39675319.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of California, San Diego
UNIVERSITY OF CALIFORNIA, SAN DIEGO Structural and electronic studies of complexes relevant to the electrocatalyic reduction of carbon dioxide. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Eric Edward Benson Committee in charge: Professor Clifford P. Kubiak, Chair Professor Andrew G. Dickson Professor Joshua S. Figueroa Professor Arnold L. Rheingold Professor Michael J. Tauber 2012 Copyright Eric Edward Benson, 2012 All rights reserved Signature Page The dissertation of Eric Edward Benson is approved, and it is acceptable in quality and form for publication on microfilm and electronically. Chair University of California, San Diego 2012 iii DEDICATION to my family iv EPIGRAPH Epigraph The further one goes, the less one knows. –Lao Tzu v TABLE OF CONTENTS Table of Contents Signature Page ............................................................................................................. iii Epigraph ........................................................................................................................ v Table of Contents ......................................................................................................... vi List of Figures .............................................................................................................. ix Lists of Schemes .......................................................................................................... xv List of Tables ............................................................................................................. -
Time-Resolved UV-IR Experiments That Suggest Photoactivated Fe-Cu
Time-Resolved UV-IR Experiments that Suggest Photoactivated Fe-Cu Dinuclear Catalyst Kyle J. Clark, ‡ Jacob T. Davis,‡ Doo-Hyun Kwon, ‡ Erin E. Martinez, Michael R. Talley, David J. Michaelis,* Daniel H. Ess,* and Matthew C. Asplund* Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602 USA 1 ABSTRACT Heterodinuclear complexes with a direct metal-metal bond offer the possibility of unique mechanisms and intermediates. The Cp(CO)2Fe-Cu(IPr) (IPr = N,N-bis(2,6- diisopropylphenyl)imidazol-2-ylidene) heterodinuclear complex 1 is known to photochemically catalyze arene borylation. To examine possible initial steps of photo-initiated catalysis, we synthesized a triethylsilyl-substituted Fe-Cu catalyst that provided cyclohexane solubility to conduct time-resolved UV-IR studies. Time-resolved vibrational spectroscopic measurements suggest that photolysis of 1 stimulates CO dissociation without Fe-Cu metal-metal bond cleavage. This suggests that arene borylation catalysis may begin with a photochemical step rather than a relatively endothermic cleavage of the Fe-Cu bond. A new possible catalytic cycle is proposed. 2 INTRODUCTION Compared to catalysts with a single metal and ligand framework, transition-metal heterodinuclear catalysts with a direct metal-metal bond offer the potential of unique mechanisms and intermediates, oxidation states, reactivity, and selectivity, especially for bond activation reactions (Scheme 1a).1 This divergent reactivity results from the ability of substrates to be activated across two -
2-Diyne Complexes from a Labile Dirhenium Carbonyl and &Pi
Journal of Organometallic Chemistry 881 (2019) 34e44 Contents lists available at ScienceDirect Journal of Organometallic Chemistry journal homepage: www.elsevier.com/locate/jorganchem Synthesis of rhenacyclopentadienes and h2:h2-diyne complexes from a labile dirhenium carbonyl and p-conjugated 1,7-octadiynes: Structural and photophysical characterization Claudia Cardozo a, Axel Mendoza a, Gabriela Farías a, Andre Luiz Barboza Formiga b, * Deisy Pena~ a, Franmerly Fuentes a, Alejandro Arce a, Yomaira Otero a, a Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela b Institute of Chemistry, University of Campinas, P.O. Box 6154, 13083-970, Campinas, Brazil article info abstract Article history: A series of dirhenium carbonyl compounds containing p-conjugated diyne ligands and symmetrical 2,5- Received 4 October 2018 bis(aryl)rhenacyclopentadienes has been synthesized by reaction of [Re2(CO)8(CH3CN)2] and 1,8- Received in revised form bis(aryl)-1,7-octadiyne derivatives [aryl ¼ 2-thienyl (a), 2-pyridyl (b), 2-quinolyl (c) and 9- 29 November 2018 phenanthrenyl (d)]. We found that diyne ligands undergo coordination to the labile rhenium dinuclear Accepted 3 December 2018 in bridging or chelate modes, however, the formation of metallacyclopentadiene complexes was favor- Available online 4 December 2018 ably observed. All products were fully characterized by IR, NMR, ESI-MS, UVeVis and fluorescence spectroscopy. Single-crystal structures of three new 2,5-bis(aryl)rhenacyclopentadienes [Re2(CO)7(m- Keywords: 1 1 2 2 1 1 2 2 Dirhenium carbonyls h :h :h :h -C16H14S2)] (1a), [Re2(CO)6(CH3CN)(m-h :h :h :h -C16H14S2)] (2a) and [Re2(CO)6(CH3CN)(m- 1 1 2 2 Fluorescent rhenacyclopentadiene h :h :h :h -C26H20N2)] (2c) are described. -
