (Muirhead et al., 2015). CDPPeff, more precisely, is an estimate of white noise during a specific transit duration (Christiansen et al.,

2012). For each star, we fit a power law to the CDPP values versus time for transits

between 1.5 and 15 hours, and use this fit to determine CDPPeff for each planet

transit duration, tdur. We compute tdur for known planets using:

! P p(R + R )2 − (bR )2 t = sin−1 ? p ? , (2.8) dur π a

where b = a cos i/R? is the impact parameter and i is the orbital inclination angle. We use the linear ramp detection efficiency model of Mulders et al. (2015a), where detection efficiency feff = 0 for S/N ≤ 6, feff = 1 for S/N > 12, and feff = (S/N−6)/6 for 6 < S/N ≤ 12. The sum of the detection efficiencies, rounded to the nearest integer, then becomes N?,i. Our stellar selection criteria were chosen to isolate stars with a spectral type of

M3 V and beyond, though we observed 40 stars with earlier spectral types. In our planet sample, we have identified the Kepler planets around M3 V to M5 V stars.

For our planet occurrence rate calculations, we consider the 461 stars in this spectral type range, including three M5.5 V stars. Using Equation 2.4, we compute a total planet occurrence rate for M3 V to M5.5 V stars with orbital periods less than 10

+0.21 days and 0.5R⊕ < Rp < 2.5R⊕ to be 1.29−0.18 planets per star. This suggests that 46 every mid-type M dwarf should contain at least one planet in a short orbital period.

Since we have spectral types for all the stars in our sample, we can calculate planet occurrence rate for each spectral type. We apply Equation 2.4 to planets and stars in the bins M3 V to M3.5 V (4 planets, 113 stars), M4 V to M4.5 V (7 planets,

261 stars), and M5 V to M5.5 V (2 planets, 87 stars) and compute occurrence rates, which are shown in the second column of Table 2.2.

2.5.1 Monte Carlo Analysis

The small numbers of planets and stars in our sample, in addition to spectral type uncertainty, calls for a more conservative approach to estimate the errors in the planet occurrence rate. In order to assess the effect of adding or removing planets from a spectral type bin, or any changes to spectral type classification, we implement a Monte Carlo analysis. First, we draw a random number from a uniform distribution between -1 and 1 for each star and planet host in our sample. We then add those random numbers to each spectral type, and calculate a new planet occurrence rate.

We repeat this procedure 1,000 times for each spectral type bin and for the combined mid-type M dwarfs, and show the resulting planet occurrence rate distributions in

Figure 2-12. The individual spectral type occurrence rate distributions all exhibit positive skew and a truncation toward zero, which is highlighted by the box and whisker plots above each distribution. These effects can be attributed to the nature of Equation 2.4. From this equation, the planet occurrence rate cannot be zero since we require at least one planet to define the sample population. Additionally, f(Rp,P ) is inversely proportional to N?,i, so for a single planet, as N?,i increases, f(Rp,P ) decreases. For the M5 V to M5.5 V population, there appear to be multiple peaks in the planet occurrence rate distribution. From the MC analysis, 51% of the time there was a single planet in the M5 V to M5.5 V bin, and 35% of the time there were

47 Figure 2-12 Planet occurrence rate distributions from our Monte Carlo spec-

tral type analysis. The top two panels and bottom left panel are

the occurrence rates for each spectral type, and the bottom right

panel is the occurrence rate for all mid-type M dwarfs. Above

each distribution we give the corresponding box and whisker

plot, which show the quartiles of each distribution, and identify

any Likely outliers. Note that the histogram bin width for each

plot is 0.15 but the axes are all different scales.

two planets (Kepler-1582 b and Kepler-1649 b). Placing the transit probabilities (see

Table 2.1) of Kepler-1582 b and Kepler-1649 b into the numerator of Equation 2.4,

and the median value of N?,i = 34 for the M5 V to M5.5 V bin into the denominator, yields values near 0.8 and 1.5 individually, and 2.3 when summed. These values are

48 Table 2.2. Planet occurrence rates per spectral type.

Spectral Type Planets per star Planets per star (MC)

+0.25 +0.53 M3 V to M3.5 V 1.18−0.21 0.78−0.40

+0.11 +1.14 M4 V to M4.5 V 1.05−0.10 1.23−0.75

+0.43 +2.87 M5 V to M5.5 V 2.13−0.36 2.51−1.51

+0.21 +0.14 M3 V to M5.5 V 1.29−0.18 1.27−0.28

very close to the first three peaks in the M5 V to M5.5 V distribution.

We compare the results from the MC analysis to those from the singular planet occurrence rate calculation in Table 2.2. For the MC results, we report the median of the planet occurrence rate distributions, and the 16th and 84th percentiles as the uncertainties. For each spectral type, the values for the singular and MC calculations are consistent, though the uncertainties from the MC analysis are significantly larger.

The results from the full M3 V to M5.5 V calculations are closer in values for both methods, which we attribute to the larger total planet (13) and star (461) samples.

2.6 Discussion

+0.08 Dressing and Charbonneau (2015) derive a planet occurrence rate of 0.63−0.06 planets per star for M dwarfs with orbital periods between 0.5 and 10 days and planets with 0.5 R⊕ < Rp < 2.5 R⊕. Similarly, Mulders et al. (2015b) compute a planet occurrence rate for M dwarfs in this range to be 0.53 planets per star. Our total occurrence rate for mid-type M dwarfs is approximately double that of Dressing and

Charbonneau (2015) and Mulders et al. (2015b), though we consider only mid-type

49 M dwarfs and not all M dwarfs. We show a comparison of our planet occurrence rates from our MC analysis to values from Dressing and Charbonneau (2015) and Mulders et al. (2015b) in Figure 2-13. Mulders et al. (2015b) also computed planet occurrence rates for stars of each spectral type F, G, and K, which we also include. There is a clear increasing trend of planet occurrence toward later spectral types. If we take the median values of planet occurrence rates from our MC analysis, this suggests an increasing trend of small planets at short orbital periods toward later-type M dwarfs.

50 Figure 2-13 Planet occurrence rate as a function of stellar effective tem-

perature for planets with orbital periods shorter than 10 days

and radii between 0.5 and 2.5 R⊕. The measurements from our Monte Carlo analysis are shown as the box and whisker plots

from Figure 2-12 to illustrate the skewed nature of the planet

occurrence rate distributions, and the widths of each box cor-

respond to the temperature uncertainties. The total mid-type

M dwarf planet occurrence rate is shown in magenta. There

is a clear increase in planet occurrence rate toward later spec-

tral types, and evidence for an increasing trend toward later

sub-types within the mid-type M dwarfs.

51 Chapter 3

Additional Information from

Spectra

3.1 Stellar Properties from Spectra

3.1.1 Mass

Although masses are not used in the planet occurrence rate calculation, they are

still important because reliable stellar parameters are necessary for determining planet

properties in any method of detecting planets. In the same manner that precise stellar

radii are essential for planet radii in transit surveys, precise stellar masses are crucial

for planet mass measurements in radial velocity surveys. With several new high

precision radial velocity instruments coming online (e.g., NASA/NSF EXPLORE

Exoplanet Investigations with Doppler spectroscopy (NEID), EXtreme PREcision

Spectrometer (EXPRES); Halverson et al., 2016; Jurgenson et al., 2016) stellar mass

measurements will be crucial for planet surveys.

We apply the semi-empirical MKs vs. M? relationship of Mann et al. (2015) to compute stellar masses of targets with distance measurements, which has a model fit uncertainty of 1.8%. We add the model fit uncertainty to the uncertainty from an MC analysis (see Section 2.2.1) in quadrature yields a median 2.17% mass uncertainty.

52 We do not have distance measurements for 29 targets, so we need another method for computing mass. We determine an R? vs. M? relationship by fitting a third degree polynomial to the 183 radius and mass measurements from M15 using the polyfit routine in the numpy (Oliphant, 2015) Python package and find:

2 3 M? = −0.01 + 0.63R? + 1.34R? − 0.99R?. (3.1)

The root-mean square scatter of this fit is 3.75%. We apply Equation 3.1 to the targets for which we do not have distance measurements in the same manner as our previous model fits.

3.1.2 Stellar Activity

Hα emission in M dwarfs has been shown to directly correlate with high-energy coronal X-ray emission, and can be used as a stellar activity indicator (Doyle, 1989).

From our optical spectra of Kepler targets, we determine whether or not a star is ac- tive with a by-eye assessment of Hα emission. In Figure 3-1, we show a spectrum of an active M4 V star (KIC05354341) compared to an inactive M4 V star (KIC05513833), centered around Hα (6562 A).˚

Kepler photometry also allows a deeper study of activity, such as spot coverage and

flare frequency. In Figure 3-2 a, we plot one quarter of Kepler data for KIC05354341, which shows a periodic signal and several significant increases in flux. The periodic signal likely arises from star spots, and can be used to constrain rotation period.

In the case of KIC05354341, we derive a rotation period of 2.69 days from a Lomb-

Scargle periodogram analysis (Lomb, 1976; Scargle, 1982). To highlight flare activity, we magnify a 3 day portion of the KIC05354341 light curve, which shows several significant flare events (Figure 3-2 b). The characteristic shape of a flare event in a light curve is a sharp increase in flux, followed by a slowly dissipating tail. Since

53 the cadence of this Kepler light curve is 30 minutes, the three most significant flares

dissipate in 4–5 hours.

Figure 3-1 An active M4 V star (top), exhibiting Hα emission, compared to

an inactive M4 V star (bottom).

Several studies of Hα emission in M dwarfs have shown an increase in stellar activity toward later spectral types (Hawley et al., 1996; Gizis et al., 2000; West et al.,

2004, 2008, 2011; Schmidt et al., 2015). We present a histogram of our spectroscopic observations in Figure 3-3, showing the fraction of active stars for each spectral type.

Additionally, we compare the activity fraction to values found in recent literature in

Figure 3-4, showing a consistent trend of higher activity fraction toward later spectral types.

54 (a) (b)

Figure 3-2 (a) A light curve of one quarter of Kepler data for KIC05354341,

exhibiting periodic behavior due to star spots and several flare

events. (b) Three days of Kepler data for KIC05354341, showing

several rapid increases in flux due to stellar flares.

Figure 3-3 Histogram of spectroscopically observed Kepler targets, showing

an overlay of the active targets for each spectral type.

55 Figure 3-4 Comparison of activity fraction of stars from this study com-

pared to values from the literature (West et al., 2004, 2008, 2011;

Schmidt et al., 2015).

56 3.1.3 BY Draconis Binaries

BY Draconis variable stars are K and M dwarfs characterized by Hα emission and low amplitude variability with periods up to a few days (Bopp and Fekel, 1977).

Additionally, in a survey of 17 BY Draconis variable stars, Bopp and Fekel (1977) found that nine were spectroscopic binaries, one exhibited low amplitude velocity variation, four showed no detectable velocity variations, suggesting they are single stars, and for the remaining three stars sparse data did not allow a classification.

These results suggest that at least half of BY Draconis variables are binary systems.

Figure 3-5 A spectrum of KIC05175854 (blue) compared to an M4 V tem-

plate (black; top) and a combination of an M1.5 V and an M7 V

template (bottom). The star spectrum more closely resembles

the combined spectra.

While our spectra of Kepler M dwarfs are too low resolution to detect spectro-

57 scopic binarity, we can use the spectra to identify binary candidates. In the process of spectral typing (Section 2.2.2), we visually compare our spectra to spectral tem- plates and choose the closest matching spectrum. Sometimes the spectrum does not exactly match a template. For example, KIC05175854 resembles an M4 V, but there are some regions that do not match well (Figure 3-5). The slope of the spectrum between 7800 and 8250 A˚ resembles that of a later-type M dwarf, whereas the Na D absorption at 5890 A˚ suggests an earlier-type M dwarf. We try several combinations of template spectra to find a closer match to our target spectrum, and find a good match to M1.5 V + M7 V. We also check the Kepler light curve of KIC05175854, and find that it resembles BY Draconis variables from the literature (Figure 3-6).

3.2 Kepler Spectroscopic Library

3.2.1 Optimizing Hydra Observations

The Kepler field contains over 100,000 main-sequence stars. Our primary focus was mid-type M dwarfs, but these targets are relatively sparse within the Kepler field, and on average we observed 4–5 of our targets per pointing. In order to make the most of the 90 fiber multi-object spectrograph, we set non-used fibers on probable early-type M and late-type K dwarfs, giving us spectra for about 10 additional targets per pointing. To identify earlier type stars, we extended the r −J color cut to include targets below 3.2.

In total, we observed 1,083 other Kepler stars. We first compare each spectrum to M dwarf spectral templates (Section 2.2.2). We identify 979 of these stars as M dwarfs, and the spectral type distribution of these targets is given in Figure 3-7. We also plot an M dwarf spectral sequence in Figure 3-8. There are 38 targets which exhibit excess blue flux, which we classify as potential M dwarf–white dwarf binaries.

Additionally, there are 21 potential M giants. The remaining 45 targets do not have

58 Figure 3-6 A phase folded light curve of BY Draconis variable NSV 03144

(top, Greaves, 2010), and KIC05175854 (bottom), showing sim-

ilar profiles.

59 the atomic and molecular features indicative of an M type star. For these targets, we identify spectral type using PyHammer, a Python based spectral typing suite (Kesseli et al., 2017; Covey et al., 2007). In this sample there are 6 F, 1 G, and 38 K type stars. We report the spectral types of all these stars in Table C.3 and show a spectral sequence in Figure 3-9.

Figure 3-7 Spectral type distribution of the 979 Kepler M dwarfs, 38 M

dwarf–white dwarf candidates, 38 K, 1 G, and 6 F type stars we

observed with extra Hydra fibers on WIYN.

60 Figure 3-8 Spectral sequence of M dwarfs in the Kepler field. The M1,

M5, and M6 stars all exhibit Hα emission, indicative of stellar

activity.

61 Figure 3-9 Spectral sequence of earlier type stars in the Kepler field.

62 Chapter 4

Conclusions

4.1 Planet Occurrence Rates

In Chapter 2 we showed that planet occurrence rates increase toward later stellar

spectral types within mid-type M dwarfs, which is consistent with the overall trend

across all spectral types. We can take this analysis a step further to compute planet

occurrence rates based on planet size for all mid-type M dwarfs (M3 V to M5.5 V),

binning by planet size instead of spectral type (Table 4.1). These rates suggest that

every mid-type M dwarf should contain one Earth sized planet (0.5 R⊕ < Rp <

1.5 R⊕) in a short orbital period (P < 10 days), and larger planets are rare. The paucity of planets at short orbital periods with sizes larger than that of Earth around these stars is indicative that the formation process hinders large planet development.

This is indeed consistent with the predictions of the core accretion models of Laughlin et al. (2004). The presence of small, short period planets around mid-type M dwarfs is also consistent with the in-situ formation models of Montgomery and Laughlin

(2009), which predict between 3 and 5 Earth mass planets in or near the habitable zones of these stars (∼0.03 to 0.08 AU), and 1 to 2 Mars mass planets in this region.

We also revise the planet occurrence rate for compact multiples around mid-

+0.06 type M dwarfs to be 0.38−0.05. This value is computed from Equation 2.4, but only

63 Table 4.1. Planet occurrence rates per planet radius bin.

Rp (R⊕) Planets per star Planets per star (MC)

+0.11 +0.12 0.5 – 1.0 0.53−0.09 0.44−0.27

+0.09 +0.03 1.0 – 1.5 0.55−0.07 0.62−0.13 1.5 – 2.0 0.14 ± 0.02 0.164 ± 0.003

2.0 – 2.5 0.068 ± 0.002 0.079 ± 0.002

considers the detectability of the outermost planet in the multi-planet system. Our

+0.07 occurrence rate for compact multiples is larger than 0.21−0.05 reported by Muirhead et al. (2015), which assumed uniform stellar radii of 0.2 R , which is the peak of the stellar radius distribution for these stars from the Kepler Stellar Catalog. For low mass stars, Boyajian et al. (2012) found that evolutionary models (which were largely used to determine radii in the Kepler Stellar Catalog), underpredict stellar radii. Our radius measurements have a median value of 0.33 R , 58% larger than the median

0.21 R from the Kepler Stellar Catalog. Ballard and Johnson (2016) assessed planet multiplicity among Kepler M dwarfs, and found that half of these systems contain five or more coplanar planets, while the other half are either single or multiple planet systems with large mutual planet inclinations. Of the seven confirmed Kepler mid-type M dwarf planet systems, three of them contain at least three planets, whereas the other four systems contain at least one planet. It is possible that all of these systems could contain more planets with an inclination angle outside the range of detection via the transit method. The discovery of seven Earth-sized planets around TRAPPIST-1 (an M8 V star; Costa et al., 2006) shows that planet formation occurs through the end of the main sequence (Gillon

64 et al., 2017), and supports both the increase in planet occurrence rates toward later spectral types and the large planet multiplicity from Ballard and Johnson (2016).

Thompson et al. (2018) note that for occurrence rate calculations, pipeline detec- tion efficiency, astrophysical reliability, and imperfect stellar information must all be taken into account. Pipeline detection efficiency has been computed for Kepler F,

G, and K stars using pixel-level and flux-level transit injection (Christiansen et al.,

2016; Christiansen, 2017; Burke and Catanzarite, 2017). Dressing and Charbonneau

(2015) performed their own pipeline detection efficiency for Kepler M dwarfs by in- jecting transit signals into light curves for all their target stars. For planets between

1 R⊕ and 3 R⊕ at orbital periods less than 10 days, their pipeline was able to re- cover between 80 and 90% of the injected transit signals. For planets below 1 R⊕, recovery averaged 58%. Astrophysical reliability is used to determine whether or not an observed event is stellar or instrumental in nature. False positive probabilities for

KOIs were computed by Morton et al. (2016), and probabilities that the KOI signal originates from the target star were calculated by (Bryson and Morton, 2017). Our work has addressed the third issue of imperfect stellar information, though we do take into account a simple linear ramp model of detection efficiency in our calculations.

4.2 Future Directions

Accurate stellar properties are crucial for exoplanet characterization. For the transit method (Section 1.1.4), planet radius depends on the measured radius of the host star (Section 2.2.5). In order to constrain planet mass via the radial velocity technique (Section 1.1.2), precise host star masses are necessary (Section 3.1.1). If a planet has both mass and radius measurements, we can compute planet density and begin to learn about planet composition, which allows us to identify targets for spec- troscopic atmosphere characterization with upcoming missions like the James Webb

65 Space Telescope. In the search for new planets, we also need to be cautious about

signals in the data caused by stellar activity (Section 3.1.2) and stellar companions

(Sections 2.3.2, 2.3.3, 3.1.3).

Previous planet occurrence rate calculations (e.g., Howard et al., 2012; Petigura

et al., 2013; Mulders et al., 2015a; Dressing and Charbonneau, 2015) were computed

for general spectral class (F, G, K, and M). In order to study trends within a spectral

class, we need spectral types for all stars within a population. Ideally, if resources were

not limited, we would get a spectrum for each star in the Kepler field to properly

assign spectral types. We were able to observe 60% of the mid-type M dwarfs in

our sample, but relied on a machine learning technique to classify the remaining

targets (Section 2.2.2). We can use our spectra of earlier M dwarfs in the Kepler field

(Section 3.2) to extend our planet occurrence rate calculations to early M dwarfs.

For stars warmer than M dwarfs, large spectroscopic surveys (e.g., LAMOST, SDSS)

may provide the data necessary to help constrain stellar spectral types, which would

allow for a more detailed analysis of planet occurrence rates as a function of spectral

type.

Most of the Kepler stars we targeted in our study are relatively distant (median

130 parsecs). From our Kepler planet occurrence rates, we can estimate the num- ber of small planets in short orbital periods around mid-type M dwarfs in the local neighborhood. Stelzer et al. (2013) conducted a survey of UV and X-ray activity of

M dwarfs within 10 parsecs of the Sun, in which they observed 159 M0 V through

M8 V stars, and estimated that their volume-limited M dwarf sample was 90% com- plete. This sample includes 101 stars with spectral types between M3 V and M5.5 V,

+14 which means there are potentially 128−28 planets around these nearby stars. So far, there have been 21 planets found around 10 of these nearby mid-type M dwarfs, all discovered via the radial velocity technique (NASA Exoplanet Archive). Of those 21 planets, 10 have orbital periods shorter than 10 days. The faintest mid-type M dwarf

66 around which a planet has been detected using the radial velocity technique has a

V -band magnitude of 12.22 (GJ 3323), and the smallest radial velocity amplitude for

a planet detected around these stars is 1.06 ± 0.15 m s−1 (GJ 273 c, Astudillo-Defru

et al., 2017). There are 51 nearby mid-type M dwarfs with V -band magnitudes less

+7 than 12.22. Our planet occurrence rates suggest there are 65−14 small, short period planets around these 51 stars. Since 10 short period planets have already been found, there may be ∼50 additional short period planets orbiting nearby mid-type M dwarfs which could be detected with current radial velocity instruments (e.g., HARPS, Pepe et al., 2011), assuming the planets are massive enough to induce a 1 m s−1 signal.

NEID and EXPRES aim to achieve even greater precision below 30 cm s−1 (Halverson

et al., 2016; Jurgenson et al., 2016).

Since the original Kepler mission was designed to detect Earth-like planets around

Sun-like stars, less emphasis was placed on low-mass stars. The K2 mission (Howell et al., 2014), however, is well suited to detecting planets around the latest type stars along the ecliptic plane and has already produced dozens of confirmed and candidate planets around M dwarfs, opening up another rich data set for planet occurrence rate studies. The K2 M Dwarf Project (PIs Schleider, J.; Crossfield, I.; Dressing, C.) alone has over 25,000 targets in K2 Campaigns 4 through 19, about five times larger than the number of M dwarfs observed with Kepler. The ground based survey MEarth

(Nutzman and Charbonneau, 2008) is surveying M dwarfs for planets, and the Search for habitable Planets EClipsing ULtra-cOOl Stars (SPECULOOS; Burdanov et al.,

2017) is starting to search for planets around 1,000 late-type M dwarfs and brown dwarfs. The recently launched TESS mission is also expected to find 500 planets around bright M dwarfs across the entire night sky (Barclay et al., 2018), providing a promising future for the field of exoplanet science.

67 Appendix A

Additional Acknowledgements

We would like to thank WIYN observing assistants Amy Robertson, Anthony

Paat, Christian Soto, Dave Summers, Doug Williams, Karen Butler, and Malanka

Riabokin, DCT telescope operators Andrew Hayslip, Heidi Larson, Jason Sanborn, and Teznie Pugh, and IRTF telescope operators Brian Cabreira, Dave Griep, Eric

Volquardsen, Greg Osterman, and Tony Matulonis. We would also like to thank

NOAO observing support scientists Daryl Willmarth, Dianne Harmer, Mark Everett, and Susan Ridgway. K. Hardegree-Ullman would like to thank Adam Schneider and

Wayne Oswald for conducting some of the observations herein at the DCT and WIYN, and Gijs Mulders for helpful discussions regarding planet occurrence rates per spectral type.

Data presented herein were obtained at the WIYN Observatory from telescope time allocated to NN-EXPLORE through the scientific partnership of the National

Aeronautics and Space Administration, the National Science Foundation, and the

National Optical Astronomy Observatory. This work was supported by a NASA

WIYN PI Data Award, administered by the NASA Exoplanet Science Institute.

These results made use of the Discovery Channel Telescope at Lowell Observatory.

Lowell is a private, non-profit institution dedicated to astrophysical research and public appreciation of astronomy and operates the DCT in partnership with Boston

68 University, the University of Maryland, the University of Toledo, Northern Arizona

University and . The upgrade of the DeVeny optical spectrograph has

been funded by a generous grant from John and Ginger Giovale.

Guoshoujing Telescope (the Large Sky Area Multi-Object Fiber Spectroscopic

Telescope LAMOST) is a National Major Scientific Project built by the Chinese

Academy of Sciences. Funding for the project has been provided by the National

Development and Reform Commission. LAMOST is operated and managed by the

National Astronomical Observatories, Chinese Academy of Sciences. This research

has made use of the NASA Exoplanet Archive, which is operated by the California

Institute of Technology, under contract with the National Aeronautics and Space

Administration under the Exoplanet Exploration Program.

This work has made use of data from the European Space Agency (ESA) mission

Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing

and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/ consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

This work made use of the gaia-kepler.fun crossmatch database created by Megan Bedell.

The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been

made possible through contributions by the Institute for Astronomy, the Univer-

sity of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its

participating institutes, the Max Planck Institute for Astronomy, Heidelberg and

the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins

University, Durham University, the University of Edinburgh, the Queen’s University

Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Obser-

vatory Global Telescope Network Incorporated, the National Central University of

Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space

69 Administration under Grant No. NNX08AR22G issued through the Planetary Sci- ence Division of the NASA Science Mission Directorate, the National Science Founda- tion Grant No. AST-1238877, the University of Maryland, Eotvos Lorand University

(ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore

Foundation.

70 Appendix B

Data Reduction for DCT/DeVeny

Spectra

The following step-by-step tutorial is meant as a guide for data reduction of single

slit spectra obtained with the DeVeny optical spectrograph on the Discovery Channel

Telescope. This tutorial assumes you have the Image Reduction and Analysis Facility

(IRAF, v2.16)1 installed on your computer, along with the packages wcstools2 and

noao3. You should be starting within an xgterm terminal and have IRAF started, showing an ecl> prompt. It goes without saying that you should always start by making a backup copy, or copies, of your raw data prior to beginning data reduction. Comments and annota- tions in the instructions below are denoted by #italicized text, and commands you will enter into your xgterm are denoted by prompt> text you should enter. It is assumed that your raw files follow the naming convention yyyymmdd.####.fits.

1http://iraf.noao.edu/ 2http://tdc-www.harvard.edu/software/wcstools/index.html 3This package is included in the standard IRAF installation.

71 B.1 Rotate images and add a dispersion axis

#Start in your raw image directory.

ecl> wcstools wcstools> imrot -l -r 180 *.fits wcstools> mkdir raw wcstools> mkdir rotated wcstools> mv *fr180.fits rotated wcstools> mv *.fits raw wcstools> bye ecl> cd rotated ecl> hedit *.fits DISPAXIS 1 add+ verify-

B.2 Bias subtract and flat field

#Create list of bias images and name it bias.list. ecl> epar imcombine #See Figure B-1 for parameters. When you are done entering in new parameters, type :q then Enter to save and return to prompt.

72 Figure B-1 Parameters for the imcombine routine.

73 ecl> imcombine @bias.list bias.fits #Create list of all images, except for the bias images and name it all.list. ecl> imarith @all.list - bias.fits b//@all.list ecl> mkdir biased ecl> mv b2*.fits biased ecl> cd biased ecl> imcopy b2*.fits[54:2096,25:475] t//b2*.fits ecl> mkdir trimmed ecl> mv tb*.fits trimmed ecl> cd trimmed #Create list of flat images and name it flat.list. ecl> imstat @flat.list > statflat.list

ecl> !awk ’{d=$3; print d}’ statflat.list > averageflat.list #Open averageflat.list and remove NPIX. from the first line, then save and close the

file.

ecl> imarith @flat.list / @averageflat.list a//@flat.list ecl> ls atb*.fits > aflat.list

ecl> imcombine @aflat.list flat.fits ecl> onedspec onedspec> twodspec twodspec> longslit longslit> epar response #See Figure B-2 for parameters.

