Nonlinear Analysis: Modelling and Control, Vilnius, IMI, 1998, No 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plotting Direction Fields in Matlab and Maxima – a Short Tutorial
Plotting direction fields in Matlab and Maxima – a short tutorial Luis Carvalho Introduction A first order differential equation can be expressed as dx x0(t) = = f(t; x) (1) dt where t is the independent variable and x is the dependent variable (on t). Note that the equation above is in normal form. The difficulty in solving equation (1) depends clearly on f(t; x). One way to gain geometric insight on how the solution might look like is to observe that any solution to (1) should be such that the slope at any point P (t0; x0) is f(t0; x0), since this is the value of the derivative at P . With this motivation in mind, if you select enough points and plot the slopes in each of these points, you will obtain a direction field for ODE (1). However, it is not easy to plot such a direction field for any function f(t; x), and so we must resort to some computational help. There are many computational packages to help us in this task. This is a short tutorial on how to plot direction fields for first order ODE’s in Matlab and Maxima. Matlab Matlab is a powerful “computing environment that combines numeric computation, advanced graphics and visualization” 1. A nice package for plotting direction field in Matlab (although resourceful, Matlab does not provide such facility natively) can be found at http://math.rice.edu/»dfield, contributed by John C. Polking from the Dept. of Mathematics at Rice University. To install this add-on, simply browse to the files for your version of Matlab and download them. -
A Note on Integral Points on Elliptic Curves 3
Journal de Th´eorie des Nombres de Bordeaux 00 (XXXX), 000–000 A note on integral points on elliptic curves par Mark WATKINS Abstract. We investigate a problem considered by Zagier and Elkies, of finding large integral points on elliptic curves. By writ- ing down a generic polynomial solution and equating coefficients, we are led to suspect four extremal cases that still might have non- degenerate solutions. Each of these cases gives rise to a polynomial system of equations, the first being solved by Elkies in 1988 using the resultant methods of Macsyma, with there being a unique rational nondegenerate solution. For the second case we found that resultants and/or Gr¨obner bases were not very efficacious. Instead, at the suggestion of Elkies, we used multidimensional p-adic Newton iteration, and were able to find a nondegenerate solution, albeit over a quartic number field. Due to our methodol- ogy, we do not have much hope of proving that there are no other solutions. For the third case we found a solution in a nonic number field, but we were unable to make much progress with the fourth case. We make a few concluding comments and include an ap- pendix from Elkies regarding his calculations and correspondence with Zagier. Resum´ e.´ A` la suite de Zagier et Elkies, nous recherchons de grands points entiers sur des courbes elliptiques. En ´ecrivant une solution polynomiale g´en´erique et en ´egalisant des coefficients, nous obtenons quatre cas extr´emaux susceptibles d’avoir des so- lutions non d´eg´en´er´ees. Chacun de ces cas conduit `aun syst`eme d’´equations polynomiales, le premier ´etant r´esolu par Elkies en 1988 en utilisant les r´esultants de Macsyma; il admet une unique solution rationnelle non d´eg´en´er´ee. -
Some Reflections About the Success and Impact of the Computer Algebra System DERIVE with a 10-Year Time Perspective
Noname manuscript No. (will be inserted by the editor) Some reflections about the success and impact of the computer algebra system DERIVE with a 10-year time perspective Eugenio Roanes-Lozano · Jose Luis Gal´an-Garc´ıa · Carmen Solano-Mac´ıas Received: date / Accepted: date Abstract The computer algebra system DERIVE had a very important im- pact in teaching mathematics with technology, mainly in the 1990's. The au- thors analyze the possible reasons for its success and impact and give personal conclusions based on the facts collected. More than 10 years after it was discon- tinued it is still used for teaching and several scientific papers (most devoted to educational issues) still refer to it. A summary of the history, journals and conferences together with a brief bibliographic analysis are included. Keywords Computer algebra systems · DERIVE · educational software · symbolic computation · technology in mathematics education Eugenio Roanes-Lozano Instituto de Matem´aticaInterdisciplinar & Departamento de Did´actica de las Ciencias Experimentales, Sociales y Matem´aticas, Facultad de Educaci´on,Universidad Complutense de Madrid, c/ Rector Royo Villanova s/n, 28040-Madrid, Spain Tel.: +34-91-3946248 Fax: +34-91-3946133 E-mail: [email protected] Jose Luis Gal´an-Garc´ıa Departamento de Matem´atica Aplicada, Universidad de M´alaga, M´alaga, c/ Dr. Ortiz Ramos s/n. Campus de Teatinos, E{29071 M´alaga,Spain Tel.: +34-952-132873 Fax: +34-952-132766 E-mail: [email protected] Carmen Solano-Mac´ıas Departamento de Informaci´ony Comunicaci´on,Universidad de Extremadura, Plaza de Ibn Marwan s/n, 06001-Badajoz, Spain Tel.: +34-924-286400 Fax: +34-924-286401 E-mail: [email protected] 2 Eugenio Roanes-Lozano et al. -
Using Mathematica As a Teaching Tool in the Undergraduate Economics Curriculum
