Deanonymisation of Clients in Bitcoin P2P Network

Total Page:16

File Type:pdf, Size:1020Kb

Deanonymisation of Clients in Bitcoin P2P Network Deanonymisation of Clients in Bitcoin P2P Network Alex Biryukov Dmitry Khovratovich Ivan Pustogarov University of Luxembourg {alex.biryukov, dmitry.khovratovich, ivan.pustogarov}@uni.lu ABSTRACT rapidly with introduction of Bitcoin [12]. Bitcoin is a decen- Bitcoin is a digital currency which relies on a distributed tralized digital currency which does not rely on a trusted is- set of miners to mint coins and on a peer-to-peer network suing entity but rather on a peer-to-peer network with peers to broadcast transactions. The identities of Bitcoin users minting Bitcoins by brute-forcing double SHA-256 hash func- are hidden behind pseudonyms (public keys) which are rec- tion. To make the money generation process computation- ommended to be changed frequently in order to increase ally hard, the Bitcoin protocol requires the minters to present transaction unlinkability. the hash value of a data block with new portion of Bitcoins We present an efficient method to deanonymize Bitcoin and new transactions to have a certain number of zeros (an users, which allows to link user pseudonyms to the IP ad- instance of the Proof-of-Work concept). dresses where the transactions are generated. Our tech- Bitcoin is now accepted as a currency by many compa- niques work for the most common and the most challenging nies from online retailer Overstock to exotic Virgin Galactic. scenario when users are behind NATs or firewalls of their One of its main advantages over bank transfers is it's decen- ISPs. They allow to link transactions of a user behind a NAT tralized architecture and absence of intermediaries. This prevents shutting it down or seizing by a government. Bit- and to distinguish connections and transactions of different 1 users behind the same NAT. We also show that a natural coin money transfers are non-refundable, reasonably fast countermeasure of using Tor or other anonymity services can and allow to send money to any part of the world. The Bit- be cut-off by abusing anti-DoS countermeasures of the Bit- coin peer network consists of homogeneous nodes and pro- coin network. Our attacks require only a few machines and vides peer discovery and reputation mechanisms to achieve have been experimentally verified. The estimated success stability. The number of Bitcoin peers is estimated to be rate is between 11% and 60% depending on how stealthy an about 100,000 nowadays. The vast majority of these peers attacker wants to be. We propose several countermeasures (we call them clients), about 90%, are located behind NAT to mitigate these new attacks. and do not allow any incoming connections, whereas they choose 8 outgoing connections to servers (Bitcoin peers with public IP). Categories and Subject Descriptors In a Bitcoin transaction, the address of money sender(s) C.2.0 [Computer-Communication Networks]: General| or receiver(s) is a hash of his public key. We call such Security and protection; K.4.4 [Computers And Soci- address a pseudonym to avoid confusion with the IP ad- ety]: Electronic Commerce|Cybercash, digital cash; K.4.1 dress of the host where transactions are generated, and the [Computers And Society]: Public Policy Issues |Pri- latter will be called just address throughout the text. In vacy the current Bitcoin protocol the entire transaction history is publicly available so anyone can see how Bitcoins travel from one pseudonym to another and potentially link differ- Keywords ent pseudonyms of the same user together. A theoretical Bitcoin; Anonymity; P2P; Tor possibility of such attack was already mentioned in the orig- inal Bitcoin paper [12]. Since then several papers [11, 15] showed that it is indeed possible by analysing the transaction 1. INTRODUCTION graph to cluster pseudonyms to different users. Combined Digital currency based on cryptography is not a new idea [6] with some other sources (e.g. forum posts), the clusters but till recently it did not attract much attention. It changed (and thus the users) can sometimes be mapped to real iden- tities [14, 11]. Even so, these methods are not generic, and Permission to make digital or hard copies of all or part of this work for personal or the problem of how to tie a Bitcoin address to an actual classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation identity remained unsolved. on the first page. Copyrights for components of this work owned by others than the Evidently, studying the entire IP traffic of the Bitcoin author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or peers would reveal the origins of each transaction and dis- republish, to post on servers or to redistribute to lists, requires prior specific permission close the identities of many users, but how much can be and/or a fee. Request permissions from [email protected]. CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA. 1 Copyright is held by the owner/author(s). Publication rights licensed to ACM. The network sees a transaction immediately, but the re- ACM 978-1-4503-2957-6/14/11 ...