74 Figure B-2 Parameters for the response routine. longslit> response

Longslit calibration images: flat.fits

Normalization spectrum images: flat.fits[*,180:280]

Response function images: respflat.fits

Fit the normalization spectrum for flat.fits interactively: yes #A window will pop up showing the flat field response function (Figure B-3). If the

fit looks okay, type q to quit and return to the terminal. Type ? for a list of other commands or help.

75 Figure B-3 The flat field response function. longslit> bye twodspec> apextract #Make a list of science and arc images and name it science.list. apextract> imarith @science.list / respflat.fits f//@science.list apextract> mkdir flatted apextract> mv ftb2*.fits flatted apextract> cd flatted

76 B.3 Extract spectra

#Create a list of science targets (no arcs) and name it targets.list. apextract> epar apall #See Figure B-4 for parameters.

77 Figure B-4 Parameters for the apall routine.

78 apextract> epar apextract #See Figure B-5 for parameters.

Figure B-5 Parameters for the apextract routine. apextract> apall @targets.list

Find apertures for ftbyyyymmdd.####fr180?: yes

Number of apertures to be found automatically: 1

Resize apertures for ftbyyyymmdd.####fr180?: yes

Edit apertures for ftbyyyymmdd.####fr180?: yes #A window will pop up showing a side view (y and z axis) of the sum of several columns (x axis) of the first image in your targets.list file (Figure B-6). The parame- ters specified by the apall routine will automatically find one aperture and background coordinates. If the aperture needs to be modified, or there was another star on the slit that was automatically selected, you can delete the aperture by moving the mouse over the aperture and pressing d to delete. You can identify a new aperture by hov- ering near the center of a peak and pressing m. You can change the lower and upper bounds of the aperture by moving the mouse to where you want and pressing l and u, respectively. To modify the background selections, type b. This will zoom in to the currently selected background regions. To zoom out to the full image, type w, then a for window all. To zoom in to a region, type w, then e at the bottom left of where you want to zoom in, then e again at the top right of where you want to zoom in.

79 To delete a background region, mouse over the region and press z. To create a new background region, move the cursor to where you want the background to start and press s, then move over to where you want it to stop and press s again. You typically want to choose a relatively flat background region near your aperture. Type f to fit the background. If you need a higher order fit to the background, type :order #, then

Enter, where # is the order of the polynomial function to be fit to the background.

Once you are happy with the background fit, type q to return to the aperture editing mode, then type q again.

80 Figure B-6 The aperture extraction window, showing a peak near the cen-

ter where the star was located on the slit. An aperture and

background regions were automatically identified based on input

parameters from the apall routine, as shown by the horizontal

lines.

Trace apertures for ftbyyyymmdd.####fr180?: yes

Fit traced positions for ftbyyyymmdd.####fr180 interactively: yes

Fit curve to aperture 1 of ftbyyyymmdd.####fr180 interactively: yes

#The x and y (column and line) locations of the aperture peaks will now show in the window with a polynomial fit to the order specified in the apall routine (Figure B-7).

A low order polynomial fit (2 to 3) is generally okay, but if you want a higher order,

81 type :order # then Enter. When you are happy with the aperture tracing fit, type q.

Figure B-7 The aperture trace window, showing the locations of the aper-

ture peaks and a low order polynomial fit.

Write apertures for ftbyyymmdd.####fr180 to database: yes

Extract aperture spectra for ftbyyymmdd.####fr180?: yes

Review extracted spectra from ftbyyymmdd.####fr180?: yes

Review extracted spectrum for aperture 1 from ftbyyymmdd.####fr180?: yes

#The extracted spectrum will now show in the window (Figure B-8). To continue extracting spectra from files listed in targets.list, type q, then yes to the Find apertures for ftbyyyymmdd.####fr180.

82 Figure B-8 An extracted spectrum of an M dwarf. The extracted spectrum

is noisy, so several exposures need to be taken to build up the

signal.

#Repeat the above steps until you are finished extracting spectra. An extracted spec- trum has a file name ftbyyyymmdd.####fr180.ms.fits. apextract> mkdir extracted apextract> mv *.ms.fits extracted

B.4 Calibrate wavelengths

#Make a list of comparison arc lamp exposures and name it comp.list. apextract> epar imcombine

83 #Keep previous imcombine parameters, but change the combine parameter from me- dian to sum. apextract> imcombine @comp.list comp.fits apextract> mv comp.fits extracted apextract> cd extracted #Create a new file in the extracted folder called linelist.txt with two columns contain- ing the wavelengths and atomic line identifications given in Table B.4.

84 Table B.1. DeVeny Spectrograph Atomic Line List

λ Line λ Line λ Line λ Line

(A)˚ (A)˚ (A)˚ (A)˚

3080.822 Cd 5154.660 Cd 6778.116 Cd 8418.426 Ne

3082.593 Cd 5460.735 Hg 6929.467 Ne 8424.647 Ar

3125.670 Hg 5769.598 Hg 6965.430 Ar 8495.359 Ne

3131.700 Hg 5790.663 Hg 7024.050 Ne 8521.443 Ar

3133.167 Cd 5852.488 Ne 7032.413 Ne 8591.258 Ne

3252.524 Cd 5881.895 Ne 7067.217 Ar 8634.647 Ne

3261.055 Cd 5944.834 Ne 7147.041 Ar 8654.384 Ne

3341.480 Hg 5975.534 Ne 7173.938 Ne 8667.945 Ar

3403.652 Cd 6029.997 Ne 7245.166 Ne 8853.867 Ne

3466.200 Cd 6074.337 Ne 7272.935 Ar 8865.756 Ne

3467.655 Cd 6096.163 Ne 7345.670 Cd 8919.499 Ne

3499.952 Cd 6099.142 Cd 7383.979 Ar 8988.580 Ne

3610.508 Cd 6111.490 Cd 7438.898 Ne 9122.966 Ar

3612.873 Cd 6128.450 Ne 7488.871 Ne 9148.680 Ne

3614.453 Cd 6143.062 Ne 7503.868 Ar 9201.760 Ne

3649.558 Cd 6163.594 Ne 7514.651 Ar 9224.495 Ar

3650.153 Hg 6217.281 Ne 7535.774 Ne 9300.850 Ne

3654.840 Hg 6266.495 Ne 7544.044 Ne 9313.980 Ne

3663.279 Hg 6304.789 Ne 7635.106 Ar 9326.520 Ne

3981.926 Cd 6325.166 Cd 7723.760 Ar 9354.218 Ne

85 Table B.1 (cont’d)

λ Line λ Line λ Line λ Line

(A)˚ (A)˚ (A)˚ (A)˚

4046.563 Hg 6330.013 Cd 7943.180 Ne 9425.380 Ne

4077.831 Hg 6334.428 Ne 7948.175 Ar 9459.210 Ne

4140.500 Cd 6382.991 Ne 8006.156 Ar 9486.680 Ne

4306.672 Cd 6402.246 Ne 8014.785 Ar 9534.167 Ne

4358.327 Hg 6438.470 Cd 8082.457 Ne 9547.400 Ne

4412.989 Cd 6506.528 Ne 8103.692 Ar 9657.784 Ar

4662.352 Cd 6532.882 Ne 8115.311 Ar 9665.424 Ne

4678.149 Cd 6598.953 Ne 8136.406 Ne 9784.501 Ar

4799.912 Cd 6652.092 Ne 8300.324 Ne 10470.510 Ar

4916.068 Hg 6678.276 Ne 8377.606 Ne ···

5085.822 Cd 6717.043 Ne 8408.209 Ar ···

86 apextract> epar identify #See Figure B-4 for parameters.

Figure B-9 Parameters for the identify routine.

#The profile of the comparison line spectrum will now show in the window. If you

are using the Neon-Argon comparison lamp, the 400 grooves per millimeter grating,

and are centered around 7500A,˚ you can identify the lines according to Figure B-10.

For other comparison lamps or wavelength ranges, you can find reference spectra at http: // iraf. noao. edu/ specatlas/ . To mark lines, mouse near a line and type m, enter the reference wavelength, then hit Enter. Once you have identified several lines throughout the comparison spectrum, type f to fit a polynomial to the wavelengths and show a fit residual plot. To fit a higher order polynomial (if there is structure in the residuals), type :order #, then Enter, then f to refit. If there are significant outlier points, you can remove them by hovering over them and typing d. Type q to 87 return to the comparison spectrum view. Once you have identified several lines, you can type l to try to automatically identify lines from the linelist.txt file. Caution is advised when automatically identifying lines, as they can be misidentified. To delete any misidentified lines, hover over the line and type d. When the line fit is acceptable

(low order random scatter in the fit residuals), type q, then Enter.

Figure B-10 Parameters for the identify routine.

Write feature data to database? yes apextract> hedit ftbyyyymmdd* REFSPEC1 "comp.fits" add+ verify- apextract> epar dispcor #See Figure B-11 for parameters.

88 Figure B-11 Parameters for the dispcor routine.

apextract> dispcor ftb* w//ftb* #Your spectra are now wavelength calibrated. To view a spectrum use the splot com- mand. apextract> mkdir wavecal apextract> mv wftb* wavecal apextract> cd wavecal apextract> bye twodspec> bye

B.5 Combine spectra

#Create lists of fits files for each object.

89 onedspec> epar scombine #See Figure B-12 for parameters.

Figure B-12 Parameters for the scombine routine. onedspec> scombine @object.list object.fits #Where object is the name of your target. Repeat for each of your targets. To view a combined spectrum, use the splot command. An example combined spectrum is shown in Figure B-13.

90 Figure B-13 A wavelength calibrated combined spectrum.

91 B.6 Flux calibrate spectra

#Flux calibration of spectra requires observations of a spectrophotometric standard on the same night of your targets. A list of spectrophotometric standards for red-optical wavelengths can be found in Massey and Gronwall (1990). onedspec> standard

Input image file root name: HZ44.fits #For this example, we use HZ 44. If you use a different standard star, please change these parameters accordingly.

Output flux file (used by SENSFUNC): std

Extinction file: #You can leave this blank unless you have an extinction file.

No extinction correction applied

Directory containing calibration data: onedstds$spec50cal/ Star name in calibration list: hz44

Edit bandpasses: no onedspec> sensfunc

Input standard star data file (from STANDARD): std

Output root sensitivity function imagename: sens

No extinction correction applied

Fit aperture 1 interactively?: yes #A sensitivity function fit to the spectrophotometric standard will now show in the window (Figure B-14). If there are any significant outlier points, hover over the point, and type d then p to delete the point from the fit. Type f then r to fit and redraw the polynomial fit. If a higher order polynomial is needed to produce a better fit, type

:order #, then f and r to fit and redraw the new fit. Once you are happy with the fit, type q to quit.

#Create a list of your science targets and telluric standards if you observed them and name it flux.list. Duplicate this list and call it fluxout.list. Edit fluxout.list and

92 Figure B-14 A fit of the spectrophotometric standard sensitivity function

from the sensfunc routine (top panel), and the residual from the fit (bottom panel). Points used in the fit are shown as +,

and points removed from the fit are shown as ×. Depending

on your spectrophotometric standard, there may be few or no

points beyond 9,000 A˚ due to strong telluric contamination.

93 change the file names to what you want your flux calibrated spectra to be called. onedspec> epar calibrate #See Figure B-15 for parameters.

Figure B-15 Parameters for the calibrate routine. onedspec> calibrate

Input spectra to calibrate: @flux.list

Output calibrated spectra: @fluxout.list #Your spectra are now flux calibrated. An example of a flux calibrated spectrum of a

Kepler M dwarf is shown in Figure B-16.

94 Figure B-16 A flux calibrated spectrum of a Kepler M dwarf.

95 Appendix C

Stellar Property Tables

96 Table C.1. Stellar parameters for spectroscopically classified targets.

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+1.264 01995305 139.882−1.242 6.783 ± 0.039 W/I M3.5 V 3325 −0.426 ± 0.100 0.331 ± 0.010 0.344 ± 0.008

+0.166 +0.020 02164791 39.964−0.167 7.435−0.021 D/I M4.5 Ve 3157 −0.166 ± 0.099 0.262 ± 0.007 0.261 ± 0.005

+6.311 02283749 291.795−6.054 5.545 ± 0.053 W M4 Ve 3241 ··· 0.516 ± 0.017 0.540 ± 0.013

97 +1.647 +0.038 02693779 176.658−1.617 6.308−0.037 W M4 V 3241 ··· 0.399 ± 0.013 0.415 ± 0.010

+6.321 +0.126 02832720 106.036−5.657 6.349−0.120 W/I M4 Ve 3241 0.284 ± 0.152 0.398 ± 0.020 0.408 ± 0.020

+0.704 02834637 125.012−0.696 6.407 ± 0.024 W/I M4 Ve 3241 0.063 ± 0.073 0.387 ± 0.011 0.399 ± 0.008

+0.309 03219046 63.177−0.307 8.621 ± 0.026 W M5 Ve 3073 ··· 0.165 ± 0.005 0.165 ± 0.003

+0.046 +0.036 03232191 ······ W M4 V 3241 ··· 0.258−0.044 0.224−0.032

+0.063 03330684 26.526−0.064 8.192 ± 0.018 W M7 V 2736 ··· 0.195 ± 0.006 0.190 ± 0.004

+0.789 +0.027 03340246 112.936−0.778 7.414−0.028 W M4 V 3241 ··· 0.265 ± 0.008 0.263 ± 0.006

+4.929 +0.093 03453233 193.017−4.693 7.821−0.096 D M4 V 3241 ··· 0.226 ± 0.011 0.221 ± 0.010 03561148 59.378 ± 0.128 6.319 ± 0.015 L M4 V 3241 ··· 0.398 ± 0.012 0.413 ± 0.008 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+0.593 +0.027 03629595 116.233−0.587 7.000−0.026 W/I M4 V 3241 −0.070 ± 0.101 0.310 ± 0.009 0.314 ± 0.007

+4.608 +0.034 +0.045 +0.043 03631048 351.484−4.492 4.449−0.033 W/I M4 Ve 3241 0.118 ± 0.059 0.287−0.043 0.257−0.040

+2.430 03642851 200.723−2.373 6.322 ± 0.038 W M4 V 3241 ··· 0.398 ± 0.013 0.413 ± 0.010

98 +0.758 +0.027 03654827 94.367−0.747 6.883−0.028 W M6 V 2904 ··· 0.325 ± 0.010 0.330 ± 0.007

+0.376 03731321 86.438−0.373 7.493 ± 0.022 I M3.5 V 3325 0.044 ± 0.091 0.259 ± 0.007 0.254 ± 0.005

+5.627 +0.115 03940072 107.897−5.103 5.540−0.108 W/I M5 V 3073 −0.066 ± 0.097 0.514 ± 0.023 0.541 ± 0.021

+0.624 +0.026 03941669 117.196−0.618 6.969−0.027 W/I M4.5 V 3157 0.132 ± 0.075 0.317 ± 0.009 0.318 ± 0.007

+2.404 +0.064 03954332 150.850−2.331 7.894−0.066 D M5 V 3073 ··· 0.220 ± 0.008 0.214 ± 0.007

+0.601 04078409 76.338−0.591 8.740 ± 0.036 D M6 V 2904 ··· 0.158 ± 0.005 0.160 ± 0.003 04248433 36.985 ± 0.072 7.593 ± 0.017 W/I M5.5 Ve 2989 0.296 ± 0.075 0.252 ± 0.007 0.244 ± 0.005

+2.147 04270856 151.141−2.089 6.433 ± 0.042 W M2.5 V 3494 ··· 0.383 ± 0.013 0.396 ± 0.010

+4.453 04448009 239.205−4.296 6.246 ± 0.050 W M4 V 3241 ··· 0.409 ± 0.014 0.425 ± 0.011 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

04470937 17.448 ± 0.033 6.130 ± 0.017 W M2 V 3578 ··· 0.425 ± 0.013 0.443 ± 0.008

+22.535 +0.133 +0.057 +0.056 04545041 410.440−25.262 4.066−0.126 W/I M3.5 Ve 3325 0.424 ± 0.110 0.377−0.055 0.364−0.053

+2.455 04545209 175.733−2.389 6.145 ± 0.039 W M4 V 3241 ··· 0.423 ± 0.013 0.440 ± 0.010

99 +0.427 04568065 82.102−0.423 6.941 ± 0.023 W M5 V 3073 ··· 0.318 ± 0.010 0.322 ± 0.007

+1.607 +0.039 04726552 157.506−1.575 7.180−0.040 W M4 V 3241 ··· 0.290 ± 0.009 0.291 ± 0.007

+4.715 +0.069 04730040 227.179−4.531 7.372−0.068 D M4 V 3241 ··· 0.270 ± 0.010 0.268 ± 0.009

+1.349 +0.038 04741907 119.957−1.319 7.656−0.037 W M5 V 3073 ··· 0.241 ± 0.008 0.237 ± 0.006

+0.358 +0.031 04815654 64.279−0.354 8.930−0.030 D/W M6 V 2904 ··· 0.148 ± 0.005 0.153 ± 0.003

+1.053 04856658 119.571−1.035 7.346 ± 0.032 W M3 V 3410 ··· 0.272 ± 0.009 0.271 ± 0.006

+0.474 04913121 66.698−0.468 8.961 ± 0.038 D/W M6 Ve 2904 ··· 0.146 ± 0.005 0.153 ± 0.003

+0.498 04917182 91.451−0.493 7.119 ± 0.024 W M5.5 V 2989 ··· 0.297 ± 0.009 0.299 ± 0.006

+3.103 +0.060 04946433 117.314−2.949 4.866−0.057 W M3.5 V 3325 ··· 0.636 ± 0.021 0.656 ± 0.016 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

05002836 28.142 ± 0.020 6.916 ± 0.017 W/I M4 V 3241 −0.183 ± 0.086 0.319 ± 0.009 0.325 ± 0.006

+0.199 05079348 76.937−0.198 6.614 ± 0.020 W M3.5 V 3325 ··· 0.358 ± 0.011 0.368 ± 0.007

+0.021 05122206 45.857 ± 0.080 6.688−0.020 W M4.5 V 3157 ··· 0.349 ± 0.010 0.357 ± 0.007

100 +1.119 05126248 122.180−1.099 6.440 ± 0.028 W M5 V 3073 ··· 0.381 ± 0.012 0.394 ± 0.008

+0.373 +0.034 05175854 67.247−0.369 8.788−0.032 D/W M7 Ve 2736 ··· 0.156 ± 0.005 0.158 ± 0.003

+2.156 05181762 206.139−2.113 5.702 ± 0.030 W M4 V 3241 ··· 0.490 ± 0.015 0.514 ± 0.011

+1.600 +0.051 05256590 129.297−1.562 8.146−0.052 D M5 V 3073 ··· 0.199 ± 0.007 0.194 ± 0.005

+0.780 05304146 77.219−0.765 6.464 ± 0.030 W M6.5 Ve 2820 ··· 0.378 ± 0.012 0.391 ± 0.008

+25.601 +0.238 +0.037 +0.037 05341486 229.710−20.986 5.719−0.213 W M5.5 Ve 2989 ··· 0.487−0.038 0.510−0.039

+0.376 +0.037 05353762 54.996−0.371 9.362−0.035 W M7 V 2736 ··· 0.129 ± 0.004 0.148 ± 0.003

+0.183 05354341 66.588−0.182 7.421 ± 0.021 W M4 Ve 3241 ··· 0.265 ± 0.008 0.262 ± 0.005

+1.467 05438886 157.235−1.440 6.946 ± 0.034 W M4 V 3241 ··· 0.317 ± 0.010 0.321 ± 0.007 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+3.787 +0.041 05513232 239.522−3.673 5.298−0.043 W M4.5 Ve 3157 ··· 0.558 ± 0.018 0.583 ± 0.013

+1.534 +0.036 05513833 107.660−1.492 6.411−0.037 W M4 V 3241 ··· 0.385 ± 0.012 0.399 ± 0.009

+0.728 +0.030 05515259 107.679−0.719 7.660−0.029 W M3 Ve 3410 ··· 0.241 ± 0.007 0.237 ± 0.005

101 +3.028 +0.048 05602310 148.886−2.912 5.863−0.046 W/I M4 V 3241 −0.054 ± 0.333 0.463 ± 0.016 0.487 ± 0.012

+0.449 +0.023 05603484 108.713−0.445 6.629−0.022 W M4 V 3241 ··· 0.356 ± 0.011 0.366 ± 0.007

+0.490 +0.030 05603847 80.025−0.485 8.490−0.029 W M5 V 3073 ··· 0.174 ± 0.005 0.171 ± 0.003

+0.837 05649085 124.787−0.826 6.833 ± 0.029 W M3 Ve 3410 ··· 0.331 ± 0.010 0.337 ± 0.007

+0.186 +0.018 05791720 70.692−0.185 6.186−0.019 L M3.5 Ve 3325 ··· 0.417 ± 0.012 0.434 ± 0.008

+0.576 05818116 123.847−0.571 6.428 ± 0.025 W M2 V 3578 ··· 0.383 ± 0.012 0.396 ± 0.008

+0.432 05859112 95.371−0.428 7.075 ± 0.025 W/I M4.5 V 3157 0.572 ± 0.101 0.310 ± 0.009 0.304 ± 0.006

+1.359 05859124 154.233−1.336 6.853 ± 0.033 W M3.5 V 3325 ··· 0.328 ± 0.010 0.334 ± 0.008

+0.442 05868793 78.891−0.437 7.948 ± 0.026 W M5 V 3073 0.120 ± 0.200 0.217 ± 0.007 0.209 ± 0.004 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+5.942 +0.061 05868814 263.882−5.690 6.214−0.059 W M3.5 V 3325 ··· 0.413 ± 0.015 0.429 ± 0.012 05943385 42.711 ± 0.089 7.360 ± 0.018 W/I M4.5 V 3157 0.364 ± 0.172 0.276 ± 0.008 0.269 ± 0.005

+1.223 05944764 159.531−1.205 6.401 ± 0.027 W M3.5 V 3325 ··· 0.387 ± 0.012 0.400 ± 0.008

102 +0.593 05953947 111.177−0.587 6.919 ± 0.025 W/I M4 V 3241 −0.296 ± 0.112 0.317 ± 0.009 0.325 ± 0.007

+0.739 06037009 133.160−0.731 6.735 ± 0.027 W/I M4 Ve 3241 −0.178 ± 0.140 0.340 ± 0.010 0.351 ± 0.007

+1.426 +0.041 06102091 136.951−1.397 7.243−0.042 W M4 Ve 3241 ··· 0.283 ± 0.009 0.283 ± 0.007

+1.268 06102845 125.299−1.243 7.561 ± 0.045 W M4 V 3241 ··· 0.250 ± 0.008 0.247 ± 0.006 06117602 20.941 ± 0.027 8.769 ± 0.018 I M5 V 3073 −0.035 ± 0.075 0.157 ± 0.004 0.159 ± 0.003

+0.280 06183400 74.079−0.278 7.498 ± 0.023 W/I M4 V 3241 −0.277 ± 0.098 0.254 ± 0.007 0.254 ± 0.005

+1.451 +0.040 06183736 140.704−1.422 6.808−0.042 W/I M4 Ve 3241 0.180 ± 0.095 0.337 ± 0.010 0.340 ± 0.008

+3.605 06187812 269.005−3.512 5.039 ± 0.036 W/I M3 Ve 3410 0.174 ± 0.195 0.607 ± 0.018 0.627 ± 0.013

+6.119 +0.102 06214037 218.767−5.800 7.682−0.101 D M4 V 3241 ··· 0.239 ± 0.012 0.234 ± 0.011 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+0.022 06233711 57.618 ± 0.142 7.718−0.021 D M5 Ve 3073 ··· 0.236 ± 0.007 0.231 ± 0.005

+1.252 +0.037 06264426 150.494−1.232 6.621−0.038 W/I M3 V 3410 −0.148 ± 0.067 0.355 ± 0.011 0.367 ± 0.009

+0.478 06268411 95.286−0.474 7.374 ± 0.023 W/I M2.5 V 3494 −0.133 ± 0.105 0.269 ± 0.008 0.268 ± 0.005

103 +2.100 +0.039 06424725 154.652−2.045 6.764−0.038 W M4 V 3241 ··· 0.339 ± 0.011 0.346 ± 0.008

+0.549 06444896 92.191−0.543 7.764 ± 0.029 W M5 V 3073 −0.150 ± 0.110 0.231 ± 0.007 0.226 ± 0.005

+0.035 +0.025 06471285 ······ D M5 V 3073 ··· 0.189−0.033 0.151−0.022

+0.302 06605595 85.366−0.300 6.337 ± 0.017 W/I M4 V 3241 0.291 ± 0.083 0.401 ± 0.011 0.410 ± 0.008

+3.667 +0.080 06665209 164.525−3.513 8.291−0.081 W M5 V 3073 ··· 0.188 ± 0.008 0.183 ± 0.006

+0.295 06672297 75.366−0.293 7.468 ± 0.021 W M4 V 3241 ··· 0.260 ± 0.008 0.257 ± 0.005

+1.240 +0.033 06676217 149.317−1.220 7.113−0.034 W M4 V 3241 ··· 0.298 ± 0.009 0.299 ± 0.007

+1.080 +0.026 06693042 130.426−1.063 5.818−0.025 W/I M4 V 3241 −0.299 ± 0.096 0.465 ± 0.013 0.494 ± 0.010

+1.580 +0.038 06752213 163.992−1.550 7.100−0.036 W M4 V 3241 ··· 0.299 ± 0.010 0.301 ± 0.007 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+1.294 +0.031 06761765 142.006−1.271 7.162−0.032 W M4 V 3241 ··· 0.292 ± 0.009 0.293 ± 0.007

+3.587 +0.059 06768613 185.719−3.456 7.526−0.058 W M4 V 3241 ··· 0.254 ± 0.009 0.251 ± 0.008

+0.483 +0.030 06776555 108.690−0.479 7.054−0.031 W/I M4 V 3241 −0.117 ± 0.096 0.304 ± 0.009 0.307 ± 0.007

104 +0.922 +0.042 06783223 89.125−0.904 8.603−0.043 D M7 Ve 2736 ··· 0.167 ± 0.005 0.166 ± 0.004

+1.111 06784339 114.392−1.090 8.140 ± 0.043 D/I M6 V 2904 −0.074 ± 0.142 0.200 ± 0.007 0.194 ± 0.005

+3.075 06805049 224.585−2.994 6.026 ± 0.040 D M4 V 3241 ··· 0.440 ± 0.014 0.460 ± 0.010

+18.169 +0.158 +0.027 06837702 250.199−15.897 5.330−0.145 W M4 Ve 3241 ··· 0.553 ± 0.031 0.577−0.028