USING MATHEMATICA AS A TEACHING TOOL IN THE UNDERGRADUATE ECONOMICS CURRICULUM Gary Hodgin* Abstract In recent years, the quantitative skills required of economics students have increased significantly. Students often experience difficulty in making the transition from their mathematics courses to the use of mathematics in their economics courses. Symbolic computation programs are mathematical tools that can potentially smooth this transition. This paper illustrates a few ways in which one symbolic computation program, Mathematica, has been used in the undergraduate economics curriculum. I. Introduction The undergraduate curriculum in economics has become increasingly quantitative. An economics major typically includes college algebra, statistics, and some form of calculus in its degree requirements.1 In addition, mathematical economics and econometrics are now standard courses in many undergraduate programs. Moreover, this quantitative emphasis generally extends to other courses across the economics curriculum, particularly the intermediate theory and managerial economics courses. For example, approximately 90 percent of the intermediate microeconomics instructors included in von Allmen and Brower's survey (1998, 279) use calculus in their courses. Although one might question whether too much emphasis is placed on quantitative skills, there appears to be consensus among economics professors that mathematics is an important ingredient in undergraduate economic education. Over the past three years, I have used a symbolic computation program entitled Mathematica in two of my intermediate microeconomics and three of my managerial economics courses. My observations in these courses suggests that some students experience difficulty in making the transition from their courses in mathematics to their use of mathematics in economics. By smoothing this transition, symbolic computation programs can assist students in learning economics. -
CAS (Computer Algebra System) Mathematica
CAS (Computer Algebra System) Mathematica- UML students can download a copy for free as part of the UML site license; see the course website for details From: Wikipedia 2/9/2014 A computer algebra system (CAS) is a software program that allows [one] to compute with mathematical expressions in a way which is similar to the traditional handwritten computations of the mathematicians and other scientists. The main ones are Axiom, Magma, Maple, Mathematica and Sage (the latter includes several computer algebras systems, such as Macsyma and SymPy). Computer algebra systems began to appear in the 1960s, and evolved out of two quite different sources—the requirements of theoretical physicists and research into artificial intelligence. A prime example for the first development was the pioneering work conducted by the later Nobel Prize laureate in physics Martin Veltman, who designed a program for symbolic mathematics, especially High Energy Physics, called Schoonschip (Dutch for "clean ship") in 1963. Using LISP as the programming basis, Carl Engelman created MATHLAB in 1964 at MITRE within an artificial intelligence research environment. Later MATHLAB was made available to users on PDP-6 and PDP-10 Systems running TOPS-10 or TENEX in universities. Today it can still be used on SIMH-Emulations of the PDP-10. MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory") which is a system for numerical computation built 15 years later at the University of New Mexico, accidentally named rather similarly. The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a popular copyleft version of Macsyma called Maxima is actively being maintained. -
Arxiv:Cs/0608005V2 [Cs.SC] 12 Jun 2007
AEI-2006-037 cs.SC/0608005 A field-theory motivated approach to symbolic computer algebra Kasper Peeters Max-Planck-Institut f¨ur Gravitationsphysik, Albert-Einstein-Institut Am M¨uhlenberg 1, 14476 Golm, GERMANY Abstract Field theory is an area in physics with a deceptively compact notation. Although general pur- pose computer algebra systems, built around generic list-based data structures, can be used to represent and manipulate field-theory expressions, this often leads to cumbersome input formats, unexpected side-effects, or the need for a lot of special-purpose code. This makes a direct trans- lation of problems from paper to computer and back needlessly time-consuming and error-prone. A prototype computer algebra system is presented which features TEX-like input, graph data structures, lists with Young-tableaux symmetries and a multiple-inheritance property system. The usefulness of this approach is illustrated with a number of explicit field-theory problems. 1. Field theory versus general-purpose computer algebra For good reasons, the area of general-purpose computer algebra programs has histor- ically been dominated by what one could call “list-based” systems. These are systems which are centred on the idea that, at the lowest level, mathematical expressions are nothing else but nested lists (or equivalently: nested functions, trees, directed acyclic graphs, . ). There is no doubt that a lot of mathematics indeed maps elegantly to problems concerning the manipulation of nested lists, as the success of a large class of LISP-based computer algebra systems illustrates (either implemented in LISP itself or arXiv:cs/0608005v2 [cs.SC] 12 Jun 2007 in another language with appropriate list data structures). -