$15.00. ceiver has to wait for 1-2 hours to be sure that there is no http://dx.doi.org/10.1145/2660267.2660379. double-spending. 15 achieved by an ordinary attacker with a few machines and The computational power needed to disclose the sender no access to clients behind NAT has been unclear. of a single transaction is negligible and is far smaller than Lerner [10] and Koshy et al. [9] were the first who at- the amount of work needed to process the transaction graph tempted an attack in this direction. A vulnerability which in [14, 11]. For the best of our knowledge this is the first allowed to link IP addresses of clients to their bitciond wal- attack which targets Bitcoin peers behind NAT. Our attack lets' addresses was reported by Lerner [10]. The vulnera- does not assume any anomaly in the behaviour of peers or in bility exploited a protection against \penny-flooding" which the traffic and would work even if Bitcoin would encrypt the prevents a transaction with very low fees and big size to be connection. It might be applicable to other digital currencies forwarded or even stored by a Bitcoin peer. The protection derived from Bitcoin. tested if a transaction was from a wallet owned by the user, As another interesting though unrelated to deanonymisa- and if it was the case, then the protection was skipped. This tion idea we look at how to decrease block mining difficulty allowed an attacker to test if a peer possessed a Bitcoin ad- by creating an alternative blockchain reality. This becomes dress by sending him specifically crafted transactions. The important since Bitcoin by design is not adaptive to rapid vulnerability required that the attacker had a connection to drops in hash power of miners and might become necessary a peer (thus targeting either Bitcoin servers or clients which in case of many miners quit mining. This is not just a hypo- established connections to the attacker). This vulnerability thetical case, since Bitcoin exchange rate can fall suddenly was fixed since version 0.7.2. and rapidly, making block mining unprofitable. Koshy et al. [9] managed to deanonymize 1162 addresses over the period of 5 months. Their approach, however, is Roadmap. limited to the transactions that expose anomalous behaviour Our paper is structured as follows: like transactions relayed only once or transaction that were relayed multiple times by the same IP. Secondly, the pro- • We give necessary background of how Bitcoin works posed method only allows to get IP addresses of servers, and the rules its peers follow to broadcast their ad- which constitute only 10% of the network, and not of the dresses and transactions. clients. Finally, their paper does not discuss the case when • As a first step towards deanonymization, we show how a Bitcoin peer protects himself by proxying his transactions to prohibit Bitcoin clients from using the Tor anonymity through the Tor anonymity network. network by exploiting Bitcoin anti-DoS protection mech- anism (Section 3). Our contributions. In this paper we describe a generic method to deanonymize • We show how to learn the connections of the Bitcoin a significant fraction of Bitcoin users and correlate their clients in Section 4. pseudonyms with public IP addresses. The method explic- itly targets the clients (i.e. peers behind NAT or firewalls) • We finally show how to identify the sender of a trans- and can differentiate the nodes with the same public IP. Fur- action (i.e. deanonymize him) in Section 5. We recover thermore, our method also handles the case when the clients the public IP address of the sender and further differ- use anonymity services like Tor. If a client uses two different entiate clients sharing the same public IP. pseudonyms during a single session, and even if they are un- • We discuss how to choose parameters of the attack related in the transaction graph so that the linkage would be and its success rate and explain our experiments on totally unachievable via the transaction graph analysis [11], the test network. We also propose countermeasures to our method is likely to catch it and glue the pseudonyms mitigate the attack. together. The method is generic and might be used in other P2P networks. • As an extra result, we outline a strategy to lower the The crucial idea is that each client can be uniquely iden- difficulty of the system by adding a properly selected tified by a set of nodes he connects to (entry nodes).