+1.021 06847171 170.189−1.009 5.795 ± 0.023 W/I M4 V 3241 0.568 ± 0.087 0.487 ± 0.014 0.498 ± 0.010

+0.096 07008143 47.933−0.095 7.405 ± 0.012 W M5 V 3073 ··· 0.266 ± 0.008 0.264 ± 0.005

+0.585 07022137 114.244−0.579 6.353 ± 0.018 W M4 V 3241 ··· 0.393 ± 0.012 0.408 ± 0.008

+1.353 07091150 124.185−1.324 7.806 ± 0.038 W M4.5 V 3157 ··· 0.228 ± 0.007 0.222 ± 0.005

+1.997 07102366 200.921−1.959 6.434 ± 0.035 W M4 V 3241 ··· 0.382 ± 0.012 0.395 ± 0.009 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+0.975 07102500 152.605−0.963 5.361 ± 0.022 W/I M4 Ve 3241 0.185 ± 0.123 0.550 ± 0.016 0.572 ± 0.011

+2.349 07177371 195.153−2.295 6.110 ± 0.036 W/I M5 V 3073 0.226 ± 0.071 0.432 ± 0.013 0.446 ± 0.010

+3.573 +0.039 07185487 245.782−3.474 5.928−0.038 W M4 V 3241 ··· 0.455 ± 0.014 0.476 ± 0.011

105 +0.650 +0.023 07185789 110.923−0.643 7.007−0.022 W/I M4 V 3241 0.011 ± 0.070 0.311 ± 0.009 0.313 ± 0.006

+1.425 +0.027 07272205 166.472−1.401 6.157−0.026 W M3.5 V 3325 ··· 0.421 ± 0.013 0.439 ± 0.009

+0.725 07304449 134.397−0.718 6.555 ± 0.024 W M3.5 V 3325 −0.110 ± 0.090 0.364 ± 0.010 0.377 ± 0.008 07341653 19.169 ± 0.017 7.509 ± 0.016 L M5 Ve 3073 ··· 0.256 ± 0.008 0.252 ± 0.005

+0.620 +0.019 07350067 127.591−0.614 6.498−0.018 W M4 Ve 3241 ··· 0.374 ± 0.011 0.385 ± 0.007

+0.464 07352892 90.769−0.459 7.235 ± 0.017 W M4.5 V 3157 ··· 0.284 ± 0.008 0.284 ± 0.006

+13.291 +0.077 07500850 399.363−12.475 4.935−0.072 W M4 Ve 3241 ··· 0.623 ± 0.023 0.645 ± 0.017

+0.773 +0.044 07505473 42.926−0.746 7.736−0.041 W/I M5 Ve 3073 0.009 ± 0.095 0.235 ± 0.008 0.229 ± 0.006

+4.200 +0.040 07505644 293.822−4.086 5.110−0.039 W/I M3 Ve 3410 0.179 ± 0.094 0.594 ± 0.018 0.615 ± 0.013 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+0.079 07517730 33.970−0.078 8.889 ± 0.014 W M6 V 2904 ··· 0.150 ± 0.004 0.155 ± 0.003

+2.272 07582793 189.719−2.219 7.173 ± 0.043 D/W M3.5 V 3325 ··· 0.291 ± 0.010 0.292 ± 0.008

+0.349 07596910 78.058−0.346 5.968 ± 0.015 W M4.5 V 3157 ··· 0.449 ± 0.013 0.469 ± 0.009

106 +0.372 +0.015 07659103 93.778−0.369 6.971−0.016 W/I M4 V 3241 −0.266 ± 0.094 0.311 ± 0.009 0.318 ± 0.006

+1.396 07661403 154.592−1.372 6.471 ± 0.023 W M4 Ve 3241 ··· 0.377 ± 0.011 0.389 ± 0.008

+0.047 07729309 ······ D/I M2 V 3578 −0.204 ± 0.093 0.410 ± 0.052 0.407−0.046

+2.202 +0.047 07734382 155.505−2.143 7.254−0.048 W M4 Ve 3241 ··· 0.282 ± 0.010 0.282 ± 0.008

+0.046 +0.035 07799514 ······ W M4 V 3241 ··· 0.257−0.044 0.225−0.032

+1.107 07799844 103.436−1.084 8.560 ± 0.042 D M6 V 2904 ··· 0.169 ± 0.006 0.168 ± 0.004

+6.884 +0.107 07809767 204.264−6.456 7.960−0.108 D M5 V 3073 ··· 0.214 ± 0.011 0.209 ± 0.010

+0.165 07849191 57.455−0.164 8.308 ± 0.023 W M4 V 3241 ··· 0.187 ± 0.006 0.182 ± 0.004

+37.045 +0.180 +0.025 +0.026 07903237 439.487−31.771 6.586−0.165 D M4 Ve 3241 ··· 0.362−0.026 0.373−0.028 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+1.468 +0.023 07938787 154.623−1.441 5.563−0.024 W M4 V 3241 ··· 0.513 ± 0.015 0.537 ± 0.010

+0.154 +0.013 07939565 65.472−0.153 6.627−0.012 W M2.5 Ve 3494 ··· 0.357 ± 0.010 0.366 ± 0.007

+1.161 +0.049 08036551 93.164−1.133 8.724−0.048 D M6 V 2904 ··· 0.159 ± 0.005 0.160 ± 0.003

107 +8.485 +0.098 08040522 253.639−7.962 7.292−0.097 D M4 V 3241 ··· 0.278 ± 0.013 0.277 ± 0.012 08076831 48.598 ± 0.090 6.945 ± 0.012 W M2.5 V 3494 ··· 0.317 ± 0.009 0.322 ± 0.006

+1.158 08082302 157.362−1.141 6.546 ± 0.029 W M4 V 3241 ··· 0.367 ± 0.011 0.378 ± 0.008

+0.549 08095972 114.779−0.544 6.773 ± 0.020 W/I M2 V 3578 −0.143 ± 0.093 0.336 ± 0.010 0.345 ± 0.007

+11.560 +0.113 08167877 323.982−10.802 6.648−0.112 W M3 V 3410 ··· 0.354 ± 0.017 0.363 ± 0.017 08190958 47.983 ± 0.090 6.502 ± 0.019 W M3.5 V 3325 ··· 0.373 ± 0.011 0.385 ± 0.008

+0.036 08197652 ······ W M4 Ve 3241 ··· 0.258 ± 0.045 0.224−0.032

+2.578 +0.030 08213019 220.989−2.520 5.429−0.029 W M4 V 3241 ··· 0.536 ± 0.016 0.560 ± 0.011

+0.507 +0.024 08233951 102.901−0.502 6.994−0.025 W/I M4 V 3241 −0.332 ± 0.097 0.307 ± 0.009 0.315 ± 0.007 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+1.920 +0.083 08236114 140.875−1.870 8.401−0.082 D/W M4 V 3241 ··· 0.180 ± 0.008 0.176 ± 0.006

+3.756 +0.046 08278279 183.522−3.611 6.100−0.047 W/I M6 Ve 2904 0.530 ± 0.062 0.439 ± 0.014 0.448 ± 0.011

+1.121 08284382 136.937−1.103 7.117 ± 0.034 W M3.5 V 3325 ··· 0.297 ± 0.009 0.299 ± 0.007

108 +1.345 08302467 181.216−1.325 5.937 ± 0.028 W M4 Ve 3241 ··· 0.454 ± 0.014 0.474 ± 0.010

+1.114 +0.031 08331947 137.376−1.096 7.199−0.032 W M4 V 3241 ··· 0.288 ± 0.009 0.289 ± 0.006

+0.018 08332355 52.667 ± 0.134 7.398−0.019 W M5 Ve 3073 ··· 0.267 ± 0.008 0.265 ± 0.005

+0.935 08344757 126.858−0.921 7.618 ± 0.031 W M4 V 3241 ··· 0.245 ± 0.008 0.241 ± 0.005

+0.123 08387281 54.841−0.122 6.469 ± 0.016 W/I M3 Ve 3410 −0.026 ± 0.125 0.377 ± 0.011 0.390 ± 0.007

+0.046 +0.035 08416220 ······ W M4 Ve 3241 ··· 0.258−0.045 0.225−0.032

+0.768 08423202 83.111−0.755 8.729 ± 0.040 D M6 Ve 2904 ··· 0.159 ± 0.005 0.160 ± 0.003

+7.925 +0.092 08428178 185.033−7.310 6.055−0.090 W/I M2.5 V 3494 −0.163 ± 0.084 0.433 ± 0.018 0.455 ± 0.017

+0.046 +0.035 08431077 ······ W M4 V 3241 ··· 0.257−0.045 0.224−0.032 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

08451881 4.661 ± 0.002 9.044 ± 0.018 W/D M7 Ve 2736 ··· 0.142 ± 0.004 0.151 ± 0.003

+0.867 +0.036 08452193 132.652−0.856 6.709−0.037 W/I M2.5 V 3494 0.034 ± 0.086 0.347 ± 0.011 0.354 ± 0.008

+0.349 +0.024 08482923 72.997−0.346 8.124−0.023 W M6.5 V 2820 ··· 0.201 ± 0.006 0.195 ± 0.004

109 +0.141 +0.018 08493421 44.741−0.140 8.429−0.017 I M5 V 3073 0.358 ± 0.087 0.182 ± 0.005 0.175 ± 0.003

+0.898 08496410 138.102−0.887 6.759 ± 0.027 W M4 V 3241 ··· 0.340 ± 0.010 0.347 ± 0.007

+0.014 08507979 52.761 ± 0.096 6.207−0.015 L M3 Ve 3410 ··· 0.414 ± 0.012 0.431 ± 0.008

+2.103 +0.035 08548052 190.722−2.058 6.551−0.034 W M4 V 3241 ··· 0.367 ± 0.012 0.378 ± 0.009

+1.300 08556831 154.952−1.279 5.644 ± 0.021 W/I M2 V 3578 0.451 ± 0.066 0.509 ± 0.014 0.524 ± 0.010 08561063 40.060 ± 0.065 8.451 ± 0.018 W M3 V 3410 −0.500 ± 0.090 0.174 ± 0.005 0.174 ± 0.003

+0.206 +0.017 08564198 69.174−0.205 7.669−0.018 W M3 V 3410 ··· 0.240 ± 0.007 0.236 ± 0.005

+3.109 +0.072 08611599 153.221−2.990 8.269−0.076 D M5 V 3073 ··· 0.190 ± 0.008 0.185 ± 0.006

+0.391 08611876 103.041−0.388 6.458 ± 0.015 W M4 Ve 3241 ··· 0.379 ± 0.011 0.391 ± 0.007 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+1.027 08647238 146.637−1.013 6.333 ± 0.032 W M4 V 3241 ··· 0.396 ± 0.012 0.411 ± 0.009

+0.606 08655334 111.451−0.600 6.572 ± 0.022 W M4 V 3241 ··· 0.364 ± 0.011 0.374 ± 0.008

+2.989 +0.042 08669203 189.824−2.899 6.528−0.041 W M4 V 3241 ··· 0.369 ± 0.012 0.381 ± 0.009

110 +0.514 08733898 96.339−0.509 7.908 ± 0.027 W M4 V 3241 −0.300 ± 0.110 0.217 ± 0.006 0.213 ± 0.004

+0.272 +0.030 08776305 78.547−0.270 6.924−0.032 W/I M5 V 3073 −0.337 ± 0.123 0.315 ± 0.009 0.324 ± 0.007

+2.068 +0.045 08804334 157.213−2.015 7.150−0.043 W M5 Ve 3073 ··· 0.294 ± 0.010 0.295 ± 0.008

+4.124 +0.066 08815854 190.458−3.955 7.482−0.067 D M4 V 3241 ··· 0.258 ± 0.010 0.255 ± 0.009

+1.952 +0.041 08837812 158.900−1.906 7.138−0.039 W M4.5 V 3157 ··· 0.295 ± 0.010 0.296 ± 0.007

+0.145 08869922 51.289−0.144 7.474 ± 0.019 I M4.5 V 3157 0.165 ± 0.113 0.262 ± 0.007 0.256 ± 0.005 08872565 20.539 ± 0.030 7.464 ± 0.014 W M4 V 3241 ··· 0.260 ± 0.008 0.257 ± 0.005

+0.364 08888543 71.042−0.360 5.821 ± 0.021 W/I/L M2 V 3578 0.244 ± 0.117 0.476 ± 0.014 0.494 ± 0.010

+0.034 +0.026 08933586 ······ W M5 V 3073 ··· 0.190−0.033 0.151−0.022 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+0.046 +0.034 08937178 ······ W M4 V 3241 ··· 0.258−0.045 0.225−0.032

+2.001 08939955 199.789−1.962 6.324 ± 0.034 W M4 V 3241 ··· 0.397 ± 0.012 0.412 ± 0.009

+1.190 +0.031 08956025 140.728−1.170 6.504−0.030 W M4 Ve 3241 ··· 0.373 ± 0.012 0.384 ± 0.008

111 +0.560 08977910 112.293−0.554 6.267 ± 0.025 W/I M4 Ve 3241 −0.011 ± 0.099 0.405 ± 0.012 0.421 ± 0.008

+0.674 09004724 105.523−0.666 7.943 ± 0.033 W M5 V 3073 ··· 0.215 ± 0.007 0.210 ± 0.005

+1.128 +0.054 09005690 106.161−1.105 8.474−0.056 W M5 Ve 3073 ··· 0.175 ± 0.006 0.172 ± 0.004

+1.247 09113974 132.711−1.225 6.752 ± 0.029 W M3 Ve 3410 ··· 0.341 ± 0.010 0.348 ± 0.007

+1.138 +0.056 09117378 115.224−1.116 8.184−0.055 L M3 V 3410 ··· 0.196 ± 0.007 0.191 ± 0.005

+3.512 +0.047 09138406 227.707−3.408 6.241−0.045 W M3 Ve 3410 ··· 0.409 ± 0.013 0.425 ± 0.011

+0.049 +0.047 09138452 ······ W/I M3 V 3410 −0.201 ± 0.119 0.328−0.048 0.306−0.045

+1.677 +0.041 09202152 155.004−1.642 6.995−0.040 W M2 V 3578 ··· 0.311 ± 0.010 0.315 ± 0.008

+2.973 +0.044 09202551 212.437−2.893 6.355−0.043 W M3 V 3410 ··· 0.393 ± 0.013 0.407 ± 0.010 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+0.096 09203794 52.402−0.095 6.464 ± 0.016 D/L/I M4 V 3241 0.037 ± 0.067 0.379 ± 0.011 0.391 ± 0.007

+0.336 09222296 91.386−0.333 6.661 ± 0.018 W M4.5 V 3157 ··· 0.352 ± 0.010 0.361 ± 0.007

+0.820 +0.030 09265282 114.141−0.808 7.401−0.032 W M4 V 3241 ··· 0.267 ± 0.008 0.265 ± 0.006

112 +2.103 09328653 180.700−2.056 6.692 ± 0.043 W M3 Ve 3410 ··· 0.348 ± 0.011 0.357 ± 0.009

+0.429 +0.030 09346063 105.363−0.426 6.941−0.029 W/I M2 V 3578 −0.163 ± 0.085 0.316 ± 0.009 0.322 ± 0.007

+0.357 +0.025 09426508 92.564−0.354 6.941−0.024 W M4.5 V 3157 ··· 0.318 ± 0.010 0.322 ± 0.007

+9.057 +0.066 09446620 358.768−8.629 5.522−0.065 D/W M2.5 V 3494 ··· 0.520 ± 0.019 0.545 ± 0.015

+0.287 +0.013 09508489 78.168−0.285 6.963−0.014 W M3 V 3410 ··· 0.315 ± 0.009 0.319 ± 0.006

+2.213 09508904 188.176−2.163 7.021 ± 0.041 W M2 V 3578 ··· 0.308 ± 0.010 0.311 ± 0.008

+1.342 09530511 167.032−1.321 5.915 ± 0.026 W/I M3 V 3410 −0.099 ± 0.075 0.455 ± 0.013 0.478 ± 0.010

+6.828 +0.065 09531271 294.556−6.531 6.095−0.062 W M3.5 V 3325 ··· 0.430 ± 0.015 0.448 ± 0.013

+8.706 09532950 336.753−8.285 5.332 ± 0.063 W M6 Ve 2904 ··· 0.553 ± 0.019 0.577 ± 0.015 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+185.635 +0.474 +0.072 +0.071 09533618 848.292−129.815 5.586−0.399 W M2 V 3578 ··· 0.509−0.075 0.533−0.079

+1.335 09582827 147.322−1.311 6.338 ± 0.025 W/I/L M4 V 3241 −0.329 ± 0.122 0.389 ± 0.011 0.410 ± 0.008

+1.999 +0.030 09591560 224.479−1.965 4.824−0.031 W M3.5 Ve 3325 ··· 0.644 ± 0.019 0.664 ± 0.013

113 +51.967 +0.305 +0.048 +0.046 09593432 359.228−40.414 5.452−0.263 W M3 Ve 3410 ··· 0.531−0.053 0.556−0.053

+46.469 +0.557 +0.031 +0.025 09595546 178.491−30.543 8.692−0.435 W M4 Ve 3241 ··· 0.160−0.027 0.162−0.013

+11.613 +0.100 09605714 250.049−10.641 5.206−0.097 W M2 V 3578 ··· 0.574 ± 0.024 0.599 ± 0.020

+3.169 09605900 255.863−3.094 4.998 ± 0.034 W M2.5 V 3494 ··· 0.612 ± 0.019 0.634 ± 0.013

+1.471 09611538 154.040−1.443 6.513 ± 0.028 W M4 V 3241 ··· 0.372 ± 0.011 0.383 ± 0.008

+0.445 09612825 92.749−0.441 7.295 ± 0.029 W M4 V 3241 ··· 0.278 ± 0.009 0.277 ± 0.006

+1.118 +0.025 09642890 123.742−1.098 6.388−0.026 W/I M4 V 3241 0.245 ± 0.077 0.393 ± 0.011 0.402 ± 0.008

+0.500 +0.022 09643210 105.653−0.495 6.893−0.021 W/I M3 Ve 3410 −0.135 ± 0.067 0.322 ± 0.009 0.329 ± 0.007

+2.955 09654450 194.946−2.870 5.579 ± 0.038 W/I M3 V 3410 0.098 ± 0.104 0.512 ± 0.015 0.535 ± 0.012 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+0.967 09654642 118.885−0.951 7.456 ± 0.030 W M5 V 3073 ··· 0.261 ± 0.008 0.258 ± 0.006

+0.066 09654803 ······ D M2 Ve 3578 ··· 0.429−0.067 0.429 ± 0.044

+10.508 +0.130 +0.014 +0.014 09655532 227.689−9.633 7.751−0.129 W M4.5 V 3157 ··· 0.232−0.013 0.227−0.013

114 +68.616 +0.321 +0.042 +0.047 09655679 504.443−54.102 6.665−0.317 D/W M4 V 3241 ··· 0.352−0.041 0.361−0.045

+0.985 09705079 117.070−0.969 6.279 ± 0.021 W/I/L M4.5 V 3157 −0.078 ± 0.126 0.402 ± 0.011 0.419 ± 0.008

+28.278 +0.231 +0.026 +0.028 09715286 349.410−24.391 7.452−0.228 D M4 V 3241 ··· 0.261−0.024 0.258−0.025

+1.792 +0.034 09715460 164.873−1.754 6.461−0.035 W M4 V 3241 ··· 0.379 ± 0.012 0.391 ± 0.009

+23.963 +0.174 09715957 428.860−21.590 6.759−0.171 W M3.5 V 3325 ··· 0.340 ± 0.024 0.348 ± 0.025

+13.247 +0.133 +0.018 09715985 288.748−12.151 7.149−0.131 W M5 V 3073 ··· 0.294 ± 0.017 0.295−0.017

+90.506 +0.322 +0.050 09716727 651.018−71.056 5.949−0.308 W M3.5 V 3325 ··· 0.452−0.049 0.473 ± 0.052

+94.557 +0.310 +0.055 +0.048 09717123 644.470−73.359 4.972−0.271 W M4 V 3241 ··· 0.616−0.058 0.638−0.054

+12.358 +0.089 +0.017 09717341 385.669−11.626 6.055−0.088 D/W M3.5 V 3325 ··· 0.436 ± 0.018 0.455−0.016 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

09726699 11.975 ± 0.005 7.382 ± 0.016 W/L M4.5 Ve 3157 ··· 0.269 ± 0.008 0.267 ± 0.005

+1.003 +0.033 09730163 127.201−0.988 7.083−0.032 W/L M4.5 V 3157 0.270 ± 0.090 0.305 ± 0.009 0.303 ± 0.007

+7.699 +0.074 09776037 260.188−7.276 6.353−0.071 D/W M5 Ve 3073 ··· 0.393 ± 0.015 0.408 ± 0.013

115 +21.216 +0.145 +0.022 09776485 388.865−19.160 6.493−0.139 W M4.5 V 3157 ··· 0.374 ± 0.022 0.386−0.023

+1.680 +0.030 09825426 138.628−1.641 5.758−0.029 W/I M3 V 3410 −0.212 ± 0.114 0.476 ± 0.014 0.504 ± 0.010

+88.836 +0.290 +0.040 +0.043 09836326 631.240−69.563 6.296−0.262 D/W M4 V 3241 ··· 0.400−0.041 0.415−0.045

+4.591 +0.052 09836425 261.507−4.438 6.206−0.053 W M4 V 3241 ··· 0.414 ± 0.014 0.431 ± 0.011

+45.731 +0.177 09836628 589.574−39.679 5.359−0.167 D/W M4 Ve 3241 ··· 0.548 ± 0.033 0.572 ± 0.031

+5.488 +0.097 09836691 129.458−5.066 7.391−0.091 W M7 Ve 2736 ··· 0.267 ± 0.013 0.266 ± 0.012

+92.476 +0.293 +0.049 09836833 699.840−73.397 5.651−0.269 D M4 Ve 3241 ··· 0.498−0.047 0.521 ± 0.048

+33.618 +0.198 +0.029 09836960 407.031−28.917 6.493−0.190 W M4.5 Ve 3157 ··· 0.374−0.028 0.386 ± 0.030

+2.068 +0.035 09838000 192.179−2.025 6.484−0.034 W M3.5 V 3325 ··· 0.375 ± 0.012 0.387 ± 0.009 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+32.096 +0.186 +0.028 09838371 418.407−27.886 6.460−0.175 W M4 V 3241 ··· 0.379 ± 0.027 0.391−0.029

+5.595 +0.049 09880519 288.954−5.390 5.342−0.047 W M5 Ve 3073 ··· 0.550 ± 0.018 0.575 ± 0.013

+152.467 +0.410 +0.068 +0.062 09897336 775.511−109.963 5.168−0.358 W M4 V 3241 ··· 0.583−0.074 0.607−0.073

116 +2.148 +0.036 09897967 187.414−2.101 6.007−0.034 W M4.5 V 3157 ··· 0.443 ± 0.014 0.463 ± 0.010

+0.725 +0.022 09953754 127.563−0.717 6.335−0.023 W M3 V 3410 ··· 0.396 ± 0.012 0.411 ± 0.008

+7.939 +0.078 09957818 251.354−7.475 6.420−0.074 W M4 V 3241 ··· 0.384 ± 0.015 0.397 ± 0.013

+0.244 09992786 69.626−0.243 7.603 ± 0.022 W M5 V 3073 ··· 0.246 ± 0.007 0.242 ± 0.005

+0.046 +0.034 10017286 ······ W M4 V 3241 ··· 0.257−0.044 0.225−0.032

+1.270 10024566 162.190−1.251 6.501 ± 0.028 W M2.5 V 3494 ··· 0.373 ± 0.011 0.385 ± 0.008 10063466 ······ W/I M2 V 3578 −0.361 ± 0.073 0.378 ± 0.046 0.366 ± 0.042

+1.588 10066002 104.355−1.542 6.733 ± 0.035 W M4 V 3241 ··· 0.343 ± 0.011 0.351 ± 0.008

+0.276 10069097 86.155−0.274 6.786 ± 0.017 I M2.5 V 3494 −0.603 ± 0.116 0.328 ± 0.009 0.343 ± 0.007 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+0.014 10193199 57.142 ± 0.090 5.842−0.015 W M3 V 3410 ··· 0.469 ± 0.014 0.490 ± 0.009

+168.559 +0.841 +0.124 +0.100 10251759 405.980−92.403 4.773−0.588 D/W M4 V 3241 ··· 0.650−0.150 0.669−0.144

+0.084 10258179 26.658−0.085 6.476 ± 0.017 L M2.5 V 3494 ··· 0.377 ± 0.011 0.389 ± 0.007

117 +2.728 +0.040 10275253 213.549−2.661 6.072−0.039 W M5 V 3073 ··· 0.434 ± 0.014 0.452 ± 0.010

+0.016 10285569 35.329 ± 0.061 8.261−0.015 W M5 Ve 3073 ··· 0.190 ± 0.006 0.185 ± 0.003

+2.025 10318386 193.184−1.985 6.250 ± 0.031 W M4 Ve 3241 ··· 0.408 ± 0.013 0.424 ± 0.009

+1.114 +0.029 10324321 139.247−1.097 6.695−0.031 W M4 V 3241 ··· 0.348 ± 0.011 0.357 ± 0.008

+0.537 10330511 100.701−0.531 7.471 ± 0.023 W M4 V 3241 ··· 0.259 ± 0.008 0.257 ± 0.005

+3.412 +0.053 10339336 221.044−3.311 6.616−0.052 W M2 V 3578 ··· 0.358 ± 0.012 0.368 ± 0.010

+0.795 10351279 113.057−0.784 7.802 ± 0.030 W M5 V 3073 ··· 0.228 ± 0.007 0.223 ± 0.005

+5.072 10384327 290.039−4.904 5.508 ± 0.044 W M3.5 V 3325 ··· 0.523 ± 0.017 0.547 ± 0.012

+0.221 10396501 76.959−0.220 6.748 ± 0.014 W M4 V 3241 ··· 0.341 ± 0.010 0.349 ± 0.007 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+3.776 10448377 230.593−3.659 5.116 ± 0.039 W/I M5 Ve 3073 −0.105 ± 0.081 0.585 ± 0.017 0.614 ± 0.013

+2.275 +0.040 10449173 198.284−2.225 6.807−0.038 W M4 V 3241 ··· 0.334 ± 0.011 0.340 ± 0.008

+0.480 10452252 101.197−0.475 6.068 ± 0.020 W M5 Ve 3073 ··· 0.434 ± 0.013 0.453 ± 0.009

118 +0.689 10455009 123.820−0.682 6.465 ± 0.025 W M4 V 3241 ··· 0.378 ± 0.011 0.390 ± 0.008

+0.875 10459524 142.149−0.865 6.959 ± 0.027 W M2 V 3578 ··· 0.315 ± 0.010 0.320 ± 0.007

+1.439 +0.060 10471434 108.065−1.403 8.537−0.059 D/W M6.5 Ve 2820 ··· 0.171 ± 0.006 0.169 ± 0.004