Inorganic-Synthesis28.Pdf
REAGENTS FOR TRANSITION METAL COMPLEX AND ORGANOMETALLIC SYNTHESES INORGANIC SYNTHESES Volume 28 .................... .......................... Board of Directors JOHN P. FACKLER, JR. Texas A & M University BODIE E. DOUGLAS University of Pittsburgh DARYLE H. BUSCH University of Kansas JAY H. WORRELL University of South Florida HERBERT D. KAESZ University of Calijornia, Los Angeles ALVIN P. GINSBERG AT&T Bell Laboratories Future Volumes 29 RUSSELL N. GRIMES University of Virginia 30 LEONARD V. INTERRANTE Rensselaer Polytechnic Institute and DONALD MURPHY AT&T Bell Laboratories 31 ALAN H. COWLEY University of Texas 32 MARCETTA Y. DARENSBOURG Texas A & M University International Associates MARTIN A. BENNETT Australian National University, Canberra FAUSTO CALDERAZZO University of Piso E. 0. FISCHER Technical University, Munich JACK LEWIS Cadridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT W. ROESKY University of Gottingen F. G. A. STONE University of Bristol AKIO YAMAMOTO Tokyo Institute of Technology, Yokohama Editor-in-Chief ROBERT J. ANGELIC1 Department of Chemistry lowa State University .--_.... ooooooooooooooooooooooooooooooooooooooaoaooaooo REAGENTS FOR TRANSITION METAL COMPLEX AND ORGANOMETALLIC SYNTHESES INORGANIC SYNTHESES Volume 28 A WILEY-INTERSCIENCE PUBLICATION John Wiley & Sons, Inc. NEW YORK / CHICHESTER / BRISBANE / TORONTO / SINGAPORE In recognition of the importance of preserving what has been written, it is a policy of John Wiley & Sons, Inc. to have books of enduring value published in the United States printed on acid-free paper, and we exert our best efforts to that end. Published by John Wiley & Sons, Inc Copyright (0 1990 Inorganic Syntheses, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. -
METAL CARBONYLS Atomic Number Rule’’)
METAL CARBONYLS atomic number rule’’). The 18-electron rule arises from the fact that transition metals have 9 valence atomic orbitals Carbon monoxide, CO, the most important p-acceptor [5 Â nd,(n þ 1)s, and 3 Â (n þ 1)p], which can be used ligand, forms a host of neutral, anionic, and cationic either for metal–ligand bonding or for the accommodation transition-metal complexes. There is at least one known of nonbonding electrons. Filling of these 9 orbitals allows type of carbonyl derivative for every transition metal, as the metal to gain the electronic configuration of the next well as evidence supporting the existence of the carbonyls highest noble gas. of some lanthanides and actinides, although often in com- The simplest way to count the electrons about a single bination with other ligands. metal uses the following rules: Carbonyls are involved in the preparation of high purity metals as in the Mond process for the extraction of nickel 1. Consider the metal and ligands to have an oxidation from its ores, in catalytic applications, and in the synthesis state of zero. of organic compounds. Transition-metal carbonyls of the 2. Add together the valence electrons of the metal and type Mx(CO)y, where M is a metal and x and y are integers, the electrons donated by the ligands (bridging are referred to as binary (or homoleptic) compounds. ligands provide an equal share of their electrons to Detailed mechanistic studies on metal carbonyls have each metal they interact with). become increasingly important in understanding the 3. -
Complexes Yomaira Otero, Alejandro Arce, Christophe Lescop, Muriel Hissler, Deisy Peña, Régis Réau