Recommended publications
  • A Probe Survey of Bitcoin Transactions Through Analysis of Advertising in an On-Line Discussion Forum
    Acta Informatica Pragensia, 2019, 8(2), 112–131 DOI: 10.18267/j.aip.127 Original Article A Probe Survey of Bitcoin Transactions Through Analysis of Advertising in an On-Line Discussion Forum Zoltan Ban 1, Jan Lansky 1, Stanislava Mildeova 1, Petr Tesar 1 Abstract Cryptocurrencies have become a major phenomenon in recent years. For IT, a breakthrough is both the cryptocurrency itself as a commodity and the technology that cryptocurrency development has brought. The article focuses on the bitcoin cryptocurrency as the most important cryptocurrency. A relatively unexplored topic is what goods or services are purchased for bitcoins. To track what bitcoins are spent on, it is necessary to look for places that are dedicated to trading cryptocurrencies. The bitcointalk.org forum was chosen as a source for our data mining. The aim of the article is to find an answer to the research question: What are bitcoins on the discussion forum bitcointalk.org planned to be spent on? As part of the research, an application was developed using a PHP script to gather information from the discussion forum (bitcointalk.org). There is some evidence which suggests what types of products or services people spend cryptocurrencies on. This research has proven that cryptocurrencies are used to buy and sell goods or services in the electronics and computer world segments. Today, these segments are widespread, which may speed up the integration of cryptocurrencies into everyday life. This applies, of course, only if the risks associated with cryptocurrencies do not increase. Keywords: Cryptocurrency, Bitcoin, On-Line Advertisement, Text Mining, Cybersecurity, Discussion Forum.
    [Show full text]
  • Download Criminal Complaint Filed in the Eastern District of California
    AO 91 (Rev. 11/11) Criminal Complaint UNITED STATES DISTRICT COURT for the Eastern District of California United States of America ) V. ) MARCOS PAULO DE OLIVEIRA­ ) Case No. ANNIBALE, ) aka "Med3lin," ) aka "Med3lln," ) aka "Med3lln WSM" ) Defendant(s) CRIMINAL COMPLAINT I, the complainant in this case, state that the following is true to the best of my knowledge and belief. On or about the date( s) of October 2017 through April 2019__ in the county of Sacramento in the Eastern District of California , and elsewhere, the defendant(s) violated: Code Section Offense Description 21 U.S.C. §§ 841 and 846 Distribution and Conspiracy to Distribute Controlled Substances 18 U.S.C. §§ 1956 and 1957 Money Laundering This criminal complaint is based on these facts: (see attachment) IX! Continued on the attached sheet. -j- ;1 ·) / , / l 1 - • / L ',;;;_ . _/__I-- / Complainant's signature JAY D. DIAL, Jr., Special Agent Dl'llg Enforcem~_11t Ad111inistration Printed name and title Sworn to before me and signed in my presence. ;]t "-" ' Date: l.2 _/,_ I ---=- (.___ ,,--- "'-~ Judge 's signature City and state: Sacramento, CA Allls__on Claire, U_.§~ Magi~trate__.J__udge Printed name and title AO 91 (Rev. 11/11) Criminal Complaint UNITED STATES DISTRICT COURT for the Eastern District of California United States of America ) V. ) MARCOS PAULO DE OLIVEIRA­ ) Case No. ANNIBALE, ) aka "Med3lin," ) aka "Med3l1n," ) aka "Med3lln_WSM" ) Defendant(s) CRIMINAL COMPLAINT I, the complainant in this case, state that the following is true to the best of my knowledge and belief. On or about the date(s) of ~tober 20 I 7 through April 2019_ in the county of .