+0.035 +0.026 10538002 ······ W M5 Ve 3073 ··· 0.189−0.033 0.150−0.022

+1.044 +0.024 10548640 145.942−1.030 6.067−0.025 W/I M4 Ve 3241 0.138 ± 0.070 0.437 ± 0.012 0.453 ± 0.009

+8.431 10548992 218.466−7.837 7.565 ± 0.107 D M5 V 3073 ··· 0.250 ± 0.013 0.247 ± 0.012

+1.273 10585782 172.808−1.254 6.215 ± 0.029 W M3.5 V 3325 ··· 0.413 ± 0.013 0.429 ± 0.009

+0.046 +0.044 10599274 ······ W/I M4 V 3241 0.084 ± 0.107 0.281−0.044 0.253−0.041 10647081 19.622 ± 0.011 6.436 ± 0.016 L M4 V 3241 ··· 0.382 ± 0.011 0.395 ± 0.008 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+7.530 +0.064 10647233 362.733−7.235 5.504−0.061 W M4 V 3241 ··· 0.523 ± 0.018 0.547 ± 0.014

+1.560 +0.048 10647424 135.812−1.525 7.696−0.049 D/W M5 Ve 3073 ··· 0.237 ± 0.008 0.233 ± 0.006 10665619 46.430 ± 0.129 7.689 ± 0.019 W/I M5 V 3073 0.202 ± 0.095 0.241 ± 0.007 0.234 ± 0.005

119 +3.536 +0.054 10668092 243.884−3.438 6.321−0.053 W M3 V 3410 ··· 0.398 ± 0.014 0.413 ± 0.011

+0.381 10709619 99.795−0.378 6.533 ± 0.019 W M4 V 3241 ··· 0.369 ± 0.011 0.380 ± 0.007

+0.034 10710233 ······ W M4 Ve 3241 ··· 0.258 ± 0.045 0.224−0.031

+2.987 +0.086 10711003 127.830−2.855 8.456−0.084 W M7 Ve 2736 ··· 0.176 ± 0.008 0.173 ± 0.006

+0.173 10731839 26.153−0.170 6.254 ± 0.024 W/L M4.5 V 3157 ··· 0.407 ± 0.012 0.423 ± 0.009

+0.833 10732063 154.612−0.825 5.887 ± 0.023 W/I M4 V 3241 0.071 ± 0.088 0.462 ± 0.013 0.483 ± 0.009

+1.518 +0.060 10777226 96.893−1.473 8.719−0.061 W M7 V 2736 ··· 0.160 ± 0.006 0.161 ± 0.004

+2.159 10841791 126.918−2.089 8.209 ± 0.066 D/W M5 Ve 3073 ··· 0.194 ± 0.008 0.189 ± 0.006

+3.304 +0.042 10843766 262.771−3.224 5.895−0.041 W M2.5 V 3494 ··· 0.461 ± 0.015 0.482 ± 0.011 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

10860741 30.758 ± 0.038 8.157 ± 0.014 W M6 V 2904 ··· 0.198 ± 0.006 0.193 ± 0.004

+4.882 10910277 217.363−4.676 6.746 ± 0.063 D M5 V 3073 ··· 0.341 ± 0.013 0.349 ± 0.011

+0.531 +0.021 10960093 123.132−0.527 6.430−0.020 W M3.5 V 3325 ··· 0.383 ± 0.011 0.396 ± 0.008

120 +6.906 11013311 196.892−6.461 8.958 ± 0.080 D M5 V 3073 ··· 0.147 ± 0.006 0.153 ± 0.003

+0.447 +0.021 11137723 112.801−0.444 6.281−0.022 W M4 Ve 3241 ··· 0.403 ± 0.012 0.419 ± 0.008

+2.265 +0.049 11137924 101.202−2.169 6.449−0.051 W M4 V 3241 ··· 0.380 ± 0.013 0.393 ± 0.011

+0.897 +0.020 11145819 149.751−0.887 4.989−0.021 W/I M5 Ve 3073 0.222 ± 0.134 0.617 ± 0.017 0.636 ± 0.012

+3.674 11187320 174.185−3.528 7.993 ± 0.074 D M3.5 V 3325 ··· 0.211 ± 0.009 0.206 ± 0.007

+0.193 +0.023 11288756 60.081−0.192 7.587−0.022 I M5 V 3073 0.002 ± 0.068 0.249 ± 0.007 0.244 ± 0.005

+0.900 +0.028 11341162 152.577−0.890 6.092−0.029 I M3.5 V 3325 0.065 ± 0.069 0.432 ± 0.012 0.449 ± 0.009

+0.561 +0.032 11356952 61.885−0.551 8.640−0.033 D M7 Ve 2736 ··· 0.164 ± 0.005 0.164 ± 0.003

+0.422 11462594 106.546−0.419 6.729 ± 0.020 W M4 V 3241 ··· 0.344 ± 0.010 0.351 ± 0.007 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+0.448 11462900 112.366−0.445 6.431 ± 0.019 W/I M4 V 3241 −0.149 ± 0.078 0.380 ± 0.011 0.396 ± 0.008

+1.296 11551165 151.267−1.275 7.002 ± 0.038 W M1.5 V 3662 ··· 0.310 ± 0.010 0.314 ± 0.007

+0.356 +0.028 11602561 82.303−0.353 7.670−0.029 W/I M6.5 V 2820 0.149 ± 0.078 0.243 ± 0.007 0.236 ± 0.005

121 +3.483 11603184 244.989−3.388 6.357 ± 0.047 W M4 V 3241 ··· 0.393 ± 0.013 0.407 ± 0.010

+2.331 +0.035 11654343 222.610−2.284 5.859−0.037 W M3.5 V 3325 ··· 0.466 ± 0.015 0.487 ± 0.011

+3.511 +0.089 11702373 177.349−3.380 7.911−0.087 D/W M4 V 3241 ··· 0.218 ± 0.010 0.213 ± 0.008

+3.009 11709473 203.356−2.924 5.975 ± 0.039 W M4 V 3241 ··· 0.448 ± 0.014 0.468 ± 0.011

+0.202 11709752 46.157−0.201 8.513 ± 0.026 I M6.5 V 2820 0.015 ± 0.163 0.174 ± 0.005 0.170 ± 0.003

+3.532 11710163 226.710−3.427 5.986 ± 0.045 W M6 Ve 2904 ··· 0.446 ± 0.015 0.466 ± 0.011

+4.216 11717068 187.740−4.038 7.638 ± 0.082 W M4.5 V 3157 ··· 0.243 ± 0.010 0.239 ± 0.009

+2.146 +0.077 11717289 119.830−2.073 8.572−0.076 W M7 V 2736 ··· 0.169 ± 0.007 0.167 ± 0.005

+0.303 11724582 64.260−0.300 7.908 ± 0.023 W M6 V 2904 ··· 0.219 ± 0.007 0.213 ± 0.004 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+1.144 +0.030 11751991 148.861−1.127 6.004−0.029 W M2.5 V 3494 ··· 0.444 ± 0.014 0.464 ± 0.010

+0.590 +0.027 11752690 96.867−0.584 7.432−0.026 W M4.5 Ve 3157 ··· 0.263 ± 0.008 0.261 ± 0.006

+3.682 11769369 257.784−3.581 5.223 ± 0.038 W M4 V 3241 ··· 0.571 ± 0.018 0.596 ± 0.013

122 +0.657 +0.026 11810611 126.222−0.650 6.927−0.027 W M2 V 3578 ··· 0.319 ± 0.010 0.324 ± 0.007

+0.221 11861787 74.669−0.220 7.212 ± 0.028 I M4.5 V 3157 −0.051 ± 0.079 0.287 ± 0.008 0.287 ± 0.006 11868209 46.035 ± 0.086 7.680 ± 0.019 W M4.5 V 3157 ··· 0.239 ± 0.007 0.235 ± 0.005

+1.138 +0.029 11876227 157.399−1.122 6.036−0.028 W M4 Ve 3241 ··· 0.439 ± 0.013 0.458 ± 0.010 11918550 18.331 ± 0.020 6.832 ± 0.016 L M3 V 3410 ··· 0.331 ± 0.010 0.337 ± 0.006

+2.767 11920155 224.137−2.701 5.829 ± 0.037 W M4 V 3241 ··· 0.471 ± 0.015 0.492 ± 0.011

+0.015 11925804 49.055 ± 0.086 6.935−0.014 W M4 Ve 3241 ··· 0.318 ± 0.009 0.323 ± 0.006

+1.284 11957647 175.160−1.265 6.012 ± 0.027 W/I M2.5 Ve 3494 0.065 ± 0.127 0.443 ± 0.013 0.462 ± 0.009

+0.990 +0.028 12059261 151.438−0.978 6.099−0.027 W/I M4 V 3241 0.107 ± 0.081 0.431 ± 0.012 0.448 ± 0.009 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+0.808 12066676 122.267−0.798 6.761 ± 0.028 W/I M4 V 3241 0.107 ± 0.114 0.342 ± 0.010 0.347 ± 0.007

+0.283 12068325 71.119−0.280 8.500 ± 0.029 W M5 V 3073 ··· 0.173 ± 0.005 0.171 ± 0.003

+0.441 +0.027 12108566 79.661−0.436 7.831−0.026 W/I M6 Ve 2904 0.131 ± 0.106 0.228 ± 0.007 0.220 ± 0.005

123 +0.474 12159633 107.774−0.470 6.140 ± 0.019 D/I M4 V 3241 0.276 ± 0.080 0.428 ± 0.012 0.441 ± 0.009

+0.341 +0.017 12166644 105.885−0.338 6.235−0.018 W M4 V 3241 ··· 0.410 ± 0.012 0.426 ± 0.008

+1.562 +0.030 12204358 171.869−1.535 6.501−0.029 W M4 V 3241 ··· 0.373 ± 0.011 0.385 ± 0.008

+1.357 12302994 161.881−1.335 6.138 ± 0.028 W/I M4.5 V 3157 −0.068 ± 0.137 0.422 ± 0.012 0.442 ± 0.009

+6.469 12306639 209.393−6.099 7.843 ± 0.110 D M6 V 2904 ··· 0.224 ± 0.012 0.219 ± 0.011

+1.903 12351607 187.389−1.865 6.315 ± 0.040 W M4 V 3241 ··· 0.399 ± 0.013 0.414 ± 0.010

+1.443 12505701 166.641−1.419 5.930 ± 0.030 W/I M5 V 3073 0.606 ± 0.070 0.467 ± 0.014 0.476 ± 0.010

+0.395 +0.026 12506640 97.789−0.392 6.634−0.025 W/I M2 V 3578 −0.313 ± 0.066 0.351 ± 0.010 0.365 ± 0.008 12644136 43.998 ± 0.080 7.640 ± 0.020 I M4.5 V 3157 0.141 ± 0.067 0.245 ± 0.007 0.239 ± 0.005 Table C.1 (cont’d)

1 2 3 KIC ID Distance MKS Telescope Spec. Type Teff [Fe/H] R? M?

(pc) (mag) (K) (dex) (R )(M )

+0.770 +0.031 124 12688403 110.782−0.760 6.243−0.030 W/I M3 Ve 3410 −0.194 ± 0.079 0.405 ± 0.012 0.425 ± 0.009

+1.533 12689068 170.244−1.506 6.651 ± 0.032 W M2.5 V 3494 ··· 0.354 ± 0.011 0.363 ± 0.008

+39.897 +0.330 +0.052 +0.051 12735296 248.393−30.276 5.456−0.292 W M2.5 V 3494 ··· 0.531−0.057 0.556−0.058

1D = DCT, I = IRTF, L = LAMOST, W = WIYN 2Stars that exhibit Hα emission from a by-eye analysis are classified with the peculiar flag ‘e’ to denote emission.

3 We adopt a ±64 K uncertainty for all temperatures from our spectral type vs. Teff fit (Section 2.2.3). Table C.2. Stellar parameters for photometrically classified targets.

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+2.808 01433760 192.959−2.730 6.696 ± 0.047 M3 V 3410 0.348 ± 0.012 0.356 ± 0.009

+1.559 +0.057 02831828 106.525−1.515 8.923−0.055 M5 V 3073 0.148 ± 0.005 0.154 ± 0.003 02971472 40.706 ± 0.059 6.979 ± 0.019 M5 V 3073 0.313 ± 0.009 0.317 ± 0.006 125 +1.221 02983661 148.672−1.202 6.832 ± 0.029 M3 V 3410 0.331 ± 0.010 0.337 ± 0.007

+2.287 03101838 201.853−2.237 5.846 ± 0.032 M3 V 3410 0.468 ± 0.014 0.489 ± 0.010

+0.565 03228276 111.970−0.559 6.865 ± 0.025 M3 V 3410 0.327 ± 0.010 0.332 ± 0.007

+0.970 03443923 144.103−0.957 5.576 ± 0.026 M4 V 3241 0.511 ± 0.015 0.535 ± 0.011 03545104 45.524 ± 0.073 7.464 ± 0.019 M5 V 3073 0.260 ± 0.008 0.257 ± 0.005

+2.005 +0.042 03556888 172.661−1.960 6.683−0.041 M4 V 3241 0.349 ± 0.011 0.358 ± 0.009 03629762 23.997 ± 0.023 6.578 ± 0.017 M4 V 3241 0.363 ± 0.011 0.373 ± 0.007

+0.884 03735000 110.168−0.870 7.226 ± 0.030 M5 V 3073 0.285 ± 0.009 0.285 ± 0.006

+2.748 +0.054 03838516 178.840−2.667 7.298−0.052 M4 V 3241 0.277 ± 0.010 0.277 ± 0.008 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+3.265 +0.049 04037286 202.408−3.164 6.685−0.047 M4 V 3241 0.349 ± 0.012 0.358 ± 0.009

+1.354 +0.041 04039602 139.252−1.328 7.815−0.038 M4 V 3241 0.227 ± 0.007 0.221 ± 0.005

+2.316 +0.053 04068926 163.753−2.253 7.341−0.052 M5 V 3073 0.273 ± 0.010 0.271 ± 0.008

126 +0.348 04137629 83.718−0.345 7.455 ± 0.027 M4 V 3241 0.261 ± 0.008 0.258 ± 0.006

+0.093 04142913 27.730−0.092 4.948 ± 0.023 M4 V 3241 0.621 ± 0.018 0.643 ± 0.012 04173772 45.276 ± 0.066 6.568 ± 0.018 M4 V 3241 0.364 ± 0.011 0.375 ± 0.007

+0.333 04466520 100.476−0.330 5.641 ± 0.020 M2 V 3578 0.500 ± 0.015 0.524 ± 0.010 04581084 41.656 ± 0.076 6.384 ± 0.015 M5 V 3073 0.389 ± 0.011 0.403 ± 0.008

+0.482 04644194 92.933−0.477 7.493 ± 0.028 M4 V 3241 0.257 ± 0.008 0.254 ± 0.005

+2.194 +0.034 04862505 194.457−2.146 5.798−0.033 M4 V 3241 0.475 ± 0.015 0.497 ± 0.011

+0.367 04909186 111.369−0.365 5.665 ± 0.021 M3 V 3410 0.497 ± 0.015 0.520 ± 0.010

+3.698 04921143 152.266−3.529 5.282 ± 0.055 M3 V 3410 0.561 ± 0.019 0.586 ± 0.014 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+0.185 04938090 53.110−0.184 7.916 ± 0.018 M5 V 3073 0.218 ± 0.006 0.212 ± 0.004

+1.778 +0.032 04997179 157.380−1.739 5.677−0.033 M2 V 3578 0.495 ± 0.015 0.518 ± 0.011

+0.868 05112508 154.262−0.859 5.766 ± 0.023 M3 V 3410 0.480 ± 0.014 0.503 ± 0.010

127 +0.242 05256612 66.222−0.240 8.122 ± 0.027 M4 V 3241 0.201 ± 0.006 0.195 ± 0.004

+3.549 +0.055 05435955 148.841−3.390 6.082−0.052 M4 V 3241 0.432 ± 0.015 0.450 ± 0.012

+14.107 +0.072 05435958 474.253−13.328 4.958−0.071 M3 V 3410 0.619 ± 0.022 0.641 ± 0.017

+5.065 +0.115 05522356 134.862−4.717 8.750−0.114 M6 V 2904 0.158 ± 0.008 0.159 ± 0.005

+0.979 05597723 113.820−0.963 7.750 ± 0.040 M5 V 3073 0.233 ± 0.008 0.228 ± 0.006

+12.507 +0.136 +0.024 05608002 193.248−11.094 5.711−0.128 M4 V 3241 0.489 ± 0.026 0.512−0.025

+0.641 05630476 98.355−0.633 7.434 ± 0.030 M4 V 3241 0.263 ± 0.008 0.261 ± 0.006

+0.042 05716508 ······ M3 V 3410 0.340 ± 0.056 0.320−0.041

+0.671 05802041 109.550−0.663 7.198 ± 0.026 M4 V 3241 0.288 ± 0.009 0.289 ± 0.006 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+0.946 +0.063 05855479 91.617−0.927 8.981−0.060 M5 V 3073 0.145 ± 0.005 0.152 ± 0.003

+0.189 +0.020 05855851 78.447−0.188 6.411−0.021 M3 V 3410 0.385 ± 0.012 0.399 ± 0.008

+4.776 +0.051 05941130 261.381−4.610 6.177−0.048 M3 V 3410 0.418 ± 0.014 0.435 ± 0.011

128 +0.365 05966669 71.057−0.361 8.368 ± 0.029 M4 V 3241 0.182 ± 0.006 0.178 ± 0.004

+0.968 +0.038 06029542 124.094−0.953 7.314−0.035 M4 V 3241 0.276 ± 0.009 0.274 ± 0.007

+0.790 +0.026 06060042 124.392−0.780 6.449−0.028 M3 V 3410 0.380 ± 0.012 0.393 ± 0.008 06099502 57.992 ± 0.161 7.144 ± 0.024 M4 V 3241 0.294 ± 0.009 0.295 ± 0.006

+1.608 +0.035 06110166 149.098−1.574 6.428−0.034 M4 V 3241 0.383 ± 0.012 0.396 ± 0.009

+0.511 06181143 92.310−0.505 6.470 ± 0.026 M4 V 3241 0.377 ± 0.011 0.390 ± 0.008

+0.113 06201164 41.383−0.112 8.606 ± 0.019 M5 V 3073 0.166 ± 0.005 0.165 ± 0.003

+0.311 06209585 74.533−0.309 8.122 ± 0.027 M4 V 3241 0.201 ± 0.006 0.195 ± 0.004

+0.599 06365513 82.925−0.591 5.800 ± 0.024 M4 V 3241 0.475 ± 0.014 0.497 ± 0.010 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+0.278 06423922 85.563−0.276 6.721 ± 0.020 M4 V 3241 0.345 ± 0.010 0.353 ± 0.007

+29.272 +0.327 +0.023 +0.020 06431170 266.684−24.063 8.573−0.329 M4 V 3241 0.169−0.020 0.167−0.014

+1.978 +0.035 06460812 147.694−1.927 6.097−0.034 M3 V 3410 0.430 ± 0.013 0.448 ± 0.010

129 +0.727 06507276 133.950−0.719 6.805 ± 0.027 M3 V 3410 0.334 ± 0.010 0.341 ± 0.007

+2.087 06510539 188.951−2.042 6.791 ± 0.035 M3 V 3410 0.336 ± 0.011 0.343 ± 0.008

+1.964 +0.063 06580019 121.275−1.904 8.593−0.061 M5 V 3073 0.167 ± 0.006 0.166 ± 0.004

+1.804 06751111 94.861−1.739 7.503 ± 0.045 M5 V 3073 0.256 ± 0.009 0.253 ± 0.007

+0.236 06784660 72.266−0.234 7.646 ± 0.017 M4 V 3241 0.242 ± 0.007 0.238 ± 0.005

+1.004 06925256 132.365−0.990 6.538 ± 0.026 M3 V 3410 0.368 ± 0.011 0.379 ± 0.008

+3.314 +0.080 07025613 128.887−3.155 8.660−0.078 M5 V 3073 0.163 ± 0.007 0.163 ± 0.004 07033670 18.131 ± 0.017 8.319 ± 0.017 M6 V 2904 0.186 ± 0.006 0.182 ± 0.003

+0.712 07094638 106.769−0.703 7.346 ± 0.029 M4 V 3241 0.272 ± 0.008 0.271 ± 0.006 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+0.760 07094777 123.682−0.751 6.137 ± 0.023 M4 V 3241 0.424 ± 0.013 0.442 ± 0.009

+2.138 07100573 207.135−2.096 6.014 ± 0.033 M4 V 3241 0.442 ± 0.014 0.462 ± 0.010

+0.638 07265390 103.052−0.630 7.441 ± 0.027 M4 V 3241 0.262 ± 0.008 0.260 ± 0.006

130 +0.329 07298281 79.796−0.327 6.875 ± 0.017 M4 V 3241 0.326 ± 0.010 0.331 ± 0.006

+1.427 +0.049 07341517 129.666−1.397 7.820−0.047 M4 V 3241 0.226 ± 0.008 0.221 ± 0.006

+0.646 07350394 116.340−0.639 6.925 ± 0.022 M3 V 3410 0.320 ± 0.010 0.324 ± 0.007 07435842 37.067 ± 0.110 9.241 ± 0.020 M6 V 2904 0.133 ± 0.004 0.148 ± 0.003

+1.245 07663056 123.455−1.221 7.754 ± 0.043 M5 V 3073 0.232 ± 0.008 0.227 ± 0.006

+1.682 +0.035 07668390 155.626−1.647 7.179−0.034 M4 V 3241 0.290 ± 0.009 0.291 ± 0.007

+1.487 07676799 142.090−1.457 6.786 ± 0.030 M4 V 3241 0.337 ± 0.010 0.343 ± 0.007

+1.146 07678417 122.180−1.125 6.069 ± 0.024 M4 V 3241 0.434 ± 0.013 0.453 ± 0.009 07691437 26.760 ± 0.056 9.649 ± 0.020 M7 V 2736 0.119 ± 0.003 0.151 ± 0.003 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+1.506 07731089 166.665−1.480 7.060 ± 0.035 M3 V 3410 0.304 ± 0.010 0.306 ± 0.007

+4.515 +0.056 07731963 247.742−4.359 6.356−0.054 M3 V 3410 0.393 ± 0.014 0.407 ± 0.011

+2.390 07739468 201.036−2.335 6.665 ± 0.035 M3 V 3410 0.352 ± 0.011 0.361 ± 0.008

131 +1.369 +0.037 07757418 169.535−1.348 6.560−0.036 M4 V 3241 0.365 ± 0.012 0.376 ± 0.009

+0.455 +0.028 07799941 69.023−0.450 8.664−0.027 M7 V 2736 0.163 ± 0.005 0.163 ± 0.003 07820535 49.419 ± 0.128 7.307 ± 0.017 M4 V 3241 0.276 ± 0.008 0.275 ± 0.005

+0.702 07830804 95.992−0.692 8.103 ± 0.035 M4 V 3241 0.202 ± 0.006 0.197 ± 0.004

+2.117 07941437 166.655−2.066 5.236 ± 0.032 M4 V 3241 0.569 ± 0.017 0.593 ± 0.012

+1.265 07957625 120.601−1.240 7.709 ± 0.036 M4 V 3241 0.236 ± 0.008 0.232 ± 0.005

+2.026 07960044 135.460−1.968 5.980 ± 0.037 M5 V 3073 0.447 ± 0.014 0.467 ± 0.010 08154114 29.472 ± 0.031 7.619 ± 0.012 M5 V 3073 0.245 ± 0.007 0.241 ± 0.004

+1.723 +0.051 08221528 148.876−1.684 7.753−0.050 M3 V 3410 0.232 ± 0.008 0.227 ± 0.006 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+1.457 +0.031 08222581 154.952−1.431 6.886−0.030 M3 V 3410 0.324 ± 0.010 0.329 ± 0.007

+3.203 +0.083 08247428 153.994−3.077 8.379−0.082 M4 V 3241 0.182 ± 0.008 0.178 ± 0.006

+0.442 +0.029 08393988 97.377−0.438 7.329−0.028 M3 V 3410 0.274 ± 0.008 0.273 ± 0.006

132 08408875 49.072 ± 0.108 6.258 ± 0.012 M4 V 3241 0.407 ± 0.012 0.423 ± 0.008

+6.637 +0.055 08409924 299.875−6.360 5.900−0.054 M4 V 3241 0.460 ± 0.016 0.481 ± 0.013

+2.683 +0.040 08414250 185.079−2.609 6.259−0.041 M4 V 3241 0.407 ± 0.013 0.423 ± 0.010

+0.519 08489264 108.453−0.514 7.121 ± 0.018 M2 V 3578 0.297 ± 0.009 0.298 ± 0.006

+2.592 +0.063 08526622 157.750−2.511 7.177−0.062 M4 V 3241 0.291 ± 0.011 0.291 ± 0.009

+1.271 08557567 135.302−1.248 7.180 ± 0.030 M4 V 3241 0.290 ± 0.009 0.291 ± 0.006

+1.561 08573327 134.691−1.526 7.413 ± 0.036 M4 V 3241 0.265 ± 0.009 0.263 ± 0.006

+1.537 08604803 160.616−1.509 6.733 ± 0.029 M3 V 3410 0.343 ± 0.011 0.351 ± 0.008

+2.232 08631743 156.018−2.171 7.973 ± 0.060 M4 V 3241 0.213 ± 0.008 0.207 ± 0.006 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+0.230 08673562 61.976−0.228 8.266 ± 0.024 M6 V 2904 0.190 ± 0.006 0.185 ± 0.004

+0.357 08735884 96.715−0.354 7.168 ± 0.023 M3 V 3410 0.292 ± 0.009 0.293 ± 0.006

+1.979 +0.074 08738977 133.189−1.923 8.344−0.071 M5 V 3073 0.184 ± 0.007 0.180 ± 0.006

133 +0.740 +0.025 08825565 112.247−0.731 6.959−0.023 M4 V 3241 0.315 ± 0.010 0.320 ± 0.007

+0.386 08846163 63.727−0.390 5.555 ± 0.023 M4 V 3241 0.514 ± 0.015 0.539 ± 0.010

+1.803 +0.041 08878564 162.228−1.764 7.327−0.042 M3 V 3410 0.274 ± 0.009 0.273 ± 0.007

+0.692 +0.023 08881388 103.788−0.683 7.296−0.024 M5 V 3073 0.278 ± 0.008 0.277 ± 0.006 08888573 64.164 ± 0.117 6.434 ± 0.019 M3 V 3410 0.382 ± 0.011 0.395 ± 0.008

08935655 55.855 ± 0.103 6.231 ± 0.015 M4 V 3241 0.410 ± 0.012 0.427 ± 0.008

+1.123 +0.032 08935942 125.198−1.104 6.975−0.031 M5 V 3073 0.314 ± 0.010 0.317 ± 0.007

+0.180 09006264 62.430−0.179 6.662 ± 0.018 M5 V 3073 0.352 ± 0.010 0.361 ± 0.007

+5.612 +0.087 09028977 140.544−5.204 5.749−0.082 M3 V 3410 0.483 ± 0.019 0.506 ± 0.017 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