High variety of coordination modes of π-conjugated phospholes in dinuclear rhenium carbonyls. Fluxional behavior of σ,π-complexes Yomaira Otero, Alejandro Arce, Christophe Lescop, Muriel Hissler, Deisy Peña, Régis Réau To cite this version: Yomaira Otero, Alejandro Arce, Christophe Lescop, Muriel Hissler, Deisy Peña, et al.. High variety of coordination modes of π-conjugated phospholes in dinuclear rhenium carbonyls. Fluxional behavior of σ,π-complexes. Inorganica Chimica Acta, Elsevier, 2019, 491, pp.118-127. 10.1016/j.ica.2019.04.008. hal-02094926 HAL Id: hal-02094926 https://hal.archives-ouvertes.fr/hal-02094926 Submitted on 10 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Research paper High variety of coordination modes of π-conjugated phospholes in dinuclear rhenium carbonyls. Fluxional behavior of σ,π-complexes Yomaira Otero, Alejandro Arce, Christophe Lescop, Muriel Hissler, Deisy Peña, Regis Réau PII: S0020-1693(19)30359-7 DOI: https://doi.org/10.1016/j.ica.2019.04.008 Reference: ICA 18853 To appear in: Inorganica Chimica Acta Received Date: 18 March 2019 Revised Date: 5 April 2019 Accepted Date: 5 April 2019 Please cite this article as: Y. -
Osu1154373668.Pdf (4.67
YTTERBIUM(II) – GROUP 6, 7 TRANSITION METAL CARBONYL COMPLEXES: SYSTEMATIC SYNTHESES AND STRUCTURAL CHARACTERIZATION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Pavel V. Poplaukhin, B.S. ************ The Ohio State University, 2006 Dissertation Committee: Approved by Professor Sheldon G. Shore, Adviser _______________________ Professor Claudia Turro Advisor Professor Yiying Wu Professor Richard A. Miller Graduate Program in Chemistry ABSTRACT New carbonyl complexes of divalent ytterbium and transition metals of groups 6, 7 of the periodic table have been prepared. The syntheses were carried out in systematic fashion with the aim of establishing general procedures suitable for preparation of a range of compounds of this type. The products obtained were characterized by means of IR spectroscopy and X-ray single crystal diffraction. Nineteen X-ray structures are reported herein, of which only one has been published before. The compounds studied can be divided into two major groups: the solvent-separated ion pairs, where the YbII cation is surrounded with solvent molecules acting as ligands, preventing interaction with the metal carbonylate anion; and complexes with the bridging carbonyl ligands (isocarbonyl ligands), where the cation and the anion are bound together through a –CO- link. New instances of condensation of the solvent-separated ion pairs into the isocarbonyl complexes have been discovered, and the mechanism for such transformation was 2- proposed. The novel [Hg(W(CO)5)2] anion was discovered and characterized by X-ray single crystal diffraction. Its reactivity was briefly investigated. ii Посвящаю моим родителям Dedicated to my parents iii ACKNOWLEDGMENTS I would like to thank all the wonderful friends that I made during my stay here at OSU. -
Metal Carbonyls
METAL CARBONYLS 1. Introduction Carbon monoxide [630-08-0] (qv), CO, the most important p-acceptor ligand, forms a host of neutral, anionic, and cationic transition-metal complexes. There is at least one known type of carbonyl derivative for every transition metal, as well as evidence supporting the existence of the carbonyls of some lanthanides (qv) and actinides, although often in combination with other ligands (see ACTINIDES AND TRANSACTINIDES;COORDINATION COMPOUNDS) (1). Carbonyls are involved in the preparation of high purity metals as in the Mond process for the extraction of nickel from its ores (see NICKEL AND NICKEL ALLOYS), in catalytic applications, and in the synthesis of organic compounds. Transition-metal carbonyls of the type Mx(CO)y,whereMisametalandx and y are integers, are referred to as binary (or homoleptic) compounds. Metal carbo- nyls are often used as starting materials in the preparation of complexes where the carbon monoxide is replaced by other ligands such as phosphines, arsines, hydrides, halides, and many chelating ligands (see CHELATING AGENTS) and unsa- turated organic ligands such as alkenes, alkynes and arenes. Substitution rates on some metal carbonyls such as those of Cr, Mo, W, and Mn can be easily mea- sured (2). Detailed mechanistic studies on metal carbonyls have become increas- ingly important in understanding the factors influencing ligand substitution processes, especially as they apply to catalytic activity. Complexes containing several metal atoms held together mainly by metal–metal bonding are termed clusters and they have received increasing attention for the interest in the rules governing the stoichiometry and structure as well as for possibilities in homogeneous and heterogeneous catalysis (see CATALYSIS).