    [Show full text]
  • Transparent and Collaborative Proof-Of-Work Consensus
    StrongChain: Transparent and Collaborative Proof-of-Work Consensus Pawel Szalachowski, Daniël Reijsbergen, and Ivan Homoliak, Singapore University of Technology and Design (SUTD); Siwei Sun, Institute of Information Engineering and DCS Center, Chinese Academy of Sciences https://www.usenix.org/conference/usenixsecurity19/presentation/szalachowski This paper is included in the Proceedings of the 28th USENIX Security Symposium. August 14–16, 2019 • Santa Clara, CA, USA 978-1-939133-06-9 Open access to the Proceedings of the 28th USENIX Security Symposium is sponsored by USENIX. StrongChain: Transparent and Collaborative Proof-of-Work Consensus Pawel Szalachowski1 Daniel¨ Reijsbergen1 Ivan Homoliak1 Siwei Sun2;∗ 1Singapore University of Technology and Design (SUTD) 2Institute of Information Engineering and DCS Center, Chinese Academy of Sciences Abstract a cryptographically-protected append-only list [2] is intro- duced. This list consists of transactions grouped into blocks Bitcoin is the most successful cryptocurrency so far. This and is usually referred to as a blockchain. Every active pro- is mainly due to its novel consensus algorithm, which is tocol participant (called a miner) collects transactions sent based on proof-of-work combined with a cryptographically- by users and tries to solve a computationally-hard puzzle in protected data structure and a rewarding scheme that incen- order to be able to write to the blockchain (the process of tivizes nodes to participate. However, despite its unprece- solving the puzzle is called mining). When a valid solution dented success Bitcoin suffers from many inefficiencies. For is found, it is disseminated along with the transactions that instance, Bitcoin’s consensus mechanism has been proved to the miner wishes to append.
    [Show full text]
  • 3Rd Global Cryptoasset Benchmarking Study
    3RD GLOBAL CRYPTOASSET BENCHMARKING STUDY Apolline Blandin, Dr. Gina Pieters, Yue Wu, Thomas Eisermann, Anton Dek, Sean Taylor, Damaris Njoki September 2020 supported by Disclaimer: Data for this report has been gathered primarily from online surveys. While every reasonable effort has been made to verify the accuracy of the data collected, the research team cannot exclude potential errors and omissions. This report should not be considered to provide legal or investment advice. Opinions expressed in this report reflect those of the authors and not necessarily those of their respective institutions. TABLE OF CONTENTS FOREWORDS ..................................................................................................................................................4 RESEARCH TEAM ..........................................................................................................................................6 ACKNOWLEDGEMENTS ............................................................................................................................7 EXECUTIVE SUMMARY ........................................................................................................................... 11 METHODOLOGY ........................................................................................................................................ 14 SECTION 1: INDUSTRY GROWTH INDICATORS .........................................................................17 Employment figures ..............................................................................................................................................................................................................17
    [Show full text]
  • EY Study: Initial Coin Offerings (Icos) the Class of 2017 – One Year Later
    EY study: Initial Coin Offerings (ICOs) The Class of 2017 – one year later October 19, 2018 In December 2017, we analyzed the top ICOs that represented 87% ICO funding in 2017. In that report, we found high risks of fraud, theft and major problems with the accuracy of representations made by start-ups seeking funding. In this follow-up study, we revisit the same group of companies to analyze their progress and investment return: ► The performance of ICOs from The Class of 2017 did little to inspire confidence.1 ► 86% are now below their listing2 price; 30% have lost substantially all value. Executive An investor purchasing a portfolio of The Class of 2017 ICOs on 1 January 2018 would most likely have lost 66% of their investment. ► Of the ICO start-ups we looked at from The Class of 2017, only 29% (25) have summary working products or prototypes, up by just 13% from the end of last year. Of those 25, seven companies accept payment in both traditional fiat currency (dollars) as well as ICO tokens, a decision that reduces the value of the tokens to the holders. ► There were gains among The Class of 2017, concentrated in 10 ICO tokens, most of which are in the blockchain infrastructure category. However, there is no sign that these new projects have had any success in reducing the dominance of Ethereum as the industry’s main platform. • 1 See methodology in appendix. • 2 Defined as when first available to trade on a cryptocurrency exchange. 02 ICO performance update ICOs broke out in 2017.