09033543 20.468 ± 0.026 8.824 ± 0.012 M6 V 2904 0.154 ± 0.004 0.157 ± 0.003

+1.358 +0.031 09048032 131.835−1.331 6.756−0.030 M4 V 3241 0.340 ± 0.011 0.348 ± 0.008

+0.057 +0.042 09090909 ······ M3 V 3410 0.340−0.056 0.321−0.041

134 +0.352 09111293 86.723−0.349 7.479 ± 0.023 M3 V 3410 0.259 ± 0.008 0.256 ± 0.005

+0.682 +0.021 09153593 112.179−0.674 6.790−0.020 M4 V 3241 0.336 ± 0.010 0.343 ± 0.007

+0.187 09153754 45.638−0.186 6.799 ± 0.016 M5 V 3073 0.335 ± 0.010 0.342 ± 0.007

+0.035 +0.025 09201463 ······ M5 V 3073 0.189−0.033 0.150−0.022

+0.549 09210374 119.012−0.544 6.359 ± 0.016 M3 V 3410 0.392 ± 0.012 0.407 ± 0.008

+0.035 09268481 ······ M4 V 3241 0.258 ± 0.045 0.225−0.032

+0.255 +0.031 09282187 51.318−0.252 9.200−0.030 M7 V 2736 0.135 ± 0.004 0.148 ± 0.003

+5.191 +0.120 09326073 94.173−4.683 7.818−0.115 M4 V 3241 0.226 ± 0.012 0.221 ± 0.012

+3.002 09391230 224.339−2.925 6.479 ± 0.046 M4 V 3241 0.376 ± 0.013 0.388 ± 0.010 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+0.310 +0.021 09396972 73.708−0.307 7.960−0.022 M4 V 3241 0.214 ± 0.006 0.209 ± 0.004

+1.015 +0.024 09401964 147.359−1.001 6.557−0.025 M4 V 3241 0.366 ± 0.011 0.377 ± 0.008

+0.393 +0.022 09471335 96.306−0.390 6.662−0.020 M4 V 3241 0.352 ± 0.011 0.361 ± 0.007

135 +1.550 09475080 127.827−1.514 7.709 ± 0.040 M5 V 3073 0.236 ± 0.008 0.232 ± 0.006

+14.189 +0.178 +0.018 +0.018 09476089 293.072−12.955 7.734−0.172 M4 V 3241 0.234−0.017 0.229−0.017

+1.176 09516961 159.734−1.159 6.194 ± 0.024 M4 V 3241 0.416 ± 0.013 0.433 ± 0.009

+2.488 +0.060 09517514 136.730−2.402 8.301−0.059 M5 V 3073 0.187 ± 0.007 0.183 ± 0.005

+0.544 +0.028 09530715 66.720−0.536 7.928−0.027 M5 V 3073 0.217 ± 0.007 0.211 ± 0.004

+9.660 09533040 247.921−8.973 7.447 ± 0.119 M4 V 3241 0.262 ± 0.014 0.259 ± 0.014

+0.057 +0.042 09579384 ······ M3 V 3410 0.340−0.056 0.321−0.040

+6.781 +0.116 +0.010 09581479 210.875−6.378 8.099−0.115 M4 V 3241 0.203 ± 0.011 0.197−0.009

+4.294 +0.061 09593909 226.925−4.140 6.931−0.062 M4 V 3241 0.319 ± 0.012 0.323 ± 0.010 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+6.480 09631940 313.922−6.227 5.747 ± 0.052 M4 V 3241 0.483 ± 0.016 0.506 ± 0.013

+21.969 +0.116 +0.022 09636945 420.348−19.922 4.982−0.111 M2 V 3578 0.615 ± 0.028 0.637−0.023

+0.381 09645092 85.618−0.378 7.770 ± 0.021 M4 V 3241 0.231 ± 0.007 0.226 ± 0.005

136 +1.773 +0.044 09653548 158.912−1.735 7.350−0.045 M4 V 3241 0.272 ± 0.009 0.271 ± 0.007

+7.173 +0.072 09654304 288.559−6.839 6.306−0.070 M4 V 3241 0.400 ± 0.015 0.415 ± 0.013

+75.959 +0.251 +0.042 +0.042 09655322 720.455−62.916 5.673−0.247 M4 V 3241 0.496−0.043 0.519−0.044

+34.316 +0.231 09655551 361.087−28.904 6.919−0.215 M4 V 3241 0.320 ± 0.028 0.324 ± 0.030

+15.820 +0.156 09655667 290.477−14.289 7.360−0.153 M4 V 3241 0.271 ± 0.018 0.269 ± 0.019

+0.300 09659082 68.703−0.297 6.731 ± 0.020 M4 V 3241 0.343 ± 0.010 0.351 ± 0.007

+4.934 +0.060 09710717 256.815−4.755 6.200−0.056 M3 V 3410 0.415 ± 0.015 0.432 ± 0.012

+0.292 09711491 70.303−0.290 7.921 ± 0.023 M4 V 3241 0.217 ± 0.007 0.212 ± 0.004

+1.547 +0.041 09754582 151.578−1.517 7.132−0.039 M4 V 3241 0.296 ± 0.010 0.297 ± 0.007 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+1.534 09784820 145.863−1.502 6.946 ± 0.033 M4 V 3241 0.317 ± 0.010 0.321 ± 0.007

+0.442 +0.025 09817857 80.399−0.438 7.825−0.024 M5 V 3073 0.226 ± 0.007 0.221 ± 0.005

+1.274 09826844 179.877−1.256 5.744 ± 0.027 M2 V 3578 0.484 ± 0.015 0.507 ± 0.010

137 +16.880 +0.119 09837302 382.284−15.532 6.233−0.115 M3 V 3410 0.410 ± 0.020 0.426 ± 0.020

+7.710 +0.060 09912373 309.361−7.350 5.640−0.059 M4 V 3241 0.501 ± 0.017 0.524 ± 0.014

+2.583 +0.051 09933524 175.961−2.510 7.083−0.050 M5 V 3073 0.301 ± 0.010 0.304 ± 0.008

+3.252 09942231 205.718−3.154 6.259 ± 0.042 M5 V 3073 0.406 ± 0.013 0.422 ± 0.010

+0.453 10004407 112.784−0.450 6.785 ± 0.019 M3 V 3410 0.337 ± 0.010 0.344 ± 0.007

+0.857 +0.043 10053146 53.212−0.831 9.635−0.041 M8 V 2568 0.120 ± 0.004 0.150 ± 0.003

+0.005 10057002 ······ M7 V 2736 0.125 ± 0.017 0.088−0.003

+0.417 +0.023 10057939 98.997−0.413 7.139−0.024 M4 V 3241 0.295 ± 0.009 0.296 ± 0.006

+1.459 10118794 95.844−1.416 8.700 ± 0.055 M7 V 2736 0.161 ± 0.006 0.161 ± 0.004 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+10.136 +0.127 10158029 168.795−9.064 6.009−0.123 M4 V 3241 0.443 ± 0.023 0.462 ± 0.023

+0.042 10186824 ······ M3 V 3410 0.340 ± 0.056 0.321−0.041

+2.059 10267155 187.400−2.016 6.572 ± 0.035 M4 V 3241 0.364 ± 0.011 0.374 ± 0.009

138 +0.454 10273058 99.972−0.450 6.989 ± 0.019 M4 V 3241 0.312 ± 0.009 0.316 ± 0.006

+0.836 10274090 137.271−0.826 6.116 ± 0.023 M4 V 3241 0.427 ± 0.013 0.445 ± 0.009

+0.687 +0.034 10320084 111.810−0.679 7.702−0.035 M3 V 3410 0.237 ± 0.008 0.232 ± 0.005

+0.295 10322878 68.535−0.293 7.530 ± 0.019 M5 V 3073 0.253 ± 0.008 0.250 ± 0.005

+0.657 10339105 43.328−0.638 6.443 ± 0.036 M4 V 3241 0.381 ± 0.012 0.394 ± 0.009

+2.263 10345684 151.964−2.199 7.610 ± 0.052 M5 V 3073 0.246 ± 0.009 0.242 ± 0.007 10453314 36.548 ± 0.049 6.649 ± 0.020 M4 V 3241 0.354 ± 0.011 0.363 ± 0.007

+5.194 +0.054 10456779 292.784−5.019 5.959−0.053 M3 V 3410 0.450 ± 0.015 0.470 ± 0.012

+2.508 10522057 214.971−2.452 5.490 ± 0.035 M3 V 3410 0.525 ± 0.016 0.550 ± 0.012 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+0.505 +0.025 10557342 111.411−0.500 6.599−0.027 M3 V 3410 0.360 ± 0.011 0.371 ± 0.008

+0.341 10598142 106.170−0.339 6.394 ± 0.018 M3 V 3410 0.388 ± 0.011 0.401 ± 0.008

+3.085 +0.082 10649277 83.468−2.876 7.424−0.081 M5 V 3073 0.264 ± 0.011 0.262 ± 0.010

139 +5.023 +0.052 10651319 281.639−4.853 5.913−0.051 M3 V 3410 0.457 ± 0.016 0.478 ± 0.012

+2.162 +0.033 10659335 202.974−2.118 6.369−0.032 M3 V 3410 0.391 ± 0.012 0.405 ± 0.009

+1.703 10784750 199.051−1.675 5.809 ± 0.031 M3 V 3410 0.474 ± 0.015 0.496 ± 0.010

+1.102 +0.038 10819154 134.956−1.085 7.208−0.039 M4 V 3241 0.287 ± 0.009 0.287 ± 0.007 10877432 48.968 ± 0.071 7.212 ± 0.018 M4 V 3241 0.287 ± 0.008 0.287 ± 0.006

+1.040 +0.035 10905192 113.531−1.021 7.486−0.034 M5 V 3073 0.258 ± 0.008 0.255 ± 0.006

+0.395 10907400 99.376−0.392 6.348 ± 0.019 M3 V 3410 0.394 ± 0.012 0.409 ± 0.008 10911018 30.428 ± 0.037 7.465 ± 0.022 M6 V 2904 0.260 ± 0.008 0.257 ± 0.005

+20.259 +0.141 10924100 314.613−17.981 5.611−0.136 M4 V 3241 0.505 ± 0.027 0.529 ± 0.025 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+0.766 10932417 97.838−0.754 6.389 ± 0.024 M4 V 3241 0.388 ± 0.012 0.402 ± 0.008

+0.046 +0.036 10963537 ······ M4 V 3241 0.258−0.045 0.225−0.032

+3.310 +0.046 +0.036 10991155 244.474−3.225 4.562 ± 0.029 M4 V 3241 0.257−0.044 0.225−0.032

140 +0.582 11025770 109.753−0.576 5.708 ± 0.024 M3 V 3410 0.490 ± 0.015 0.513 ± 0.010

+0.762 11027877 132.839−0.754 6.660 ± 0.030 M3 V 3410 0.352 ± 0.011 0.361 ± 0.008

+0.046 +0.035 11126343 ······ M4 V 3241 0.258−0.045 0.224−0.032

+1.617 11175934 144.056−1.582 7.621 ± 0.051 M5 V 3073 0.245 ± 0.008 0.241 ± 0.007

+3.134 +0.035 +0.025 11196417 231.232−3.053 4.530 ± 0.029 M5 V 3073 0.189−0.033 0.150−0.022

+1.416 +0.036 11237082 144.070−1.389 7.141−0.035 M4 V 3241 0.295 ± 0.009 0.296 ± 0.007

+0.636 +0.019 11251839 132.847−0.630 5.979−0.020 M4 V 3241 0.447 ± 0.013 0.467 ± 0.009 11293949 51.681 ± 0.111 6.924 ± 0.018 M5 V 3073 0.320 ± 0.009 0.324 ± 0.006

+2.470 11295657 187.969−2.408 7.320 ± 0.052 M3 V 3410 0.275 ± 0.010 0.274 ± 0.008 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+7.191 +0.059 11389346 317.078−6.884 5.633−0.060 M4 V 3241 0.502 ± 0.017 0.525 ± 0.014

+0.197 11400756 60.038−0.196 7.554 ± 0.027 M3 V 3410 0.251 ± 0.008 0.248 ± 0.005

+0.314 11442458 85.439−0.312 7.267 ± 0.026 M4 V 3241 0.281 ± 0.009 0.280 ± 0.006

141 +1.491 11456603 157.833−1.464 6.111 ± 0.030 M4 V 3241 0.428 ± 0.013 0.446 ± 0.009

+2.123 11503101 134.850−2.059 6.555 ± 0.042 M4 V 3241 0.366 ± 0.012 0.377 ± 0.009

+2.010 11548779 192.349−1.969 6.172 ± 0.034 M3 V 3410 0.419 ± 0.013 0.436 ± 0.010

+1.363 +0.068 11550104 97.104−1.327 9.072−0.069 M7 V 2736 0.141 ± 0.005 0.150 ± 0.003

+1.040 11558721 173.528−1.028 5.576 ± 0.022 M3 V 3410 0.511 ± 0.015 0.535 ± 0.010

+0.185 +0.020 11597669 58.284−0.184 8.066−0.019 M4 V 3241 0.205 ± 0.006 0.200 ± 0.004

+4.194 +0.053 11612157 183.820−4.014 5.910−0.051 M3 V 3410 0.458 ± 0.015 0.479 ± 0.012

+2.435 +0.043 11612159 190.314−2.376 6.595−0.042 M3 V 3410 0.361 ± 0.012 0.371 ± 0.009

+0.489 11652732 107.877−0.485 7.002 ± 0.024 M3 V 3410 0.310 ± 0.009 0.314 ± 0.007 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+2.511 +0.080 11654120 101.497−2.395 9.083−0.081 M6 V 2904 0.140 ± 0.005 0.150 ± 0.003

+4.024 +0.136 +0.025 11709022 64.302−3.583 4.636−0.127 M4 V 3241 0.681 ± 0.032 0.696−0.026

+3.254 +0.049 11855853 219.865−3.162 6.544−0.050 M3 V 3410 0.368 ± 0.013 0.379 ± 0.010

142 +2.045 +0.051 11862609 159.117−1.995 7.359−0.049 M4 V 3241 0.271 ± 0.009 0.269 ± 0.007

+2.316 12071873 217.540−2.269 5.264 ± 0.031 M3 V 3410 0.564 ± 0.017 0.588 ± 0.012

+1.064 12101934 141.893−1.049 7.032 ± 0.033 M4 V 3241 0.307 ± 0.010 0.310 ± 0.007

+5.356 12102994 301.489−5.175 5.756 ± 0.051 M3 V 3410 0.482 ± 0.016 0.505 ± 0.013

+1.310 12117672 121.713−1.283 8.152 ± 0.052 M5 V 3073 0.198 ± 0.007 0.193 ± 0.005

+1.272 +0.030 12156321 162.902−1.253 6.223−0.029 M4 V 3241 0.412 ± 0.013 0.428 ± 0.009

+6.568 +0.094 12168731 249.094−6.245 7.180−0.092 M4 V 3241 0.290 ± 0.013 0.291 ± 0.013

+0.206 +0.019 12305237 80.201−0.205 6.560−0.020 M3 V 3410 0.365 ± 0.011 0.376 ± 0.007

+0.210 12508767 75.955−0.209 6.763 ± 0.026 M3 V 3410 0.339 ± 0.010 0.347 ± 0.007 Table C.2 (cont’d)

1 KIC ID Distance MKS Spec. Type Teff R? M?

(pc) (mag) (K) (R )(M )

+3.726 +0.058 143 12645891 199.484−3.594 7.138−0.059 M4 V 3241 0.295 ± 0.011 0.297 ± 0.009

+0.229 12735831 68.308−0.227 7.990 ± 0.024 M4 V 3241 0.212 ± 0.006 0.206 ± 0.004

+0.662 +0.032 12784248 79.894−0.652 8.889−0.032 M6 V 2904 0.150 ± 0.005 0.155 ± 0.003

+1.016 12884812 126.624−1.000 7.013 ± 0.029 M2 V 3578 0.309 ± 0.010 0.312 ± 0.007

1 We adopt a ±64 K uncertainty for all temperatures from our spectral type vs. Teff fit (Sec- tion 2.2.3). Table C.3. Other Kepler stars.