Sage Tutorial (Pdf)
Sage Tutorial Release 9.4 The Sage Development Team Aug 24, 2021 CONTENTS 1 Introduction 3 1.1 Installation................................................4 1.2 Ways to Use Sage.............................................4 1.3 Longterm Goals for Sage.........................................5 2 A Guided Tour 7 2.1 Assignment, Equality, and Arithmetic..................................7 2.2 Getting Help...............................................9 2.3 Functions, Indentation, and Counting.................................. 10 2.4 Basic Algebra and Calculus....................................... 14 2.5 Plotting.................................................. 20 2.6 Some Common Issues with Functions.................................. 23 2.7 Basic Rings................................................ 26 2.8 Linear Algebra.............................................. 28 2.9 Polynomials............................................... 32 2.10 Parents, Conversion and Coercion.................................... 36 2.11 Finite Groups, Abelian Groups...................................... 42 2.12 Number Theory............................................. 43 2.13 Some More Advanced Mathematics................................... 46 3 The Interactive Shell 55 3.1 Your Sage Session............................................ 55 3.2 Logging Input and Output........................................ 57 3.3 Paste Ignores Prompts.......................................... 58 3.4 Timing Commands............................................ 58 3.5 Other IPython -
An Overview of the Evolution of the Devices Running Computer Algebra Systems and Their Educational Implications
Electrical & Electronic Technology Open Access Journal Short Communication Open Access An overview of the evolution of the devices running computer algebra systems and their educational implications Abstract Volume 1 Issue 1 - 2017 Only back in late 60’s and early 70’s powerful computers were required to run the Eugenio Roanes-Lozano then just released computer algebra systems (brand new software mainly designed as Instituto de Matemática Interdisciplinar & Depto de Álgebra, a specialized aid for astronomy and high energy physics). In the late 80’s they could Universidad Complutense de Madrid, Spain be run in standard computers. And in 1995 the first calculator including a computer algebra system was released. Now some of these pieces of software are freely available Correspondence: Eugenio Roanes-Lozano, Instituto de for Smartphones. That this software has been ported to these electronic devices is a Matemática Interdisciplinar & Depto de Álgebra, Universidad challenge to different aspects of mathematical and physics education, like: problem Complutense de Madrid, c/ Rector Royo Villanova s/n, solving, assessment and standardized assessment. 28040-Madrid, Spain, Tel 913-946-248, Fax 913-944-662, Email [email protected] Keywords: computer algebra systems, computers, calculators, smartphones, mathematical education Received: May 05, 2017 | Published: June 20, 2017 Introduction symbolic manipulations such as symbolic differentiation and integra- tion can be implemented. The incredible increase of microprocessors 1 Computer algebra systems have two main differences w.r.t. clas- power makes it possible to have CAS available for Smartphones. This sic computer languages: induces serious challenges in teaching mathematics as well and in the a) They perform numerical computations in exact arithmetic (by assessment of this subject. -
Lisp: Program Is Data
LISP: PROGRAM IS DATA A HISTORICAL PERSPECTIVE ON MACLISP Jon L White Laboratory for Computer Science, M.I.T.* ABSTRACT For over 10 years, MACLISP has supported a variety of projects at M.I.T.'s Artificial Intelligence Laboratory, and the Laboratory for Computer Science (formerly Project MAC). During this time, there has been a continuing development of the MACLISP system, spurred in great measure by the needs of MACSYMAdevelopment. Herein are reported, in amosiac, historical style, the major features of the system. For each feature discussed, an attempt will be made to mention the year of initial development, andthe names of persons or projectsprimarily responsible for requiring, needing, or suggestingsuch features. INTRODUCTION In 1964,Greenblatt and others participated in thecheck-out phase of DigitalEquipment Corporation's new computer, the PDP-6. This machine had a number of innovative features that were thought to be ideal for the development of a list processing system, and thus it was very appropriate that thefirst working program actually run on thePDP-6 was anancestor of thecurrent MACLISP. This earlyLISP was patterned after the existing PDP-1 LISP (see reference l), and was produced by using the text editor and a mini-assembler on the PDP-1. That first PDP-6 finally found its way into M.I.T.'s ProjectMAC for use by theArtificial lntelligence group (the A.1. grouplater became the M.I.T. Artificial Intelligence Laboratory, and Project MAC became the Laboratory for Computer Science). By 1968, the PDP-6 wasrunning the Incompatible Time-sharing system, and was soon supplanted by the PDP-IO.Today, the KL-I 0, anadvanced version of thePDP-10, supports a variety of time sharing systems, most of which are capable of running a MACLISP. -