    [Show full text]
  • FTC Decrypting Cryptocurrency Scams Workshop Transcript
    FTC Decrypting Cryptocurrency Scams Workshop June 25, 2018 Transcript JASON ADLER: Good afternoon, everyone and welcome to the Federal Trade Commission's Decrypting Cryptocurrency Scams workshop. I'm Jason Adler. I'm the assistant director of the FDC's Midwest regional office here in Chicago. I want to thank you all for being here. And I want to thank DePaul University for hosting us. Before we get started, I just have a few housekeeping details to tick off. First, please set your mobile phones to silent. If you use them during the workshop, for example to comment about the workshop on social media, please be respectful of the others here. If you do comment on social media, feel free to use #cryptoscamsftc as a hashtag. We'll be live tweeting this event using that hashtag as well. Webcasting the event today, and it may be photographed or otherwise recorded, by participating you're agreeing that your image and anything you say may be posted at ftc.gov and on our social media sites. At the end of each panel, if we do have time, we'll try to answer audience questions. We have question cards out in the hall. Feel free to write down a question. Raise your hand and someone will collect it. And if we have time at the end of the panel, we'll ask them. We're also accepting questions on Twitter. So you can tweet a question to the FTC, so @FTC using hashtag #cryptoscamsftc. Finally, if you're here for CLE, please be sure and find Dan at the check in table.
    [Show full text]
  • On Scaling Decentralized Blockchains (A Position Paper)
    On Scaling Decentralized Blockchains (A Position Paper) Kyle Croman0;1, Christian Decker4, Ittay Eyal0;1, Adem Efe Gencer0;1, Ari Juels0;2, Ahmed Kosba0;3, Andrew Miller0;3, Prateek Saxena6, Elaine Shi0;1, Emin G¨un Sirer0;1, Dawn Song0;5, and Roger Wattenhofer4 0 Initiative for CryptoCurrencies and Contracts (IC3) 1 Cornell 2 Jacobs, Cornell Tech 3 UMD 4 ETH 5 Berkeley 6 NUS Abstract. The increasing popularity of blockchain-based cryptocurren- cies has made scalability a primary and urgent concern. We analyze how fundamental and circumstantial bottlenecks in Bitcoin limit the abil- ity of its current peer-to-peer overlay network to support substantially higher throughputs and lower latencies. Our results suggest that repa- rameterization of block size and intervals should be viewed only as a first increment toward achieving next-generation, high-load blockchain proto- cols, and major advances will additionally require a basic rethinking of technical approaches. We offer a structured perspective on the design space for such approaches. Within this perspective, we enumerate and briefly discuss a number of recently proposed protocol ideas and offer several new ideas and open challenges. 1 Introduction Increasing adoption of cryptocurrencies has raised concerns about their abil- ity to scale. Since Bitcoin is a self-regulating system that works by discovering blocks at approximate intervals, its highest transaction throughput is effectively capped at maximum block size divided by block interval. The current trend of ever increasing block sizes on Bitcoin portends a potential problem where the sys- tem will reach its maximum capacity to clear transactions, probably by 2017 [46].
    [Show full text]
  • On Scalability of Blockchain Technologies
    ON SCALABILITY OF BLOCKCHAIN TECHNOLOGIES A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Adem Efe Gencer August 2017 c 2017 Adem Efe Gencer ALL RIGHTS RESERVED ON SCALABILITY OF BLOCKCHAIN TECHNOLOGIES Adem Efe Gencer, Ph.D. Cornell University 2017 In this dissertation, we explore how to improve scalability of blockchains while maintaining their fundamental premise of decentralization. Scalable blockchains are capable of delivering a target throughput and latency in the presence of increasing workload. To this end, first we present Bitcoin-NG, a new blockchain protocol designed to provide scale for services involving fre- quent, high-volume interactions. This Byzantine fault tolerant blockchain pro- tocol is robust to extreme churn and shares the same trust model as Bitcoin. We experimentally demonstrate that Bitcoin-NG scales optimally, with band- width limited only by the capacity of the individual nodes and latency limited only by the propagation time of the network. Then, we examine the scalabil- ity challenges arising from proliferation of blockchain services. In particular, we observe that due to inherently single-service oriented blockchain protocols, services can bloat the existing blockchains, fail to provide sufficient security, or completely forego the property of trustless auditability. We introduce Aspen, a sharded blockchain protocol that securely scales with increasing number of services. Aspen enables service integration without compromising security — leveraging the trust assumptions — or flooding users with irrelevant messages. Finally, we provide the means to assess the viability of different scaling solu- tions. We develop and utilize custom metrics for evaluating performance and security of blockchain protocols.