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

01995168 M0 V 07505234 M0 V 09775267 M2.5 V

02282712 M2 V 07505329 K1 V 09775267 M3.5 V

02284919 M2 V 07505592 Giant 09775301 M2 V

02423549 M1 V 07582511 M1 V 09776154 M1 V

02424688 M0 V 07582691 M0 V 09776935 M1 V

02554730 M2.5 V 07582793 M3 V 09776935 M2 V

02555523 M0 V 07582867 K5 V 09777117 M1 V

02556650 M1 V 07583116 M1 V 09777266 M4 V

02557350 M1 V 07586653 K5 V 09777379 M4 V

02693045 M1 V 07596706 M1 V 09777831 M1 V

02695622 M0 V 07659172 M0.5 V 09777975 M2 V

02831957 M0 V 07659389 K3 V 09778001 M2 V

02832398 M0.5 V 07659417 M2 V 09786877 M1 V

02834075 M0 V 07659474 K4 V 09788210 Giant

02834612 M1 V 07659614 M0 V 09812929 M2.5 V

02834778 M1 V 07659707 M0 V 09821701 M1 V

02849894 M2 V 07660117 M0 V 09825237 M2 V

02969839 M1 V 07660181 M2 V 09825492 M0 V

02970823 M0.5 V 07661117 M2 V 09833366 M4 V

02971272 M1 V 07661314 M1 V 09834249 M3 V

02986833 MWD 07662862 M0 V 09834382 M0 V

144 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

02988458 M1 V 07663140 K7 V 09835359 M0 V

03099491 M1 V 07672690 M2.5 V 09836326 M3 V

03099533 M2.5 V 07708807 M2.5 V 09836589 M0 V

03099900 M1 V 07730209 M2 V 09836960 M5 V

03115879 M0 V 07730659 M0 V 09837302 M2 V

03116544 M0 V 07730885 K7 V 09837572 M2 V

03235567 M2 V 07732242 M1 V 09837749 M1 V

03328254 M2.5 V 07777570 M0 V 09838000 M4 V

03328483 M4 V 07779427 M3 V 09838371 M3 V

03442034 M1.5 V 07801569 M0.5 V 09838580 M1 V

03443137 M2 V 07847566 MWD 09838580 M1.5 V

03531121 M1.5 V 07849619 M0 V 09848792 M1 V

03542117 M2 V 07870211 M0 V 09848932 MWD

03543187 M2 V 07870339 M4 V 09851574 M3 V

03545291 M2 V 07870823 M1 V 09873265 M1.5 V

03628991 M2 V 07916294 Giant 09873729 M1.5 V

03632783 M2.5 V 07917325 M2 V 09879930 M2.5 V

03729847 M1 V 07938239 M1.5 V 09880392 M1.5 V

03730841 M0.5 V 07938615 M1 V 09884895 M0 V

03731110 M2 V 07958062 M1.5 V 09885985 M1 V

03731432 M0 V 08007234 M2.5 V 09892651 M2 V

145 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

03732192 M2.5 V 08007910 M4 V 09892898 M4 V

03732804 M1 V 08008320 M0.5 V 09897243 M2.5 V

03733158 M1.5 V 08008646 M1 V 09897336 M3 V

03733753 M1 V 08012943 M2 V 09897351 M0 V

03745742 M0 V 08052511 M1 V 09897796 M0.5 V

03745982 M3 V 08053431 M4 V 09897967 M3 V

03756034 M0 V 08053502 M4 V 09898115 M3.5 V

03757251 M2 V 08053936 M5 V 09907450 M2 V

03835071 M0 V 08055957 M5 V 09933464 M4 V

03837507 M1 V 08075991 M0 V 09940571 M1 V

03837858 M4 V 08076213 K4 V 09941061 M1 V

03838294 M2.5 V 08077356 M2.5 V 09941061 M2 V

03935241 M0.5 V 08082910 M1 V 09941632 M0 V

03938241 M0.5 V 08093473 M2 V 09941718 M1 V

03938944 M0 V 08093813 M2 V 09942242 M4 V

03940372 M4 V 08094234 MWD 09943104 M2.5 V

03941415 M1 V 08097851 M1 V 09943182 M1 V

03962433 M2 V 08098178 M0 V 09957818 M4 V

04038439 MWD 08098178 M2 V 09991488 M3 V

04043862 M0 V 08098228 M2 V 09991565 M2 V

04067894 M3 V 08099615 M0.5 V 10000509 M5 V

146 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

04139235 M0 V 08120608 M0 V 10002088 M3 V

04139476 M1 V 08125217 M0 V 10063107 M1.5 V

04140528 M2 V 08145190 M1 V 10063107 M2 V

04140749 M0 V 08149616 M3 V 10065092 M0 V

04143184 M2 V 08150479 M2.5 V 10065745 M2 V

04164424 M1.5 V 08151009 M1 V 10066588 M1.5 V

04168240 M4.5 V 08161771 M0 V 10081899 M2 V

04246255 M2.5 V 08167996 M1 V 10082082 M2 V

04270066 M4 V 08167996 M1.5 V 10082611 M1 V

04271485 MWD 08168452 M1.5 V 10087130 M1 V

04349469 M2 V 08189555 M1.5 V 10118339 M2.5 V

04473412 M6.5 V 08191015 MWD 10118816 M1 V

04473475 M2.5 V 08191181 M0 V 10119326 M2 V

04544639 M2.5 V 08191404 M2.5 V 10128760 M2.5 V

04568514 M4.5 V 08212368 M0 V 10128760 M3 V

04569115 M0 V 08212592 M2 V 10130595 M1 V

04741455 M1 V 08212592 M2 V 10130646 M2 V

04743065 M2 V 08217295 M3.5 V 10131950 M3 V

04768453 M0 V 08218687 M1 V 10185748 M2 V

04770707 M1 V 08218874 M4 V 10185859 M1 V

04825739 M0.5 V 08219549 M4 V 10185979 M2 V

147 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

04825739 M0.5 V 08230829 M0 V 10185996 M1 V

04831331 M2 V 08233490 M1.5 V 10186824 M4 V

04831378 M5 V 08233795 M2 V 10195818 M2 V

04902806 M2 V 08234226 M0 V 10195818 M2 V

04912794 M0 V 08235487 M1 V 10196565 M5 V

04912803 M0 V 08235654 M2 V 10196885 M1 V

04912903 M1.5 V 08235924 M0 V 10196885 M2 V

04918154 M1.5 V 08236202 M0 V 10197875 M1 V

04946028 M1.5 V 08257134 M2 V 10197893 M2 V

04946483 M2 V 08257716 M5 V 10197916 M0 V

04990711 M2 V 08258140 MWD 10198147 M2 V

04990862 M2.5 V 08258877 M5 V 10252023 M1.5 V

04991026 M2 V 08265007 M1.5 V 10258913 Giant

04999583 M1 V 08278973 M3 V 10262208 M0 V

05000970 M1 V 08278973 M4 V 10262367 M0 V

05005406 M2 V 08279274 M3 V 10263037 M1 V

05041192 M1 V 08284959 M1 V 10265780 M0 V

05088332 M1 V 08295380 MWD 10273194 M2.5 V

05088515 M1 V 08296121 M0 V 10317549 M1 V

05090145 M2 V 08297629 M2 V 10317996 M2 V

05093980 M0 V 08301588 M1 V 10324374 M1 V

148 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

05122859 M1 V 08301588 M1 V 10328903 M1 V

05123682 M1 V 08329457 K3 V 10329835 M0 V

05125745 M2.5 V 08331561 M2 V 10338880 M1 V

05165872 M1 V 08344814 M2 V 10340598 M1 V

05175357 M0 V 08345627 M2 V 10341831 M1.5 V

05176865 M0 V 08349989 M5 V 10351951 M2 V

05177193 M1 V 08350261 M0 V 10383150 M1 V

05178075 M2 V 08350393 M4.5 V 10394504 M1 V

05180528 M2 V 08351704 M1 V 10395252 Giant

05182317 M2 V 08363450 MWD 10395312 M2 V

05182822 M1 V 08363726 M0 V 10396322 Giant

05207289 M2 V 08364600 M0 V 10404115 M2 V

05208211 K7 V 08365200 M2 V 10404193 M0 V

05211564 M1.5 V 08367644 M1 V 10406398 M0.5 V

05253844 M3.5 V 08367644 M1 V 10406828 M2.5 V

05254831 M2.5 V 08386719 K1 V 10416834 M3.5 V

05255412 M1 V 08387903 M2 V 10448110 M2 V

05263823 M0 V 08387903 MWD 10448612 M2 V

05264822 M0 V 08409260 M1 V 10451268 M3 V

05266549 M1.5 V 08409502 M3 V 10454492 M4 V

05268696 M1 V 08410234 M3 V 10469305 M0 V

149 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

05268904 M3 V 08415336 M1 V 10470935 M1.5 V

05297821 M1 V 08415661 M0 V 10471681 M1 V

05298911 MWD 08415867 M0 V 10471681 M2.5 V

05341573 M1 V 08416395 M1 V 10471960 M1 V

05341666 M1 V 08417053 M1 V 10473048 K4 V

05342009 M2 V 08418131 M2.5 V 10482602 M1.5 V

05351520 M0 V 08418317 M1.5 V 10483810 M1.5 V

05351614 M0.5 V 08428104 M0 V 10514561 M2 V

05353137 M1 V 08429330 M0 V 10516213 M2 V

05353137 M2.5 V 08449936 M3 V 10525990 M0.5 V

05353335 M1 V 08450413 Giant 10526080 M2 V

05354075 M1 V 08461279 M1.5 V 10526369 M1 V

05384713 M2 V 08474262 M0 V 10534762 MWD

05391683 M0 V 08474323 M1 V 10535074 M1.5 V

05428088 M2 V 08474661 M1 V 10535396 M1 V

05437646 M0 V 08474897 M2 V 10535858 M0.5 V

05438163 M1 V 08475062 M0 V 10536761 M2 V

05438765 M1 V 08475411 M2 V 10537427 M3 V

05439001 M0.5 V 08475756 M1 V 10548508 M4 V

05439836 M2 V 08476114 M1 V 10579253 M1 V

05474065 MWD 08495528 M0 V 10580168 M2.5 V

150 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

05513769 M2 V 08495823 M0 V 10581640 M0.5 V

05516027 M0 V 08496012 Giant 10600817 M1 V

05516027 M1 V 08513494 M4 V 10601093 M1 V

05516671 M2 V 08514614 M2 V 10602294 M0 V

05516985 M3 V 08516922 M0 V 10603046 M0 V

05522953 M4 V 08518186 M0 V 10612424 M1 V

05524341 M0 V 08539673 M2 V 10646228 M4 V

05524444 M1 V 08547947 M1 V 10647353 M1 V

05527289 M1 V 08558589 M0 V 10664441 M2.5 V

05564467 Giant 08560657 M0 V 10665436 M1 V

05598145 M0 V 08560763 M0 V 10666943 MWD

05600763 M2.5 V 08560763 M1 V 10668098 M0 V

05602174 M2 V 08561100 M1 V 10709857 M5 V

05645052 M2 V 08561706 M1.5 V 10710711 M1 V

05646362 M0 V 08563995 MWD 10711066 F9 V

05648509 MWD 08564174 M2 V 10711897 M0 V

05649538 K4 V 08581480 M2 V 10731229 M0 V

05684429 M1.5 V 08581480 M2 V 10731839 M4 V

05687033 M0 V 08582958 M1 V 10733307 MWD

05688790 M2 V 08589626 Giant 10734057 M0 V

05688790 M2.5 V 08604363 M0.5 V 10734449 M3 V

151 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

05697553 M1 V 08605188 M1 V 10776058 M4 V

05699934 M0 V 08612060 M2.5 V 10776847 M1 V

05731359 M1 V 08629293 M0 V 10778169 M0 V

05769943 M1 V 08644565 M0 V 10796844 M1 V

05772694 M0 V 08646113 Giant 10797986 M0 V

05783802 M2.5 V 08647852 M0 V 10799195 M4 V

05785346 M3.5 V 08648934 M1 V 10800330 M1 V

05785688 M0.5 V 08655619 M2.5 V 10844360 M2 V

05785926 M0 V 08656205 Giant 10861090 M2 V

05819458 M1.5 V 08656421 M2.5 V 10862550 M2 V

05854592 M2 V 08676171 M2 V 10862612 Giant

05856173 M0 V 08692174 M3 V 10863494 M0 V

05858361 M0 V 08692930 Giant 10904028 M4 V

05859306 M2 V 08693357 M4 V 10904621 M1 V

05859365 M1 V 08709951 Giant 10905105 M0 V

05859365 M2 V 08709982 M2 V 10920281 M1 V

05859744 M0 V 08711042 Giant 10921076 M1 V

05869314 M1 V 08712146 M0 V 10959049 M4.5 V

05870587 M0 V 08712608 M2 V 10960296 M0 V

05871918 M0 V 08733659 M1 V 10960429 M1 V

05938531 M1 V 08736693 M0 V 10975238 M1 V

152 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

05938905 M2 V 08739070 M1 V 10975568 M1.5 V

05938981 M2.5 V 08739426 M2 V 11013072 M2.5 V

05939072 K5 V 08741649 M2 V 11013311 M3 V

05939661 M1 V 08755722 M2 V 11083500 M1 V

05939790 K7 V 08757727 M1 V 11091927 M4 V

05940100 M3 V 08758503 M1 V 11092697 M2 V

05940196 K5 V 08772010 M0 V 11144455 M2 V

05942891 M1 V 08772486 M0.5 V 11144966 M1 V

05943889 M3 V 08774246 M2 V 11146067 M2.5 V

05943981 M0 V 08774246 M4 V 11197729 M1 V

05953138 M2 V 08776824 Giant 11250617 M1.5 V

05953294 M1 V 08777235 M1 V 11251409 M3 V

05954017 M1 V 08801709 K4 V 11304975 MWD

05954552 M0 V 08801919 K5 V 11305432 M0 V

06021570 M0 V 08803071 M3 V 11306335 M3.5 V

06026814 M1 V 08804018 M1 V 11357930 M1.5 V

06034587 M2.5 V 08804147 M0 V 11358145 M3 V

06036286 M3 V 08806863 M1 V 11411768 M2 V

06102338 M3 V 08807085 M2.5 V 11447564 M3 V

06103125 M2.5 V 08821566 M2.5 V 11496840 M2 V

06105433 M0.5 V 08822213 M1 V 11514624 M1.5 V

153 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

06105994 M2 V 08822710 M1 V 11515431 M1 V

06106112 M2 V 08822710 M1.5 V 11515811 M0 V

06106282 MWD 08822857 M2 V 11547869 M3 V

06107421 M1 V 08823360 M3 V 11547963 M4.5 V

06117486 M4 V 08823360 M3.5 V 11548140 M2 V

06117832 M1 V 08823415 M1 V 11549387 M4 V

06183224 K7 V 08823426 M1 V 11550428 M2 V

06183511 M3 V 08823426 M1 V 11550910 MWD

06183859 M2 V 08823902 M2 V 11599182 M1 V

06184059 M1 V 08838894 M2 V 11600744 M2 V

06186614 M1 V 08839656 M1 V 11601794 M1 V

06186738 M1 V 08839656 M2 V 11602574 M2 V

06186964 M0 V 08839947 M1 V 11602629 M2 V

06187942 M2 V 08839947 M2 V 11603169 M4 V

06196918 M1 V 08866137 F1 V 11651130 M4 V

06264095 K0 V 08867609 M0 V 11651634 M2 V

06268673 M2 V 08872874 M1.5 V 11652051 M2 V

06268802 M0 V 08888498 M1.5 V 11653212 MWD

06278265 M3 V 08889176 M2.5 V 11665483 M3 V

06343726 M0 V 08907022 M1 V 11672056 M2 V

06345048 M1.5 V 08908171 M0 V 11673664 M1 V

154 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

06424011 M2.5 V 08909833 M0 V 11674867 M3 V

06424516 M2 V 08934022 M2 V 11700807 M1.5 V

06424923 M0 V 08934039 M0 V 11700925 M5 V

06425928 M0 V 08934468 M2 V 11701420 M2 V

06443881 M2 V 08934503 F5 V 11701765 M1 V

06502294 M2 V 08935140 M0 V 11702167 M2 V

06504035 M1 V 08935605 M1 V 11702468 M2.5 V

06504214 M1.5 V 08936312 M1 V 11703765 M0 V

06504736 M3 V 08936920 M0 V 11710007 M1 V

06504812 M2 V 08940432 M2.5 V 11710354 M2.5 V

06507888 M0.5 V 08955124 M1 V 11717254 M1 V

06585067 M2 V 08955412 M1 V 11717254 M2 V

06585895 M1 V 08956929 M0 V 11717459 M2 V

06586079 M2 V 08956929 M1 V 11717746 M5.5 V

06590048 M0 V 08957023 M2 V 11717942 Giant

06590263 M2.5 V 08957803 M1 V 11724976 M1 V

06607102 M1 V 09002074 M2 V 11752232 M0.5 V

06664748 M2 V 09004472 M0 V 11752906 M1 V

06671365 M2 V 09004502 M0 V 11759605 M4 V

06671587 M0 V 09005449 M2 V 11766827 M2 V

06671727 M1 V 09008142 M2 V 11767303 M2 V

155 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

06676517 M1.5 V 09024907 M2 V 11768142 M1.5 V

06692320 M4 V 09024907 M4 V 11768142 M2 V

06751156 M3 V 09025815 M1.5 V 11769994 M2 V

06751520 M1 V 09025984 M4 V 11770410 M1 V

06751891 M1 V 09026015 M1 V 11770517 M2 V

06757650 F6 V 09026015 MWD 11773636 M1 V

06758989 M1 V 09026334 M2 V 11774350 M2 V

06761974 M1.5 V 09026334 M2 V 11774947 M1 V

06761974 M2 V 09026683 M1 V 11775369 Giant

06762389 M2.5 V 09071421 M0 V 11775689 M4 V

06763067 M1 V 09071446 MWD 11775907 M3 V

06763092 M2.5 V 09072818 K4 V 11802265 M1 V

06768217 M1.5 V 09073724 M0 V 11803523 M3 V

06778698 M2.5 V 09074629 M0 V 11810501 M1 V

06779038 M2 V 09092557 M1.5 V 11811567 M3 V

06779179 M1 V 09092577 M1.5 V 11817493 M3 V

06779742 M2.5 V 09092592 M2 V 11817555 MWD

06836884 M1 V 09111372 M0 V 11818245 M1.5 V

06843766 M1 V 09112164 M0 V 11818307 M4 V

06846570 M1 V 09137255 G9 V 11820708 M4 V

06847482 M1 V 09138133 M0 V 11824779 F4 V

156 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

06847482 M1 V 09138730 K4 V 11853130 M0 V

06848842 M1 V 09138756 K1 V 11853813 M5 V

06848842 M1.5 V 09141177 M0 V 11854136 M5 V

06849112 M1.5 V 09201411 M0 V 11854219 M1 V

06861988 M2.5 V 09242947 M4 V 11861335 M2 V

06863859 M2.5 V 09264478 F5 V 11862020 M0 V

06864295 M2.5 V 09266397 M2 V 11862099 M1 V

06865123 M2 V 09266689 M2 V 11868492 M2 V

06922010 M2 V 09283820 M0 V 11869953 M6 V

06934004 M2.5 V 09326170 K0 V 11870769 M2 V

06939314 M1 V 09326466 M0 V 11871698 M2 V

06947858 M2.5 V 09347204 M2 V 11911574 M2 V

06949105 M4 V 09365185 M0 V 11917995 M5 V

06949743 M2 V 09406987 MWD 11918462 M4 V

06950440 M0 V 09407162 MWD 11918790 M2 V

06950736 M2.5 V 09407581 M0 V 11920155 M4 V

07018161 M1 V 09425635 M3 V 11920463 M2 V

07018323 M1 V 09428095 M4.5 V 11920563 M2 V

07018323 M1 V 09428227 M5 V 11957277 M2 V

07021681 M1 V 09428635 M4 V 11957458 M2 V

07022432 M4 V 09428774 M4 V 11959019 M2.5 V

157 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

07022598 M1 V 09446945 MWD 11960971 M2.5 V

07025006 M4 V 09467900 M0 V 11961075 M4 V

07034381 M1 V 09468853 M0 V 11961297 M4 V

07034674 M2.5 V 09471262 M2 V 11961565 M2.5 V

07034970 M2 V 09520806 M2.5 V 11966527 M1 V

07091787 M1 V 09529435 M0 V 11966728 M1 V

07092051 M1 V 09529435 M0 V 11966844 M4 V

07102145 M2 V 09530511 M4 V 11967510 M1 V

07103120 M0 V 09530886 MWD 11969005 M0 V

07103501 M1 V 09531117 M0 V 11974938 M3.5 V

07103501 M1 V 09532112 M0 V 12007066 M2 V

07106807 M4 V 09532480 MWD 12007066 M2 V

07108212 M1 V 09532642 M0 V 12007544 M2.5 V

07118393 M3 V 09532760 M1.5 V 12007935 M2.5 V

07173305 M0 V 09533171 M2.5 V 12008003 M4 V

07173783 M0 V 09533369 M0 V 12008200 M1 V

07173933 M2 V 09533770 M3.5 V 12010736 M1 V

07173933 M3.5 V 09549709 M4 V 12011367 M1 V

07174385 M1 V 09550311 M5 V 12011635 M1.5 V

07174944 M1 V 09569210 M1 V 12016390 M4.5 V

07177902 Giant 09582382 M1.5 V 12016505 M1 V

158 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

07184587 M0 V 09590249 M0 V 12017560 M2 V

07184868 M1.5 V 09593457 M2.5 V 12018394 M5 V

07184868 M1.5 V 09593558 M0 V 12055805 M1 V

07190458 M1 V 09593572 M1 V 12055805 M1 V

07191467 M2.5 V 09594337 M0 V 12056026 M2 V

07191610 M1 V 09594671 M0 V 12056610 M4 V

07255169 M1 V 09595068 M0 V 12057392 M2 V

07255494 M0 V 09595147 M3 V 12069640 M1 V

07255863 K5 V 09595239 M3.5 V 12104832 M2.5 V

07258939 M2 V 09595808 M2 V 12105356 M3 V

07259477 MWD 09604360 K3 V 12105694 M3 V

07260086 M2 V 09606822 MWD 12105867 M3 V

07269729 M2 V 09631319 M1 V 12105867 M4 V

07269798 M3 V 09631366 MWD 12106121 M2 V

07272220 M1 V 09631548 M2.5 V 12106121 M3 V

07272373 M1 V 09643776 M2 V 12106482 M4 V

07272575 M1 V 09652985 M5.5 V 12106959 M3 V

07335603 M1 V 09653430 M3.5 V 12116009 M2 V

07336414 M1 V 09653430 M4 V 12154238 M2 V

07336548 K5 V 09653548 M3.5 V 12154703 M1 V

07336602 K3 V 09653688 M2 V 12154703 M1 V

159 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

07336745 K4 V 09654518 M0.5 V 12154913 M2 V

07336889 K5 V 09655495 M1 V 12154913 M3 V

07339420 K5 V 09655904 M1 V 12155234 M2 V

07340794 K7 V 09655904 M1.5 V 12203082 M1 V

07341060 M0 V 09656551 M0 V 12203198 M1 V

07347932 M1 V 09656551 M0 V 12203540 M2 V

07351437 M1.5 V 09692206 M1 V 12204088 M4 V

07351907 M2 V 09699942 M1.5 V 12252373 M4 V

07417056 M0 V 09704431 M4 V 12252762 M1 V

07417675 K4 V 09712781 M4 V 12252762 M2.5 V

07417722 K4 V 09713071 MWD 12253621 M2 V

07417788 M0 V 09713191 M2.5 V 12302604 M2.5 V

07418013 M0 V 09713196 M2 V 12302604 M3.5 V

07418046 M0 V 09713353 M1 V 12302905 M2.5 V

07418183 K5 V 09715236 MWD 12505793 MWD

07422811 M3 V 09715931 M1.5 V 12506985 M0 V

07434110 M4 V 09716218 M1 V 12599405 M3.5 V

07500640 K4 V 09716485 M0 V 12599416 M0 V

07500850 M4 V 09716659 M1 V 12599700 M0 V

07501082 K3 V 09752846 M2 V 12600640 M2 V

07501532 K3 V 09753017 M2.5 V 12644712 MWD

160 Table C.3 (cont’d)

KIC ID Spectral Type KIC ID Spectral Type KIC ID Spectral Type

07501618 M1 V 09760292 M3 V 12645687 M0 V

07504202 M1 V 09760670 M1 V 12689927 M3.5 V

07504551 M0 V 09763786 M2 V 12689979 M1 V

07504852 Giant 09775253 M2 V 12734617 MWD

161 References

M. Abdul-Masih, A. Prˇsa,K. Conroy, S. Bloemen, T. Boyajian, L. R. Doyle, C. John-

ston, V. Kostov, D. W. Latham, G. Matijeviˇc,A. Shporer, and J. Southworth.

Kepler Eclipsing Binary Stars. VIII. Identification of False Positive Eclipsing Bi-

naries and Re-extraction of New Light Curves. AJ, 151:101, Apr. 2016. doi:

10.3847/0004-6256/151/4/101.

I. Angelo, J. F. Rowe, S. B. Howell, E. V. Quintana, M. Still, A. W. Mann,

B. Burningham, T. Barclay, D. R. Ciardi, D. Huber, and S. R. Kane. Kepler-

1649b: An Exo- in the Solar Neighborhood. AJ, 153:162, Apr. 2017. doi:

10.3847/1538-3881/aa615f.

G. Anglada-Escud´e,P. J. Amado, J. Barnes, Z. M. Berdi˜nas,R. P. Butler, G. A. L.

Coleman, I. de La Cueva, S. Dreizler, M. Endl, B. Giesers, S. V. Jeffers, J. S.

Jenkins, H. R. A. Jones, M. Kiraga, M. K¨urster,M. J. L´opez-Gonz´alez,C. J.

Marvin, N. Morales, J. Morin, R. P. Nelson, J. L. Ortiz, A. Ofir, S.-J. Paardekooper,

A. Reiners, E. Rodr´ıguez,C. Rodr´ıguez-L´opez, L. F. Sarmiento, J. P. Strachan,

Y. Tsapras, M. Tuomi, and M. Zechmeister. A candidate in a

temperate orbit around . Nature, 536:437–440, Aug. 2016. doi:

10.1038/nature19106.

N. Astudillo-Defru, T. Forveille, X. Bonfils, D. S´egransan,F. Bouchy, X. Delfosse,

C. Lovis, M. Mayor, F. Murgas, F. Pepe, N. C. Santos, S. Udry, and A. W¨unsche.

The HARPS search for southern extra-solar planets. XLI. A dozen planets around

162 the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293. A&A, 602:A88,

June 2017. doi: 10.1051/0004-6361/201630153.

H. W. Babcock. The Possibility of Compensating . Publications

of the Astronomical Society of the Pacific, 65:229, Oct. 1953. doi: 10.1086/126606.

C. A. L. Bailer-Jones. Estimating Distances from Parallaxes. PASP, 127:994, Oct.

2015. doi: 10.1086/683116.

C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, G. Mantelet, and R. Andrae. Esti-

mating distances from parallaxes IV: Distances to 1.33 billion stars in Gaia Data

Release 2. ArXiv e-prints, Apr. 2018.

S. Ballard and J. A. Johnson. The Kepler Dichotomy among the M Dwarfs: Half

of Systems Contain Five or More Coplanar Planets. ApJ, 816:66, Jan. 2016. doi:

10.3847/0004-637X/816/2/66.

T. Barclay, J. Pepper, and E. V. Quintana. A Revised Exoplanet Yield from the

Transiting Exoplanet Survey Satellite (TESS). ArXiv e-prints, Apr. 2018.

S. C. Barden, T. Armandroff, G. Muller, A. C. Rudeen, J. Lewis, and L. Groves. Mod-

ifying Hydra for the WIYN telescope: an optimum telescope, fiber MOS combina-

tion. In D. L. Crawford and E. R. Craine, editors, Instrumentation in Astronomy

VIII, volume 2198 of Proc. SPIE, pages 87–97, June 1994. doi: 10.1117/12.176816.

N. M. Batalha, W. J. Borucki, D. G. Koch, S. T. Bryson, M. R. Haas, T. M. Brown,

D. A. Caldwell, J. R. Hall, R. L. Gilliland, D. W. Latham, S. Meibom, and D. G.

Monet. Selection, Prioritization, and Characteristics of Kepler Target Stars. ApJ,

713:L109–L114, Apr. 2010. doi: 10.1088/2041-8205/713/2/L109.

T. A. Berger, D. Huber, E. Gaidos, and J. L. van Saders. Revised Radii of Kepler

Stars and Planets using Gaia Data Release 2. ArXiv e-prints, May 2018.

163 J. J. Bochanski, A. A. West, S. L. Hawley, and K. R. Covey. Low-Mass Dwarf

Template Spectra from the Sloan Digital Sky Survey. AJ, 133:531–544, Feb. 2007.

doi: 10.1086/510240.

J. J. Bochanski, S. L. Hawley, K. R. Covey, A. A. West, I. N. Reid, D. A.

Golimowski, and Z.ˇ Ivezi´c. The Luminosity and Mass Functions of Low-mass

Stars in the Galactic Disk. II. The Field. AJ, 139:2679-2699, June 2010. doi:

10.1088/0004-6256/139/6/2679.

B. W. Bopp and J. Fekel, F. Binary incidence among the BY Draconis variables. AJ,

82:490–494, July 1977. doi: 10.1086/112079.

W. J. Borucki, D. Koch, G. Basri, N. Batalha, T. Brown, D. Caldwell, J. Cald-

well, J. Christensen-Dalsgaard, W. D. Cochran, E. DeVore, E. W. Dunham, A. K.

Dupree, T. N. Gautier, J. C. Geary, R. Gilliland, A. Gould, S. B. Howell, J. M.

Jenkins, Y. Kondo, D. W. Latham, G. W. Marcy, S. Meibom, H. Kjeldsen, J. J.

Lissauer, D. G. Monet, D. Morrison, D. Sasselov, J. Tarter, A. Boss, D. Brownlee,

T. Owen, D. Buzasi, D. Charbonneau, L. Doyle, J. Fortney, E. B. Ford, M. J. Hol-

man, S. Seager, J. H. Steffen, W. F. Welsh, J. Rowe, H. Anderson, L. Buchhave,

D. Ciardi, L. Walkowicz, W. Sherry, E. Horch, H. Isaacson, M. E. Everett, D. Fis-

cher, G. Torres, J. A. Johnson, M. Endl, P. MacQueen, S. T. Bryson, J. Dotson,

M. Haas, J. Kolodziejczak, J. Van Cleve, H. Chandrasekaran, J. D. Twicken, E. V.

Quintana, B. D. Clarke, C. Allen, J. Li, H. Wu, P. Tenenbaum, E. Verner, F. Bruh-

weiler, J. Barnes, and A. Prsa. Kepler Planet-Detection Mission: Introduction and

First Results. Science, 327:977, Feb. 2010. doi: 10.1126/science.1185402.

T. S. Boyajian, K. von Braun, G. van Belle, H. A. McAlister, T. A. ten Brummelaar,

S. R. Kane, P. S. Muirhead, J. Jones, R. White, G. Schaefer, D. Ciardi, T. Henry,

M. L´opez-Morales, S. Ridgway, D. Gies, W.-C. Jao, B. Rojas-Ayala, J. R. Parks,

L. Sturmann, J. Sturmann, N. H. Turner, C. Farrington, P. J. Goldfinger, and D. H. 164 Berger. Stellar Diameters and Temperatures. II. Main-sequence K- and M-stars.

ApJ, 757:112, Oct. 2012. doi: 10.1088/0004-637X/757/2/112.

T. M. Brown, D. W. Latham, M. E. Everett, and G. A. Esquerdo. Kepler Input

Catalog: Photometric Calibration and Stellar Classification. AJ, 142:112, Oct.

2011. doi: 10.1088/0004-6256/142/4/112.

S. T. Bryson and T. Morton, D. Planet Reliability Metrics: Astrophysical Positional

Probabilities for Data Release 25. Technical report, NASA, Feb. 2017.

A. Burdanov, L. Delrez, M. Gillon, E. Jehin, T. Speculoos, and Trappist Teams.

SPECULOOS Exoplanet Search and Its Prototype on TRAPPIST, page 130.

Springer, 2017. doi: 10.1007/978-3-319-30648-3 130-1.

C. J. Burke and J. Catanzarite. Planet Detection Metrics: Per-Target Flux-Level

Transit Injection Tests of TPS for Data Release 25. Technical report, NASA, June

2017.

D. A. Caldwell, J. J. Kolodziejczak, J. E. Van Cleve, J. M. Jenkins, P. R. Gazis,

V. S. Argabright, E. E. Bachtell, E. W. Dunham, J. C. Geary, R. L. Gilliland,

H. Chandrasekaran, J. Li, P. Tenenbaum, H. Wu, W. J. Borucki, S. T. Bryson,

J. L. Dotson, M. R. Haas, and D. G. Koch. Instrument Performance in Kepler’s

First Months. ApJ, 713:L92–L96, Apr. 2010. doi: 10.1088/2041-8205/713/2/L92.

B. Campbell and G. A. H. Walker. Precision radial velocities with an absorption cell.

PASP, 91:540–545, Aug. 1979. doi: 10.1086/130535.

B. Campbell, G. A. H. Walker, and S. Yang. A Search for Substellar Companions to

Solar-type Stars. ApJ, 331:902, Aug. 1988. doi: 10.1086/166608.

K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z.

Waters, L. Denneau, P. W. Draper, D. Farrow, D. P. Finkbeiner, C. Holmberg,

165 J. Koppenhoefer, P. A. Price, R. P. Saglia, E. F. Schlafly, S. J. Smartt, W. Sweeney,

R. J. Wainscoat, W. S. Burgett, T. Grav, J. N. Heasley, K. W. Hodapp, R. Jedicke,

N. Kaiser, R.-P. Kudritzki, G. A. Luppino, R. H. Lupton, D. G. Monet, J. S.

Morgan, P. M. Onaka, C. W. Stubbs, J. L. Tonry, E. Banados, E. F. Bell, R. Bender,

E. J. Bernard, M. T. Botticella, S. Casertano, S. Chastel, W.-P. Chen, X. Chen,

S. Cole, N. Deacon, C. Frenk, A. Fitzsimmons, S. Gezari, C. Goessl, T. Goggia,

B. Goldman, E. K. Grebel, N. C. Hambly, G. Hasinger, A. F. Heavens, T. M.

Heckman, R. Henderson, T. Henning, M. Holman, U. Hopp, W.-H. Ip, S. Isani,

C. D. Keyes, A. Koekemoer, R. Kotak, K. S. Long, J. R. Lucey, M. Liu, N. F.

Martin, B. McLean, E. Morganson, D. N. A. Murphy, M. A. Nieto-Santisteban,

P. Norberg, J. A. Peacock, E. A. Pier, M. Postman, N. Primak, C. Rae, A. Rest,

A. Riess, A. Riffeser, H. W. Rix, S. Roser, E. Schilbach, A. S. B. Schultz, D. Scolnic,

A. Szalay, S. Seitz, B. Shiao, E. Small, K. W. Smith, D. Soderblom, A. N. Taylor,

A. R. Thakar, J. Thiel, D. Thilker, Y. Urata, J. Valenti, F. Walter, S. P. Watters,

S. Werner, R. White, W. M. Wood-Vasey, and R. Wyse. The Pan-STARRS1

Surveys. ArXiv e-prints, Dec. 2016.

D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor. Detection of Planetary

Transits Across a Sun-like Star. ApJ, 529:L45–L48, Jan. 2000. doi: 10.1086/312457.

G. Chauvin, A.-M. Lagrange, C. Dumas, B. Zuckerman, D. Mouillet, I. Song, J.-L.

Beuzit, and P. Lowrance. A giant planet candidate near a young brown dwarf.

Direct VLT/NACO observations using IR wavefront sensing. A&A, 425:L29–L32,

Oct. 2004. doi: 10.1051/0004-6361:200400056.

J. L. Christiansen. Planet Detection Metrics: Pixel-Level Transit Injection Tests of

Pipeline Detection Efficiency for Data Release 25. Technical report, NASA, June

2017.

J. L. Christiansen, J. M. Jenkins, D. A. Caldwell, C. J. Burke, P. Tenenbaum, 166 S. Seader, S. E. Thompson, T. S. Barclay, B. D. Clarke, J. Li, J. C. Smith, M. C.

Stumpe, J. D. Twicken, and J. Van Cleve. The Derivation, Properties, and Value

of Kepler”s Combined Differential Photometric Precision. PASP, 124:1279–1287,

Dec. 2012. doi: 10.1086/668847.

J. L. Christiansen, B. D. Clarke, C. J. Burke, J. M. Jenkins, S. T. Bryson, J. L.

Coughlin, F. Mullally, S. E. Thompson, J. D. Twicken, N. M. Batalha, M. R.

Haas, J. Catanzarite, J. R. Campbell, A. Kamal Uddin, K. Zamudio, J. C. Smith,

and C. E. Henze. Measuring Transit Signal Recovery in the Kepler Pipeline. III.

Completeness of the Q1-Q17 DR24 Planet Candidate Catalogue with Important

Caveats for Occurrence Rate Calculations. ApJ, 828:99, Sept. 2016. doi: 10.3847/

0004-637X/828/2/99.

E. Costa, R. A. M´endez,W.-C. Jao, T. J. Henry, J. P. Subasavage, and P. A. Ianna.

The Solar Neighborhood. XVI. Parallaxes from CTIOPI: Final Results from the

1.5 m Telescope Program. AJ, 132:1234–1247, Sept. 2006. doi: 10.1086/505706.