General Relativity Computations with Sagemanifolds
General relativity computations with SageManifolds Eric´ Gourgoulhon Laboratoire Univers et Th´eories (LUTH) CNRS / Observatoire de Paris / Universit´eParis Diderot 92190 Meudon, France http://luth.obspm.fr/~luthier/gourgoulhon/ NewCompStar School 2016 Neutron stars: gravitational physics theory and observations Coimbra (Portugal) 5-9 September 2016 Eric´ Gourgoulhon (LUTH) GR computations with SageManifolds NewCompStar, Coimbra, 6 Sept. 2016 1 / 29 Outline 1 Computer differential geometry and tensor calculus 2 The SageManifolds project 3 Let us practice! 4 Other examples 5 Conclusion and perspectives Eric´ Gourgoulhon (LUTH) GR computations with SageManifolds NewCompStar, Coimbra, 6 Sept. 2016 2 / 29 Computer differential geometry and tensor calculus Outline 1 Computer differential geometry and tensor calculus 2 The SageManifolds project 3 Let us practice! 4 Other examples 5 Conclusion and perspectives Eric´ Gourgoulhon (LUTH) GR computations with SageManifolds NewCompStar, Coimbra, 6 Sept. 2016 3 / 29 In 1965, J.G. Fletcher developed the GEOM program, to compute the Riemann tensor of a given metric In 1969, during his PhD under Pirani supervision, Ray d'Inverno wrote ALAM (Atlas Lisp Algebraic Manipulator) and used it to compute the Riemann tensor of Bondi metric. The original calculations took Bondi and his collaborators 6 months to go. The computation with ALAM took 4 minutes and yielded to the discovery of 6 errors in the original paper [J.E.F. Skea, Applications of SHEEP (1994)] Since then, many softwares for tensor calculus have been developed... Computer differential geometry and tensor calculus Introduction Computer algebra system (CAS) started to be developed in the 1960's; for instance Macsyma (to become Maxima in 1998) was initiated in 1968 at MIT Eric´ Gourgoulhon (LUTH) GR computations with SageManifolds NewCompStar, Coimbra, 6 Sept. -
Exploratory Data Science Using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E
The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E. John3 Brad A. Myers1 1Human-Computer Interaction Institute 2Amherst College 3Bloomberg L. P. Carnegie Mellon University Amherst, MA New York City, NY Pittsburgh, PA [email protected] [email protected] mkery, mahimaa, bam @cs.cmu.edu ABSTRACT engineers, many of whom never receive formal training in Literate programming tools are used by millions of software engineering [30]. programmers today, and are intended to facilitate presenting data analyses in the form of a narrative. We interviewed 21 As even more technical novices engage with code and data data scientists to study coding behaviors in a literate manipulations, it is key to have end-user programming programming environment and how data scientists kept track tools that address barriers to doing effective data science. For of variants they explored. For participants who tried to keep instance, programming with data often requires heavy a detailed history of their experimentation, both informal and exploration with different ways to manipulate the data formal versioning attempts led to problems, such as reduced [14,23]. Currently even experts struggle to keep track of the notebook readability. During iteration, participants actively experimentation they do, leading to lost work, confusion curated their notebooks into narratives, although primarily over how a result was achieved, and difficulties effectively through cell structure rather than markdown explanations. ideating [11]. Literate programming has recently arisen as a Next, we surveyed 45 data scientists and asked them to promising direction to address some of these problems [17]. -
A Survey of User Interfaces for Computer Algebra Systems
J. Symbolic Computation (1998) 25, 127–159 A Survey of User Interfaces for Computer Algebra Systems NORBERT KAJLER† AND NEIL SOIFFER‡§ †Ecole des Mines de Paris, 60 Bd. St-Michel, 75006 Paris, France ‡Wolfram Research, Inc., 100 Trade Center Drive, Champaign, IL 61820, U.S.A. This paper surveys work within the Computer Algebra community (and elsewhere) di- rected towards improving user interfaces for scientific computation during the period 1963–1994. It is intended to be useful to two groups of people: those who wish to know what work has been done and those who would like to do work in the field. It contains an extensive bibliography to assist readers in exploring the field in more depth. Work related to improving human interaction with computer algebra systems is the main focus of the paper. However, the paper includes additional materials on some closely related issues such as structured document editing, graphics, and communication protocols. c 1998 Academic Press Limited 1. Introduction There are several problems with current computer algebra systems (CASs) that are interface-related. These problems include: the use of an unnatural linear notation to enter and edit expressions, the inherent difficulty of selecting and modifying subexpressions with commands, and the display of large expressions that run off the screen. These problems may intimidate novice users and frustrate experienced users. The more natural and intuitive the interface (the closer it corresponds to pencil and paper manipulations), the more likely it is that people will want to take advantage of the CAS for its ability to do tedious computations and to verify derivations.