    [Show full text]
  • “Satoshi Is Dead. Long Live Satoshi”: the Curious Case of Bitcoin's Creator
    “SATOSHI IS DEAD. LONG LIVE SATOSHI”: THE CURIOUS CASE OF BITCOIN’S CREATOR Mariam Humayun and Russell W. Belk ABSTRACT Purpose: In this paper, we focus on the mythic nature of the anonymous Bitcoin creator, Satoshi Nakamoto. Drawing on ideas from Foucault and Barthes on authorship, we analyze the notion of the absence of the author and how that sustains the brand. Design/methodology/approach: Based on interview data, participant obser- vation, archival data, and a netnography, we examine the discourses that emerge in the wake of multiple Satoshi Nakamoto exposés that serve as both stabilizing and destabilizing forces in the Bitcoin ecosystem. Findings: We analyze the different interpretations of Satoshi Nakamoto through his own text and how his readers interpret him. We identify how consumers employ motifs of myth and religiosity in trying to find meaning in Satoshi’s disappearance. His absence allows for multiple interpretations of how the Bitcoin brand is viewed and adopted by a diverse community of enthusiasts. Consumer Culture Theory Research in Consumer Behavior, Volume 19, 19–35 Copyright © 2018 by Emerald Publishing Limited All rights of reproduction in any form reserved ISSN: 0885-2111/doi:10.1108/S0885-211120180000019002 19 20 MARIAM HUMAYUN AND RUSSELL W. BELK Implications: Our findings provide a richer understanding of how, in a period of celebrity brands, Satoshi Nakamoto’s anti-celebrity stance helps sustain the Bitcoin ecosystem. Originality/value: Our analysis examines the nature of anonymity in our hyper-celebrity culture and the mystique of the anonymous creator that fuels modern-day myths for brands without owners. Keywords: brands; myth; anonymity; privacy; death of the author; anti-celebrity; religiosity; bitcoin; blockchain; Satoshi Nakamoto A legend has emerged from a jumble of facts: Someone using the name Satoshi Nakamoto released the software for Bitcoin in early 2009 and communicated with the nascent cur- rency’s users via email — but never by phone or in person.
    [Show full text]
  • In Re Ripple Labs Inc. Litigation 18-CV-06753-Consolidated
    Case 4:18-cv-06753-PJH Document 63 Filed 08/05/19 Page 1 of 53 1 James Q. Taylor-Copeland (284743) [email protected] 2 TAYLOR-COPELAND LAW 501 W. Broadway, Suite 800 3 San Diego, CA 92101 Telephone: (619) 400-4944 4 Facsimile: (619) 566-4341 5 Marc M. Seltzer (54534) [email protected] 6 Steven G. Sklaver (237612) [email protected] 7 Oleg Elkhunovich (269238) [email protected] 8 Meng Xi (280099) [email protected] 9 SUSMAN GODFREY L.L.P. 1900 Avenue of the Stars, 14th Floor 10 Los Angeles, CA 90067 Telephone: (310) 789-3100 11 Facsimile: (310) 789-3150 12 Counsel for Lead Plaintiff Bradley Sostack 13 UNITED STATES DISTRICT COURT 14 NORTHERN DISTRICT OF CALIFORNIA 15 OAKLAND DIVISION 16 ) Case No. 4:18-cv-06753-PJH 17 In re RIPPLE LABS INC. LITIGATION, ) ) CLASS ACTION 18 ____________________________________ ) ) CONSOLIDATED COMPLAINT FOR 19 This Document Relates To: ) VIOLATIONS OF FEDERAL AND ) CALIFORNIA LAW 20 ALL ACTIONS ) ) 21 ) JURY TRIAL DEMANDED 22 23 24 25 26 27 28 CONSOLIDATED COMPLAINT Case 4:18-cv-06753-PJH Document 63 Filed 08/05/19 Page 2 of 53 1 TABLE OF CONTENTS 2 SUMMARY OF ACTION ...................................................................................................2 3 PARTIES .............................................................................................................................6 4 JURISDICTION AND VENUE ..........................................................................................6 5 SUBSTANTIVE ALLEGATIONS .....................................................................................7
    [Show full text]
  • Proof of Activity: Extending Bitcoin's Proof of Work Via Proof of Stake