K. R. Covey, Z.ˇ Ivezi´c,D. Schlegel, D. Finkbeiner, N. Padmanabhan, R. H. Lupton,

M. A. Ag¨ueros,J. J. Bochanski, S. L. Hawley, A. A. West, A. Seth, A. Kimball,

S. M. Gogarten, M. Claire, D. Haggard, N. Kaib, D. P. Schneider, and B. Sesar.

Stellar SEDs from 0.3 to 2.5 µm: Tracing the Stellar Locus and Searching for

Color Outliers in the SDSS and 2MASS. AJ, 134:2398–2417, Dec. 2007. doi:

10.1086/522052.

X.-Q. Cui, Y.-H. Zhao, Y.-Q. Chu, G.-P. Li, Q. Li, L.-P. Zhang, H.-J. Su, Z.-Q. Yao,

Y.-N. Wang, X.-Z. Xing, X.-N. Li, Y.-T. Zhu, G. Wang, B.-Z. Gu, A.-L. Luo, X.-Q.

Xu, Z.-C. Zhang, G.-R. Liu, H.-T. Zhang, D.-H. Yang, S.-Y. Cao, H.-Y. Chen, J.-J.

Chen, K.-X. Chen, Y. Chen, J.-R. Chu, L. Feng, X.-F. Gong, Y.-H. Hou, H.-Z. Hu,

N.-S. Hu, Z.-W. Hu, L. Jia, F.-H. Jiang, X. Jiang, Z.-B. Jiang, G. Jin, A.-H. Li,

Y. Li, Y.-P. Li, G.-Q. Liu, Z.-G. Liu, W.-Z. Lu, Y.-D. Mao, L. Men, Y.-J. Qi, 167 Z.-X. Qi, H.-M. Shi, Z.-H. Tang, Q.-S. Tao, D.-Q. Wang, D. Wang, G.-M. Wang,

H. Wang, J.-N. Wang, J. Wang, J.-L. Wang, J.-P. Wang, L. Wang, S.-Q. Wang,

Y. Wang, Y.-F. Wang, L.-Z. Xu, Y. Xu, S.-H. Yang, Y. Yu, H. Yuan, X.-Y. Yuan,

C. Zhai, J. Zhang, Y.-X. Zhang, Y. Zhang, M. Zhao, F. Zhou, G.-H. Zhou, J. Zhu,

and S.-C. Zou. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope

(LAMOST). Research in Astronomy and Astrophysics, 12:1197–1242, Sept. 2012.

doi: 10.1088/1674-4527/12/9/003.

M. C. Cushing, W. D. Vacca, and J. T. Rayner. Spextool: A Spectral Extraction

Package for SpeX, a 0.8-5.5 Micron Cross-Dispersed Spectrograph. PASP, 116:

362–376, Apr. 2004. doi: 10.1086/382907.

M. C. Cushing, J. T. Rayner, and W. D. Vacca. An Infrared Spectroscopic Sequence

of M, L, and T Dwarfs. ApJ, 623:1115–1140, Apr. 2005. doi: 10.1086/428040.

S. Czesla, K. F. Huber, U. Wolter, S. Schr¨oter,and J. H. M. M. Schmitt. How stellar

activity affects the size estimates of extrasolar planets. A&A, 505:1277–1282, Oct.

2009. doi: 10.1051/0004-6361/200912454.

A. Dotter, B. Chaboyer, D. Jevremovi´c,V. Kostov, E. Baron, and J. W. Ferguson.

The Dartmouth Database. ApJS, 178:89–101, Sept. 2008. doi:

10.1086/589654.

J. G. Doyle. H-alpha versus X-ray luminosity in dwarf M stars. A&A, 218:195–198,

July 1989.

C. D. Dressing and D. Charbonneau. The Occurrence Rate of Small Planets around

Small Stars. ApJ, 767:95, Apr. 2013. doi: 10.1088/0004-637X/767/1/95.

C. D. Dressing and D. Charbonneau. The Occurrence of Potentially Habitable Planets

Orbiting M Dwarfs Estimated from the Full Kepler Dataset and an Empirical

168 Measurement of the Detection Sensitivity. ApJ, 807:45, July 2015. doi: 10.1088/

0004-637X/807/1/45.

G. Duchˆeneand A. Kraus. Stellar Multiplicity. ARA&A, 51:269–310, Aug. 2013. doi:

10.1146/annurev-astro-081710-102602.

D. W. Evans, M. Riello, F. De Angeli, J. M. Carrasco, P. Montegriffo, C. Fabricius,

C. Jordi, L. Palaversa, C. Diener, G. Busso, C. Cacciari, and F. van Leeuwen. Gaia

Data Release 2: Photometric content and validation. ArXiv e-prints, Apr. 2018.

E. Furlan, D. R. Ciardi, M. E. Everett, M. Saylors, J. K. Teske, E. P. Horch, S. B.

Howell, G. T. van Belle, L. A. Hirsch, T. N. Gautier, III, E. R. Adams, D. Barrado,

K. M. S. Cartier, C. D. Dressing, A. K. Dupree, R. L. Gilliland, J. Lillo-Box, P. W.

Lucas, and J. Wang. The Kepler Follow-up Observation Program. I. A Catalog of

Companions to Kepler Stars from High-Resolution Imaging. AJ, 153:71, Feb. 2017.

doi: 10.3847/1538-3881/153/2/71.

Gaia Collaboration, T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari,

C. Babusiaux, C. A. L. Bailer-Jones, U. Bastian, M. Biermann, D. W. Evans,

L. Eyer, F. Jansen, C. Jordi, S. A. Klioner, U. Lammers, L. Lindegren, X. Luri,

F. Mignard, D. J. Milligan, C. Panem, V. Poinsignon, D. Pourbaix, S. Randich,

G. Sarri, P. Sartoretti, H. I. Siddiqui, C. Soubiran, V. Valette, F. van Leeuwen,

N. A. Walton, C. Aerts, F. Arenou, M. Cropper, R. Drimmel, E. Høg, D. Katz,

M. G. Lattanzi, W. O’Mullane, E. K. Grebel, A. D. Holland, C. Huc, X. Pas-

sot, L. Bramante, C. Cacciari, J. Casta˜neda,L. Chaoul, N. Cheek, F. De An-

geli, C. Fabricius, R. Guerra, J. Hern´andez,A. Jean-Antoine-Piccolo, E. Masana,

R. Messineo, N. Mowlavi, K. Nienartowicz, D. Ord´o˜nez-Blanco, P. Panuzzo,

J. Portell, P. J. Richards, M. Riello, G. M. Seabroke, P. Tanga, F. Th´evenin,

J. Torra, S. G. Els, G. Gracia- Abril, G. Comoretto, M. Garcia-Reinaldos, T. Lock,

169 E. Mercier, M. Altmann, R. Andrae, T. L. Astraatmadja, I. Bellas-Velidis, K. Ben- son, J. Berthier, R. Blomme, G. Busso, B. Carry, A. Cellino, G. Clementini, S. Cow- ell, O. Creevey, J. Cuypers, M. Davidson, J. De Ridder, A. de Torres, L. Delcham- bre, A. Dell’Oro, C. Ducourant, Y. Fr´emat,M. Garc´ıa-Torres, E. Gosset, J. L.

Halbwachs, N. C. Hambly, D. L. Harrison, M. Hauser, D. Hestroffer, S. T. Hodgkin,

H. E. Huckle, A. Hutton, G. Jasniewicz, S. Jordan, M. Kontizas, A. J. Korn,

A. C. Lanzafame, M. Manteiga, A. Moitinho, K. Muinonen, J. Osinde, E. Pancino,

T. Pauwels, J. M. Petit, A. Recio-Blanco, A. C. Robin, L. M. Sarro, C. Siopis,

M. Smith, K. W. Smith, A. Sozzetti, W. Thuillot, W. van Reeven, Y. Viala,

U. Abbas, A. Abreu Aramburu, S. Accart, J. J. Aguado, P. M. Allan, W. Allasia,

G. Altavilla, M. A. Alvarez,´ J. Alves, R. I. Anderson, A. H. Andrei, E. Anglada

Varela, E. Antiche, T. Antoja, S. Ant´on,B. Arcay, A. Atzei, L. Ayache, N. Bach,

S. G. Baker, L. Balaguer-N´u˜nez,C. Barache, C. Barata, A. Barbier, F. Barblan,

M. Baroni, D. Barrado y Navascu´es, M. Barros, M. A. Barstow, U. Becciani,

M. Bellazzini, G. Bellei, A. Bello Garc´ıa,V. Belokurov, P. Bendjoya, A. Berihuete,

L. Bianchi, O. Bienaym´e,F. Billebaud, N. Blagorodnova, S. Blanco-Cuaresma,

T. Boch, A. Bombrun, R. Borrachero, S. Bouquillon, G. Bourda, H. Bouy, A. Bra- gaglia, M. A. Breddels, N. Brouillet, T. Br¨usemeister,B. Bucciarelli, F. Budnik,

P. Burgess, R. Burgon, A. Burlacu, D. Busonero, R. Buzzi, E. Caffau, J. Cam- bras, H. Campbell, R. Cancelliere, T. Cantat-Gaudin, T. Carlucci, J. M. Car- rasco, M. Castellani, P. Charlot, J. Charnas, P. Charvet, F. Chassat, A. Chiavassa,

M. Clotet, G. Cocozza, R. S. Collins, P. Collins, G. Costigan, F. Crifo, N. J. G.

Cross, M. Crosta, C. Crowley, C. Dafonte, Y. Damerdji, A. Dapergolas, P. David,

M. David, P. De Cat, F. de Felice, P. de Laverny, F. De Luise, R. De March,

D. de Martino, R. de Souza, J. Debosscher, E. del Pozo, M. Delbo, A. Delgado,

H. E. Delgado, F. di Marco, P. Di Matteo, S. Diakite, E. Distefano, C. Dold- ing, S. Dos Anjos, P. Drazinos, J. Dur´an,Y. Dzigan, E. Ecale, B. Edvardsson,

170 H. Enke, M. Erdmann, D. Escolar, M. Espina, N. W. Evans, G. Eynard Bontemps,

C. Fabre, M. Fabrizio, S. Faigler, A. J. Falc˜ao,M. Farr`asCasas, F. Faye, L. Fed- erici, G. Fedorets, J. Fern´andez-Hern´andez,P. Fernique, A. Fienga, F. Figueras,

F. Filippi, K. Findeisen, A. Fonti, M. Fouesneau, E. Fraile, M. Fraser, J. Fuchs,

R. Furnell, M. Gai, S. Galleti, L. Galluccio, D. Garabato, F. Garc´ıa-Sedano,

P. Gar´e,A. Garofalo, N. Garralda, P. Gavras, J. Gerssen, R. Geyer, G. Gilmore,

S. Girona, G. Giuffrida, M. Gomes, A. Gonz´alez-Marcos,J. Gonz´alez-N´u˜nez,J. J.

Gonz´alez-Vidal,M. Granvik, A. Guerrier, P. Guillout, J. Guiraud, A. G´urpide,

R. Guti´errez-S´anchez, L. P. Guy, R. Haigron, D. Hatzidimitriou, M. Haywood,

U. Heiter, A. Helmi, D. Hobbs, W. Hofmann, B. Holl, G. Holland, J. A. S.

Hunt, A. Hypki, V. Icardi, M. Irwin, G. Jevardat de Fombelle, P. Jofr´e,P. G.

Jonker, A. Jorissen, F. Julbe, A. Karampelas, A. Kochoska, R. Kohley, K. Kolen- berg, E. Kontizas, S. E. Koposov, G. Kordopatis, P. Koubsky, A. Kowalczyk,

A. Krone-Martins, M. Kudryashova, I. Kull, R. K. Bachchan, F. Lacoste-Seris, A. F.

Lanza, J. B. Lavigne, C. Le Poncin-Lafitte, Y. Lebreton, T. Lebzelter, S. Leccia,

N. Leclerc, I. Lecoeur-Taibi, V. Lemaitre, H. Lenhardt, F. Leroux, S. Liao, E. Li- cata, H. E. P. Lindstrøm, T. A. Lister, E. Livanou, A. Lobel, W. L¨offler,M. L´opez,

A. Lopez-Lozano, D. Lorenz, T. Loureiro, I. MacDonald, T. Magalh˜aesFernandes,

S. Managau, R. G. Mann, G. Mantelet, O. Marchal, J. M. Marchant, M. Marconi,

J. Marie, S. Marinoni, P. M. Marrese, G. Marschalk´o,D. J. Marshall, J. M. Mart´ın-

Fleitas, M. Martino, N. Mary, G. Matijeviˇc,T. Mazeh, P. J. McMillan, S. Messina,

A. Mestre, D. Michalik, N. R. Millar, B. M. H. Miranda, D. Molina, R. Moli- naro, M. Molinaro, L. Moln´ar,M. Moniez, P. Montegriffo, D. Monteiro, R. Mor,

A. Mora, R. Morbidelli, T. Morel, S. Morgenthaler, T. Morley, D. Morris, A. F.

Mulone, T. Muraveva, I. Musella, J. Narbonne, G. Nelemans, L. Nicastro, L. No- val, C. Ord´enovic, J. Ordieres-Mer´e,P. Osborne, C. Pagani, I. Pagano, F. Pailler,

H. Palacin, L. Palaversa, P. Parsons, T. Paulsen, M. Pecoraro, R. Pedrosa, H. Pen-

171 tik¨ainen,J. Pereira, B. Pichon, A. M. Piersimoni, F. X. Pineau, E. Plachy, G. Plum,

E. Poujoulet, A. Prˇsa,L. Pulone, S. Ragaini, S. Rago, N. Rambaux, M. Ramos-

Lerate, P. Ranalli, G. Rauw, A. Read, S. Regibo, F. Renk, C. Reyl´e, R. A.

Ribeiro, L. Rimoldini, V. Ripepi, A. Riva, G. Rixon, M. Roelens, M. Romero-

G´omez,N. Rowell, F. Royer, A. Rudolph, L. Ruiz-Dern, G. Sadowski, T. Sagrist`a

Sell´es,J. Sahlmann, J. Salgado, E. Salguero, M. Sarasso, H. Savietto, A. Schnorhk,

M. Schultheis, E. Sciacca, M. Segol, J. C. Segovia, D. Segransan, E. Serpell, I. C.

Shih, R. Smareglia, R. L. Smart, C. Smith, E. Solano, F. Solitro, R. Sordo, S. Soria

Nieto, J. Souchay, A. Spagna, F. Spoto, U. Stampa, I. A. Steele, H. Steidelm¨uller,

C. A. Stephenson, H. Stoev, F. F. Suess, M. S¨uveges, J. Surdej, L. Szabados,

E. Szegedi-Elek, D. Tapiador, F. Taris, G. Tauran, M. B. Taylor, R. Teixeira,

D. Terrett, B. Tingley, S. C. Trager, C. Turon, A. Ulla, E. Utrilla, G. Valen- tini, A. van Elteren, E. Van Hemelryck, M. van Leeuwen, M. Varadi, A. Vecchi- ato, J. Veljanoski, T. Via, D. Vicente, S. Vogt, H. Voss, V. Votruba, S. Voutsi- nas, G. Walmsley, M. Weiler, K. Weingrill, D. Werner, T. Wevers, G. Whitehead,

L.Wyrzykowski, A. Yoldas, M. Zerjal,ˇ S. Zucker, C. Zurbach, T. Zwitter, A. Alecu,

M. Allen, C. Allende Prieto, A. Amorim, G. Anglada-Escud´e, V. Arsenijevic,

S. Azaz, P. Balm, M. Beck, H. H. Bernstein, L. Bigot, A. Bijaoui, C. Blasco, M. Bon-

figli, G. Bono, S. Boudreault, A. Bressan, S. Brown, P. M. Brunet, P. Bunclark,

R. Buonanno, A. G. Butkevich, C. Carret, C. Carrion, L. Chemin, F. Ch´ereau,

L. Corcione, E. Darmigny, K. S. de Boer, P. de Teodoro, P. T. de Zeeuw, C. Delle

Luche, C. D. Domingues, P. Dubath, F. Fodor, B. Fr´ezouls,A. Fries, D. Fustes,

D. Fyfe, E. Gallardo, J. Gallegos, D. Gardiol, M. Gebran, A. Gomboc, A. G´omez,

E. Grux, A. Gueguen, A. Heyrovsky, J. Hoar, G. Iannicola, Y. Isasi Parache, A. M.

Janotto, E. Joliet, A. Jonckheere, R. Keil, D. W. Kim, P. Klagyivik, J. Klar,

J. Knude, O. Kochukhov, I. Kolka, J. Kos, A. Kutka, V. Lainey, D. LeBouquin,

C. Liu, D. Loreggia, V. V. Makarov, M. G. Marseille, C. Martayan, O. Martinez-

172 Rubi, B. Massart, F. Meynadier, S. Mignot, U. Munari, A. T. Nguyen, T. Nordlan-

der, P. Ocvirk, K. S. O’Flaherty, A. Olias Sanz, P. Ortiz, J. Osorio, D. Oszkiewicz,

A. Ouzounis, M. Palmer, P. Park, E. Pasquato, C. Peltzer, J. Peralta, F. P´eturaud,

T. Pieniluoma, E. Pigozzi, J. Poels, G. Prat, T. Prod’homme, F. Raison, J. M. Re-

bordao, D. Risquez, B. Rocca-Volmerange, S. Rosen, M. I. Ruiz-Fuertes, F. Russo,

S. Sembay, I. Serraller Vizcaino, A. Short, A. Siebert, H. Silva, D. Sinachopoulos,

E. Slezak, M. Soffel, D. Sosnowska, V. Straiˇzys,M. ter Linden, D. Terrell, S. Theil,

C. Tiede, L. Troisi, P. Tsalmantza, D. Tur, M. Vaccari, F. Vachier, P. Valles,

W. Van Hamme, L. Veltz, J. Virtanen, J. M. Wallut, R. Wichmann, M. I. Wilkin-

son, H. Ziaeepour, and S. Zschocke. The Gaia mission. A&A, 595, Nov. 2016. doi:

10.1051/0004-6361/201629272.

Gaia Collaboration, A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne,

C. Babusiaux, and C. A. L. Bailer-Jones. Gaia Data Release 2. Summary of the

contents and survey properties. ArXiv e-prints, Apr. 2018.

E. Gaidos. Candidate Planets in the Habitable Zones of Kepler Stars. ApJ, 770:90,

June 2013. doi: 10.1088/0004-637X/770/2/90.

E. Gaidos, A. W. Mann, and M. Ansdell. The Enigmatic and Ephemeral M Dwarf

System KOI 6705: Cheshire Cat or Wild Goose? ApJ, 817:50, Jan. 2016. doi:

10.3847/0004-637X/817/1/50.

G. Gatewood and H. Eichhorn. An unsuccessful search for a planetary companion of

Barnard’s star BD +4 3561. AJ, 78:769–776, Oct. 1973. doi: 10.1086/111480.

M. Gillon, A. H. M. J. Triaud, B.-O. Demory, E. Jehin, E. Agol, K. M. Deck, S. M.

Lederer, J. de Wit, A. Burdanov, J. G. Ingalls, E. Bolmont, J. Leconte, S. N. Ray-

mond, F. Selsis, M. Turbet, K. Barkaoui, A. Burgasser, M. R. Burleigh, S. J. Carey,

A. Chaushev, C. M. Copperwheat, L. Delrez, C. S. Fernandes, D. L. Holdsworth,

173 E. J. Kotze, V. Van Grootel, Y. Almleaky, Z. Benkhaldoun, P. Magain, and

D. Queloz. Seven temperate terrestrial planets around the nearby ultracool dwarf

star TRAPPIST-1. Nature, 542:456–460, Feb. 2017. doi: 10.1038/nature21360.

J. E. Gizis, D. G. Monet, I. N. Reid, J. D. Kirkpatrick, J. Liebert, and R. J. Williams.

New Neighbors from 2MASS: Activity and Kinematics at the Bottom of the Main

Sequence. AJ, 120:1085–1099, Aug. 2000. doi: 10.1086/301456.

J. Greaves. New Suspected Variable (NSV) Stars in the Galactic NGC

2264. Periodic Variables: A CoRoT View. Peremennye Zvezdy Prilozhenie, 10,

Feb. 2010.

G. M. Green, E. F. Schlafly, D. Finkbeiner, H.-W. Rix, N. Martin, W. Burgett, P. W.

Draper, H. Flewelling, K. Hodapp, N. Kaiser, R.-P. Kudritzki, E. A. Magnier,

N. Metcalfe, J. L. Tonry, R. Wainscoat, and C. Waters. Galactic Reddening in 3D

from Stellar Photometry - An Improved Map. ArXiv e-prints, Jan. 2018.

S. Halverson, R. Terrien, S. Mahadevan, A. Roy, C. Bender, G. K. Stef´ansson,

A. Monson, E. Levi, F. Hearty, C. Blake, M. McElwain, C. Schwab, L. Ram-

sey, J. Wright, S. Wang, Q. Gong, and P. Roberston. A comprehensive radial

velocity error budget for next generation Doppler spectrometers. In Ground-based

and Airborne Instrumentation for Astronomy VI, volume 9908 of Proc. SPIE, page

99086P, Aug. 2016. doi: 10.1117/12.2232761.

A. P. Hatzes, W. D. Cochran, M. Endl, B. McArthur, D. B. Paulson, G. A. H.

Walker, B. Campbell, and S. Yang. A Planetary Companion to γ Cephei A. ApJ,

599:1383–1394, Dec. 2003. doi: 10.1086/379281.

S. L. Hawley, J. E. Gizis, and I. N. Reid. The Palomar/MSU Nearby Star Spectro-

scopic Survey.II.The Southern M Dwarfs and Investigation of Magnetic Activity.

AJ, 112:2799, Dec. 1996. doi: 10.1086/118222. 174 G. W. Henry, G. W. Marcy, R. P. Butler, and S. S. Vogt. A Transiting “51 Peg-like”

Planet. ApJ, 529:L41–L44, Jan. 2000. doi: 10.1086/312458.

T. J. Henry, W.-C. Jao, J. P. Subasavage, T. D. Beaulieu, P. A. Ianna, E. Costa, and

R. A. M´endez.The Solar Neighborhood. XVII. Parallax Results from the CTIOPI

0.9 m Program: 20 New Members of the RECONS 10 Sample. AJ, 132:

2360–2371, Dec. 2006. doi: 10.1086/508233.

J. L. Hershey. Astrometric analysis of the field of AC +65 6955 from plates taken

with the Sproul 24-inch refractor. AJ, 78:421–425, June 1973. doi: 10.1086/111436.

A. W. Howard, G. W. Marcy, S. T. Bryson, J. M. Jenkins, J. F. Rowe, N. M. Batalha,

W. J. Borucki, D. G. Koch, E. W. Dunham, T. N. Gautier, III, J. Van Cleve,

W. D. Cochran, D. W. Latham, J. J. Lissauer, G. Torres, T. M. Brown, R. L.

Gilliland, L. A. Buchhave, D. A. Caldwell, J. Christensen-Dalsgaard, D. Ciardi,

F. Fressin, M. R. Haas, S. B. Howell, H. Kjeldsen, S. Seager, L. Rogers, D. D.

Sasselov, J. H. Steffen, G. S. Basri, D. Charbonneau, J. Christiansen, B. Clarke,

A. Dupree, D. C. Fabrycky, D. A. Fischer, E. B. Ford, J. J. Fortney, J. Tarter,

F. R. Girouard, M. J. Holman, J. A. Johnson, T. C. Klaus, P. Machalek, A. V.

Moorhead, R. C. Morehead, D. Ragozzine, P. Tenenbaum, J. D. Twicken, S. N.

Quinn, H. Isaacson, A. Shporer, P. W. Lucas, L. M. Walkowicz, W. F. Welsh,

A. Boss, E. Devore, A. Gould, J. C. Smith, R. L. Morris, A. Prsa, T. D. Morton,

M. Still, S. E. Thompson, F. Mullally, M. Endl, and P. J. MacQueen. Planet

Occurrence within 0.25 AU of Solar-type Stars from Kepler. ApJS, 201:15, Aug.

2012. doi: 10.1088/0067-0049/201/2/15.

S. B. Howell, C. Sobeck, M. Haas, M. Still, T. Barclay, F. Mullally, J. Troeltzsch,

S. Aigrain, S. T. Bryson, D. Caldwell, W. J. Chaplin, W. D. Cochran, D. Huber,

G. W. Marcy, A. Miglio, J. R. Najita, M. Smith, J. D. Twicken, and J. J. Fortney.

175 The K2 Mission: Characterization and Early Results. PASP, 126:398, Apr. 2014.

doi: 10.1086/676406.

D. Huber, V. Silva Aguirre, J. M. Matthews, M. H. Pinsonneault, E. Gaidos, R. A.

Garc´ıa,S. Hekker, S. Mathur, B. Mosser, G. Torres, F. A. Bastien, S. Basu, T. R.

Bedding, W. J. Chaplin, B.-O. Demory, S. W. Fleming, Z. Guo, A. W. Mann, J. F.

Rowe, A. M. Serenelli, M. A. Smith, and D. Stello. Revised Stellar Properties of

Kepler Targets for the Quarter 1-16 Transit Detection Run. ApJS, 211:2, Mar.

2014. doi: 10.1088/0067-0049/211/1/2.

W. S. Jacob. On certain Anomalies presented by the Binary Star 70 Ophiuchi. MN-

RAS, 15:228, June 1855. doi: 10.1093/mnras/15.9.228.

J. M. Jenkins, D. A. Caldwell, H. Chandrasekaran, J. D. Twicken, S. T. Bryson,

E. V. Quintana, B. D. Clarke, J. Li, C. Allen, P. Tenenbaum, H. Wu, T. C. Klaus,

C. K. Middour, M. T. Cote, S. McCauliff, F. R. Girouard, J. P. Gunter, B. Wohler,

J. Sommers, J. R. Hall, A. K. Uddin, M. S. Wu, P. A. Bhavsar, J. Van Cleve,

D. L. Pletcher, J. A. Dotson, M. R. Haas, R. L. Gilliland, D. G. Koch, and W. J.

Borucki. Overview of the Kepler Science Processing Pipeline. ApJ, 713:L87–L91,

Apr. 2010. doi: 10.1088/2041-8205/713/2/L87.

M. M. Joshi, R. M. Haberle, and R. T. Reynolds. Simulations of the Atmospheres

of Synchronously Rotating Terrestrial Planets Orbiting M Dwarfs: Conditions for

Atmospheric Collapse and the Implications for Habitability. Icarus, 129:450–465,

Oct. 1997. doi: 10.1006/icar.1997.5793.

C. Jurgenson, D. Fischer, T. McCracken, D. Sawyer, A. Szymkowiak, A. Davis,

G. Muller, and F. Santoro. EXPRES: a next generation RV spectrograph in

the search for earth-like worlds. In Ground-based and Airborne Instrumentation

176 for Astronomy VI, volume 9908 of Proc. SPIE, page 99086T, Aug. 2016. doi:

10.1117/12.2233002.

J. F. Kasting, D. P. Whitmire, and R. T. Reynolds. Habitable Zones around Main

Sequence Stars. Icarus, 101:108–128, Jan. 1993. doi: 10.1006/icar.1993.1010.

A. Y. Kesseli, A. A. West, M. Veyette, B. Harrison, D. Feldman, and J. J. Bochanski.

An Empirical Template Library of Stellar Spectra for a Wide Range of Spectral

Classes, Luminosity Classes, and Metallicities Using SDSS BOSS Spectra. ApJS,

230:16, June 2017. doi: 10.3847/1538-4365/aa656d.

B. Kirk, K. Conroy, A. Prˇsa,M. Abdul-Masih, A. Kochoska, G. Matijeviˇc,K. Ham-

bleton, T. Barclay, S. Bloemen, T. Boyajian, L. R. Doyle, B. J. Fulton, A. J.

Hoekstra, K. Jek, S. R. Kane, V. Kostov, D. Latham, T. Mazeh, J. A. Orosz,

J. Pepper, B. Quarles, D. Ragozzine, A. Shporer, J. Southworth, K. Stassun, S. E.

Thompson, W. F. Welsh, E. Agol, A. Derekas, J. Devor, D. Fischer, G. Green,

J. Gropp, T. Jacobs, C. Johnston, D. M. LaCourse, K. Saetre, H. Schwengeler,

J. Toczyski, G. Werner, M. Garrett, J. Gore, A. O. Martinez, I. Spitzer, J. Stevick,

P. C. Thomadis, E. H. Vrijmoet, M. Yenawine, N. Batalha, and W. Borucki. Kepler

Eclipsing Binary Stars. VII. The Catalog of Eclipsing Binaries Found in the Entire

Kepler Data Set. AJ, 151:68, Mar. 2016. doi: 10.3847/0004-6256/151/3/68.

J. D. Kirkpatrick, T. J. Henry, and D. W. McCarthy, Jr. A standard stellar spectral

sequence in the red/near-infrared - Classes K5 to M9. ApJS, 77:417–440, Nov.

1991. doi: 10.1086/191611.

D. G. Koch, W. J. Borucki, G. Basri, N. M. Batalha, T. M. Brown, D. Caldwell,

J. Christensen-Dalsgaard, W. D. Cochran, E. DeVore, E. W. Dunham, T. N. Gau-

tier, III, J. C. Geary, R. L. Gilliland, A. Gould, J. Jenkins, Y. Kondo, D. W.

Latham, J. J. Lissauer, G. Marcy, D. Monet, D. Sasselov, A. Boss, D. Brownlee,

177 J. Caldwell, A. K. Dupree, S. B. Howell, H. Kjeldsen, S. Meibom, D. Morrison,

T. Owen, H. Reitsema, J. Tarter, S. T. Bryson, J. L. Dotson, P. Gazis, M. R. Haas,

J. Kolodziejczak, J. F. Rowe, J. E. Van Cleve, C. Allen, H. Chandrasekaran, B. D.

Clarke, J. Li, E. V. Quintana, P. Tenenbaum, J. D. Twicken, and H. Wu. Kepler

Mission Design, Realized Photometric Performance, and Early Science. ApJ, 713:

L79–L86, Apr. 2010. doi: 10.1088/2041-8205/713/2/L79.

R. K. Kopparapu, R. Ramirez, J. F. Kasting, V. Eymet, T. D. Robinson, S. Ma-

hadevan, R. C. Terrien, S. Domagal-Goldman, V. Meadows, and R. Deshpande.

Habitable Zones around Main-sequence Stars: New Estimates. ApJ, 765:131, Mar.

2013. doi: 10.1088/0004-637X/765/2/131.

A. L. Kraus, M. J. Ireland, D. Huber, A. W. Mann, and T. J. Dupuy. The Impact of

Stellar Multiplicity on Planetary Systems. I. The Ruinous Influence of Close Binary

Companions. AJ, 152:8, July 2016. doi: 10.3847/0004-6256/152/1/8.

G. Laughlin, P. Bodenheimer, and F. C. Adams. The Core Accretion Model Predicts

Few Jovian-Mass Planets Orbiting Red Dwarfs. ApJ, 612:L73–L76, Sept. 2004. doi:

10.1086/424384.

S. L´epine,E. J. Hilton, A. W. Mann, M. Wilde, B. Rojas-Ayala, K. L. Cruz, and

E. Gaidos. A Spectroscopic Catalog of the Brightest (J ¡ 9) M Dwarfs in the

Northern Sky. AJ, 145:102, Apr. 2013. doi: 10.1088/0004-6256/145/4/102.

N. R. Lomb. Least-squares frequency analysis of unequally spaced data. Ap&SS, 39:

447–462, Feb. 1976. doi: 10.1007/BF00648343.

A. W. Mann, E. Gaidos, S. L´epine,and E. J. Hilton. They Might be Giants: Lu-

minosity Class, Planet Occurrence, and Planet-Metallicity Relation of the Coolest

Kepler Target Stars. ApJ, 753:90, July 2012. doi: 10.1088/0004-637X/753/1/90.

178 A. W. Mann, J. M. Brewer, E. Gaidos, S. L´epine,and E. J. Hilton. Prospecting in

Late-type Dwarfs: A Calibration of Infrared and Visible Spectroscopic Metallicities

of Late K and M Dwarfs Spanning 1.5 dex. AJ, 145:52, Feb. 2013a. doi: 10.1088/

0004-6256/145/2/52.

A. W. Mann, E. Gaidos, and M. Ansdell. Spectro-thermometry of M Dwarfs and

Their Candidate Planets: Too Hot, Too Cool, or Just Right? ApJ, 779:188, Dec.

2013b. doi: 10.1088/0004-637X/779/2/188.

A. W. Mann, N. R. Deacon, E. Gaidos, M. Ansdell, J. M. Brewer, M. C. Liu,

E. A. Magnier, and K. M. Aller. Prospecting in Ultracool Dwarfs: Measur-

ing the Metallicities of Mid- and Late-M Dwarfs. AJ, 147:160, June 2014. doi:

10.1088/0004-6256/147/6/160.

A. W. Mann, G. A. Feiden, E. Gaidos, T. Boyajian, and K. von Braun. How to Con-

strain Your M Dwarf: Measuring Effective Temperature, Bolometric Luminosity,

Mass, and Radius. ApJ, 804:64, May 2015. doi: 10.1088/0004-637X/804/1/64.

A. W. Mann, T. Dupuy, P. S. Muirhead, M. C. Johnson, M. C. Liu, M. Ansdell,

P. A. Dalba, J. J. Swift, and S. Hadden. The Gold Standard: Accurate Stellar and

Planetary Parameters for Eight Kepler M Dwarf Systems Enabled by Parallaxes.

AJ, 153:267, June 2017. doi: 10.3847/1538-3881/aa7140.

C. Marois, B. Macintosh, T. Barman, B. Zuckerman, I. Song, J. Patience,

D. Lafreni`ere,and R. Doyon. Direct Imaging of Multiple Planets Orbiting the

Star HR 8799. Science, 322:1348, Nov. 2008. doi: 10.1126/science.1166585.

E. L. Mart´ın,J. Cabrera, E. Martioli, E. Solano, and R. Tata. Kepler observations

of very low-mass stars. A&A, 555:A108, July 2013. doi: 10.1051/0004-6361/

201321186.

179 P. Massey and C. Gronwall. The Kitt Peak spectrophotometric standards - Extension

to 1 micron. ApJ, 358:344–349, July 1990. doi: 10.1086/168991.

S. Mathur, D. Huber, N. M. Batalha, D. R. Ciardi, F. A. Bastien, A. Bieryla, L. A.

Buchhave, W. D. Cochran, M. Endl, G. A. Esquerdo, E. Furlan, A. Howard, S. B.

Howell, H. Isaacson, D. W. Latham, P. J. MacQueen, and D. R. Silva. Revised

Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run.

ApJS, 229:30, Apr. 2017. doi: 10.3847/1538-4365/229/2/30.

M. Mayor and D. Queloz. A Jupiter-mass companion to a solar-type star. Nature,

378:355–359, Nov. 1995. doi: 10.1038/378355a0.

R. Montgomery and G. Laughlin. Formation and detection of Earth mass planets

around low mass stars. Icarus, 202:1–11, July 2009. doi: 10.1016/j.icarus.2009.02.

035.

T. D. Morton, S. T. Bryson, J. L. Coughlin, J. F. Rowe, G. Ravichandran, E. A.

Petigura, M. R. Haas, and N. M. Batalha. False Positive Probabilities for all

Kepler Objects of Interest: 1284 Newly Validated Planets and 428 Likely False

Positives. ApJ, 822:86, May 2016. doi: 10.3847/0004-637X/822/2/86.

F. R. Moulton. The limits of temporary stability of satellite motion, with an appli-

cation to the question of the existence of an unseen body in the binary system 70

Ophiuchi. AJ, 20:33–37, May 1899. doi: 10.1086/103096.

P. S. Muirhead, K. Hamren, E. Schlawin, B. Rojas-Ayala, K. R. Covey, and J. P.

Lloyd. Characterizing the Cool Kepler Objects of Interest. New Effective Temper-

atures, Metallicities, Masses, and Radii of Low-mass Kepler Planet-candidate Host

Stars. ApJ, 750:L37, May 2012. doi: 10.1088/2041-8205/750/2/L37.

P. S. Muirhead, J. Becker, G. A. Feiden, B. Rojas-Ayala, A. Vanderburg, E. M. Price,

R. Thorp, N. M. Law, R. Riddle, C. Baranec, K. Hamren, E. Schlawin, K. R. Covey, 180 J. A. Johnson, and J. P. Lloyd. Characterizing the Cool KOIs. VI. H- and K-band

Spectra of Kepler M Dwarf Planet-candidate Hosts. ApJS, 213:5, July 2014. doi:

10.1088/0067-0049/213/1/5.

P. S. Muirhead, A. W. Mann, A. Vanderburg, T. D. Morton, A. Kraus, M. Ireland,

J. J. Swift, G. A. Feiden, E. Gaidos, and J. Z. Gazak. Kepler-445, Kepler-446 and

the Occurrence of Compact Multiples Orbiting Mid-M Dwarf Stars. ApJ, 801:18,

Mar. 2015. doi: 10.1088/0004-637X/801/1/18.

G. D. Mulders. Planet Populations as a Function of Stellar Properties. ArXiv e-prints,

Apr. 2018.

G. D. Mulders, I. Pascucci, and D. Apai. A Stellar-mass-dependent Drop in Planet

Occurrence Rates. ApJ, 798:112, Jan. 2015a. doi: 10.1088/0004-637X/798/2/112.

G. D. Mulders, I. Pascucci, and D. Apai. An Increase in the Mass of Planetary Systems

around Lower-mass Stars. ApJ, 814:130, Dec. 2015b. doi: 10.1088/0004-637X/814/

2/130.

P. Nutzman and D. Charbonneau. Design Considerations for a Ground-Based Transit

Search for Habitable Planets Orbiting M Dwarfs. PASP, 120:317–327, Mar. 2008.

doi: 10.1086/533420.

T. E. Oliphant. Guide to NumPy. CreateSpace Independent Publishing Platform,

USA, 2nd edition, 2015. ISBN 151730007X, 9781517300074.

M. J. Pecaut and E. E. Mamajek. Intrinsic Colors, Temperatures, and Bolometric

Corrections of Pre-main-sequence Stars. ApJS, 208:9, Sept. 2013. doi: 10.1088/

0067-0049/208/1/9.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

181 peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

F. Pepe, C. Lovis, D. S´egransan,W. Benz, F. Bouchy, X. Dumusque, M. Mayor,

D. Queloz, N. C. Santos, and S. Udry. The HARPS search for Earth-like planets in

the habitable zone. I. Very low-mass planets around ¡ASTROBJ¿HD 20794¡/AS-

TROBJ¿, ¡ASTROBJ¿HD 85512¡/ASTROBJ¿, and ¡ASTROBJ¿HD 192310¡/AS-

TROBJ¿. A&A, 534:A58, Oct. 2011. doi: 10.1051/0004-6361/201117055.

E. A. Petigura, A. W. Howard, and G. W. Marcy. Prevalence of Earth-size planets

orbiting Sun-like stars. Proceedings of the National Academy of Science, 110:19273–

19278, Nov. 2013. doi: 10.1073/pnas.1319909110.

J. T. Rayner, D. W. Toomey, P. M. Onaka, A. J. Denault, W. E. Stahlberger, W. D.

Vacca, M. C. Cushing, and S. Wang. SpeX: A Medium-Resolution 0.8-5.5 Micron

Spectrograph and Imager for the NASA Infrared Telescope Facility. PASP, 115:

362–382, Mar. 2003. doi: 10.1086/367745.

J. T. Rayner, M. C. Cushing, and W. D. Vacca. The Infrared Telescope Facility

(IRTF) Spectral Library: Cool Stars. ApJS, 185:289–432, Dec. 2009. doi: 10.1088/

0067-0049/185/2/289.

I. N. Reid, S. L. Hawley, and J. E. Gizis. The Palomar/MSU Nearby-Star Spectro-

scopic Survey. I. The Northern M Dwarfs -Bandstrengths and Kinematics. AJ, 110:

1838, Oct. 1995. doi: 10.1086/117655.

J. J. Ren, A. Rebassa-Mansergas, A. L. Luo, Y. H. Zhao, M. S. Xiang, X. W. Liu,

G. Zhao, G. Jin, and Y. Zhang. White dwarf-main sequence binaries from LAM-

OST: the DR1 catalogue. A&A, 570:A107, Oct. 2014. doi: 10.1051/0004-6361/

201423689.

182 P. Robertson, A. Roy, and S. Mahadevan. Stellar Activity Mimics a Habitable-zone

Planet around Kapteyn’s Star. ApJ, 805:L22, June 2015. doi: 10.1088/2041-8205/

805/2/L22.

J. F. Rowe, S. T. Bryson, G. W. Marcy, J. J. Lissauer, D. Jontof-Hutter, F. Mul-

lally, R. L. Gilliland, H. Issacson, E. Ford, S. B. Howell, W. J. Borucki, M. Haas,

D. Huber, J. H. Steffen, S. E. Thompson, E. Quintana, T. Barclay, M. Still,

J. Fortney, T. N. Gautier, III, R. Hunter, D. A. Caldwell, D. R. Ciardi, E. De-

vore, W. Cochran, J. Jenkins, E. Agol, J. A. Carter, and J. Geary. Validation

of Kepler’s Multiple Planet Candidates. III. Light Curve Analysis and Announce-

ment of Hundreds of New Multi-planet Systems. ApJ, 784:45, Mar. 2014. doi:

10.1088/0004-637X/784/1/45.

J. D. Scargle. Studies in astronomical time series analysis. II - Statistical aspects

of spectral analysis of unevenly spaced data. ApJ, 263:835–853, Dec. 1982. doi:

10.1086/160554.

S. J. Schmidt, S. L. Hawley, A. A. West, J. J. Bochanski, J. R. A. Davenport, J. Ge,

and D. P. Schneider. BOSS Ultracool Dwarfs. I. Colors and Magnetic Activity of

M and L Dwarfs. AJ, 149:158, May 2015. doi: 10.1088/0004-6256/149/5/158.

C. Schwab, A. Rakich, Q. Gong, S. Mahadevan, S. P. Halverson, A. Roy, R. C. Terrien,

P. M. Robertson, F. R. Hearty, E. I. Levi, A. J. Monson, J. T. Wright, M. W.

McElwain, C. F. Bender, C. H. Blake, J. St¨urmer,Y. V. Gurevich, A. Chakraborty,

and L. W. Ramsey. Design of NEID, an extreme precision Doppler spectrograph for

WIYN. In Ground-based and Airborne Instrumentation for Astronomy VI, volume

9908 of Proc. SPIE, page 99087H, Aug. 2016. doi: 10.1117/12.2234411.

D. W. Singer. Giordano Bruno : His Life and Thought. With annotated translation

183 of his work On the Infinite Universe and Worlds. New York : Schuman, [1950],

1950.

J. N. Skinner, D. P. Morgan, A. A. West, S. L´epine,and J. R. Thorstensen. Activity

and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper

Motion Survey. AJ, 154:118, Sept. 2017. doi: 10.3847/1538-3881/aa83b5.

A. Skopal. Disentangling the composite continuum of symbiotic binaries. I. S-type

systems. A&A, 440:995–1031, Sept. 2005. doi: 10.1051/0004-6361:20034262.

M. F. Skrutskie, R. M. Cutri, R. Stiening, M. D. Weinberg, S. Schneider, J. M.

Carpenter, C. Beichman, R. Capps, T. Chester, J. Elias, J. Huchra, J. Liebert,

C. Lonsdale, D. G. Monet, S. Price, P. Seitzer, T. Jarrett, J. D. Kirkpatrick,

J. E. Gizis, E. Howard, T. Evans, J. Fowler, L. Fullmer, R. Hurt, R. Light, E. L.

Kopan, K. A. Marsh, H. L. McCallon, R. Tam, S. Van Dyk, and S. Wheelock.

The Two Micron All Sky Survey (2MASS). AJ, 131:1163–1183, Feb. 2006. doi:

10.1086/498708.

R. W. Slawson, A. Prˇsa,W. F. Welsh, J. A. Orosz, M. Rucker, N. Batalha, L. R.

Doyle, S. G. Engle, K. Conroy, J. Coughlin, T. A. Gregg, T. Fetherolf, D. R. Short,

G. Windmiller, D. C. Fabrycky, S. B. Howell, J. M. Jenkins, K. Uddin, F. Mullally,

S. E. Seader, S. E. Thompson, D. T. Sanderfer, W. Borucki, and D. Koch. Kepler

Eclipsing Binary Stars. II. 2165 Eclipsing Binaries in the Second Data Release. AJ,

142:160, Nov. 2011. doi: 10.1088/0004-6256/142/5/160.

B. Stelzer, A. Marino, G. Micela, J. L´opez-Santiago, and C. Liefke. The UV and

X-ray activity of the M dwarfs within 10 pc of the Sun. MNRAS, 431:2063–2079,

May 2013. doi: 10.1093/mnras/stt225.

D. J. Stevens and B. S. Gaudi. A Posteriori Transit Probabilities. PASP, 125:933,

Aug. 2013. doi: 10.1086/672572. 184 O. Struve. Proposal for a project of high-precision stellar radial velocity work. The

Observatory, 72:199–200, Oct. 1952.

S. E. Thompson, J. L. Coughlin, K. Hoffman, F. Mullally, J. L. Christiansen, C. J.

Burke, S. Bryson, N. Batalha, M. R. Haas, J. Catanzarite, J. F. Rowe, G. Barentsen,

D. A. Caldwell, B. D. Clarke, J. M. Jenkins, J. Li, D. W. Latham, J. J. Lissauer,

S. Mathur, R. L. Morris, S. E. Seader, J. C. Smith, T. C. Klaus, J. D. Twicken,

J. E. Van Cleve, B. Wohler, R. Akeson, D. R. Ciardi, W. D. Cochran, C. E. Henze,

S. B. Howell, D. Huber, A. Prˇsa,S. V. Ram´ırez, T. D. Morton, T. Barclay, J. R.

Campbell, W. J. Chaplin, D. Charbonneau, J. Christensen-Dalsgaard, J. L. Dotson,

L. Doyle, E. W. Dunham, A. K. Dupree, E. B. Ford, J. C. Geary, F. R. Girouard,

H. Isaacson, H. Kjeldsen, E. V. Quintana, D. Ragozzine, M. Shabram, A. Shporer,

V. Silva Aguirre, J. H. Steffen, M. Still, P. Tenenbaum, W. F. Welsh, A. Wolfgang,

K. A. Zamudio, D. G. Koch, and W. J. Borucki. Planetary Candidates Observed

by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and

Reliability Based on Data Release 25. ApJS, 235:38, Apr. 2018. doi: 10.3847/

1538-4365/aab4f9.

W. D. Vacca, M. C. Cushing, and J. T. Rayner. A Method of Correcting Near-

Infrared Spectra for Telluric Absorption. PASP, 115:389–409, Mar. 2003. doi:

10.1086/346193.

P. van de Kamp. Astrometric study of Barnard’s star from plates taken with the

24-inch Sproul refractor. AJ, 68:515–521, Sept. 1963. doi: 10.1086/109001.

K. von Braun, T. S. Boyajian, G. T. van Belle, S. R. Kane, J. Jones, C. Farrington,

G. Schaefer, N. Vargas, N. Scott, T. A. ten Brummelaar, M. Kephart, D. R. Gies,

D. R. Ciardi, M. L´opez-Morales, C. Mazingue, H. A. McAlister, S. Ridgway, P. J.

Goldfinger, N. H. Turner, and L. Sturmann. Stellar diameters and temperatures

185 - V. 11 newly characterized exoplanet host stars. MNRAS, 438:2413–2425, Mar.

2014. doi: 10.1093/mnras/stt2360.

G. A. H. Walker, D. A. Bohlender, A. R. Walker, A. W. Irwin, S. L. S. Yang, and

A. Larson. Gamma Cephei - Rotation or planetary companion? ApJ, 396:L91–L94,

Sept. 1992. doi: 10.1086/186524.

J. Wang, D. A. Fischer, J.-W. Xie, and D. R. Ciardi. Influence of Stellar Multi-

plicity on Planet Formation. II. Planets are Less Common in Multiple-star Sys-

tems with Separations Smaller than 1500 AU. ApJ, 791:111, Aug. 2014. doi:

10.1088/0004-637X/791/2/111.

A. A. West, S. L. Hawley, L. M. Walkowicz, K. R. Covey, N. M. Silvestri, S. N.

Raymond, H. C. Harris, J. A. Munn, P. M. McGehee, Z.ˇ Ivezi´c,and J. Brinkmann.

Spectroscopic Properties of Cool Stars in the Sloan Digital Sky Survey: An Analysis

of Magnetic Activity and a Search for Subdwarfs. AJ, 128:426–436, July 2004. doi:

10.1086/421364.

A. A. West, S. L. Hawley, J. J. Bochanski, K. R. Covey, I. N. Reid, S. Dhital, E. J.

Hilton, and M. Masuda. Constraining the Age-Activity Relation for Cool Stars:

The Sloan Digital Sky Survey Data Release 5 Low-Mass Star Spectroscopic Sample.

AJ, 135:785–795, Mar. 2008. doi: 10.1088/0004-6256/135/3/785.

A. A. West, D. P. Morgan, J. J. Bochanski, J. M. Andersen, K. J. Bell, A. F. Kowal-

ski, J. R. A. Davenport, S. L. Hawley, S. J. Schmidt, D. Bernat, E. J. Hilton,

P. Muirhead, K. R. Covey, B. Rojas-Ayala, E. Schlawin, M. Gooding, K. Schluns,

S. Dhital, J. S. Pineda, and D. O. Jones. The Sloan Digital Sky Survey Data

Release 7 Spectroscopic M Dwarf Catalog. I. Data. AJ, 141:97, Mar. 2011. doi:

10.1088/0004-6256/141/3/97.

186 J. N. Winn. Exoplanet Transits and Occultations, pages 55–77. University of Arizona

Press, Dec. 2010.

A. Wolszczan and D. A. Frail. A planetary system around the millisecond pulsar

PSR1257 + 12. Nature, 355:145–147, Jan. 1992. doi: 10.1038/355145a0.

D. G. York, J. Adelman, J. E. Anderson, Jr., S. F. Anderson, J. Annis, N. A. Bahcall,

J. A. Bakken, R. Barkhouser, S. Bastian, E. Berman, W. N. Boroski, S. Bracker,

C. Briegel, J. W. Briggs, J. Brinkmann, R. Brunner, S. Burles, L. Carey, M. A.

Carr, F. J. Castander, B. Chen, P. L. Colestock, A. J. Connolly, J. H. Crocker,

I. Csabai, P. C. Czarapata, J. E. Davis, M. Doi, T. Dombeck, D. Eisenstein, N. Ell-

man, B. R. Elms, M. L. Evans, X. Fan, G. R. Federwitz, L. Fiscelli, S. Fried-

man, J. A. Frieman, M. Fukugita, B. Gillespie, J. E. Gunn, V. K. Gurbani, E. de

Haas, M. Haldeman, F. H. Harris, J. Hayes, T. M. Heckman, G. S. Hennessy,

R. B. Hindsley, S. Holm, D. J. Holmgren, C.-h. Huang, C. Hull, D. Husby, S.-I.

Ichikawa, T. Ichikawa, Z.ˇ Ivezi´c,S. Kent, R. S. J. Kim, E. Kinney, M. Klaene,

A. N. Kleinman, S. Kleinman, G. R. Knapp, J. Korienek, R. G. Kron, P. Z. Kun-

szt, D. Q. Lamb, B. Lee, R. F. Leger, S. Limmongkol, C. Lindenmeyer, D. C. Long,

C. Loomis, J. Loveday, R. Lucinio, R. H. Lupton, B. MacKinnon, E. J. Mannery,

P. M. Mantsch, B. Margon, P. McGehee, T. A. McKay, A. Meiksin, A. Merelli,

D. G. Monet, J. A. Munn, V. K. Narayanan, T. Nash, E. Neilsen, R. Neswold,

H. J. Newberg, R. C. Nichol, T. Nicinski, M. Nonino, N. Okada, S. Okamura, J. P.

Ostriker, R. Owen, A. G. Pauls, J. Peoples, R. L. Peterson, D. Petravick, J. R. Pier,

A. Pope, R. Pordes, A. Prosapio, R. Rechenmacher, T. R. Quinn, G. T. Richards,

M. W. Richmond, C. H. Rivetta, C. M. Rockosi, K. Ruthmansdorfer, D. Sandford,

D. J. Schlegel, D. P. Schneider, M. Sekiguchi, G. Sergey, K. Shimasaku, W. A. Sieg-

mund, S. Smee, J. A. Smith, S. Snedden, R. Stone, C. Stoughton, M. A. Strauss,

C. Stubbs, M. SubbaRao, A. S. Szalay, I. Szapudi, G. P. Szokoly, A. R. Thakar,

187 C. Tremonti, D. L. Tucker, A. Uomoto, D. Vanden Berk, M. S. Vogeley, P. Waddell,

S.-i. Wang, M. Watanabe, D. H. Weinberg, B. Yanny, N. Yasuda, and SDSS Col-

laboration. The Sloan Digital Sky Survey: Technical Summary. AJ, 120:1579–1587,

Sept. 2000. doi: 10.1086/301513.

C. Ziegler, N. M. Law, T. Morton, C. Baranec, R. Riddle, D. Atkinson, A. Baker,

S. Roberts, and D. R. Ciardi. Robo-AO Kepler Planetary Candidate Survey. III.

Adaptive Optics Imaging of 1629 Kepler Exoplanet Candidate Host Stars. AJ, 153:

66, Feb. 2017. doi: 10.3847/1538-3881/153/2/66.

C. Ziegler, N. M. Law, C. Baranec, R. Riddle, D. A. Duev, W. Howard, R. Jensen-

Clem, S. R. Kulkarni, T. Morton, and M. Salama. Robo-AO Kepler Survey. IV.

The Effect of Nearby Stars on 3857 Planetary Candidate Systems. AJ, 155:161,

Apr. 2018. doi: 10.3847/1538-3881/aab042.

188