    Proof of Activity: Extending Bitcoin's Proof of Work via Proof of Stake Iddo Bentov∗ Charles Lee Alex Mizrahi Meni Rosenfeld Computer Science Dept., Technion Litecoin Project chromawallet.com Israeli Bitcoin Association [email protected] [email protected] [email protected] [email protected] Abstract We propose a new protocol for a cryptocurrency, that builds upon the Bitcoin protocol by combining its Proof of Work component with a Proof of Stake type of system. Our Proof of Activity (PoA) protocol offers good security against possibly practical future attacks on Bitcoin, and has a relatively low penalty in terms of network communication and storage space. We explore various attack scenarios and suggest remedies to potential vulnerabilities of the PoA protocol, as well as evaluate the performance of its core subroutine. 1 Introduction The Bitcoin [33] cryptocurrency continues to gather success since its launch in 2009. As a means of exchange, Bitcoin facilitates fast worldwide transactions with trivial fees and without identity theft risks. As a store of value, Bitcoin entails no counterparty risk and no exposure to manipulation of the money supply by central banks, due to its decentralized nature. Many other features can be derived from Bitcoin's cryptographic foundations, including: resilient forms of secret sharing via multi-signature control over an address [13, 18], non-interactive transactions with other systems via computational integrity proofs [29], off-chain micropay- ment channels [20,36], various types of contracts that are enforced by the distributed network [18], trust-free gambling and multiparty computation [1,2,4], trust-free sale of computed data via zero-knowledge proofs [24], hierarchical wallets that use key homomorphism to minimize access to the private keys [26], decentralized stock exchange and prediction market via colored coins [12, 32], and so on.
    [Show full text]
  • From Hodl to Heist: Analysis of Cyber Security Threats to Bitcoin Exchanges
    From Hodl to Heist: Analysis of Cyber Security Threats to Bitcoin Exchanges Kris Oosthoek Christian Doerr Cyber Threat Intelligence Lab Cyber Threat Intelligence Lab Delft University of Technology Delft University of Technology Delft, The Netherlands Delft, The Netherlands [email protected] [email protected] Abstract—Bitcoin is gaining traction as an alternative store of A high value asset makes a high value attack target. The value. Its market capitalization transcends all other cryptocur- security of Bitcoin is also dependent on the ecosystem that rencies in the market. But its high monetary value also makes it has emerged around it. This consists of exchange platforms, an attractive target to cyber criminal actors. Hacking campaigns usually target the weakest points in an ecosystem. In Bitcoin, payment service providers, wallet providers, mining pools and these are currently the exchange platforms. As each exchange other intermediaries. Each of these is part of a fabric spun breach potentially decreases Bitcoin’s market value by billions, around Bitcoin which unlocks its potential to a broader user it is a threat not only to direct victims, but to everyone owning base, but consequently introduces additional threat vectors. Bitcoin. Based on an extensive analysis of 36 breaches of Bitcoin Cyber criminal actors generally target the weakest points in exchanges, we show the attack patterns used to exploit Bitcoin exchange platforms using an industry standard for reporting the ecosystem. In the Bitcoin ecosystem, these are currently intelligence on cyber security breaches. Based on this we are the centralized exchanges. These act as a broker, allowing able to provide an overview of the most common attack vectors, users to sell cryptocurrencies for fiat currency (legal tender) showing that all except three hacks were possible due to relatively or to exchange the latter for cryptocurrency against a commis- lax security.
    [Show full text]